
HLT-NAACL 2006

SIGPHON 2006:
Eighth Meeting of the

ACL Special Interest Group
on Computational Phonology

Proceedings of the Workshop

8 June 2006
New York City, USA

Production and Manufacturing by
Omnipress Inc.
2600 Anderson Street
Madison, WI 53704

c©2006 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ii

Introduction

We are pleased to present the Proceedings of the Eighth Meeting of the ACL Special Interest Group
on Computational Phonology (SIGPHON) to be held on June 8 in New York City. This is the first
time that the SIGPHON workshop has been collocated with the HLT-NAACL conference. Previous
meetings were held in conjunction with ACL and COLING in Las Cruces (1994), Santa Cruz (1996),
Madrid (1997), Quebec (1998), Luxembourg (2000), Philadelphia (2002), and Barcelona (2004).

One of the missions of SIGPHON is to encourage interaction between work in computational linguistics
and work in theoretical phonology, in the hope that both fields will profit from the interaction. In
addition, SIGPHON continues to promote work in computational morphology, seeking to fill in for
the absence of an analogous SIGMORPH group. Our recent meetings have been successful in both
regards, and we anticipate this will continue in 2006. Many mainstream phonologists are employing
computational tools and models that are of considerable interest to computational linguists more
generally, and our intention is that this workshop should be a forum to bring this work to the attention
of a wider range of computational linguists.

The submissions were reviewed by a program committee composed of eighteen experts in the field.
We are grateful to them for their timely, thoughtful, and thorough reviews.

We hope you enjoy this year’s meeting!

Greg Kondrak
Richard Wicentowski
June 2006

iii

Organizers:

Richard Wicentowski, Swarthmore College
Greg Kondrak, University of Alberta

SIGPHON Executive Committee:

Jason Eisner, The Johns Hopkins University, President
Richard Wicentowski, Swarthmore College, Secretary
Adam Albright, Massachusetts Institute of Technology
Katrin Kirchoff, University of Washington
Eric Fosler-Lussier, The Ohio State University

Program Committee Members:

Adam Albright, University of California, Santa Cruz
Paul Boersma, University of Amsterdam
Anja Belz, University of Brighton
Steven Bird, University of Melbourne
Julie Carson-Berndsen, University College Dublin
John Coleman, University of Oxford
Mathias Creutz, Helsinki University of Technology
Jason Eisner, The Johns Hopkins University
John Goldsmith, University of Chicago
Sharon Goldwater, Brown University
Lauri Karttunen, Palo Alto Research Center
Greg Kondrak, University of Alberta
Mike Maxwell, Linguistic Data Consortium
Kemal Oflazer, Sabanci University
Gerald Penn, University of Toronto
Vito Pirrelli, Istituto di Linguistica Computazionale
Jason Riggle, University of Chicago
Richard Sproat, University of Illinois at Urbana-Champaign

Workshop Website:

http://nlp.cs.swarthmore.edu/sigphon06/

v

Table of Contents

A Combined Phonetic-Phonological Approach to Estimating Cross-Language Phoneme Similarity in an
ASR Environment

Lynette Melnar and Chen Liu .1

Improving Syllabification Models with Phonotactic Knowledge
Karin Müller .11

Learning Quantity Insensitive Stress Systems via Local Inference
Jeffrey Heinz .21

Invited Talk: Universal Constraint Rankings Result from Learning and Evolution
Paul Boersma .31

Exploring variant definitions of pointer length in MDL
Aris Xanthos, Yu Hu and John Goldsmith .32

Improved morpho-phonological sequence processing with constraint satisfaction inference
Antal van den Bosch and Sander Canisius .41

Richness of the Base and Probabilistic Unsupervised Learning in Optimality Theory
Gaja Jarosz .50

Morphology Induction from Limited Noisy Data Using Approximate String Matching
Burcu Karagol-Ayan, David Doermann and Amy Weinberg. .60

Learning Probabilistic Paradigms for Morphology in a Latent Class Model
Erwin Chan. .69

A Naive Theory of Affixation and an Algorithm for Extraction
Harald Hammarstr̈om. .79

vii

Conference Program

Thursday, June 8, 2006

9:00–9:30 A Combined Phonetic-Phonological Approach to Estimating Cross-Language
Phoneme Similarity in an ASR Environment
Lynette Melnar and Chen Liu

9:30–10:00 Improving Syllabification Models with Phonotactic Knowledge
Karin Müller

10:00–10:30 Learning Quantity Insensitive Stress Systems via Local Inference
Jeffrey Heinz

10:30–11:00 Break

11:00–12:30 Invited Talk: Universal Constraint Rankings Result from Learning and Evolution
Paul Boersma

12:30–14:00 Lunch

14:00–14:30 Exploring variant definitions of pointer length in MDL
Aris Xanthos, Yu Hu and John Goldsmith

14:30–15:00 Improved morpho-phonological sequence processing with constraint satisfaction in-
ference
Antal van den Bosch and Sander Canisius

15:00–15:30 Richness of the Base and Probabilistic Unsupervised Learning in Optimality Theory
Gaja Jarosz

15:30–16:00 Break

16:00–16:30 Morphology Induction from Limited Noisy Data Using Approximate String Match-
ing
Burcu Karagol-Ayan, David Doermann and Amy Weinberg

16:30–17:00 Learning Probabilistic Paradigms for Morphology in a Latent Class Model
Erwin Chan

17:00–17:30 A Naive Theory of Affixation and an Algorithm for Extraction
Harald Hammarstr̈om

ix

Proceedings of the Eighth Meeting of the ACL Special Interest Group on Computational Phonology at HLT-NAACL 2006, pages 1–10,
New York City, USA, June 2006.c©2006 Association for Computational Linguistics

A Combined Phonetic-Phonological Approach to Estimating Cross-

Language Phoneme Similarity in an ASR Environment

Lynette Melnar

lynette.melnar@motorola.com
Chen Liu

 chen.liu@motorola.com

Abstract

This paper presents a fully automated lin-

guistic approach to measuring distance

between phonemes across languages. In

this approach, a phoneme is represented

by a feature matrix where feature catego-

ries are fixed, hierarchically related and

binary-valued; feature categorization ex-

plicitly addresses allophonic variation and

feature values are weighted based on their

relative prominence derived from lexical

frequency measurements. The relative

weight of feature values is factored into

phonetic distance calculation. Two pho-

nological distances are statistically de-

rived from lexical frequency

measurements. The phonetic distance is

combined with the phonological distances

to produce a single metric that quantifies

cross-language phoneme distance.

The performances of target-language

phoneme HMMs constructed solely with

source language HMMs, first selected by

the combined phonetic and phonological

metric and then by a data-driven, acous-

tics distance-based method, are compared

in context-independent automatic speech

recognition (ASR) experiments. Results

show that this approach consistently per-

forms equivalently to the acoustics-based

approach, confirming its effectiveness in

estimating cross-language similarity be-

tween phonemes in an ASR environment.

1 Introduction

Speech technologists typically use acoustic meas-

urements to determine similarity among acoustic

speech models (phone(me) HMMs) and there are a

variety of distance metrics available that prove the

effectiveness of this method (see Sooful and Botha

2002). Additionally, HMM similarity can be

evaluated indirectly through comparison of HMM

performances in ASR experiments.

For acoustic measurements, speech data must

be accessible for model training. However, speech

data unavailability is a practical concern in that

most commercially available speech databases are

restricted to widely spoken languages in large

business markets. The vast majority of languages

have not been exposed to intense data collection

and resources for these languages are subsequently

either limited or completely unavailable. Hence a

knowledge-based phoneme distance metric poten-

tially has great value in acoustic modeling for re-

source-limited languages in that it can predict

cross-language HMM similarity in the absence of

target-language speech data.

Knowledge-based approaches to HMM similar-

ity generally attempt to identify articulatory simi-

larity between phonemes across languages. The

typical strategy is subjective and label-based,

where two phonemes are judged to be more or less

similar depending on their transcription labels

(Köhler 1996; Schultz and Waibel 1997, 2000).

A label-based approach suffers for two obvious

reasons. First, phone inventories designed for

speech technology applications are predominantly

phonemic in orientation. Thus, transcription labels

do not transfer with the same phonetic value to

other languages, even where international phonetic

transcription labels are employed. In a phonemic

transcription strategy, transcription labels are gen-

1

erally restricted to only the most basic symbols,

usually unmodified letters of the Roman alphabet

(IPA 1999). Second, phoneme transcription labels

fail to capture allophony. The best phonetic defini-

tion that a phoneme transcription label can offer is

the most typical phonetic realization of that pho-

neme. Not surprisingly, label-based cross-language

transfer experiments have produced poor perform-

ance results.

In contrast to the subjective, label-based strat-

egy, researchers in such fields as language recon-

struction, dialectometry, and child language

development, commonly use automatic feature-

based approaches to articulatory similarity between

phonemes. In these methods, phonemes are repre-

sented by a distinctive feature vector and a pho-

netic distance or similarity algorithm is used to

align phoneme strings between related words

(Connolly 1997; Kessler 1995, 2005; Kondrak

2002; Nerbonne and Heeringa 1997; Somers

1998). Significantly, in these approaches, phono-

logical similarity is generally assumed.

In principle, the feature-based approach to pho-

netic distance admits more precise specification of

phonemes because it supports allophonic variance.

For example, a standard feature-based approach to

allophony representation restricts feature inclusion

to only those features relevant to all realizations of

the phoneme. Another common approach retains

features that are relevant to all allophonic variants,

but leaves their values underspecified (Archangeli

1988). However, it is unclear from the literature

whether allophony is explicitly addressed in the

current feature-based approaches to phoneme simi-

larity.

A strategy for specifying allophony and charac-

terizing phonetic distance between phonemes is

only one component in predicting phoneme simi-

larity among diverse languages without acoustic

data in an ASR environment. Because HMMs rep-

resent phonemes and significant allophones in a

language-dependent context, it is necessary to con-

sider the overall constructed target-language HMM

system. Thus phonological distance quantities that

regulate the priority of source languages for pho-

neme selection in accordance to their phonological

similarity to the target language are also in order.

In this paper, we describe an automated, com-

bined phonetic-phonological (CPP) approach to

estimating phoneme similarity across languages in

ASR. Elsewhere, we provide the phonetic and

phonological distance algorithms (Liu and Melnar

2005, 2006), though offer little linguistic justifica-

tion of the approach or evaluation of the experi-

ment results due to space limitations. Here, we

focus on explaining the linguistic principles behind

the algorithms and analyzing the results.

The CPP approach is fundamentally based on

articulatory phonetic features and is designed to

handle allophonic variation. Feature salience and

phonetic distance are automatically calculated and

phoneme distance is constrained by statistically-

derived phonological similarity biases. Unlike

other distinctive feature-based approaches to pho-

neme similarity, phonological distance is not as-

sumed. In testing this approach in cross-language

transfer experiments, target-language resources are

restricted to lexica and phonology descriptions and

do not include speech data.

In the next section, we describe our feature-

based phoneme specification method. In section

three, we show how our phoneme specification

approach is used in calculating phonetic distance

between phonemes. Section four describes two

other distance metrics that predict phonological

similarity between languages. We explain how the

three distance metrics combine to quantify cross-

language phoneme distance and select target-

language phoneme HMM inventories. In section

five, we describe the experiments that we con-

ducted to evaluate our approach to phoneme simi-

larity prediction. Here, the CPP method is

compared with an acoustic distance method in con-

text-independent speech recognition. We offer our

evaluation and conclusions in section 6.

2 Phoneme specification

In the CPP approach to estimating cross-language

phoneme similarity, each phoneme in our multilin-

gual ASR dataset is associated with a distinctive

feature matrix. Feature categories are fixed for all

phonemes, hierarchically related, and binary-

valued. Feature-contradiction, associated with al-

lophonic variance, is explicitly addressed through

the introduction of a small set of special corollary

features.

2.1 The phoneme feature matrix

As noted in the introduction, cross-language pho-

neme comparison requires accurate feature specifi-

cation. Because a phoneme comprises one or more

2

allophones which may contrast in particular fea-

tures, a distinctive feature strategy that allows for

feature contradiction is preferred. Omitting contra-

dictory features and underspecifying contradictory

values are two well-known methods.

However, cross-language phoneme comparison

in a computational environment is greatly facili-

tated by agreeing on a fixed set of binary-valued

features for all phonemes. A fixed set of distinctive

features is favored as this enables cross-class pho-
neme comparison. A binary-valued system is easy

to manipulate and naturally lends itself to mathe-
matical formulation. However, strict binary-valued

feature systems only indicate the presence or ab-

sence of a feature, and feature contradiction must
then be indicated by feature omission - which is
not possible in a fixed distinctive feature set.

The phoneme specification method that we em-
ploy indicates feature contradiction associated with
allophony in a strict binary-valued, fixed set of
distinctive features through the introduction of

special feature categories. Specifically, we utilize a

small set of corollary features to mark the occa-
sional, allophonic realizations of some primary

features. A corollary feature is defined as a feature

that supplements a primary feature in the system.

The corollary features mark “occasionality” (asso-

ciated with context dependency, dialectal variation,

speech style variation, etc.) in the primary feature

as either present or absent.

2.2 Primary and corollary features

Our feature set includes twenty-six primary articu-
latory features and six corollary features. The se-

lected primary features conform to a typical set of
hierarchically-related distinctive features (e.g. syl-

labic, sonorant, consonantal, labial, coronal, nasal,

continuant, high, low, back, etc.) (Ladefoged

1975). In this hierarchical system, the presence of
one feature presupposes the presence of those hier-

archically dominant features. For example, the

presence of the feature [alveolar] requires the pres-

ence of the feature [coronal], and the presence of
the feature [nasal] requires the presence of the fea-

ture [sonorant]. Significantly, the reverse of these
relations is not true. As is explained later in the

next section, this feature structure allows for a lin-

guistically-principled determination of feature sali-

ence in phonetic distance calculation.

Corollary features are restricted to specifying

those primary features that are judged to be most

significant to cross-language phoneme comparison

in an ASR environment. Phoneme inventories de-

signed for ASR comprise both phonemes and sig-

nificant allophones, where a significant allophone
is characteristically both acoustically distinct from

the primary allophone and associated with a suffi-

ciently high count of occurrence in the associated
speech database. Thus American English ASR

inventories regularly include an alveolar tap, a con-
textually-realized allophonic variant of both /t/ and
/d/. Furthermore, pronunciation transcriptions in

ASR lexica are typically phonetic - within the con-
text of the phoneme-based inventory. So, word-
final voice neutralization in German is overtly in-

dicated throughout the lexicon (e.g. hund : h U n t).
A typical ASR phoneme then does not represent a
true phoneme; rather it encompasses only that

phonemic variation that is not explicitly captured
by its existing significant allophones in the inven-
tory.

Corollary features specify variance that is not

usually overtly indicated in ASR inventories and
lexica but that is important to cross-language pho-
neme comparison in an acoustic, ASR environ-

ment. Internal phoneme recognition experiments
indicate that generally major class features (syl-
labic, sonorant, etc.), manner features (nasal, con-

tinuant, etc.) and laryngeal features (voice, spread
glottis, etc.) are more robustly identified than place
features (labial, coronal, etc.); accordingly, the set

of corollary features, provided in Table 1, pre-
dominantly targets particular major class, manner,
and laryngeal features.

Table 1: Corollary features

Corollary

Feature

Description

syllabic-occ positive value marks the occasional

realization of the phoneme as a syl-

labic consonant or glide

voice-occ positive value marks the occasional

voicing of phonemes

labial-occ positive value marks the occasional

rounding of vowels

nasal-occ positive value marks the occasional

nasalization of vowels and glides

rhotic-occ positive value marks the occasional

rhotization of liquids and vowels

spread-occ positive value marks the occasional

aspiration of obstruents

It should be pointed out that allophones that ex-
press a place contrast or difference in continuance

3

with the primary realization of a phoneme are typi-
cally considered significant allophones in the ASR

phoneme system and are therefore overtly repre-
sented.

As an illustration of the usefulness of corollary

features in cross-language phoneme comparison,

consider Table 2 which includes a partial feature
matrix for the phoneme /k/ associated with 17 lan-

guages and dialects:

Table 2: Partial distinctive feature table

Languages phoneme spread

glottis

spread

-occ

Arabic k 0 0

Danish k 1 1

German k 1 1

British English k 1 1

U.S. English k 1 1

Lat. Spanish k 0 0

Can. French k 0 0

Parisian French k 0 0

Italian k 0 0

Japanese k 1 1

Dutch k 0 0

Brz. Portuguese k 0 0

Eur. Portuguese k 0 0

Swedish k 1 1

Korean k 1 0

Cantonese k 1 0

Mandarin k 1 0

Note that the realization of the phoneme /k/ differs

across the seventeen languages and dialects in the
two features provided: [spread glottis] and [spread-
occ]. The presence of the feature [spread glottis],

marked by 1, and the non-presence of the corollary

feature [spread-occ], marked by 0, indicates that
the glottis is always open during the articulation of

the phoneme; i.e. this phoneme is consistently as-
sociated with aspiration. The precise IPA transcrip-
tion of this segment is /kh/. A positive value for the

corollary feature [spread-occ] means that the pho-
neme is only sometimes associated with aspiration.

This phoneme has two principle phonetic realiza-

tions, marked [k] and [k
h
] in IPA notation. A 0

value for the feature [spread glottis] and corollary

feature [spread-occ] indicates that the segment is

never aspirated. Thus this phoneme is most accu-
rately labeled /k/ in IPA labeling.

Because this methodology incorporates pho-

neme feature contradiction, overall phonological
similarity among languages and dialects is more
precisely predicted:

Table 3: Phoneme similarity across languages

phoneme allophone(s) language lang. family

Danish Germanic

German Germanic

Br. Eng. Germanic

Amer. Eng. Germanic

Japanese Altaic

kh, k

Swedish Germanic

Korean Altaic

Mandarin Sinitic kh

Cantonese Sinitic

Arabic Afro-Asiatic

Lat. Span. Romance

Parisian Fr. Romance

Canadian Fr. Romance

Italian Romance

Dutch Germanic

Brz. Port. Romance

k

k

Eur. Port. Romance

Table 3 reveals that Germanic languages tend to

only occasionally aspirate /k/, Romance languages

avoid aspirating /k/, and Sinitic languages typically

aspirate /k/. Of course, closely related languages
tend to be phonologically similar.

3 Phonetic distance

Most techniques for measuring phonetic distance
between phonemes that do not assume speech data
availability are based on articulatory features,

though perceptual distance, judged (subjective)

distance, and historical distance are also attested
(Kessler 2005). We base our phonetic distance

measurement on articulatory features because of

their cross-linguistic consistency and general
availability.

As Kessler notes, standard phonological theory

provides no guidance in comparing phonetic dis-
tance between phonemes across multiple features

(Kessler 2005). In our experiments to date, we use
the Manhattan distance where the distance between

phonemes equals the sum of the absolute values of

individual feature distances. This approach is fairly

standard in the literature, though the Euclidean

distance has also been reported to attain good re-

sults (Kessler 2005).

Because features are known to differ in relative

importance (Ladefoged 1969), some researchers

apply weights or saliencies to the individual fea-
tures for distance calculation. Nerbonne and Heer-
inga (1997), for example, weighted each feature by

information gain, or entropy reduction. Kondrak

(2002) expressed weights as coefficients that could

4

be changed to any numeric value. He adjusted the
coefficients until he achieved optimal performance

on aligning cognate words.
In our approach, weights are derived from the

lexica of all the considered languages. Specifically,

the value of a weight for a feature is derived from

the frequency of the feature in the lexica. Each lan-
guage is treated equally in this approach; thus, the

weights are not subject to the relative size of a lan-
guage’s lexicon.

Because our phoneme specification method in-

corporates hierarchical relations between features,
feature weights are necessarily interdependent.
Hierarchically dominant features are more fre-

quently attested than their subordinate features and
thus receive more weight. Further, hierarchically

superior features tend to correspond to major pho-

netic categories (sonorant, consonantal, syllabic,

etc.), which are expected to be more contrastive or
distant to each other than sister subordinate catego-
ries. Thus, in a hierarchical feature system, lexical

frequency of features is a reasonable indication of

feature importance in phonetic contrast or distance.

In the following two subsections the phonetic

distance algorithm is described.

Quantitative representation of phonemes

A phoneme is denoted by)(ipl , where l (=1,…,L)

represents the language that includes the phoneme,

and i (=1,…,Il) represents the index of the pho-
neme in language l. Thus, the phoneme inventory

of language l is

(1) },,1|)({ ll Iiip K= .

A phoneme)(ipl is represented by a vector of J

features

(2) T
lll

T
ll Jivjivivjivip)],(,),,(,),1,([)],([)]([KK==f

where each),(jivl is a binary feature, lIi ,,1L= ,

Jj ,,1L= , Ll ,,1L= , and the superscript T denotes

vector transposition.

Weighted phonetic distance

As mentioned, the value of a weight for a feature
in the present phonetic distance approach is de-

rived from the frequency of the feature in the

lexica of all the considered languages. Let)]([ipc ll

denote the occurrence count of a phoneme)(ipl in

a lexicon of language l, then the frequency of each

feature j contributed by the phoneme)(ipl is

),()]([jivipc lll , and the frequency of each feature j

contributed by all the phonemes in language l is

∑ =
lI

i lll jivipc
1

),()]([. The global weights derived from

all the phonemes in all the languages are

(3))}(,),(,),1({)(Jwjwwdiagj LL=W

where

(4)

∑
∑∑

∑
∑

=

= =

=

=
==

L

l
J

j

I

i
lll

I

i
lllL

l
l

l

l

jivipc

jivipc

L
jw

L
jw

1

1 1

1

1
),()]([

),()]([
1

)(
1

)(Jj ,,1L=

where diag(vector) gives a diagonal matrix with
elements of the vector as the diagonal entries. We
define the phonetic distance between phonemes

)(ipl and)(kpt in the form of a Manhattan dis-

tance, which is expressed as
(5)

∑
=

−=−=
J

j
tltllt jkvjivjwkpipjkid

1
1

),(),()()])([)]([)((),(ffW

where lIi ,,1L= , tIk ,,1L= , and the weights, given

in a diagonal matrix)(jW , are dependent upon the

feature identity j.

4 Phonological distance metrics

Although our phoneme specification approach is
designed to account for allophonic variance, not all

variation is captured. Because of this, the effec-
tiveness of measuring phonetic distance as a stand-
alone strategy to predicting cross-language pho-

neme similarity is compromised. Furthermore,

phonetic distance does not determine relative pho-
neme similarity in the not atypical scenario where

two or more phonemes share the same phonetic
distance to some target phoneme. In order to ad-
dress these problems, phonological distance met-

rics are used to bias cross-language phoneme

similarity predictions toward languages that have
similar phoneme inventories and phoneme fre-

quency distributions. The general idea is that the
more similar the phoneme inventory and relative

importance of each corresponding phoneme be-

tween languages, the more likely it is that the cor-
responding phonemes will be more similar.

Phonological distance consideration is espe-

cially desirable in an ASR environment because
ultimately HMMs corresponding to those source-
language phonemes predicted to be most similar to

5

target-language phonemes must interact in a sys-
tem that is intended to reflect a single target lan-

guage. Use of phonological metrics then ensures
that the overall model pool will have a bias toward

a reduced set of phonologically similar languages,

and it is reasonable to expect that similarity in lan-
guages of the model pool provides consistency in

the target HMM system (see Schultz and Waibel

2000).

In this section, we define two distance metrics
to characterize cross-language phonological simi-

larity. One is based on monophoneme inventories
while the other is based on biphoneme inventories.

4.1 Monophoneme distribution distance

Monophoneme distribution distance characterizes

the difference in lexical phoneme distribution be-
tween two languages. Specifically, the distribution,

or normalized histogram, of the phonemes is ob-

tained from a large lexicon of a language, with the
probability in the distribution corresponding to the
frequency of a phoneme in the lexicon. We derive

the distribution from a lexicon as we consider it
more representative of a language’s phonology

than a particular database.

The monophoneme distribution metric is a ty-
pological comparison that is based on two princi-
pal classes of information: (1) types of sounds and

(2) frequencies of these sounds in the lexicon. The
former class is directly associated with phoneme

inventory correspondence while the latter concerns

relative phoneme importance.

Because the phoneme inventories of the two

languages to be compared may not be identical, we

first need to define a combined inventory for them

(6)
},,1|)({},,1|)({},,1|)({ ttllltlt IkkpIiipImmp KKK =∪===

where)(mplt is a phoneme in the combined inven-

tory where there are total ltI phonemes.

The frequency of the phoneme)(mplt in lan-

guage l can be expressed as

(7)

∑
=

=
lI

i
ll

ltl
ltl

ipc

mpc
mp

1

)]([

)]([
)]([ρ , ltIm ,,1L=

where)]([mpc ltl is the occurrence count of pho-

neme)(mplt in a lexicon of language l. If a pho-

neme)(mplt does not exist in the language, its

frequency would be zero. The difference of pho-

neme frequencies between the two languages can

be calculated as

(8))]([)]([)]([mpmpmpd lttltlltlt ρρρ −= ltIm ,,1L=

Then the monophoneme distribution distance
between the target language t and source language

l is

(9) ∑
=

=
ltI

m
ltltlt mpdD

1

)]([ρρ .

The distance is calculated between the target lan-
guage and every one of the source languages.

In view of the known differences in phonologi-
cal characteristics between vowels and consonants,
we make separate calculations for the vowel and

consonant categories. Thus Eq. (9) becomes

(10) ∑
∈

=
gmp

ltlt
g
lt

lt

mpdD
)(

)]([ρρ

where g=Vowels or Consonants.

4.2 Biphoneme distribution distance

The biphoneme distribution distance metric char-

acterizes the difference in lexical distribution of

phoneme pairs, or biphonemes, between two lan-
guages. Similar to the monophoneme distribution

distance, the distribution of biphonemes in a lan-
guage is obtained based on the frequency of bipho-
nemes in a large lexicon.

The biphoneme metric indicates how phonemes
can combine in a language and how important
these combinations are. Though the phonotactics

provided in this approach is limited to only a se-
quence of two, the overall biphoneme inventory

and distribution provides important phonological
information. For example, it indicates if and to

what extent consonants can cluster. Some lan-
guages tend to disfavor consonant clustering, like

the Romance languages, while others allow for

broad clustering, like the Germanic languages. It
also indicates if and to what extent vowels may co-
occur. Many languages require an onset consonant

so vowels will never co-occur; other languages
have no such restriction.

The biphoneme metric then yields types of in-

formation that are distinct from the monophoneme

metric. It explicitly provides a biphoneme inven-
tory, permissible phonotactic sequences, and pho-

notactic sequence importance. It also implicitly

incorporates phoneme inventory and phonological
complexity information.

Similar to the monophoneme distribution dis-
tance, the distribution of biphonemes in a language

6

is obtained based on the frequency of a biphoneme

in a large lexicon. The biphoneme inventory for

the target language t is expressed as

(11) },,1|)({ tt Ikkq ′= K

while the biphoneme inventory for a source lan-
guage l is

(12) },,1|)({ ll Iiiq ′= K

Then the combined biphoneme inventory for the
two languages to be compared is

(13)
},,1|)({},,1|)({},,1|)({ ttllltlt IkkqIiiqInnq ′=∪′==′= KKK

where)(nqlt is a biphoneme in the combined in-

ventory where there are total ltI ′ biphonemes. For a

phoneme at the beginning or end of a word,)(nqlt

takes the format of “void+phoneme” or “pho-
neme+void”, respectively.

The frequency of a biphoneme)(nqlt in lan-

guage l can be expressed as

(14)

∑
′

=

=
lI

i
ll

ltl
ltl

iqc

nqc
nq

1

)]([

)]([
)]([γ , ltIn ′= ,,1L

where)]([nqc ltl is the occurrence count of bipho-

neme)(nqlt in a lexicon of language l. The differ-

ence of biphoneme frequencies between the two

languages is

(15))]([)]([)]([nqnqnqd lttltlltlt γγγ −= ltIn ′= ,,1L

Then the biphoneme distribution distance between

the target language t and source language l is

(16) ∑
′

=
=

ltI

n
ltltlt nqdD

1

)]([γγ .

Similarly, the distance is better characterized

within the categories of vowels and consonants
separately. In our algorithm we count each bipho-
neme twice, the first time as a left-contact bipho-

neme and second time as a right-contact
biphoneme. Thus

(17) ∑∑
∈∈

+=
gnq

ltlt
gnq

ltlt
g
lt

ltlt

nqdnqdD
)(ofleft)(ofright

)]([)]([γγγ

where g=Vowels or Consonants.

4.3 CPP phoneme distance

For phoneme similarity prediction, we unite the

phonetic and phonological distance metrics to ar-
rive at the CPP phoneme distance measurement.
Since the three distances are from different do-

mains and provide distinct types of information,

normalization is necessary before combination.

The normalization, aimed at extracting the relative

ranking between source phonemes and languages,
is a linear processing that scales the score range

from each domain into the range [0 1].

We equate the overall importance of phonetics
with that of phonology by providing a weight of 2

to the phonetic score and 1 to each of the phono-
logical scores. By doing this, a source-language

phoneme can have a greater phonetic distance to

some target-language phoneme than other source-
language phonemes but a lower phonological dis-
tance and receive a lower overall phoneme dis-

tance score. It is because phonological distance is
considered as important as phonetic distance that
the overall constructed target-language model pool

will tend to be restricted to a subset of phonologi-
cally similar languages.

The feature-based phoneme distance metric is

defined as
(18)

N
g
ltN

g
ltNltd DDkidkiCPP][][)],([),(γαραα γρ ⋅+⋅+⋅=

where),(kiCPP represents the distance between

phoneme)(ipl from language l and phoneme)(kpt

from language t, and both phonemes belong to the

same phonological category g (vowels or conso-

nants). The weights dα , ρα , and γα represent the

relative importance of each quantity. As men-

tioned, (dα , ρα , γα)=(2,1,1). The symbol [·]N de-

notes that the quantity inside is linearly scaled into

the range [0 1]. For g
lt

Dρ and g
lt

Dγ , the original

range is determined by scores of all the source lan-
guages. Their scaling is done once for a target lan-

guage t. While for),(kidlt , we found that it is better

to do scaling once for each target phoneme)(kpt ,

and the original range is determined by scores of a
group of candidate phonemes that includes at least
one phoneme from any source language.

5 Experiments

To test our CPP approach to phoneme similarity

prediction, we compared it to an acoustic distance
approach in ASR experiments. Because native lan-

guage speech data is used in measuring model dis-
tance in the acoustic approach, it is expected to

work better than the knowledge-based approach,
which only estimates acoustic similarity indirectly

through articulatory phonetic distance and overall
phonological distance.

7

5.1 Model construction

We employ the regular 3-state, left-right, mul-

timixture, continuous-Gaussian HMMs as the
acoustic models and assume that the models from

all the source and target languages have the same

topology except that the number of mixtures in a

state may vary. Once the top source phonemes are
determined from our feature-based phoneme dis-
tance metric for each target phoneme, the target

HMM is constructed by gathering all the mixtures
for a corresponding state from the source candi-
dates. The original mean and variance values are

maintained while the mixture weights are uni-
formly scaled down so that the new weights add up

to one for each state. It is possible to weigh mix-

tures according to the relative importance of the
candidates if the importance as reflected by the
phoneme distance metric has a significantly large

difference. The transition probabilities are adopted

from the top one candidate model.

5.2 CPP phoneme model construction

We used the 17 languages and dialects provided in

Table 2 in the experiments testing our CPP pho-
neme distance approach to phoneme HMM simi-

larity. For each language, a native monolingual
model set had been built by training with native
speech data. The acoustic features are 39 regular
MFCC features including cepstral, delta, and delta-

delta. The individual ASR databases derive from a

variety of projects and protocols, including, but not
limited to, CallHome, EUROM, SpeechDat, Poly-

phone, and GlobalPhone. In each of the following

experiments, we select one language as the target
language, and construct its acoustic models by us-

ing all the other languages as source languages. A

phoneme distance score is calculated for each tar-
get phoneme and the top two candidate source-

language phonemes are chosen for HMM model
construction. We conducted experiments with Ital-
ian, Latin American Spanish, European Portu-

guese, Japanese, and Danish as target languages.

5.3 Acoustic model construction

In the acoustics distance approach, models are built

with the top two models chosen from source lan-
guages based on their acoustic distance from the

corresponding native target model. For these ex-

periments, we adopt the widely used Bhat-
tacharyya metric for the distance measurement

(Mak and Barnard 1996). It should be noted that
the recognition performance of the acoustics-

constructed models is not a theoretically strict up-
per bound for HMM similarity because the meas-
urement in the acoustic space is probabilistic.

5.4 Results

Each recognition task includes about 3000 utter-
ances of digit strings, command words, and sen-
tences. The word accuracy results in Table 4

include the native baseline performance, i.e. the
performance of the native monolingual, context-
independent models from each target language, as

well as the acoustics-based and feature-based per-
formances. These results show that the perform-
ance of models selected by the CPP phoneme

distance approach is equivalent overall to that of

models selected by acoustic distance.

Table 4: Model performance

Target

Language

Native

Baseline

Acoustic

Distance

CPP

Distance

Lat. Spanish 94.49 88.61 93.06

Italian 98.42 98.27 98.52

Japanese 95.36 76.72 78.76

Danish 94.36 72.95 70.15

Eur. Portuguese 96.31 77.91 72.74

The performance of models selected by the CPP

approach nearly matches the performance of the
native models for Latin American Spanish and

surpasses those for Italian. This approach performs
better than the acoustic distance approach for Latin

American Spanish, Italian, and Japanese and not as

well for Danish and European Portuguese.

6 Evaluation and conclusion

We suggest four principal performance factors to

explain the results provided in Table 4: (1) rare

phonemes in the target-language inventory; (2)

target-language inventory complexity; (3) degree
of source-language phonological distance to the

target language; (4) reliability of source-language

models. Because the CPP approach has only been

tested on five languages, we consider this analysis

preliminary.

Regarding the first factor, rare phonemes in the
target-language inventory, it is worth noting that

neither Latin American Spanish nor Italian has
phonemes whose exact feature specifications are
unattested in phonemes from other languages in

8

our dataset. For these languages, all phonemes
have exact source-language matches. In contrast,

Japanese, Danish, and European Portuguese each
contain phonemes with feature specifications
unique to their language. Based on this analysis,

we propose that, all other factors being equal, the
greater the overall phoneme correspondence be-
tween the target language and the source lan-

guages, the better the target-language HMM

performance.

In general, it appears that target languages as-

sociated with inventories that are greater in size
than their least phonologically distant source lan-
guages perform worse than target languages asso-

ciated with smaller inventories relative to their
closest source languages. For example, the vowel
systems of Danish, European Portuguese, and

Japanese are the most complex of the five target
languages, with Danish having 26 vowels, Euro-
pean Portuguese having 14 vowels, and Japanese
having ten vowels. In sharp contrast, Latin Ameri-

can Spanish has only five vowels and Italian has
seven. Both Latin American Spanish and Italian

are phonologically similar to other Romance lan-

guages in the dataset that have greater vowel con-
trasts: Brazilian Portuguese (13 vowels), European

Portuguese (14 vowels), Parisian French (17 vow-

els) and Canadian French (19 vowels). Here, we
suggest that target languages that have a similar or
lesser number of phoneme contrasts compared to

the source languages are more likely to achieve
higher recognition performances, all other factors
being equal.

Relative phonological distance of the source
languages to the target language and reliability of

source language models additionally impact target-

language ASR performance. Consider Table 5

where the difference in these factors for Italian and

European Portuguese are given. First, Italian and

European Portuguese are both Romance languages
and our dataset includes a total of six, presumably

phonologically similar, Romance languages and

dialects. However, the recognition results of the
models selected by both the feature-based and

acoustics-based phoneme distance method are very

different for the two languages.

Table 5: Phonological distance and native baseline per-

formance factors in target-language recognition

Target Language Italian Eur. Portuguese

Top 3 least distant

langs.

(1) Lat. Spanish

(2) Parisian Fr.

(3) Brz. Port.

(1) Brz. Port.

(2) Lat. Spanish

(3) Canadian Fr.

Avg. phonolog.

distance of top 3

langs.

0.7399 0.8945

Avg. phonolog.

distance of top 1

lang.

0.5757 0.8248

Avg. native base-

line of top 3 langs.
89 91.94

Native baseline of

top 1 lang.
94.49 84.25

If we compare the phonological distances between

the least distant source languages to Italian and

European Portuguese, we observe that Italian’s

closest languages are less distant overall than

European Portuguese’s closest languages.
Because the phonologically least distant source

languages contribute the majority of target-
language HMMs, it is reasonable to expect that
lesser phonological distance to the target language

by a greater number of source languages is likely

to result in a better target-language HMM per-
formance, all other factors being equal.

Finally, note the substantial discrepancy in na-
tive baseline performance between the phonologi-
cally least distant source languages for Italian and

European Portuguese. The majority of selected

models for Italian derive from Latin American

Spanish which is associated with a high native rec-

ognition baseline. European Portuguese models,
on the other hand, largely come from Brazilian

Portuguese which has a much lower native base-

line. This suggests that the most reliable source-
language HMMs, as judged from their native rec-
ognition performance, contribute to better target-
language recognition performance, all other fac-

tors being equal.
In future work, we intend to test our CPP pho-

neme similarity approach on new target languages

and expand the preliminary evaluation provided

here. In particular, we are interested to what extent
this method can predict recognition performance

for new target languages.

9

References

Archangeli, D., “Aspects of Underspecification The-

ory”. Phonology 5:183-207, 1988.

Connolly, J. H., “Quantifying target-realization differ-

ences,” Clinical Linguistics & Phonetics, 11:267–

298, 1997.

IPA, Handbook of the International Phonetic Associa-

tion, Oxford University Press, 1999.

Kessler, B., “Computational dialectology in Irish

Gaelic,” Proc. 6th Conf. European Chapter of ACL,

60–67, 1995.

Kessler, B., “Phonetic comparison algorithms,” Trans-

actions of the Philological Society, 2005

Köhler J., “Multilingual phoneme recognition exploiting

acoustic-phonetic similarities of sounds,” ICSLP’96,

2195-2198, Philadelphia, 1996.

Kondrak, G., Algorithms for Language Reconstruction,

Ph.D. thesis, University of Toronto, 2002.

Ladefoged P., “The measurement of phonetic similar-

ity,” Int Conf on Comp Linguistics, Stockholm, Swe-

den, 1969.

Ladefoged P. A Course in Phonetics. Harcourt Brace

Jovanovich, New York, 1975.

Liu, C. and Melnar, L., “An automated linguistic

knowledge-based cross-language transfer method for
building acoustic models for a language without na-

tive training data,” Interspeech’05, 1365-1368, Lis-

bon, 2005.

Liu, C. and Melnar, L., “Training acoustic models with

speech data from different languages,”

MULTILING’06, Stellenbosch, 2006.

Mak, B. and Barnard, E., “Phone clustering using the

Bhattacharyya distance,” ICSLP’96, 2005-2008,

1996.

Nerbonne, J. and Heeringa, W., “Measuring dialect dis-

tance phonetically,” Proc. 3rd Meeting ACL Special

Interest Group in Comp. Phonology, 1997.

Schultz, T. and Waibel, A., “Fast bootstrapping of

LVCSR systems with multilingual phoneme sets,”

Eurospeech 97, 1:371-373, 1997.

Schultz, T. and Waibel, A.., “Polyphone Decision Tree

Specialization for Language Adaptation”, In Proc. of

ICASSP 2000. Istanbul, 2000.

Somers, H. L., “Similarity metrics for aligning chil-

dren’s articulation data,” Proc. 36th Annual Meeting

ACL and 17th Int. Conf. Comp. Ling., 1227–1231,

1998.

Sooful, J. J. and Botha, E. C., “Comparison of acoustic

distance measures for automatic cross-language pho-
neme mapping,” ICSLP’02, 521-524, 2002.

10

Proceedings of the Eighth Meeting of the ACL Special Interest Group on Computational Phonology at HLT-NAACL 2006, pages 11–20,
New York City, USA, June 2006.c©2006 Association for Computational Linguistics

Improving Syllabification Models with Phonotactic Knowledge

Karin Müller
Institute of Phonetic Sciences

University of Amsterdam
kmueller@science.uva.nl

Abstract

We report on a series of experiments
with probabilistic context-free grammars
predicting English and German syllable
structure. The treebank-trained grammars
are evaluated on a syllabification task. The
grammar used by Müller (2002) serves
as point of comparison. As she evalu-
ates the grammar only for German, we re-
implement the grammar and experiment
with additional phonotactic features. Us-
ing bi-grams within the syllable, we can
model the dependency from the previous
consonant in the onset and coda. A 10-
fold cross validation procedure shows that
syllabification can be improved by incor-
porating this type of phonotactic knowl-
edge. Compared to the grammar of Müller
(2002), syllable boundary accuracy in-
creases from 95.8% to 97.2% for En-
glish, and from 95.9% to 97.2% for Ger-
man. Moreover, our experiments with
different syllable structures point out that
there are dependencies between the on-
set on the nucleus for German but not
for English. The analysis of one of our
phonotactic grammars shows that inter-
esting phonotactic constraints are learned.
For instance, unvoiced consonants are the
most likely first consonants and liquids
and glides are preferred as second conso-
nants in two-consonantal onsets.

1 Introduction

In language technology applications, unknown
words are a continuous problem. Especially, Text-
to-speech (TTS) systems like those described in
Sproat (1998) depend on the correct pronunciation
of those words. Most of these systems use large pro-
nunciation dictionaries to overcome this problem.
However, the lexicons are finite and every natural
language has productive word formation processes.
Thus, a TTS system needs a module which con-
verts letters to sounds and a second module which
syllabifies these sound sequences. The syllabifica-
tion information is important to assign the stress sta-
tus of the syllable, to calculate the phone duration
(Van Santen et al. (1997)), and to apply phonologi-
cal rules (Kahn (1976), Blevins (1995)). Many au-
tomatic syllabification methods have been suggested
e.g., (Daelemans and van den Bosch, 1992; Van den
Bosch, 1997; Kiraz and Möbius, 1998; Vroomen
et al., 1998; Müller, 2001; Marchand et al., to ap-
pear 2006). Müller (2001) shows that incorporat-
ing syllable structure improves the prediction of syl-
lable boundaries. The syllabification accuracy in-
creases if the onset and coda is more fine-grained
(Müller, 2002). However, she only incorporates par-
tial phonotactic knowledge in her approach. For in-
stance, her models cannot express that the phoneme
/l/ is more likely to occur after an /s/ than after a
/t/ in English. The information that a phoneme is
very probable in a certain position (here, the /l/ ap-
pears as second consonant in a two-consonantal on-
set cluster) will not suffice to express English phono-
tactics of an entire consonant cluster. Moreover, she

11

only reports the performance of the German gram-
mar. Thus, we are interested if the detection of syl-
lable boundaries can be improved for both English
and German by adding further phonotactic knowl-
edge to a grammar.

Phonotactic constraints within the onset or coda
seem to be important for various tasks. Listeners in-
deed use phonotactic knowledge from their mother
language in various listening situations. Vitevitch
and Luce (1999), e.g., showed if English speak-
ers have to rate nonsense words how “English-like”
the stimuli are, highly probable phonotactic stimuli
were rated more “English-like” than stimuli with a
lower probability. Speakers make also use of their
phonotactic knowledge when they have to segment
a sequence into words. In a words spotting task,
Weber and Cutler (2006) found evidence that speak-
ers of American English can segment words much
easier when the sequence contains phonotactic con-
straints of their own language.

Beside many perception experiments which show
that phonotactic constraints are useful information,
many different methods have been suggested to
model phonotactic constraints for language tech-
nology applications. Krenn (1997), for instance,
uses Hidden Markov Models to tag syllable struc-
ture. The model decides whether a phoneme be-
longs to the onset, nucleus or coda. However, this
model does not incorporate fine-grained phonotac-
tics. Belz (2000) uses finite state automatons (FSA)
to model phonotactic structure of different sylla-
ble types. We use similar positional features of
syllables. Moreover, Carson-Berndsen (1998) and
Carson-Berndsen et al. (2004) focus on automat-
ically acquiring feature-based phonotactics by in-
duction of automata which can be used in speech
recognition. In our approach, we concentrate on
explicit phonotactic grammars as we want to test
different suggestions about the internal structure of
words from phonological approaches (e.g. Kessler
and Treiman (1997)). We assume, for instance, that
codas depend on the previous nucleus and that on-
sets depend on the subsequent nucleus.

In this paper, we present experiments on a series
of context-free grammars which integrate step by
step more phonological structure. The paper is or-
ganized as follows: we first introduce our grammar
development approach. In section 3, we describe our

experiments and the evaluation procedure. The sub-
sequent section 4 shows what kind of phonotactic in-
formation can be learned from a phonotactic gram-
mar. Last, we discuss our results and draw some
conclusions.

2 Method

We build on the approach of Müller (2001) which
combines the advantages of treebank and brack-
eted corpora training. Her method consists of four
steps: (i) writing a (symbolic i.e. non-probabilistic)
context-free phonological grammar with syllable
boundaries, (ii) training this grammar on a pronunci-
ation dictionary which contains markers for syllable
boundaries (see Example 1; the pre-terminals “X[”
and “X]” denote the beginning and end of a sylla-
ble such that syllables like [strIN] can be unambigu-
ously processed during training), (iii) transforming
the resulting probabilistic phonological grammar by
dropping the syllable boundary markers1 (see Ex-
ample 2), and (iv) predicting syllable boundaries
of unseen phoneme strings by choosing their most
probable phonological tree according to the trans-
formed probabilistic grammar. The syllable bound-
aries can be extracted from the Syl node which gov-
erns a whole syllable.

(1) Word → X[Sylone]X
(2) Word → Sylone

We use a grammar development procedure to de-
scribe the phonological structure of words. We ex-
pect that a more fine-grained grammar increases the
precision of the prediction of syllable boundaries as
more phonotactic information can be learned. In the
following section, we describe the development of a
series of grammars.

2.1 Grammar development
Our point of comparison is (i) the syllable com-
plexity grammar which was introduced by Müller
(2002). We develop four different grammars: (ii) the
phonotactic grammar, (iii) the phonotactic on-nuc
grammar (iv) the phonotactic nuc-coda grammar
and (v) the phonotactic on-nuc-coda grammar. All
five grammars share the following features: The
grammars describe a word which is composed of one

1We also drop rules with zero probabilities

12

to n syllables which in turn branch into onset and
rhyme. The rhyme is re-written by the nucleus and
the coda. Onset or coda could be empty. Further-
more, all grammar versions differentiate between
monosyllabic and polysyllabic words. In polysyl-
labic words, the syllables are divided into syllables
appearing word-initially, word-medially, and word-
finally. Additionally, the grammars distinguish be-
tween consonant clusters of different sizes (ranging
from one to five consonants).

We assume that phonotactic knowledge within
the onset and coda can help to solve a syllabifica-
tion task. Hence, we change the rules of the syl-
lable complexity grammar (Müller, 2002) such that
phonotactic dependencies are modeled. We express
the dependencies within the onset and coda as well
as the dependency from the nucleus by bi-grams.

2.1.1 Grammar generation
The grammars are generated automatically (using

perl-scripts). As all possible phonemes in a language
are known, our grammar generates all possible re-
write rules. This generation process naturally over-
generates, which means that we receive rules which
will never occur in a language. There are, for in-
stance, rules which describe the impossible English
onset /tRS/. However, our training procedure and
our training data make sure that only those rules will
be chosen which occur in a certain language.

The monosyllabic English word string is used as
a running example to demonstrate the differences
of the grammar versions. The word string is tran-
scribed in the pronunciation dictionary CELEX as
([strIN]) (Baayen et al., 1993). The opening square
bracket, “[“, indicates the beginning of the syllable
and the closing bracket, “]”, the end of the syllable.
The word consists of the tri-consonantal onset [str]
followed by the nucleus, the short vowel [I] and the
coda [N].

In the following paragraphs, we will introduce the
different grammar versions. For comparison rea-
sons, we briefly describe the grammar of Müller
(2002) first.

2.1.2 Syllable complexity grammar (Müller,
2002)

The syllable complexity grammar distinguishes
between onsets and codas which contain a differ-

ent number of consonants. There are different
rules which describe zero to n-consonantal onsets.
Tree (3) shows the complete analysis of the word
string.

(3) Word

Sylone

�
�

�
��

H
H

H
HH

Onsetone

Onone.3.1

�� HH
s Onone.3.2

�� HH
t Onone.3.3

r

Rhymeone

�
�� H

HH
Nucleusone

I

Codaone.1

Coone.1.1

N

(4) Onone.3.1 → s Onone.3.2

(5) Onone.2.1 → s Onone.2.2

Rule 4, e.g., describes a tri-consonantal onset, e.g.,
[str]. This rule occurs in example tree 3 and will
be used for words such as string or spray. Rule (5)
describes a two-consonantal onset occurring in the
analysis of words such as snake or stand. However,
this grammar cannot model phonotactic dependen-
cies from the previous consonant.

2.1.3 Phonotactic grammar
Thus, we develop a phonotactic grammar which

differs from the previous one. Now, a consonant in
the onset or coda depends on the preceding one. The
rules express bi-grams of the onset and coda conso-
nants. The main difference to the previous gram-
mars can be seen in the re-writing rules involving
phonemic preterminal nodes (rule 6) as well as ter-
minal nodes for consonants (rule 7).

(6) X.r.C.s.t → C X.r.C+.s.t
(7) X.r.C.s.t → C

Rules of this type bear four features for a conso-
nant C inside an onset or a coda (X=On, Cod),
namely: the position of the syllable in the word
(r=ini, med, fin, one), the current terminal node
(C = consonant), the succeeding consonant (C+),
the cluster size (t = 1 . . . 5), and the position of a
consonant within a cluster (s = 1 . . . 5).

The example tree (8) shows the analysis of the
word string with the current grammar version. The

13

rule (9) comes from the example tree showing that
the onset consonant [t] depends on the previous con-
sonant [s].

(8) Word

Sylone

�
�

�
�

��

H
H

H
H

HH

Onsetone.3

Onone.s.3.1

�� HH
s Onone.t.3.2

�� HH
t Onone.r.3.3

r

Rhymeone

�
��

H
HH

Nucleusone

I

Codaone.1

Coone.t.1.1

N

(9) Onone.s.3.1 → s Onone.t.3.2

2.1.4 Phonotactic on-nuc grammar
We also examine if there are dependencies of the

first onset consonant on the succeeding nucleus. The
dependency of the whole onset on the nucleus is
indirectly encoded by the bi-grams within the on-
set. The phonotactic onset-nucleus grammar distin-
guishes between same onsets with different nuclei.
In example tree (12), the triconsonantal onset start-
ing with a phoneme [s] depends on the Nucleus [I].
Rule (10) occurs in tree (12) and will be also used
for words such as strict or strip whereas rule (11) is
used for words such as strong or strop.

(10) Onsetone.I.3 → Onone.s.3.1

(11) Onsetone.O.3 → Onone.s.3.1

(12) Word

Sylone.I

�
�����

HH
HHHH

Onsetone.I.3

Onone.s.3.1

�� HH
s Onone.t.3.2

�� HH
t Onone.r.3.3

r

Rhymeone.I

���
HHH

Nucleusone.I

I

Codaone.1

Coone.N.1.1

N

2.1.5 Phonotactic nuc-coda grammar
The phonotactic nucleus-coda grammar encodes

the dependency of the first coda consonant on the
nucleus. The grammar distinguishes between codas
that occur with various nuclei. Rule 13 is used, for
instance, to analyze the word string, shown in Ex-
ample tree 15. The same rule will be applied for

words such as bring, king, ring or thing. If there is
a different nucleus, we get a different set of rules.
Rule 14, e.g., is required to analyze words such as
long, song, strong or gong.

(13) Codaone.I.1 → N Coone.t.1.1

(14) Codaone.O.1 → N Coone.t.1.1

(15) Word

Sylone

�
�

�
�

��

H
H

H
H

HH

Onsetone.3

Onone.s.3.1

�� HH
s Onone.t.3.2

�� HH
t Onone.r.3.3

r

Rhymeone.I

�
��

H
HH

Nucleusone.I

I

Codaone.I.1

Coone.N.1.1

N

2.1.6 Phonotactic on-nuc-coda grammar

The last tested grammar is the phonotactic onset-
nucleus-coda grammar. It is a combination of gram-
mar 2.1.4 and 2.1.5. In this grammar, the first con-
sonant of the onset and coda depend on the nucleus.
Tree 16 shows the full analysis of our running exam-
ple word string.

(16) Word

Sylone.I

������

H
HHHHH

Onsetone.I.3

Onone.s.3.1

�� HH
s Onone.t.3.2

�� HH
t Onone.r.3.3

r

Rhymeone.I

���
HHH

Nucleusone.I

I

Codaone.I.1

Coone.N.1.1

N

The rules of the subtree (17) are the same for words
such as string or spring. However, words with a dif-
ferent nucleus such as strong will be analyzed with
a different set of rules.

14

(17) Word

Sylone.I

�
�

��

H
H

HH

Onsetone.I.3

Onone.s.3.1

Rhymeone.I

�
��

H
HH

Nucleusone.I

I

Codaone.I.1

Coone.N.1.1

N

3 Experiments

In this section, we report on our experiments with
four different phonotactic grammars introduced in
Section 2.1 (see grammar 2.1.3-2.1.6), as well as
with a re-implementation of Müller’s less complex
grammar (Müller, 2002). All these grammars are
trained on a corpus of transcribed words from the
pronunciation lexicon CELEX. We use the full forms
of the lexicon instead of the lemmas. The German
lexicon contains 304,928 words and the English lex-
icon 71,493 words. Homographs with the same pro-
nunciation but with different part of speech tags are
taken only once. We use for our German exper-
iments 274,435 words for training and 30,492 for
testing (evaluating). For our English experiments,
we use 64,343 for training and 7,249 for testing.

3.1 Training procedure
We use the same training procedure as Müller
(2001). It is a kind of treebank training where we
obtain a probabilistic context-free grammar (PCFG)
by observing how often each rule was used in the
training corpus. The brackets of the input guaran-
tee an unambiguous analysis of each word. Thus,
the formula of treebank training given by (Charniak,
1996) is applied: r is a rule, let |r| be the number
of times r occurred in the parsed corpus and λ(r) be
the non-terminal that r expands, then the probability
assigned to r is given by

p(r) =
|r|∑

r′∈{r′|λ(r′)=λ(r)} |r′|

After training, we transform the PCFG by drop-
ping the brackets in the rules resulting in an anal-
ysis grammar. The bracket-less analysis grammar is
used for parsing the input without brackets; i.e., the
phoneme strings are parsed and the syllable bound-
aries are extracted from the most probable parse.

In our experiments, we use the same technique.
The advantage of this training method is that we
learn the distribution of the grammar which maxi-
mizes the likelihood of the corpus.

3.2 Evaluation procedure

We evaluate our grammars on a syllabification task
which means that we use the trained grammars to
predict the syllable boundaries of an unseen corpus.
As we drop the explicit markers for syllable bound-
aries, the grammar can be used to predict the bound-
aries of arbitrary phoneme sequences. The bound-
aries can be extracted from the syl-span which gov-
erns an entire syllable.

Our training and evaluation procedure is a 10-fold
cross validation procedure. We divide the original
(German/English) corpus into ten parts equal in size.
We start the procedure by training on parts 1-9 and
evaluating on part 10. In a next step, we take parts
1-8 and 10 and evaluate on part 9. Then, we evaluate
on corpus 8 and so forth. In the end, this procedure
yields evaluation results for all 10 parts of the orig-
inal corpus. Finally, we calculate the average mean
of all evaluation results.

3.2.1 Evaluation Metrics
Our three evaluation measures are word accuracy,

syllable accuracy and syllable boundary accuracy.
Word accuracy is a very strict measure and does not
depend on the number of syllables within a word. If
a word is correctly analyzed the accuracy increases.
We define word accuracy as

of correctly analyzed words
total # of words

Syllable accuracy is defined as
of correctly analyzed syllables

total # of syllables

The last evaluation metrics we used is the syllable
boundary accuracy. It expresses how reliable the
boundaries were recognized. It is defined as

of correctly analyzed syllable boundaries
total # of syllable boundaries

The difference between the three metrics can
be seen in the following example. Let our
evaluation corpus consist of two words, transfer-
ring and wet. The transcription and the sylla-
ble boundaries are displayed in table 1. Let our
trained grammar predict the boundaries shown in
table 2. Then the word accuracy will be 50%

15

transferring trA:ns–f3:–rIN
wet wEt

Table 1: Example: evaluation corpus

transferring trA:n–sf3:–rIN
wet wEt

Table 2: Example: predicted boundaries

(1 correct word
2 words), the syllable accuracy will be 50%

(2 correct syllables
4 syllables), and the syllable boundary accu-

racy is 75% (3 correct syllable boundaries
4 syllable boundaries). The differ-

ence between syllable accuracy and syllable bound-
ary accuracy is that the first metric punishes the
wrong prediction of a syllable boundary twice as
the complete syllable has to be correct. The syllable
boundary accuracy only judges the end of the sylla-
ble and counts how often it is correct. Mono-syllabic
words are also included in this measure. They serve
as a baseline as the syllable boundary will be always
correct. If we compare the baseline for English and
German (tables 3 and 4, respectively), we observe
that the English dictionary contains 10.3% monosyl-
labic words and the German one 1.59%.

Table 3 and table 4 show that phonotactic knowl-
edge improves the prediction of syllable bound-
aries. The syllable boundary accuracy increases
from 95.84% to 97.15% for English and from 95.9%
to 96.48% for German. One difference between the
two languages is if we encode the nucleus in the on-
set or coda rules, German can profit from this in-
formation compared to English. This might point at
a dependence of German onsets from the nucleus.
For English, it is even the case that the on-nuc and
the nuc-cod grammars worsen the results compared
to the phonotactic base grammar. Only the combi-
nation of the two grammars (the on-nuc-coda gram-
mar) achieves a higher accuracy than the phonotactic
grammar. We suspect that the on-nuc-coda grammar
encodes that onset and coda constrain each other on
the repetition of liquids or nasals between /s/C on-
sets and codas. For instance, lull and mam are okey,
whereas slull and smame are less good.

4 Learning phonotactics from PCFGs

We want to demonstrate in this section that our
phonotactic grammars does not only improve syl-

grammar version word syllable syll bound.
accuracy accuracy accuracy

baseline 10.33%
(Müller, 2002) 89.27% 91.84% 95.84%
phonot. grammar 92.48% 94.35% 97.15%
phonot. on-nuc 92.29% 94.21% 97.09%
phonot. nuc-cod 92.39% 94.27% 97.11%
phonot. on-nuc-cod 92.64% 94.47% 97.22%

Table 3: Evaluation of four English grammar ver-
sions.

grammar version word syllable syll bound.
accuracy accuracy accuracy

baseline 1.59%
(Müller, 2002) 86.06% 91.96% 95.90%
phonot. grammar 87.95% 93.09% 96.48%
phonot. nuc-cod 89.53% 94.09% 97.01%
phonot. on-nuc 89.97% 94.35% 97.15%
phonot. on-nuc-cod 90.45% 94.62% 97.29%

Table 4: Evaluation of four German grammar ver-
sions.

labification accuracy but can be used to reveal in-
teresting phonotactic2 information at the same time.
Our intension is to show that it is possible to aug-
ment symbolic studies such as e.g., Hall (1992),
Pierrehumbert (1994), Wiese (1996), Kessler and
Treiman (1997), or Ewen and van der Hulst (2001)
with extensive probabilistic information. Due to
time and place constraints, we concentrate on two-
consonantal clusters of grammar 2.1.3.

Phonotactic restrictions are often expressed by ta-
bles which describe the possibility of combination
of consonants. Table 5 shows the possible combi-
nations of German two-consonantal onsets (Wiese,
1996). However, the table cannot express differ-
ences in frequency of occurrence between certain
clusters. For instance, it does not distinguish be-
tween onset clusters such as [pfl] and [kl]. If we con-
sider the frequency of occurrence in a German dic-
tionary then there is indeed a great difference. [kl] is
much more common than [pfl].

4.1 German

Our method allows additional information to be
added to tables such as shown in table 5. In what
follows, the probabilities are taken from the rules
of grammar 2.1.3. Table 6 shows the probability of

2Note that we only deal with phonotactic phenomena on the
syllable level and not on the morpheme level.

16

mono l R n m s v f t ts p k j z g
0.380 S 0.160 0.093 0.056 0.074 0.165 0.318 0.131
0.158 k 0.351 0.322 0.175 0.151
0.090 b 0.489 0.510
0.086 t 0.955 0.044
0.083 f 0.620 0.364 0.015
0.066 g 0.362 0.617 0.019
0.042 p 0.507 0.400 0.030 0.061
0.033 d 1.000
0.019 s 0.200 0.066 0.100 0.133 0.033 0.133 0.333
0.019 ts 1.000
0.011 pf 0.882 0.117
0.007 v 1.000

Table 6: German two-consonantal onsets in monosyllabic words - sorted by probability of occurrence

mono l r n m s v f t ts p k j z g w S d
0.322 s 0.157 0.001 0.099 0.060 0.001 0.004 0.223 0.150 0.174 0.006 0.120
0.148 k 0.375 0.390 0.003 0.003 0.030 0.196
0.093 b 0.420 0.574 0.004
0.083 f 0.591 0.333 0.075
0.079 p 0.480 0.457 0.056 0.005
0.072 g 0.283 0.709 0.006
0.068 t 0.686 0.039 0.274
0.048 d 0.822 0.112 0.065
0.035 h 0.089 0.910
0.018 T 0.857 0.047 0.095
0.014 S 0.878 0.030 0.030 0.060
0.004 m 1.000
0.003 n 1.000
0.002 l 1.000
0.002 v 1.000

Table 7: English two-consonantal onsets in monosyllabic words - sorted by probability of occurrence

Sonorants Obstruents
l R n m s v

Obstruents
p + + (+) - + -
t - + - - - (+)
k + + + (+) (+) +
b + + - - - -
d - + - - - -
g + + + (+) - -
f + + - - - -
v (+) + - - -
ts - - - - - +
pf + + - - - -
S + + + + - +

Table 5: (Wiese, 1996) German onset clusters

occurrence of German obstruents ordered by their
probability of occurrence. [S] occurs very often in
German words as first consonant in two-consonantal
onsets word initially. In the first row of table 6,
the consonants which occur as second consonants
are listed. We observe, for instance, that [St] is
the most common two-consonantal onset in mono-
syllabic words. This consonant cluster appears in
words such as Staub (dust), stark (strong), or Stolz
(pride). We believe that there is a threshold indicat-
ing that a certain combination is very likely to come
from a loanword. If we define the probability of a
two-consonantal onset as

p(onset ini 2) =def p(C1)× p(C2)

where p(C1) is the probability of the rule

X.r.C1.s.t → C1 X.r.C2.s.t

and p(C2) is the probability of the rule

X.r.C2.s.t → C2,

then we get a list of two-consonantal onsets ordered
by their probabilities:

p(St) > ... > p(sk) > p(pfl) > p(sl) > ... > p(sf)

These onsets occur in words such as Steg (foot-
bridge), stolz (proud), Staat (state), Skalp (scalp),
Skat (skat) Pflicht (duty), Pflock (stake), or Slang
(slang) and Slum (slum). The least probable
combination is [sf] which appears in the German
word Sphäre (sphere) coming from the Latin word
sphaera. The consonant cluster [sl] is also a very
uncommon onset. Words with this onset are usually
loanwords from English. The onset [sk], however, is
an onset which occur more often in German words.
Most of the words are originally from Latin and are
translated into German long ago. Interestingly, the
onset [pfl] is also a very uncommon onset. Most
of these onsets result from the second sound shift
where in certain positions the simple onset conso-

17

nant /p/ became the affricate /pf/. The English trans-
lation of these words shows that the second sound
shift was not applied to English. However, the most
probable two-consonantal onset is [St]. The whole
set of two-consonantal onsets can be seen in Table 8.

4.2 English

English two-consonantal onsets show that unvoiced
first consonants are more common than voiced ones.
However, two combinations are missing. The alveo-
lar plosives /t/ and /d/ do not combine with the lateral
/l/ in English two-consonantal onsets. Table 8 shows
the most probable two-consonantal onsets sorted by
their joint probability.

4.3 Comparison between English and German

The fricatives /s/ and /S/ are often regarded as extra
syllabic. According to our study on two-consonantal
onsets, these fricatives are very probable first con-
sonants and combine with more second consonants
than all other first consonants. They seem to form
an own class. Liquids and glides are the most impor-
tant second consonants. However, English prefers /r/
over /l/ in all syllable positions and /j/ over /w/ (ex-
cept in monosyllabic words) and /n/ as second con-
sonants. Nasals can only combine with very little
first consonants. In German, we observe that /R/ is
preferred over /l/ and /v/ over /n/ and /j/. Moreover,
the nasal /n/ is much more common in German than
in English as second consonants which applies espe-
cially to medial and final syllables.

When we compare the phonotactic restrictions of
two languages, it is also interesting to observe which
combinations are missing. If certain consonant clus-
ters are not very likely or never occur in a language,
this might have consequences for language under-
standing and language learning. Phonotactic gaps
in one language might cause spelling mistakes in a
second language. For instance, a typical Northern
German name is Detlef which is often misspelled in
English as Deltef. The onset cluster /tl/ can occur
in medial and final German syllables but not in En-
glish. The different phonetic realization of /l/ may
play a certain role that /lt/ is more natural than /tl/ in
English.

Mono-syllabic: /st/ > /kr/ > /sk/ > /kl/ > /br/ > /gr/ > /sl/ > /fl/ > /sp/ > /tr/

> /dr/ > /bl/ > /sw/ > /pl/ > /pr/ > /sn/ > /hw/ > /kw/ > /fr/ > /gl/ > /sm/ >

/tw/ > /Tr/ > /Sr/ > /fj/ > /dj/ > /kj/ > /pj/ > /mj/ > /dw/ > /hj/ > /nj/ > /tj/

> /vj/ > /lj/ > /sj/ > /Tw/ > /sf/ > /Tj/ > /Sw/ > /km/ > /kv/ > /gw/ > /Sn/

> /Sm/ > /pS/ > /bj/ > /sr/ > /sv/

Initial /pr/ > /st/ > /tr/ > /kr/ > /sp/ > /sk/ > /br/ > /gr/ > /fl/ > /kl/ > /fr/ >

/bl/ > /pl/ > /sl/ > /kw/ > /dr/ > /sn/ > /sw/ > /gl/ > /hw/ > /nj/ > /sm/ > /sj/

> /pj/ > /Tr/ > /mj/ > /kj/ > /dj/ > /tw/ > /tj/ > /fj/ > /hj/ > /lj/ > /bj/ > /ps/

> /Sr/ > /dw/ > /sf/ > /vj/ > /gj/ > /gw/ > /pw/ > /mn/ > /Sm/ > /Tj/ > /Tw/

> /Sn/ > /tsw/ > /zj/ > /pt/ > /mw/ > /kn/ > /gz/

Medial: /st/ > /tr/ > /pr/ > /sp/ > /gr/ > /kj/ > /kr/ > /kw/ > /pl/ > /br/ > /tj/

> /lj/ > /dj/ > /dr/ > /kl/ > /nj/ > /sk/ > /mj/ > /fr/ > /pj/ > /bl/ > /fl/ > /bj/

> /gl/ > /gj/ > /fj/ > /Sn/ > /sj/ > /vj/ > /Sj/ > /Tr/ > /vr/ > /gw/ > /sl/ >

/nr/ > /sw/ > /mr/ > /sn/ > /hj/ > /hw/ > /sm/ > /zj/ > /tSr/ > /rj/ > /sr/ >

/dw/ > /Zr/ > /Sr/ > /jw/ > /tSw/ > /tSn/ > /vw/ > /Dr/ > /dZr/ > /dn/ > /Tj/

> /tw/ > /Sw/ > /Zj/ > /zr/ > /zn/ > /zw/ > /Zw/ > /dZj/ > /dZn/ > /dZw/

Final: /st/ > /tr/ > /kl/ > /bl/ > /gr/ > /dr/ > /pl/ > /br/ > /sk/ > /sp/ > /pr/

> /kr/ > /tj/ > /fr/ > /nj/ > /fl/ > /lj/ > /kw/ > /dj/ > /sj/ > /kj/ > /sl/ > /gl/

> /hw/ > /Sn/ > /vr/ > /Sj/ > /vj/ > /bj/ > /pj/ > /fj/ > /Tr/ > /mj/ > /gw/ >

/sr/ > /sw/ > /sm/ > /nr/ > /sn/ > /tSr/ > /mr/ > /tw/ > /dZr/ > /zj/ > /gj/ >

/dZj/ > /Sr/ > /Zr/ > /sf/ > /nw/ > /zr/ > /Tj/ > /rj/ > /Dr/ > /vw/ > /dw/ >

/dn/ > /tSj/ > /pw/ > /jw/ > /hj/ > /St/ > /Zw/ > /tSn/ > /Zj/ > /pn/ > /Dj/ >

/dZn/ > /zn/ > /Sw/ > /Zn/ > /tSw/ > /Tw/ > /bd/ > /tsj/ > /Dw/

Monosyllabic: /St/ > /tR/ > /Sv/ > /Sl/ > /kl/ > /fl/ > /kR/ > /Sp/ > /bR/ >

/bl/ > /gR/ > /SR/ > /dR/ > /fR/ > /Sm/ > /kn/ > /gl/ > /kv/ > /pl/ > /Sn/ >

/tsv/ > /pR/ > /pfl/ > /vR/ > /sk/ > /sl/ > /tv/ > /ps/ > /sp/ > /sv/ > /sm/ >

/pfR/ > /pn/ > /gn/ > /sn/ > /fj/ > /sf/

Initial: /St/ > /tR/ > /pR/ > /Sp/ > /kR/ > /Sv/ > /gR/ > /Sl/ > /fR/ > /kl/ >

/bR/ > /bl/ > /fl/ > /Sm/ > /gl/ > /tsv/ > /pl/ > /kv/ > /kn/ > /Sn/ > /dR/ >

/SR/ > /sk/ > /pfl/ > /ps/ > /gn/ > /sl/ > /sm/ > /sts/ > /sf/ > /sv/ > /ks/ >

/tv/ > /vR/ > /sn/ > /mn/ > /st/ > /pn/ > /sp/ > /fj/ > /pfR/ > /mj/

Medial: /St/ > /tR/ > /bR/ > /fR/ > /Sl/ > /gR/ > /kR/ > /bl/ > /dR/ > /Sp/

> /kl/ > /fl/ > /pR/ > /gl/ > /Sv/ > /SR/ > /st/ > /pl/ > /ks/ > /kv/ > /gn/ >

/Sn/ > /Sm/ > /kn/ > /tsv/ > /pfl/ > /dl/ > /dn/ > /gm/ > /sp/ > /sn/ > /fn/ >

/bn/ > /vj/ > /xR/ > /tn/ > /sl/ > /vR/ > /sk/ > /pj/ > /ps/ > /sts/ > /xn/ > /xl/

> /ml/ > /Rn/ > /Nn/ > /NR/ > /zn/ > /zl/ > /mn/ > /tl/ > /sf/ > /ln/ > /tsR/

> /tsl/ > /sR/ > /ft/ > /zR/ > /pfR/ > /pt/ > /nR/ > /sg/ > /pn/ > /dm/ > /tz/

> /sv/ > /zv/ > /tv/

Final: /St/ > /tR/ > /bl/ > /Sl/ > /bR/ > /fl/ > /kl/ > /dR/ > /gR/ > /Sp/ >

/kR/ > /Sv/ > /fR/ > /SR/ > /gl/ > /ks/ > /dl/ > /pl/ > /gn/ > /pR/ > /Sn/ >

/Sm/ > /kn/ > /dn/ > /kv/ > /tsv/ > /tl/ > /ml/ > /xl/ > /tsl/ > /gm/ > /pfl/ >

/Nl/ > /zl/ > /tn/ > /xR/ > /vR/ > /fn/ > /bn/ > /vj/ > /zn/ > /Nn/ > /pn/ >

/RR/ > /mn/ > /xn/ > /zR/ > /NR/ > /lR/ > /dZm/ > /tsR/ > /nl/ > /gv/ > /ps/

> /ft/ > /pfR/ > /tZl/ > /nR/ > /sp/ > /st/ > /sv/ > /sk/ > /sR/ > /sn/ > /sl/ >

/sm/ > /sts/

Table 8: Two-consonantal onsets ordered by joint
probability (top: English, bottom:German)

18

5 Discussion

Comparison of the syllabification performance with
other systems is difficult: (i) different approaches
differ in their training and evaluation corpus;
(ii) comparisons across languages are hard to inter-
pret; (iii) comparisons across different approaches
require cautious interpretations. Nevertheless, we
want to refer to several approaches that examined
the syllabification task. Van den Bosch (1997) in-
vestigated the syllabification task with five induc-
tive learning algorithms. He reported a general-
ization error for words of 2.22% on English data.
However, the evaluation procedure differs from ours
as he evaluates each decision (after each phoneme)
made by his algorithms. Marchand et al. (to ap-
pear 2006) evaluated different syllabification algo-
rithms on three different pronunciation dictionaries.
Their best algorithm (SbA) achieved a word accu-
racy of 91.08%. The most direct point of compari-
son are the results presented by Müller (2002). Her
approach differs in two ways. First, she only eval-
uates the German grammar and second she trains
on a newspaper corpus. As we are interested in
how her grammars perform on our corpus, we re-
implemented her grammars and tested both in our
10-fold cross evaluation procedure. We find that the
first grammar (Müller, 2001) achieves 85.45% word
accuracy, 88.94% syllable accuracy and 94.37% syl-
lable boundary accuracy for English and 84.21%,
90.86%, 95.36% for German respectively. The re-
sults show that the syllable boundary accuracy in-
creases from 94,37% to 97.2% for English and from
95.3% to 97.2% for German. The experiments point
out that phonotactic knowledge is a valuable source
of information for syllabification.

6 Conclusions

Phonotactic restrictions are important for language
perception and production. They influence the abil-
ity of children to segment words, and they help to
recognize words in nonsense sequences. In this
paper, we presented grammars which incorporate
phonotactic restrictions. The grammars were trained
and tested on a German and an English pronuncia-
tion dictionary. Our experiments show that English
and German profit from phonotactic knowledge to
predict syllable boundaries. We find evidence that

German codas depend on the nucleus which does
not apply for English. The English grammars which
model the dependency of part of the onset or coda
on the nucleus worsen the syllabification accuracy.
However, the combination of both show a better per-
formance than the base phonotactic grammar. This
suggests that there are constrains in the selection of
the onset and coda consonants.

7 Acknowledgments

I would like to thank Paul Boersma who invited
me as a guest researcher at the Institute of Phonetic
Sciences of the University of Amsterdam. Special
thanks also to Detlef Prescher as well as to the three
anonymous reviewers, whose comments were very
useful while preparing the final version of this pa-
per.

References
Harald R. Baayen, Richard Piepenbrock, and H. van Rijn.

1993. The CELEX lexical database—Dutch, English,
German. (Release 1)[CD-ROM]. Philadelphia, PA:
Linguistic Data Consortium, Univ. Pennsylvania.

Anja Belz. 2000. Multi-syllable phonotactic mod-
elling. In Proceedings of SIGPHON 2000: Finite-
State Phonology, Luxembourg.

Juliette Blevins. 1995. The Syllable in Phonological
Theory. In John A. Goldsmith, editor, Handbook
of Phonological Theory, pages 206–244, Blackwell,
Cambridge MA.

Julie Carson-Berndsen, Robert Kelly, and Moritz Neuge-
bauer. 2004. Automatic Acquisition of Feature-Based
Phonotactic Resources. In Proceedings of the Work-
shop of the ACL Special Interest Group on Computa-
tional Phonology (SIGPHON), Barcelona, Spain.

Julie Carson-Berndsen. 1998. Time Map Phonology. Fi-
nite State Models and Event Logics in Speech Recog-
nition, volume 5 of Text, Speech and Language Tech-
nology. Springer.

Eugene Charniak. 1996. Tree-bank grammars. In Pro-
ceedings of the Thirteenth National Conference on Ar-
tificial Intelligence, AAAI Press/MIT Press, Menlo
Park.

Walter Daelemans and Antal van den Bosch. 1992. Gen-
eralization performance of backpropagation learning
on a syllabification task. In M.F.J. Drossaers and A Ni-
jholt, editors, Proceedings of TWLT3: Connectionism
and Natural Language Processing, pages 27–37, Uni-
versity of Twente.

19

Colin J. Ewen and Harry van der Hulst. 2001.
The Phonological Structure of Words. An Introduc-
tion. Cambridge University Press, Cambridge, United
Kingdom.

Tracy Hall. 1992. Syllable structure and syllable related
processes in German. Niemeyer, Tübingen.

Daniel Kahn. 1976. Syllable-based Generalizations in
English Phonology. Ph.D. thesis, Massachusetts Insti-
tute of Technology, MIT.

Brett Kessler and Rebecca Treiman. 1997. Syllable
Structure and the Distribuation of Phonemes in En-
glish Syllables. Journal of Memory and Language,
37:295–311.

George Anton Kiraz and Bernd Möbius. 1998. Mul-
tilingual Syllabification Using Weighted Finite-State
Transducers. In Proc. 3rd ESCA Workshop on Speech
Synthesis (Jenolan Caves), pages 59–64.

Brigitte Krenn. 1997. Tagging syllables. In Proceedings
of the 5th European Conference on Speech Commu-
nication and Technology, Eurospeech 97, pages 991–
994.

Yannick Marchand, Connie A. Adsett, and Robert I.
Damper. to appear 2006. Automatic syllabification in
English: A comparison of different algorithms. Lan-
guage and Speech.

Karin Müller. 2001. Automatic Detection of Syllable
Boundaries Combining the Advantages of Treebank
and Bracketed Corpora Training. In Proc. 39th Annual
Meeting of the ACL, Toulouse, France.

Karin Müller. 2002. Probabilistic Context-Free Gram-
mars for Phonology. In Proceedings of the Workshop
on Morphological and Phonological Learning at ACL
2002.

Janet Pierrehumbert. 1994. Syllable structure and word
structure: a study of triconsonantal clusters in English.
In Patricia A. Keating, editor, Phonological Structure
and Phonetic Form, volume III of Papers in Labo-
ratory Phonology, pages 168–188. University Press,
Cambridge.

Richard Sproat, editor. 1998. Multilingual Text-to-
Speech Synthesis: The Bell Labs Approach. Kluwer
Academic, Dordrecht.

Antal Van den Bosch. 1997. Learning to Pronounce
Written Words: A Study in Inductive Language Learn-
ing. Ph.D. thesis, Univ. Maastricht, Maastricht, The
Netherlands.

Jan P.H. Van Santen, Chilin Shih, Bernd Möbius, Eve-
lyne Tzoukermann, and Michael Tanenblatt. 1997.
Multilingual duration modeling. In Proceedings of

the European Conference on Speech Communication
and Technology (Eurospeech), volume 5, pages 2651–
2654, Rhodos, Greece.

Michael S. Vitevitch and Paul A. Luce. 1999. Proba-
bilistic Phonotactics and Neighborhood Activation in
Spoken Word Recognition. Journal of Memory and
Language, (40):374–408.

Jean Vroomen, Antal van den Bosch, and Beatrice
de Gelder. 1998. A Connectionist Model for Boot-
strap Learning of Syllabic Structure. Language and
Cognitive Processes. Special issue on Language Ac-
quisition and Connectionism, 13(2/3):193–220.

Andrea Weber and Anne Cutler. 2006. First-language
phonotactics in second-language listening. Journal of
the Acoustical Society of America, 119(1):597–607.

Richard Wiese. 1996. The Phonology of German.
Clarendon Press, Oxford.

20

Proceedings of the Eighth Meeting of the ACL Special Interest Group on Computational Phonology at HLT-NAACL 2006, pages 21–30,
New York City, USA, June 2006.c©2006 Association for Computational Linguistics

Learning Quantity Insensitive Stress Systems via Local Inference

Jeffrey Heinz
Linguistics Department

University of California, Los Angeles
Los Angeles, California 90095
jheinz@humnet.ucla.edu

Abstract

This paper presents an unsupervised batch
learner for the quantity-insensitive stress
systems described in Gordon (2002). Un-
like previous stress learning models, the
learner presented here is neither cue based
(Dresher and Kaye, 1990), nor reliant on
a priori Optimality-theoretic constraints
(Tesar, 1998). Instead our learner ex-
ploits a property called neighborhood-
distinctness, which is shared by all of the
target patterns. Some consequences of this
approach include a natural explanation
for the occurrence of binary and ternary
rhythmic patterns, the lack of higher n-ary
rhythms, and the fact that, in these sys-
tems, stress always falls within a certain
window of word edges.

1 Introduction

The central premise of this research is that phonotac-
tic patterns are have properties which reflect prop-
erties of the learner. This paper illustrates this ap-
proach for quantity-insensitive (QI) stress systems
(see below).

I present an unsupervised batch learner that cor-
rectly learns every one of these languages. The
learner succeeds because there is a universal prop-
erty of QI stress systems which I refer to as
neighborhood-distinctness (to be defined below).
This property, which is a structural notion of local-
ity, is used by the learning algorithm to successfully
infer the target pattern from samples.

A learner is a function from a set of observations
to a grammar. An observation is some linguistic
sign, in this case a word-sized sequence of stress val-
ues. A grammar is some device that must at least re-
spond Yes or No when asked if a linguistic sign is a
possible sign for this language (Chomsky and Halle,
1968; Halle, 1978).1

The remainder of the introduction outlines the ty-
pology of the QI stress systems, motivates represent-
ing phonotactics with regular languages, and exam-
ines properties of the attested patterns. In §2, I define
the class of neighborhood-distinct languages. The
learning algorithm is presented in two stages. §3 in-
troduces a basic version of the learner the learner,
which successfully acquires just under 90% of the
target patterns. In §4, one modification is made to
this learner which consequently succeeds on all tar-
get patterns. §5 discusses predictions made by these
learning algorithms. The appendix summarizes the
target patterns and results.

1.1 Quantity-Insensitive Stress Systems

Stress assignment in QI languages is indifferent to
the weight of a syllable. For example, Latin is
quantity-sensitive (QS) because stress assignment
depends on the syllable type: if the penultimate syl-
lable is heavy (i.e. has a long vowel or coda) then
it receives stress, but otherwise the antepenult does.
The stress systems under consideration here, unlike
Latin, do not distinguish syllable types.

1In this respect, this work departs from (or is a special case
of) gradient phonotactic models (Coleman and Pierrehumbert,
1997; Frisch et al., 2000; Albright, 2006; Hayes and Wilson,
2006)

21

There are 27 types of QI stress systems found in
Gordon’s (2002) typology. Gordon adds six plausi-
bly attestable QI systems by considering the behav-
ior of all-light-syllabled words from QS systems.

These 33 patterns are divided into four kinds: sin-
gle, dual, binary and ternary. Single systems have
one stressed syllable per word, and dual systems up
to two. Binary and ternary systems stress every sec-
ond (binary) or third (ternary) syllable.

The choice to study QI stress systems was made
for three reasons. First, they are well studied and the
typology is well established (Hayes, 1995; Gordon,
2002). Secondly, learning of stress systems has been
approached before (Dresher and Kaye, 1990; Gupta
and Touretzky, 1991; Goldsmith, 1994; Tesar, 1998)
making it possible to compare learners and results.
Third, these patterns have been analyzed with ad-
jacency restrictions (e.g. no clash), as disharmony
(e.g. a primary stress may not be followed by an-
other), and with recurrence requirements (e.g. build
trochaic feet iteratively from the left). Thus the pat-
terns found in the QI stress systems are represen-
tative of other phonotactic domains that the learner
should eventually be extended to.

The 33 types are shown in Table 1. See Gor-
don (2002) and Hayes (1995) for details, exam-
ples, and original sources. Note that some patterns
have a minimal word condition (Prince, 1980; Mc-
Carthy and Prince, 1990; Hayes, 1995), banning ei-
ther monosyllables or light monosyllables. For ex-
ample, Cayuvava bans all monosyllables, whereas
Hopi bans only light monosyllables. Because this
paper addresses QI stress patterns I abstract away
from the internal structure of the syllable. For con-
venience, when stress patterns are explicated in this
paper I assume (stressed) monosyllables are permit-
ted. The learning study, however, includes each
stress pattern both with and without stressed mono-
syllables. Predictions our learner makes with respect
to the minimal word condition are given in §5.2.

2We use the (first) language name to exemplify the stress
pattern. The number in parentheses is an index to the lan-
guage Gordon’s 2003 appendix. All stress representations fol-
low Gordon’s notation, who uses the metrical grid (Liberman
and Prince, 1977; Prince, 1983). Thus, primary stress is indi-
cated by 2, secondary stress by 1, and no stress by 0.

1.2 Phonotactics as Regular Languages

I represent phonotactic descriptions as regular sets,
accepted by finite-state machines. A finite state ma-
chine is a 5-tuple (Σ, Q, q0, F, δ) where Σ is a finite
alphabet, Q is a set of states, q0 ∈ Q is the start state,
F ⊆ Q is a set of final states, and δ is a set of tran-
sitions. Each transition has an origin and a terminus
and is labeled with a symbol of the alphabet; i.e. a
transition is a 3-tuple (o, a, t) where o, t ∈ Q and
a ∈ Σ.

Empirically, it has been observed that most
phonological phenomena are regular (Johnson,
1972; Kaplan and Kay, 1981; Kaplan and Kay, 1994;
Ellison, 1994; Eisner, 1997; Karttunen, 1998). This
is especially true of phonotactics: reduplication and
metathesis, which have higher complexity, are not
phonotactic patterns as they involve alternations.3

Formally, regular languages are widely studied in
computer science, and their basic properties are well
understood (Hopcroft et al., 2001). Also, a learning
literature exists. E.g. the class of regular languages
is not exactly identifiable in the limit (Gold, 1967),
but certain subsets of it are (Angluin, 1980; Angluin,
1982). Thus it is becomes possible to ask: What
subset of the regular languages delimits the class of
possible human phonotactics and can properties of
this class be exploited by a learner?

This perspective also connects to finite state mod-
els of Optimality Theory (OT) (Prince and Smolen-
sky, 1993). Riggle (2004) shows that if OT con-
straints are made finite-state, it is possible to build a
transducer that takes any input to a grammatical out-
put. Removing from this transducer the input labels
and hidden structural symbols (such as foot bound-
aries) in the output labels yields a phonotactic ac-
ceptor for the language, a target for our learner.

Consider Pintupi, #26 in Table 1, which exempli-
fies a binary stress pattern. Its phonotactic gram-
mar is given in Figure 1. The hexagon indicates the
start state, and final states are marked by the double
perimeter.

This machine accepts the Pintupi words, but not
other words of the same length. Also, the Pin-
tupi grammar accepts an infinite number of words–
just like the grammars in Hayes (1995) and Gordon

3See Albro (1998; 2005) for restricted extensions to regular
languages.

22

Table 1: The Quantity-Insensitive Stress Systems.2

Single Systems
1. (1) Chitimacha 20000000 2000000 200000 20000 2000 200 20 2
2. (2) Lakota 02000000 0200000 020000 02000 0200 020 02 2
3. (3) Hopi (qs) 02000000 0200000 020000 02000 0200 020 20 2
4. (4) Macedonian 00000200 0000200 000200 00200 0200 200 20 2
5. (5) Nahuatl / Mohawk† 00000020 0000020 000020 00020 0020 020 20 2
6. (6) Atayal / Diegueño‡ 00000002 0000002 000002 00002 0002 002 02 2

Dual Systems
7. (7f) Quebec French 10000002 1000002 100002 10002 1002 102 12 2
8. (9f) Udihe 10000002 1000002 100002 10002 1002 102 02 2
9. (10i) Lower Sorbian 20000010 2000010 200010 20010 2010 200 20 2
10. (11f) Sanuma 10000020 1000020 100020 10020 1020 020 20 2
11. (15f) Georgian 10000200 1000200 100200 10200 0200 200 20 2
12. (16i) Walmatjari 20000100 2000100 200100 20100 2010 200 20 2

(optional variants) 20000010 2000010 200010 20010
Binary Systems

13. (24i) Araucanian 02010101 0201010 020101 02010 0201 020 02 2
14. (24f) Creek‡ (qs) 01010102 0101020 010102 01020 0102 020 02 2
15. (25f) Urubu Kaapor 01010102 1010102 010102 10102 0102 102 02 2
16. (26i) Malakmalak 20101010 0201010 201010 02010 2010 020 20 2
17. (26f) Cavineña† 10101020 0101020 101020 01020 1020 020 20 2
18. (27i) Maranungku 20101010 2010101 201010 20101 2010 201 20 2
19. (27f) Palestinean Arabic‡ (qs) 10101020 1010102 101020 10102 1020 102 20 2

Binary Systems with Clash
20. (28i) Central Alaskan Yupik‡ 01010102 0101012 010102 01012 0102 012 02 2
21. (29i) Southern Paiute‡ 02010110 0201010 020110 02010 0210 020 20 2
22. (30i) Gosiute Shoshone 20101011 2010101 201011 20101 2011 201 21 2
23. (32f) Biangai 10101020 1101020 101020 11020 1020 120 20 2
24. (33f) Tauya 11010102 1010102 110102 10102 1102 102 12 2

Binary Systems with Lapse
25. (34f) Piro 10101020 1010020 101020 10020 1020 020 20 2
26. (36i) Pintupi / Diyari† 20101010 2010100 201010 20100 2010 200 20 2
27. (40f) Indonesian 10101020 1001020 101020 10020 1020 020 20 2
28. (42i) Garawa 20101010 2001010 201010 20010 2010 200 20 2

Ternary Systems
29. (48i) Ioway-Oto 02001001 0200100 020010 02001 0200 020 02 2
30. (49f) Cayuvava† 00100200 0100200 100200 00200 0200 200 20 2
31. (67i) Estonian (qs) 20010010 2001010 201010 20010 2010 200 20 2

(optional variants) 20101010 2010100 200100 20100
20100100 2010010
20010100

32. (71f) Pacific Yupik (qs) 01001002 0100102 010020 01002 0102 020 02 2
33. (72i) Winnebago‡ (qs) 00200101 0020010 002001 00201 0020 002 02 2
† Bans monosyllables.
‡ Bans light monosyllables.

23

0 1
2

2
0

4
1

3

0

0

Figure 1: Stress in Pintupi as a finite state machine

(2002), who take the observed forms as instances of
a pattern that extends to longer words. The learner’s
task is to take the Pintupi words in Table 1 and return
the pattern represented by Figure 1.

1.3 Properties of QI Stress Patterns

The deterministic acceptor with the fewest states for
a language is called the language’s canonical accep-
tor. Therefore, let us ask what properties the canoni-
cal acceptors for the 33 stress types have in common
that might be exploited by a learner.

One property shared by all grammars except Es-
tonian is that they have exactly one loop (Estonian
has two). Though this restriction is nontrivial, it is
insufficient for learning to be guaranteed.4 A second
shared property is slenderness. A machine is slender
iff it accepts only one word of length n. The only ex-
ceptions to this are Walmatjari and Estonian, which
have free variation in longer words (see Table 1).

I focus in this paper on another property which are
shared by all machines without exception. In 29 of
the canonical acceptors, each state can be uniquely
identified by its incoming symbol set, its outgo-
ing symbol set, and whether it is final or non-final.
These items make up the neighborhood of a state,
which will be formally defined in the next section.
The other four stress systems have non-canonical
acceptors wherein each state can also be uniquely
identified by its neighborhood. This property I call
neighborhood-distinctness. Thus, neighborhood-
distinctness is a universal property of QI stress sys-
tems, and it is this property that the learner will ex-
ploit.

4The proof is similar to the one used to show the cofinite
languages are not learnable (Osherson et al., 1986).

2 Neighborhood-Distinctness

2.1 Neighborhood-Distinct Acceptors

The neighborhood of a state in an acceptor
(Σ, Q, q0, F, δ) is defined in (1).

(1) The neighborhood of a state q is triple
(f, I,O) where f = 1 iff q ∈ F and f = 0
otherwise, I = {a | ∃o ∈ Q, (o, a, q) ∈ δ},
and O = {a | ∃t ∈ Q, (q, a, t) ∈ δ}

Thus the neighborhood of state can be determined
by looking solely at whether or not it is final, the set
of symbols labeling the transitions which reach that
state, and the set of symbols labeling the transitions
which depart that state. For example in Figure 2,
states p and q have the same neighborhood because
they are both nonfinal, can both be reached by some
element of {a, b}, and because each state can only
be exited by observing a member of {c, d}.5

q

a c

db
p

a
c

d
a

b

Figure 2: Two states with the same neighborhood.

Neighborhood-distinct acceptors are defined in
(2).

(2) An acceptor is said to be neighborhood-
distinct iff no two states have the same
neighborhood.

This class of acceptors is finite: there are 22|Σ|+1

neighborhoods, i.e. types of states. Since each state
in a neighborhood-distinct machine has a unique
neighborhood, this becomes an upper bound on ma-
chine size.6

5The notion of neighborhood can be generalized to neigh-
borhoods of size k, where sets I and O are defined as the in-
coming and outgoing paths of length k. However, this paper is
only concerned with neighborhoods of size 1.

6For some acceptor, the notion of neighborhood lends it-
self to an equivalence relation RN over Q: pRNq iff p and q
have the same neighborhood. Therefore, RN partitions Q into
blocks, and neighborhood-distinct machines are those where
this partition equals the trivial partition.

24

2.2 Neighborhood-Distinct Languages

The class of neighborhood-distinct languages is de-
fined in (3).

(3) The neighborhood-distinct languages are
those for which there is an acceptor which
is neighborhood-distinct.

The neighborhood-distinct languages are a (finite)
proper subset of the regular languages over an
alphabet Σ: all regular languages whose small-
est acceptors have more than 22|Σ|+1 states cannot
be neighborhood-distinct (since at least two states
would have the same neighborhood).

The canonically neighborhood-distinct languages
are defined in (4).

(4) The canonically neighborhood-distinct
languages are those for which the canonical
acceptor is neighborhood-distinct.

The canonically neighborhood-distinct languages
form a proper subset of the neighborhood-distinct
languages. For example, the canonical accep-
tor shown in Figure 3 of Lower Sorbian (#9 in
Table 1) is not neighborhood-distinct (states 2
and 3 have the same neighborhood). However,
there is a non-canonical (because non-deterministic)
neighborhood-distinct acceptor for this language, as
shown in Figure 4.

0 1
2

2
0

5

1

3
0

6
01

4

0 1
0

Figure 3: The canonical acceptor for Lower Sorbian.

0

1

2

32
4

2

5
2

0

2
0

0

0

0

1

Figure 4: A neighborhood-distinct acceptor for
Lower Sorbian.

Neighborhood-distinctness is a universal property
of the patterns under consideration. Additionally, it
is a property which a learner can use to induce a
grammar from surface forms.

3 The Neighborhood Learner

In this section, I present the basic unsupervised
batch learner, called the Neighborhood Learner,
which learns 29 of the 33 patterns. In the next
section, I introduce one modification to this learner
which results in perfect accuracy.

The basic version of the learner operates in two
stages: prefix tree construction and state-merging,
cf. Angluin (1982). These two stages find smaller
descriptions of the observed data; in particular state-
merging may lead to generalization (see below).

A prefix tree is constructed as follows. Set the ini-
tial machine M = (Σ, {q0}, q0, ∅, ∅) and the current
state c = q0. With each word, each symbol a is con-
sidered in order. If ∀t ∈ Q, (c, a, t) ∈ δ then set
c = t. Otherwise, add a new state n to Q and a new
arc (c, a, n) to δ. A new arc is therefore created on
every symbol in the first word. The last state for a
word is added to F . The process is repeated for each
word. The prefix tree for Pintupi words from Table
1 is shown in Figure 5.

0 1
2

2
0

31

11

0

4
0

51

10

0

6
0

71

9

0

8
0

Figure 5: The prefix tree of Pintupi words.

The second stage of the learner is state-merging,
a process which reduces the number of states in the
machine. A key concept in state merging is that
when two states are merged into a single state, their
transitions are preserved. Specifically, if states p and
q merge, then a merged state pq is added to the ma-
chine, and p and q are removed. For every arc that
left p (or q) to a state r, there is now an arc from pq
going to r. Likewise, for every arc from a state r to
p (or q), there is now an arc from r to pq.

The post-merged machine accepts every word that
the pre-merged machine accepts, and possibly more.
For example, if there is a path between two states
which become merged, a loop is formed.

25

What remains to be explained is the criteria the
learner uses to determine whether two states in
the prefix tree merge. The Neighborhood Learner
merges two states iff they have the same neighbor-
hood, guaranteeing that the resulting grammar is
neighborhood-distinct.

The intuition is that the prefix tree provides
a structured representation of the input and has
recorded information about different environments,
which are represented in the tree as states. Learning
is a process which identifies actually different envi-
ronments as ‘the same’— here states are ‘the same’
iff their local features, i.e their neighborhoods, are
the same. For example, suppose states p and q in the
prefix tree are both final or both nonfinal, and they
share the same incoming symbol set and outgoing
symbol set. In the learner’s eyes they are then ‘the
same’, and will be merged.

The merging criteria partitions the states of the
Pintupi prefix tree into five groups. States 3,5 and
7 are merged; states 2,4,6 are merged, and states
8,9,10,12 are merged. Merging of states halts when
no two nodes have the same neighborhood– thus, the
resulting machine is neighborhood-distinct. The re-
sult for Pintupi is shown in Figure 6.

0 1
2

2-4-6
0

3-5-7
1

8-9-10-11

0

0

Figure 6: The grammar learned for Pintupi.

The machine in Figure 6 is equivalent to the one
in Figure 1– they accept exactly the same language.7

I.e. neighborhood merging of the prefix tree in Fig-
ure 5 generalizes from the data exactly as desired.

3.1 Results of Neighborhood Learning

The Neighborhood Learner successfully learns 29 of
the 33 language types (see appendix). These are ex-
actly the 29 canonically neighborhood-distinct lan-
guages. This suggests the following claim, which
has not been proven.8

7This can be verified by checking to see if the minimized
versions of the two machines are isomorphic.

8The proof is made difficult by the fact that the acceptor
returned by the Neighborhood Learner is not necessarily the

(5) Conjecture: The Neighborhood Learner
identifies the class of canonically
neighborhood-distinct languages.

In §4, I discuss why the learner fails where it does,
and introduce a modification which results in perfect
accuracy.

4 Reversing the Prefix Tree

This section examines the four cases where neigh-
borhood learning failed and modifies the learning al-
gorithm, resulting in perfect accuracy. The goal is to
restrict generalization because in every case where
learning failed, the learner overgeneralized by merg-
ing more states than it should have. Thus, the re-
sulting grammars recognize multiple words with n
syllables.

The dual stress pattern of Lower Sorbian places
stress initially and, in words of four or more sylla-
bles, on the penult (see #9 Table 1). The prefix tree
built from these words is shown in Figure 7.

0 1
2

2
0

151

3

0

11 120

13 140

160

1

4

0

1

5

0

9
1

6

0
100

7
1

8
0

Figure 7: The prefix tree for Lower Sorbian.

Here the Neighborhood Learner fails because it
merges states 2 and 3. The resulting grammar incor-
rectly accepts words of the form 20∗.

The proposed solution follows from the observa-
tion that if the prefix tree were constructed in reverse
(reading each word from right to left) then the corre-
sponding states in this structure would not have the
same neighborhoods, and thus not be merged. A re-
verse prefix tree is constructed like a forward prefix
tree, the only difference being that the order of sym-
bols in each word is reversed. When neighborhood
learning is applied to this structure and the result-
ing machine reversed again, the correct grammar is
obtained, shown in Figure 4.

How is the learner to know whether to construct
the prefix tree normally or in reverse? It simply does
both and intersects the results. Intersection of two

canonical acceptor.

26

languages is an operation which returns a language
consisting of the words common to both. Similarly,
machine intersection returns an acceptor which rec-
ognizes just those words that both machines recog-
nize. This strategy is thus conservative: the learner
keeps only the most robust generalizations, which
are the ones it ‘finds’ in both the forward and reverse
prefix trees.

This new learner is called the Forward Backward
Neighborhood (FBN) Learner and it succeeds with
all the patterns (see appendix).

Interestingly, the additional languages the FBN
Learner can acquire are ones that, under foot-based
analyses like those in Hayes (1995), require feet to
be built from the right word edge. For example,
Lower Sorbian has a binary trochee aligned to the
right word edge; Indonesian iteratively builds binary
trochaic feet from the right word edge; Cayuvava it-
eratively builds anapests from the right word edge.
Thus structuring the input in reverse appears akin to
a footing procedure which proceeds from the right
word boundary.

5 Predictions of Neighborhood Learning

In this section, let us examine some of the predic-
tions that are made by neighborhood learning. In
particular, let us consider the kinds of languages that
the Neighborhood Learner can and cannot learn and
compare them with the attested typology.

5.1 Binary and Ternary Stress Patterns

Neighborhood learning suggests an explanation of
the fact that the stress rhythms found in natural
language are binary or ternary and not higher n-
ary, and of the fact that stress falls within a three-
syllable window of the word edge: perhaps only sys-
tems with these properties are learnable. This is be-
cause the neighborhood learner cannot distinguish
between sequences of the same symbol with length
greater than two.

As an example, consider the quaternary (and
higher n-ary) stress pattern 2(0001)∗(0|00|000).9 If
the learner is exposed to samples from this pattern,
it incorrectly generalizes to 2(000∗1)∗(0|00|000).

9I follow Hopcroft et al (2001) in our notation of regular
expressions with one substitution– we use | instead of + to in-
dicate disjunction.

Similarly, neighborhood learning cannot distin-
guish a form like 02000 from 020000, so a sys-
tem that places stress on the pre-antepenult (e.g.
02000, 002000, 0002000) is not learnable. With
samples from the pre-antepenultimate language
(0∗2000|200|20|2), the learner incorrectly general-
izes to 0∗20∗.

5.2 Minimal Word Conditions

A subtle prediction made by neighborhood-learning
is that a QI stress language with a pattern like the
one exemplified by Hopi (shown in Figure 8) cannot
have a minimal word condition banning monosylla-
bles. This is because if there were no monosyllables
in this language, then state 4 in Figure 8 would have
the same neighborhood as state 2 (as in Figure 9).

0

4
2

1

0

5
0

2
2

3
0

0

Figure 8: The stress pattern exemplified by Hopi,
allowing monosyllables.

0

4
2

1

0

50

2
2

3
0

0

Figure 9: The stress pattern exemplified by Hopi,
not allowing monosyllables.

Since such a grammar recognizes a non-
neighborhood-distinct language it cannot be learned
by the Neighborhood Learner.

As it happens, Hopi is a QS language which pro-
hibits light, but permits heavy, monosyllables. Since
I have abstracted away from the internal structure of
the syllable in this paper, this prediction is not dis-
confirmed by the known typology: there are in fact
no QI Hopi-like stress patterns in Gordon’s (2002)
typology which ban all monosyllables; i.e there are
no QI patterns like the one in Figure 9.

Some QI languages do have a minimal word con-
dition banning all monosyllables. To our knowl-
edge these are Cavineña and Cayuvava (see Ta-
ble 1), Mohawk (which places stress on the penult

27

like Nahuatl), and Diyari, Mohwak, Pitta Pitta and
Wangkumara (all which assign stress like Pintupi)
(Hayes, 1995). The Forward Backward Neighbor-
hood Learner learns all of these patterns successfully
irrespective of whether the patterns (and correspond-
ing input samples) permit monosyllables, predicting
that such patterns do not correlate with a prohibition
on monosyllables (see appendix).

Other QI languages prohibit light monosyllables.
Diegueño, for example, places stress finally like
Atayal (see Table 1), but only allows heavy mono-
syllables. This is an issue to attend to in future re-
search when trying to extend the learning algorithm
to QS patterns, when the syllable type (light/heavy)
is included in the representational scheme.

5.3 Restrictiveness and Other Approaches

There are languages that can be learned by neighbor-
hood learning that phonologists do not consider to
be natural. For example, the Neighborhood Learner
learns a pattern in which words with an odd number
of syllables bear initial stress but words with an even
number of syllables bear stress on all odd syllables.
However, the grammar for this language differs from
all of the attested systems in that it has two loops but
is slender (cf. Estonian which has two loops but is
not slender). Thus this case suggests a further formal
restriction to the class of possible stress systems.

More serious challenges of unattestable, but
Neighborhood Learner-able, patterns exist; e.g.
21*. In other words, it does not follow
from neighborhood-distinctness that languages with
stress must have stressless syllables. Nor does the
notion that every word must bear some stress some-
where (i.e. Culminativity– see Hayes (1995)).

However, despite the existence of learnable patho-
logical languages, this approach is not unrestricted.
The class of languages to be learned is finite—as
in the Optimality-theoretic and Principles and Pa-
rameters frameworks—and is a proper subset of the
regular languages. Future research will seek addi-
tional properties to better approximate the class of
QI stress systems that can be exploited by inductive
learning.

This approach offers more insight into QI stress
systems than earlier learning models. Optimality-
theoretic learning models (e.g. (Tesar, 1998)) and
models set in the Principles and Parameters frame-

work (e.g. (Dresher and Kaye, 1990)) make no use
of any property of the class of patterns to be learned
beyond its finiteness. Also, our learner is much sim-
pler than these other models, which require a large
set of a priori switches and cues or constraints.

6 Conclusions

This paper presented a batch learner which correctly
infers the attested QI stress patterns from surface
forms. The key to the success of this learner is that it
takes advantage of a universal property of QI stress
systems, neighborhood-distinctness. This property
provides a natural explanation for why stress falls
within a particular window of the word edge and
why rhythms are binary and ternary. It is strik-
ing that all of the attested patterns are learned by
this simple approach, suggesting that it will be fruit-
ful and revealing when applied to other phonotactic
learning problems.

Acknowledgements

I especially thank Bruce Hayes, Ed Stabler, Colin
Wilson, Kie Zuraw and the anonymous reviewers for
insightful comments and suggestions. I also thank
Sarah Churng, Greg Kobele, Katya Pertsova, and
Sarah VanWagenen for helpful discussion.

References

Adam Albright. 2006. Gradient phonotactic effects: lex-
ical? grammatical? both? neither? Talk handout from
the 80th Annual LSA Meeting, Albuquerque, NM.

Dan Albro. 1998. Evaluation, implementation, and ex-
tension of primitive optimality theory. Master’s thesis,
University of California, Los Angeles.

Dan Albro. 2005. A Large-Scale, LPM-OT Analysis of
Malagasy. Ph.D. thesis, University of California, Los
Angeles.

Dana Angluin. 1980. Finding patterns common to a set
of strings. Journal of Computer and System Sciences,
21:46–62.

Dana Angluin. 1982. Inference of reversible languages.
Journal for the Association of Computing Machinery,
29(3):741–765.

Noam Chomsky and Morris Halle. 1968. The Sound
Pattern of English. Harper & Row.

28

John Coleman and Janet Pierrehumbert. 1997. Stochas-
tic phonological grammars and acceptability. In Com-
puational Phonolgy, pages 49–56. Somerset, NJ: As-
sociation for Computational Linguistics. Third Meet-
ing of the ACL Special Interest Group in Computa-
tional Phonology.

Elan Dresher and Jonathan Kaye. 1990. A computa-
tional learning model for metrical phonology. Cogni-
tion, 34:137–195.

Jason Eisner. 1997. What constraints should ot allow?
Talk handout, Linguistic Society of America, Chicago,
January. Available on the Rutgers Optimality Archive,
ROA#204-0797, http://roa.rutgers.edu/.

T.M. Ellison. 1994. The iterative learning of phonologi-
cal constraints. Computational Linguistics, 20(3).

S. Frisch, N.R. Large, and D.B. Pisoni. 2000. Percep-
tion of wordlikeness: Effects of segment probability
and length on the processing of nonwords. Journal of
Memory and Language, 42:481–496.

E.M. Gold. 1967. Language identification in the limit.
Information and Control, 10:447–474.

John Goldsmith. 1994. A dynamic computational the-
ory of accent systems. In Jennifer Cole and Charles
Kisseberth, editors, Perspectives in Phonology, pages
1–28. Stanford: Center for the Study of Language and
Information.

Matthew Gordon. 2002. A factorial typology of
quantity-insensitive stress. Natural Language and
Linguistic Theory, 20(3):491–552. Appendices avail-
able at http://www.linguistics.ucsb.edu/faculty/
gordon/pubs.html.

Prahlad Gupta and David Touretzky. 1991. What a per-
ceptron reveals about metrical phonology. In Proceed-
ings of the Thirteenth Annual Conference of the Cog-
nitive Science Society, pages 334–339.

Morris Halle. 1978. Knowledge unlearned and untaught:
What speakers know about the sounds of their lan-
guage. In Linguistic Theory and Psychological Real-
ity. The MIT Prss.

Bruce Hayes and Colin Wilson. 2006. The ucla phono-
tactic learner. Talk handout from UCLA Phonology
Seminar.

Bruce Hayes. 1995. Metrical Stress Theory. Chicago
University Press.

John Hopcroft, Rajeev Motwani, and Jeffrey Ullman.
2001. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley.

C. Douglas Johnson. 1972. Formal Aspects of Phonolog-
ical Description. The Hague: Mouton.

Ronald Kaplan and Martin Kay. 1981. Phonological
rules and finite state transducers. Paper presented at
ACL/LSA Conference, New York.

Ronald Kaplan and Martin Kay. 1994. Regular models
of phonological rule systems. Computational Linguis-
tics, 20(3):331–378.

Lauri Karttunen. 1998. The proper treatment of optimal-
ity theory in computational phonology. Finite-state
methods in natural language processing, pages 1–12.

Mark Liberman and Alan Prince. 1977. On stress and
linguistic rhythm. Linguistic Inquiry, 8:249–336.

John McCarthy and Alan Prince. 1990. Foot and word
in prosodic morphology. Natural Language and Lin-
guistic Theory, 8:209–283.

Daniel Osherson, Scott Weinstein, and Michael Stob.
1986. Systems that Learn. MIT Press, Cambridge,
Massachusetts.

Alan Prince and Paul Smolensky. 1993. Optimal-
ity theory: Constraint interaction in generative gram-
mar. Technical Report 2, Rutgers University Center
for Cognitive Science.

Alan Prince. 1980. A metrical theory for estonian quan-
tity. Linguistic Inquiry, 11:511–562.

Alan Prince. 1983. Relating to the grid. Linguistic In-
quiry, 14(1).

Jason Riggle. 2004. Generation, Recognition, and
Learning in Finite State Optimality Theory. Ph.D. the-
sis, University of California, Los Angeles.

Bruce Tesar. 1998. An interative strategy for language
learning. Lingua, 104:131–145.

Appendix. Target Grammars and Results

See Table 2. Circled numbers mean the learner iden-
tified the pattern. The × mark means the learner
failed to identify the pattern. The number inside the
circle indicates which forms were necessary for con-
vergence. Specifically, in the “With Monosyllables”
column, ©n means the learner succeeded learning
the “With Monosyllables” pattern with words with
one to n syllables. Likewise, in the “Without Mono-
syllables” column, ©n means the learner succeeded
learning the “Without Monosyllables” pattern with
words with two to n syllables. For example, in
the “With Monosyllables” column, ©5 means that
the learner succeeded only with words with one to
five syllables. The learners still succeed when given
longer words. The number n may be thought of as
the smallest word needed for generalization.

29

Table 2: Learning Results
With Monosyllables Without Monosyllables

Language RegExp N
H

L

F
B

N
L

RegExp N
H

L

F
B

N
L

Single
1. Chitimacha 20∗ ©4 ©4 20+ ©4 ©4
2. Lakota (2|020∗) ©5 ©5 020∗ ©5 ©5
3. Hopi (qs) (2|20|020+) ©5 ©5 (020∗|2)0 × ×
4. Macedonian (2|20|0∗200) ©6 ©6 (2|0∗20)0 × ©6
5. Nahuatl (2|0∗20) ©5 ©5 0∗20 ©5 ©5
6. Atayal 0∗2 ©4 ©4 0+2 ©4 ©4

Dual
7. Quebec French (2|10∗2) ©5 ©5 10∗2 ©5 ©5
8. Udihe (2|(10∗)?02) ©5 ©6 (10∗)?02 ©5 ©6
9. Lower Sorbian (2|2(0|0+1)0) × ©6 2(0|0+1)0 × ©6
10. Sanuma (2|20|020|10+20) ©6 ©7 (2|02|10+2)0 ©6 ©7
11. Georgian (2|20|0?200|10+200) ©7 ©8 (2|0?20|10+20)0 × ©8
12. Walmatjari (2|20(0∗10)?0?) × ©6 20(0∗10)?0? × ©6

Binary
13. Araucanian (2|02(01)∗0?) ©6 ©6 02(01)∗0? ©6 ©6
14. Creek (qs) (2|(01)∗020?) ©6 ©6 (01)∗020? ©6 ©6
15. Urubu Kappor 0?(10)∗2 ©5 ©5 (0|10)(10)∗2 ©5 ©5
16. Malakmalak (2|0?2(01)∗0) ©6 ©6 0?2(01)∗0 ©6 ©6
17. Cavineña (2|0?(10)∗20) ©6 ©6 0?(10)∗20 ©6 ©6
18. Maranungku 2(01)∗0? ©5 ©5 20(10)∗1? ©5 ©5
19. Palestinean Arabic (qs) (10)∗20? ©5 ©5 (20|(10)+20?) ©5 ©5

Binary w/clash
20. Central Alaskan Yupik (0(10)∗1?)?2 ©5 ©5 0(10)∗1?2 ©5 ©5
21. Southern Paiute (2|(2|02(01) ∗ 1?)0) ©7 ©8 (2|02(01) ∗ 1?)0 ©7 ©8
22. Gosiute Shoshone 2((01)∗0?1)? ©5 ©6 2(01)∗0?1 ©5 ©6
23. Biangai (2|1?(10)∗20) ©7 ©7 1?(10)∗20 ©7 ©7
24. Tauya (2|1?(10)∗2) ©6 ©6 1?(10)∗2 ©6 ©6

Binary w/lapse
25. Piro (2|(10)∗0?20) ©6 ©7 (10)∗0?20 ©6 ©7
26. Pintupi 2(0(10)∗0?)? ©6 ©6 20(10)∗0? ©6 ©6
27. Indonesian (2|(10)?0?(10)∗20) × ©8 (10)?0?(10)∗20 × ©8
28. Garawa 2(00?(10)∗)? ©6 ©6 200?(10)∗ ©6 ©6

Ternary
29. Ioway Oto (2|02(001)∗0?0?) ©7 ©8 02(001)∗0?0? ©7 ©8
30. Cayuvava (0?0?(100)∗200|20|2) × ©9 (0?0?(100)∗20|2)0 × ©9
31. Estonian (qs) 20?0?(100|10)∗ ©6 ©6 200?(100|10)∗ ©6 ©6
32. Pacific Yupik (qs) (2|0(100)∗(20?|102)) ©7 ©7 0(100)∗(20?|102) ©7 ©7
33. Winnebago (qs) (2|02|002(001)∗0?1?) ©9 ©9 (02|002(001)∗0?1?) ©9 ©9

NHL : Neighborhood Learner FBNL : Forward Backward Neighborhood Learner

30

Proceedings of the Eighth Meeting of the ACL Special Interest Group on Computational Phonology at HLT-NAACL 2006, page 31,
New York City, USA, June 2006.c©2006 Association for Computational Linguistics

Invited Talk:
Universal Constraint Rankings Result from Learning and Evolution

Paul Boersma
Institute of Phonetic Sciences
University of Amsterdam

Herengracht 338
1016CG Amsterdam, The Netherlands

paul.boersma@uva.nl

Abstract

Optimality Theory has met with a bad press in the more emergentist (e.g. computational) lit-
erature for its reliance on innate constraints and even on innate constraint rankings (positional
faithfulness, licensing by cue). In this talk I will show with computer simulations that even if
the learner’s initial grammar starts with a large number of constraints that have no inherent bias
towards unmarked or otherwise good sound systems, the learner will gradually turn the constraint
ranking into something resembling a universally unmarked sound system as an automatic result
of input frequencies and imperfections of the transmission channel. It turns out that the parents’
sound system is ”semi-learnable”: if the parents’ sound system happens to be universally marked,
the offspring will learn to mimic the quirks of this system to some extent, but they will tend
to turn the language into a universally unmarked sound system within three generations or so.
The conclusion will be that a bidirectional Optimality-Theoretic model of the grammar with two
phonological and two phonetic representations is compatible with the view that there is no innate
phonological substance in language acquisition.

31

Proceedings of the Eighth Meeting of the ACL Special Interest Group on Computational Phonology at HLT-NAACL 2006, pages 32–40,
New York City, USA, June 2006.c©2006 Association for Computational Linguistics

Exploring variant definitions of pointer length in MDL

Aris Xanthos
Department of Linguistics

University of Chicago
Chicago IL 60637

axanthos@uchicago.edu

Yu Hu
Department of

Computer Science
University of Chicago

Chicago IL 60637
yuhu@uchicago.edu

John Goldsmith
Departments of Linguistics and

Computer Science
University of Chicago

Chicago IL 60637
goldsmith@uchicago.edu

Abstract

Within the information-theoretical frame-
work described by (Rissanen, 1989; de
Marcken, 1996; Goldsmith, 2001), point-
ers are used to avoid repetition of phono-
logical material. Work with which we
are familiar has assumed that there is only
one way in which items could be pointed
to. The purpose of this paper is to de-
scribe and compare several different meth-
ods, each of which satisfies MDL’s ba-
sic requirements, but which have different
consequences for the treatment of linguis-
tic phenomena. In particular, we assess
the conditions under which these different
ways of pointing yield more compact de-
scriptions of the data, both from a theoret-
ical and an empirical perspective.

1 Introduction

The fundamental hypothesis underlying the Mini-
mum Description Length (MDL) framework (Rissa-
nen, 1989; de Marcken, 1996; Goldsmith, 2001) is
that the selection of a model for explaining a set of
data should aim at satisfying two constraints: on the
one hand, it is desirable to select a model that can be
described in a highly compact fashion; on the other
hand, the selected model should make it possible to
model the data well, which is interpreted as being
able to describe the data in a maximally compact
fashion. In order to turn this principle into an op-
erational procedure, it is necessary to make explicit

the notion of compactness. This is not a trivial prob-
lem, as the compactness (or conversely, the length)
of a description depends not only on the complexity
of the object being described (in this case, either a
model or a set of data given a model), but also on
the “language” that is used for the description.

Consider, for instance, the model of morphology
described in Goldsmith (2001). In this work, the
data consist in a (symbolically transcribed) corpus
segmented into words, and the “language” used to
describe the data contains essentially three objects:
a list of stems, a list of suffixes, and a list of sig-
natures, i.e. structures specifying which stems asso-
ciate with which suffixes to form the words found in
the corpus. The length of a particular model (or mor-
phology) is defined as the sum of the lengths of the
three lists that compose it; the length of each list is in
turn defined as the sum of the lengths of elements in
it, plus a small cost for the list structure itself1. The
length of an individual morpheme (stem or suffix) is
taken to be proportional to the number of symbols in
it.

Calculating the length of a signature involves the
notion of pointer, with which this paper is primar-
ily concerned. The function of a signature is to re-
late a number of stems with a number of suffixes.
Since each of these morphemes is spelled once in
the corresponding list, there is no need to spell it
again in a signature that contains it. Rather, each
signature comprises a list of pointers to stems and
a list of pointers to suffixes. A pointer is a sym-
bol that stands for a particular morpheme, and the
recourse to pointers relies on the assumption that

1More on this in section 2.1 below

32

their length is lesser than that of the morphemes
they replace. Following information-theoretic prin-
ciples (Shannon, 1948), the length of a pointer to a
morpheme (under some optimal encoding scheme)
is equal to -1 times the binary logarithm of that mor-
pheme’s probability. The length of a signature is the
sum of the lengths of the two lists it contains, and
the length of each list is the sum of the lengths of
the pointers it contains (plus a small cost for the list
itself).

This work and related approaches to unsupervised
language learning have assumed that there is only
one way in which items could be pointed to, or iden-
tified. The purpose of this paper is to describe, com-
pare and evaluate several different methods, each of
which satisfies MDL’s basic requirements, but which
have different consequences for the treatment of lin-
guistic phenomena. One the one hand, we contrast
the expected description length of “standard” lists of
pointers with polarized lists of pointers, which are
specified as either (i) pointing to the relevant mor-
phemes (those that belong to a signature, or undergo
a morpho-phonological rule, for instance) or (ii)
pointing to their complement (those that do not be-
long to a signature, or do not undergo a rule). On the
other hand, we compare (polarized) lists of pointers
with a method based on binary strings specifying
each morpheme as relevant or not (for a given sig-
nature, rule, etc.). In particular, we discuss the con-
ditions under which these different ways of pointing
are expected to yield more compact descriptions of
the data.

The remainder of this paper is organized as fol-
lows. In the next section, we give a formal review
of the standard treatment of lists of pointers as de-
scribed in (Goldsmith, 2001); then we successively
introduce polarized lists of pointers and the method
of binary strings, and make a first, theoretical com-
parison of them. Section three is devoted to an em-
pirical comparison of these methods on a large nat-
ural language corpus. In conclusion, we discuss the
implications of our results in the broader context of
unsupervised language learning.

2 Variant definitions of pointers

In order to simplify the following theoretical discus-
sion, we temporarily abstract away from the com-

plexity of a full-blown model of morphology. Given
a set of N stems and their distribution, we consider
the general problem of pointing to a subset of M
stems (with 0 < M ≤ N), first by means of “stan-
dard” lists of pointers, then by means of polarized
ones, and finally by means of binary strings.

2.1 Expected length of lists of pointers

Let τ denote a set of N stems; we assume that the
length of a pointer to a specific stem t ∈ τ is its
inverse log probability − log pr(t).2 Now, let {M}
denote the set of all subsets of τ that contain exactly
0 < M ≤ N stems. The description length of a
list of pointers to a particular subset µ ∈ {M} is
defined as the sum of the lengths of the M pointers
it contains, plus a small cost of for specifying the list
structure itself, defined as λ(M) := 0 if M = 0 and
log M bits otherwise3:

DLptr(µ) := λ(M)−
∑
t∈µ

log pr(t)

The expected length of a pointer is equal to the
entropy over the distribution of stems:

hstems := Et∈τ [− log pr(t)] = −
∑
t∈τ

pr(t) log pr(t)

Thus, the expected description length of a list of
pointers to M stems (over all subsets µ ∈ {M})
is:

Eµ∈{M} [DLptr(µ)] = 1
|{M}|

∑

µ∈{M}
DLptr(µ)

= λ(M) + Mhstems

(1)

This value increases as a function of both the num-
ber of stems which are pointed to and the entropy
over the distribution of stems. Since 0 ≤ hstems ≤
log N , the following bounds hold:

0 ≤ hstems ≤ Eµ∈{M} [DLptr(µ)]

≤ log N + Nhstems ≤ (N + 1) log N

2Here and throughout the paper, we use the notation log x
to refer to the binary logarithm of x; thus entropy and other
information-theoretic quantities are expressed in terms of bits.

3Cases where the argument of this function can have the
value 0 will arise in the next section.

33

2.2 Polarization
Consider a set of N = 3 equiprobable stems, and
suppose that we need to specify that a given morpho-
phonological rule applies to one of them. In this con-
text, a list with a single pointer to a stem requires
log 1 − log 1

3 = 1.58 bits. Suppose now that the
rule is more general and applies to two of the three
stems. The length of the new list of pointers is thus
log 2 − 2 log 1

3 = 4.17 bits. It appears that for such
a general rule, it is more compact to list the stems to
which it does not apply, and mark the list with a flag
that indicates the “negative” meaning of the point-
ers. Since the flag signals a binary choice (either the
list points to stems that undergo the rule, or to those
that do not), log 2 = 1 bit suffices to encode it, so
that the length of the new list is 1.58 + 1 = 2.58
bits.

We propose to use the term polarized to refer to
lists of pointers bearing a such flag. If it is useful to
distinguish between specific settings of the flag, we
may speak of positive versus negative lists of point-
ers (the latter being the case of our last example).
The expected description length of a polarized list
of M pointers is:

Eµ∈{M} [DLpol(µ)] = 1 + λ(M̂) + M̂hstems

with M̂ := min(M,N −M)
(2)

From (1) and (2), we find that in general, the ex-
pected gain in description length by polarizing a list
of M pointers is:

Eµ∈{M} [DLptr(µ)−DLpol(µ)]

=

−1 iff M ≤ N
2

−1 + λ(M)− λ(N −M) + (2M −N)hstems

otherwise

Thus, if the number of stems pointed to is lesser than
or equal to half the total number of stems, using a
polarized list rather than a non-polarized one means
wasting exactly 1 bit for encoding the superfluous
flag. If the number of stems pointed to is larger than
that, we still pay 1 bit for the flag, but the reduced
number of pointers results in an expected saving of
λ(M) − λ(N − M) bits for the list structure, plus
(2M −N) · hstems bits for the pointers themselves.

Now, let us assume that we have no informa-
tion regarding the number M of elements which are

0 500 1000 1500 2000

0
10

00
30

00
50

00

Polarized vs. non−polarized lists

Total number of stems N

D
es

cr
ip

tio
n

le
ng

th
 g

ai
n

(in
 b

its
)

s=0

s=1

s=2

s=10

Figure 1: Expected gain in description length by us-
ing polarized rather than non-polarized lists of point-
ers.

pointed to, i.e. that it has a uniform distribution be-
tween 1 and N (M ∼ U [1, N]). Let us further as-
sume that stems follow a Zipfian distribution of pa-
rameter s, so that the probability of the k-th most
frequent stem is defined as:

f(k, N, s) :=
1/ks

HN,s
with HN,s :=

N∑

n=1

1/ns

where HN,s stands for the harmonic number of order
N of s. The entropy over this distribution is:

hZipf
N,s :=

s

HN,s

N∑

k=1

log k

ks
+ log HN,s

Armed with these assumptions, we may now com-
pute the expected description length gain of polar-
ization (over all values of M) as a function of N
and s:

EM

(
Eµ∈{M} [DLptr(µ)−DLpol(µ)]

)

=−1+ 1
N

∑N
M=1 λ(M)− λ(M̂) + (M − M̂)hZipf

N,s

Figure 1 shows the gain calculated for N = 1,
400, 800, 1200, 1600 and 2000, and s = 0, 1, 2
and 10. In general, it increases with N , with a
slope that depends on s: the greater the value of s,
the lesser the entropy over the distribution of stems;
since the entropy corresponds to the expected length

34

Figure 2: Two ways of pointings to stems: by means
of a polarized list of pointers, or a binary string.

of a pointer, its decrease entails a decrease in the
number of bits that can be saved by using polarized
lists (which generally use less pointers). However,
even for an aberrantly skewed distribution of stems4,
the expected gain of polarization remains positive.
Since the value of s is usually taken to be slightly
greater than 1 for natural languages (Mandelbrot,
1953), it seems that polarized lists generally entail
a considerable gain in description length.

2.3 Binary strings

Consider again the problem of pointing to one out
of three equiprobable stems. Suppose that the list of
stems is ordered, and that we want to point to the
first one, for instance. An alternative to the recourse
to a list of pointers consists in using a binary string
(in this case 100) where the i-th symbol is set to 1
(or +) if the i-th stem is being pointed to, and to 0
(or -) otherwise. Figure 2 gives a schematic view of
these two ways of pointing to items.

There are two main differences between this
method and the previous one. On the one hand,
the number of symbols in the string is constant and
equal to the total number N of stems, regardless of
the number M of stems that are pointed to. On the
other hand, the compressed length of the string de-
pends on the distribution of symbols in it, and not on
the distribution of stems. Thus, by comparison with
the description length of a list of pointers, there is a
loss due to the larger number of encoded symbols,
and a gain due to the use of an encoding specifically

4In the case s = 10, the probability of the most frequent
stem is .999 for N = 2000.

tailored for the relevant distribution of pointed ver-
sus “unpointed” elements.

The entropy associated with a binary string is en-
tirely determined by the number of 1’s it contains,
i.e. the number M of stems which are pointed to,
and the length N of the string:

hbin
N,M := −M

N
log

M

N
− N −M

N
log

N −M

N

The compressed length of a binary string pointing to
M stems is thus:

DLbin(M) := Nhbin
N,M (3)

It is maximal and equal to N bits when M = N
2 ,

and minimal and equal to 0 when M = N , i.e. when
all stems have a pointer on them. Notice that binary
strings are intrinsically polarized, so that intervert-
ing 0’s and 1’s results in the same description length
regardless of their distribution.5

The question naturally arises, under which con-
ditions would binary strings be more or less com-
pact than polarized lists of pointers. If we assume
again that the distribution of the number of elements
pointed to is uniform and the distribution of stems is
Zipfian of parameter s, (2) and (3) justify the follow-
ing expression for the expected description length
gain by using binary strings rather than polarized
lists (as a function of N and s):

EM

[
Eµ∈{M}[DLpol(µ)]−DLbin(M)

]

= 1 + 1
N

∑N
M=1 λ(M̂) + M̂hZipf

N,s −Nhbin
N,M

Figure 3 shows the gain calculated for N = 1, 400,
800, 1200, 1600 and 2000, and s = 0, 1, 2 and 3.
For s small, i.e. when the entropy over the distri-
bution of stems is greater or not much lesser than
that of natural languages, the description length of
binary strings is considerably lesser than that of po-
larized lists. The difference decreases as s increases,

5As one the reviewers has indicated to us, the binary strings
approach is actually very similar to the method of combinato-
rial codes described by (Rissanen, 1989). This method con-
sists in pointing to one among

�
N
M

�
possible combinations of

M stems out of N . Under the assumption that these combi-
nations have a uniform probability, the cost for pointing to M
stems is log

�
N
M

�
bits, which is in general slightly lesser than

the description length of the corresponding binary string (the
difference being maximal for M = N/2, i.e. when the binary
string encoding cannot take advantage of any compression).

35

0 500 1000 1500 2000

−
10

00
0

10
00

30
00

Binary strings vs. polarized lists
(uniform distribution of M)

Total number of stems N

D
es

cr
ip

tio
n

le
ng

th
 g

ai
n

(in
 b

its
)

s=0

s=1

s=2
s=3

Figure 3: Expected gain in description length by us-
ing binary strings rather than polarized lists under
the assumption that M ∼ U [1, N].

until at some point (around s = 2), the situation re-
verses and polarized lists become more compact. In
both cases, the trend increases with the number N
of stems (within the range of values observed).

By contrast, it is instructive to consider a case
where the distribution of the number of elements
pointed to departs from uniformity. For instance, we
can make the assumption that M follows a binomial
distribution (M ∼ B[N, p]).6 Under this assump-
tion (and, as always, that of a Zipfian distribution of
stems), the expected description length gain by us-
ing binary strings rather than polarized lists is:

EM

[
Eµ∈{M}[DLptr(µ)]−DLbin(M)

]

=
∑N

M=1 pr(M)
(
1+λ(M̂)+M̂hZipf

N,s−Nhbin
N,M

)

with pr(M) =
(

N
M

)
pM (1− p)N−M

Letting N and s vary as in the previous computation,
we set the probability for a stem to have a pointer on
it to p = 0.01, so that the distribution of pointed ver-
sus “unpointed” elements is considerably skewed.7

6This model predicts that most of the time, the number M
of elements pointed to is equal to N · p (where p denotes the
probability for a stem to have a pointer on it), and that the prob-
ability pr(M) of other values of M decreases as they diverge
from N · p.

7By symmetry, the same results would be found with p =
0.99.

0 500 1000 1500 2000

−
15

0
−

50
0

50

Binary strings vs. polarized lists
(binomial distribution of M, p = 0.01)

Total number of stems N

D
es

cr
ip

tio
n

le
ng

th
 g

ai
n

(in
 b

its
)

s=0

s=1

s=2

s=3

Figure 4: Expected gain in description length by us-
ing binary strings rather than polarized lists under
the assumption that M ∼ B[N, 0.01].

As shown on figure 4, under these conditions, the ab-
solute value of the gain of using binary strings gets
much smaller in general, and the value of s for which
the gain becomes negative for N large gets close to 1
(for this particular value, it becomes positive at some
point between N = 1200 and N = 1600).

Altogether, under the assumptions that we have
used, these theoretical considerations suggest that
binary strings generally yield shorter description
lengths than polarized lists of pointers. Of course,
data for which these assumptions do not hold could
arise. In the perspective of unsupervised learning,
it would be particularily interesting to observe that
such data drive the learner to induce a different
model depending on the representation of pointers
being adopted.

It should be noted that nothing prevents binary
strings and lists of pointers from coexisting in a sin-
gle system, which would select the most compact
one for each particular case. On the other hand, it is
a logical necessity that all lists of pointers be of the
same kind, either polarized or not.

3 Experiments

In the previous section, by assuming frequencies of
stems and possible distributions of M (the num-
ber of stems per signature), we have explored the-
oretically the differences between several encoding

36

0 500 1000 1500 2000 2500

0.
00

00
0.

00
10

0.
00

20

Frequency as a function of rank
 (English corpus)

Rank

F
re

qu
en

cy

Figure 5: Frequency versus rank (stems) in English
corpus.

methods in the MDL framework. In this section, we
apply these methods to the problem of suffix discov-
ery in natural language corpora, in order to verify the
theoretical predictions we made previously. Thus,
the purpose of these experiments is not to state that
one encoding is preferable to the others; rather, we
want to answer the three following questions:

1. Are our assumptions on the frequency of stems
and size of signatures appropriate for natural
language corpora?

2. Given these assumptions, do our theoretical
analyses correctly predict the difference in de-
scription length of two encodings?

3. What is the relationship between the gain in de-
scription length and the size of the corpus?

3.1 Experimental methodology

In this experiment, for the purpose of calculating
distinct description lengths while using different en-
coding methods, we modified Linguistica8 by imple-
menting list of pointers and binary strings as alter-
native means to encode the pointers from signatures
to their associated stems9. As a result, given a set

8The source and binary files can be freely downloaded at
http://linguistica.uchicago.edu.

9Pointers to suffixes are not considered here.

0 50 100 150 200

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Distribution of the number of stems
 per signature (English corpus)

Number of stems

P
ro

po
rt

io
n

of
 s

ig
na

tu
re

s

Figure 6: Distribution of number of stems per signa-
ture (English corpus)

of signatures, we are able to compute a description
length for each encoding methods.

Within Linguistica, the morphology learning pro-
cess can be divided into a sequence of heuristics,
each of which searches for possible incremental
modifications to the current morphology. For exam-
ple, in the suffix-discovery procedure, ten heuristics
are carried out successively; thus, we have a dis-
tinct set of signatures after applying each of the ten
heuristics. Then, for each of these sets, we encode
the pointers from each signature to its correspond-
ing stems in three rival ways: as a list of pointers
(polarized or not), as traditionally understood, and
as a binary string. This way, we can compute the to-
tal description length of the signature-stem-linkage
for each of the ten sets of signatures and for each of
three two ways of encoding the pointers. We also
collect statistics on word frequencies and on the dis-
tribution of the size of signatures M , i.e. the number
M of stems which are are pointed to, both of which
are important parametric components in our theoret-
ical analysis.

Experiments are carried out on two orthographic
corpora (English and French), each of which has
100,000 word tokens.

3.2 Frequency of stems and size of signatures

The frequency of stems as a function of their rank
and the distribution of the size of signatures are plot-

37

0 100 200 300 400 500 600

0.
00

00
0.

00
10

0.
00

20

Frequency as a function of rank
 (French corpus)

Rank

F
re

qu
en

cy

Figure 7: Frequency versus rank (stems) in French
corpus.

ted in figures 5 and 6 for the English corpus, and in
figures 7 and 8 for the French corpus. These graphs
show that in both the English and the French cor-
pora, stems appear to have a distribution similar to a
Zipfian one. In addition, in both corpora, M follows
a distribution whose character we are not sure of, but
which appears more similar to a binomial distribu-
tion. To some extent, these observations are consis-
tent with the assumptions we made in the previous
theoretical analysis.

3.3 Description length of each encoding

The description length obtained with each encoding
method is displayed in figures 9 (English corpus)
and 10 (French corpus), in which the x-axis refers to
the set of signatures resulting from the application
of each successive heuristics, and the y-axis corre-
sponds to the description length in bits. Note that
we only plot description lengths of non-polarized
lists of pointers, because the number of stems per
signature is always less than half the total number of
stems in these data (and we expect that this would
be true for other languages as well).10

These two plots show that in both corpora, there is
always a gain in description length by using binary
strings rather than lists of pointers for encoding the
pointers from signatures to stems. This observation
is consistent with our conclusion in section 2.3, but

10See figures 6 and 8 as well as section 2.2 above.

0 50 100 150

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Distribution of the number of stems
 per signature (French corpus)

Number of stems

P
ro

po
rt

io
n

of
 s

ig
na

tu
re

s

Figure 8: Distribution of number of stems per signa-
ture (French corpus)

it is important to emphasize again that for other data
(or other applications), lists of pointers might turn
out to be more compact.

3.4 Description length gain as a function of
corpus size

In order to evaluate the effect of corpus size on
the gain in description length by using binary string
rather than lists of variable-length pointers, we ap-
plied Linguistica to a number of English corpora of
different sizes ranging between 5,000 to 200,000 to-
kens. For the final set of signatures obtained with
each corpus, we then compute the gain of binary
strings encoding over lists of pointers as we did in
the previous experiments. The results are plotted in
figure 11.

This graph shows a strong positive correlation be-
tween description length gain and corpus size. This
is reminiscent of the results of our theoretical simu-
lations displayed in figures 3 and 4. As before, we
interpret the match between the experimental results
and the theoretical expectations as evidence support-
ing the validity of our theoretical predictions.

3.5 Discussion of experiments

These experiments are actually a number of case
studies, in which we verify the applicability of our
theoretical analysis on variant definitions of pointer
lengths in the MDL framework. For the particu-

38

2 4 6 8 10

0
20

00
0

60
00

0

DL of lists and binary strings
(English corpus)

Heuristics

D
es

cr
ip

tio
n

le
ng

th
 (

in
 b

its
) Lists

Binary strings

1 3 5 7 9

Figure 9: Comparison of DL of 10 successive mor-
phologies using pointers versus binary strings (En-
glish corpus).

lar application we considered, learning morphology
with Linguistica, binary strings encoding proves to
be more compact than lists of variable-length point-
ers. However, the purpose of this paper is not to
predict that one variant is always better, but rather to
explore the mathematics behind different encodings.
Armed with the mathematical analysis of different
encodings, we hope to be better capable of making
the right choice under specific conditions. In partic-
ular, in the suffix-discovery application (and for the
languages we examined), our results are consistent
with the assumptions we made and the predictions
we derived from them.

4 Conclusion

The overall purpose of this paper has been to illus-
trate what was for us an unexpected aspect of us-
ing Minimum Description Length theory: not only
does MDL not specify the form of a grammar (or
morphology), but it does not even specify the pre-
cise form in which the description of the abstract
linkages between concepts (such as stems and sig-
natures) should be encoded and quantitatively eval-
uated. We have seen that in a range of cases, us-
ing binary strings instead of the more traditional
frequency-based pointers leads to a smaller overall
grammar length, and there is no guarantee that we
will not find an even shorter way to accomplish the

2 4 6 8 10

0
50

00
10

00
0

15
00

0

DL of lists and binary strings
(French corpus)

Heuristics

D
es

cr
ip

tio
n

le
ng

th
 (

in
 b

its
) Lists

Binary strings

1 3 5 7 9

Figure 10: Comparison of DL of 10 successive
morphologies using pointers versus binary strings
(French corpus)

same thing tomorrow11. Simply put, MDL is em-
phatically an evaluation procedure, and not a discov-
ery procedure.

We hope to have shown, as well, that a system-
atic exploration of the nature of the difference be-
tween standard frequency-based pointer lengths and
binary string based representations is possible, and
we can develop reasonably accurate predictions or
expectations as to which type of description will be
less costly in any given case.

Acknowledgements

This research was supported by a grant of the Swiss
National Science Foundation to the first author.

References
C. de Marcken. 1996. Unsupervised Language Acquisi-

tion. Ph.D. thesis, MIT, Cambridge, MA.

J. Goldsmith. 2001. The unsupervised learning of natu-
ral language morphology. Computational Linguistics,
27(2):153–198.

B. Mandelbrot. 1953. An informational theory of the
statistical structure of language. In Willis Jackson, ed-
itor, Communication Theory, the Second London Sym-
posium, pages 486–502. Butterworth: London.

11See note 5.

39

0 50000 100000 150000 200000

0
20

00
0

40
00

0
60

00
0

DL gain of binary strings vs. lists
(English corpus)

Corpus size

D
es

cr
ip

tio
n

le
ng

th
 g

ai
n

(in
 b

its
)

Figure 11: DL gain from using binary string versus
size of corpus (English corpus)

J. Rissanen. 1989. Stochastic Complexity in Statistical
Inquiry. World Scientific Publishing Co, Singapore.

C.E. Shannon. 1948. A mathematical theory of commu-
nication. Bell Systems Technical Journal, 27:379–423.

40

Proceedings of the Eighth Meeting of the ACL Special Interest Group on Computational Phonology at HLT-NAACL 2006, pages 41–49,
New York City, USA, June 2006.c©2006 Association for Computational Linguistics

Improved morpho-phonological sequence processing with
constraint satisfaction inference

Antal van den Bosch and Sander Canisius
ILK / Language and Information Science

Tilburg University, P.O. Box 90153, NL-5000 LE Tilburg, TheNetherlands
{Antal.vdnBosch,S.V.M.Canisius}@uvt.nl

Abstract

In performing morpho-phonological se-
quence processing tasks, such as letter-
phoneme conversion or morphological
analysis, it is typically not enough to base
the output sequence on local decisions that
map local-context input windows to sin-
gle output tokens. We present a global
sequence-processing method that repairs
inconsistent local decisions. The approach
is based on local predictions of overlap-
ping trigrams of output tokens, which
open up a space of possible sequences;
a data-driven constraint satisfaction infer-
ence step then searches for the optimal
output sequence. We demonstrate signifi-
cant improvements in terms of word accu-
racy on English and Dutch letter-phoneme
conversion and morphological segmenta-
tion, and we provide qualitative analyses
of error types prevented by the constraint
satisfaction inference method.

1 Introduction

The fields of computational phonology and mor-
phology were among the earlier fields in compu-
tational linguistics to adopt machine learning algo-
rithms as a means to automatically construct pro-
cessing systems from data. For instance, letter-
phoneme conversion was already pioneered, with
neural networks initially, at the end of the 1980s
(Sejnowski and Rosenberg, 1987), and was shortly

after also investigated with memory-based learn-
ing and analogical approaches (Weijters, 1991; Van
den Bosch and Daelemans, 1993; Yvon, 1996)
and decision trees (Torkkola, 1993; Dietterich
et al., 1995). The development of these data-
driven systems was thrusted by the early existence
of lexical databases, originally compiled to serve
(psycho)linguistic research purposes, such as the
CELEX lexical database for Dutch, English, and
German (Baayen et al., 1993). Many researchers
have continued and are still continuing this line of
work, generally producing successful systems with
satisfactory, though still imperfect performance.

A key characteristic of many of these early sys-
tems is that they perform decomposed or simplified
versions of the full task. Rather than predicting the
full phonemization of a word given its orthography
in one go, the task is decomposed in predicting in-
dividual phonemes or subsequences of phonemes.
Analogously, rather than generating a full word-
form, many morphological generation systems pro-
duce transformation codes (e.g., “add -er and um-
laut”) that need to be applied to the input string by
a post-processing automaton. These task simplifi-
cations are deliberately chosen to avoid sparseness
problems to the machine learning systems. Such
systems tend to perform badly when there are many
low-frequent and too case-specific classes; task de-
composition allows them to be robust and generic
when they process unseen words.

This task decomposition strategy has a severe
drawback in sequence processing tasks. Decom-
posed systems do not have any global method to
check whether their local decisions form a globally

41

coherent output. If a letter-phoneme conversion sys-
tem predicts schwas on every vowel in a polysyllabic
word such asparameterbecause it is uncertain about
the ambiguous mapping of each of theas andes, it
produces a bad pronunciation. Likewise, if a mor-
phological analysis system segments a word such as
beingas a prefix followed by an inflection, making
the locally most likely guesses, it generates an anal-
ysis that could never exist, since it lacks a stem.

Global models that coordinate, mediate, or en-
force that the output is a valid sequence are typi-
cally formulated in the form of linguistic rules, ap-
plied during processing or in post-processing, that
constrain the space of possible output sequences.
Some present-day research in machine learning
of morpho-phonology indeed focuses on satisfy-
ing linguistically-motivated constraints as a post-
processing or filtering step; e.g., see (Daya et al.,
2004) on identifying roots in Hebrew word forms.
Optimality Theory (Prince and Smolensky, 2004)
can also be seen as a constraint-based approach to
language processing based on linguistically moti-
vated constraints. In contrast to being motivated by
linguistic theory, constraints in a global model can
be learned automatically from data as well. In this
paper we propose such a data-driven constraint sat-
isfaction inference method, that finds a globally ap-
propriate output sequence on the basis of a space of
possible sequences generated by a locally-operating
classifier predicting output subsequences. We show
that the method significantly improves on the ba-
sic method of predicting single output tokens at a
time, on English and Dutch letter-phoneme conver-
sion and morphological analysis.

This paper is structured as follows. The constraint
satisfaction inference method is outlined in Sec-
tion 2. We describe the four morpho-phonological
processing tasks, and the lexical data from which we
extracted examples for these tasks, in Section 3. We
subsequently list the outcomes of the experiments
in Section 4, and conclude with a discussion of our
findings in Section 5.

2 Class trigrams and constraint
satisfaction inference

Both the letter-phoneme conversion and the morpho-
logical analysis tasks treated in this paper can be

seen as sequentially-structured classification tasks,
where sequences of letters are mapped to sequences
of phonemes or morphemes. Such sequence-to-
sequence mappings are a frequently reoccurring
phenomenon in natural language processing, which
suggests that it is preferable to take care of the issue
of classifying sequential data once at the machine
learning level, rather than repeatedly and in different
ways at the level of practical applications. Recently,
a machine learning approach for sequential data has
been proposed by Van den Bosch and Daelemans
(2005) that is suited for discrete machine-learning
algorithms such as memory-based learners, which
have been shown to perform well on word phonem-
ization and morphological analysis before (Van den
Bosch and Daelemans, 1993; Van den Bosch and
Daelemans, 1999). In the remainder of this paper,
we use as our classifier of choice theIB1 algorithm
(Aha et al., 1991) with feature weighting, as im-
plemented in the TiMBL software package1 (Daele-
mans et al., 2004).

In the approach to sequence processing proposed
by Van den Bosch and Daelemans (2005), the el-
ements of the input sequence (in the remainder of
this paper, we will refer to words and letters rather
than the more general terms sequences and sequence
elements) are assigned overlapping subsequences of
output symbols. This subsequence corresponds to
the output symbols for afocus letter, and one let-
ter to its left and one letter to its right. Predicting
such trigram subsequences for each letter of a word
eventually results in three output symbol predictions
for each letter. In many cases, those three predic-
tions will not agree, resulting in a number of po-
tential output sequences. We will refer to the pro-
cedure for selecting the final output sequence from
the space of alternatives spanned by the predicted
trigrams as an inference procedure, analogously to
the use of this term in probabilistic sequence clas-
sification methods (Punyakanok and Roth, 2001).
The original work on predicting class trigrams im-
plemented a simple inference procedure by voting
over the three predicted symbols (Van den Bosch
and Daelemans, 2005).

Predicting trigrams of overlapping output sym-
bols has been shown to be an effective approach

1TiMBL URL: http://ilk.uvt.nl/timbl/

42

to improve sequence-oriented natural language pro-
cessing tasks such as syntactic chunking and named-
entity recognition, where an input sequence of to-
kens is mapped to an output sequence of symbols
encoding a syntactic or semantic segmentation of the
sentence. Letter-phoneme conversion and morpho-
logical analysis, though sequentially structured on
another linguistic level, may be susceptible to bene-
fiting from this approach as well.

In addition to the practical improvement shown
to be obtained with the class trigram method, there
is also a more theoretical attractiveness to it. Since
the overlapping trigrams that are predicted are just
atomic symbols to the underlying learning algo-
rithm, a classifier will only predict output symbol
trigrams that are actually present in the data it was
trained on. Consequently, predicted trigrams are
guaranteed to be syntactically valid subsequences
in the target task. There is no such guarantee in
approaches to sequence classification where an iso-
lated local classifier predicts single output symbols
at a time, without taking into account predictions
made elsewhere in the word.

While the original voting-based inference proce-
dure proposed by Van den Bosch and Daelemans
(2005) manages to exploit the sequential informa-
tion stored in the predicted trigrams to improve upon
the performance of approaches that do not consider
the sequential structure of their output at all, it does
so only partly. Essentially, the voting-based infer-
ence procedure just splits the overlapping trigrams
into their unigram components, thereby retaining
only the overlapping symbols for each individual let-
ter. As a result, the guaranteed validity of the trigram
subsequences is not put to use. In this section we de-
scribe an alternative inference procedure, based on
principles of constraint satisfaction, that does man-
age to use the sequential information provided by
the trigram predictions.

At the foundation of this constraint-satisfaction-
based inference procedure, more briefly constraint
satisfaction inference, is the assumption that the
output symbol sequence should preferably be con-
structed by concatenating the predicted trigrams of
output symbols, rather than by chaining individual
symbols. However, as the underlying base classifier
is by no means perfect, predicted trigrams should not
be copied blindly to the output sequence; they may

be incorrect. If a trigram prediction is considered to
be of insufficient quality, the procedure backs off to
symbol bigrams or even symbol unigrams.

The intuitive description of the inference proce-
dure is formalized by expressing it as a weighted
constraint satisfaction problem (W-CSP). Constraint
satisfaction is a well-studied research area with
many diverse areas of application. Weighted con-
straint satisfaction extends the traditional constraint
satisfaction framework with soft constraints; such
constraints are not required to be satisfied for a solu-
tion to be valid, but constraints a given solution does
satisfy are rewarded according to weights assigned
to them. Soft constraints are perfect for expressing
our preference for symbol trigrams, with the possi-
bility of a back off to lower-degreen-grams if there
is reason to doubt the quality of the trigram predic-
tions.

Formally, a W-CSP is a tuple(X,D,C,W).
Here,X = {x1, x2, . . . , xn} is a finite set of vari-
ables. D(x) is a function that maps each variable
to its domain, that is, the set of values that variable
can take on.C is the set of constraints. While a
variable’s domain dictates the values a single vari-
able is allowed to take on, a constraint specifies
which simultaneous valuecombinationsover a num-
ber of variables are allowed. For a traditional (non-
weighted) constraint satisfaction problem, a valid
solution would be an assignment of values to the
variables that (1) are a member of the corresponding
variable’s domain, and (2) satisfyall constraints in
the setC. Weighted constraint satisfaction, however,
relaxes this requirement to satisfy all constraints. In-
stead, constraints are assigned weights that may be
interpreted as reflecting the importance of satisfying
that constraint.

Let a constraintc ∈ C be defined as a function
that maps each variable assignment to 1 if the con-
straint is satisfied, or to 0 if it is not. In addition, let
W : C→ IR+ denote a function that maps each con-
straint to a positive real value, reflecting the weight
of that constraint. Then, the optimal solution to a
W-CSP is given by the following equation.

x
∗ = arg max

x

∑

c

W (c)c(x)

43

Figure 1: Illustration of the constraints yielded by a givensequence of predicted class trigrams for the word
hand. The constraints on the right have been marked with a number (between parentheses) that refers to the
trigram prediction on the left from which the constraint wasderived.

That is, the assignment of values to its variables
that maximizes the sum of weights of the constraints
that have been satisfied.

Translating the terminology used in morpho-
phonological tasks to the constraint satisfaction do-
main, each letter maps to a variable, the domain of
which corresponds to the three overlapping candi-
date symbols for this letter suggested by the trigrams
covering the letter. This provides us with a defini-
tion of the functionD, mapping variables to their
domain. In the following,yi,j denotes the candi-
date symbol for letterxj predicted by the trigram
assigned to letterxi.

D(xi) = {yi−1,i, yi,i, yi+1,i}

Constraints are extracted from the predicted tri-
grams. Given the goal of retaining predicted tri-
grams in the output symbol sequence as much as
possible, the most important constraints are simply
the trigrams themselves. A predicted trigram de-
scribes a subsequence of length three of the entire
output sequence; by turning such a trigram into a
constraint, we express the wish to have this trigram
end up in the final output sequence.

(xi−1, xi, xi+1) = (yi,i−1, yi,i, yi,i+1),∀i

No base classifier is flawless though, and there-
fore not all predicted trigrams can be expected to be
correct. Yet, even an incorrect trigram may carry
some useful information regarding the output se-
quence: one trigram also covers two bigrams, and

three unigrams. An incorrect trigram may still con-
tain smaller subsequences of length one or two that
are correct. Therefore, all of these are also mapped
to constraints.

(xi−1, xi) = (yi,i−1, yi,i), ∀i

(xi, xi+1) = (yi,i, yi,i+1), ∀i

xi−1 = yi,i−1, ∀i

xi = yi,i, ∀i

xi+1 = yi,i+1, ∀i

To illustrate the above procedure, Figure 1 shows
the constraints yielded by a given output sequence
of class trigrams for the word “hand”. With such an
amount of overlapping constraints, the satisfaction
problem obtained easily becomes over-constrained,
that is, no variable assignment exists that can sat-
isfy all constraints without breaking another. Even
only one incorrectly predicted class trigram already
leads to two conflicting candidate symbols for one
of the letters at least. In Figure 1, this is the case
for the letter “d”, for which both the symbol “d” and
“t” are predicted. On the other hand, without con-
flicting candidate symbols, no inference would be
needed to start with. The choice for the weighted
constraint satisfaction method always allows a solu-
tion to be found, even in the presence of conflict-
ing constraints. Rather than requiring all constraints
to be satisfied, each constraint is assigned a certain
weight; the optimal solution to the problem is an as-
signment of values to the variables that optimizes the

44

Focus Trigram output classes
Left context letter Right context Phonemization Morph. analysis

b o o k b u s -
b o o k i b u - s - -

b o o k i n u - k - - -
b o o k i n g - k I - - i
o o k i n g k I N - i -
o k i n g I N - i - -
k i n g N - - -

Table 1: Seven labeled examples of phonemization and morphological analysis trigram mappings created
for the wordbooking.

sum of weights of the constraints that are satisfied.

As weighted constraints are defined over overlap-
ping subsequences of the output sequence, the best
symbol assignment for each letter with respect to the
weights of satisfied constraints is decided upon on a
global sequence level. This may imply taking into
account symbol assignments for surrounding letters
to select the best output symbol for a certain letter.
In contrast, in non-global approaches, ignorant of
any sequential context, only the local classifier pre-
diction with highest confidence is considered for se-
lecting a letter’s output symbol. By formulating our
inference procedure as a constraint satisfaction prob-
lem, global output optimization comes for free: in
constraint satisfaction, the aim is also to find a glob-
ally optimal assignment of variables taking into ac-
count all constraints defined over them. Yet, for such
a constraint satisfaction formulation to be effective,
good constraint weights should be chosen, that is,
weights that favor good output sequences over bad
ones.

Constraints can directly be traced back to a pre-
diction made by the base classifier. If two con-
straints are in conflict, the one which the classifier
was most certain of should preferably be satisfied.
In the W-CSP framework, this preference can be ex-
pressed by weighting constraints according to the
classifier confidence for the originating trigram. For
the memory-based learner, we define the classifier
confidence for a predicted class as the weight as-
signed to that class in the neighborhood of the test
instance, divided by the total weight of all classes.

Let x denote a test instance, andc∗ its pre-
dicted class. Constraints derived from this class are

weighted according to the following rules:

• for a trigram constraint, the weight is simply
the base classifier’s confidence value for the
classc∗;

• for a bigram constraint, the weight is the sum
of the confidences for all trigram classes in the
nearest-neighbor set ofx that assign the same
symbol bigram to the letters spanned by the
constraint;

• for a unigram constraint, the weight is the sum
of the confidences for all trigram classes in the
nearest-neighbor set ofx that assign the same
symbol to the letter spanned by the constraint.

This weighting scheme results in an inference
procedure that behaves exactly as we already de-
scribed intuitively in the beginning of this section.
The preference for retaining the predicted trigrams
in the output sequence is translated into high rewards
for output sequences that do so, since such output se-
quences not only receive credit for the satisfied tri-
gram constraints, but also for all the bigram and un-
igram constraints derived from that trigram; they are
necessarily satisfied as well. Nonetheless, this pref-
erence for trigrams may be abandoned if composing
a certain part of the output sequence from several
symbol bigrams or even unigrams results in higher
rewards than when trigrams are used. The latter may
happen in cases where the base classifier is not con-
fident about its trigram predictions.

45

3 Data preparation

In our experiments we train classifiers on English
and Dutch letter-phoneme conversion and morpho-
logical analysis. All data for the experiments de-
scribed in this paper are extracted from the CELEX
lexical databases for English and Dutch (Baayen et
al., 1993). We encode the examples for our base
classifiers in a uniform way, along the following pro-
cedure. Given a word and (i) an aligned phone-
mic transcription or (ii) an aligned encoding of a
morphological analysis, we generate letter-by-letter
windows. Each window takes one letter in focus,
and includes three neighboring letters to the left
and to the right. Each seven-letter input window
is associated to a trigram class label, composed of
the focus class label aligned with the middle let-
ter, plus its immediately preceding and following
class labels. Table 1 displays the seven examples
made on the basis of the wordbooking, with tri-
gram classes (as explained in Section 2) both for
the letter-phoneme conversion task and for the mor-
phological analysis task. The full aligned phone-
mic transcription ofbookingis [bu-kIN-] (using the
SAMPA coding of the international phonetic alpha-
bet), and the morphological analysis ofbooking is
[book]stem[ing]inflection. The dashes in the phone-
mic transcription are inserted to ensure a one-to-
one mapping between letters and phonemes; the in-
sertion was done by automatical alignment through
expectation-maximization (Dempster et al., 1977).

The English word phonemization data, extracted
from the CELEX lexical database, contains 65,467
words, on the basis of which we create a database
of 573,170 examples. The Dutch word phonemiza-
tion data set consists of 293,825 words, totaling to
3,181,345 examples. Both data sets were aligned us-
ing the expectation-maximization algorithm (Demp-
ster et al., 1977), using a phonemic null character to
equalize the number of symbols in cases in which
the phonemic transcription is shorter than the ortho-
graphic word, and using “double phonemes” (e.g.
[X] for [ks]) in cases where the phonemic transcrip-
tion is longer, as intaxi – [tAksi].

CELEX contains 336,698 morphological analy-
ses of Dutch (which we converted to 3,209,090
examples), and 65,558 analyses of English words
(573,544 examples). We converted the available

Left Focus Right Trigram
context letter context class

a b n o A 0
a b n o r A 0 0

a b n o r m 0 0 0
a b n o r m a 0 0 0
b n o r m a l 0 0 0
n o r m a l i 0 0 0
o r m a l i t 0 0 0+Da
r m a l i t e 0 0+Da A→N
m a l i t e i 0+Da A →N 0
a l i t e i t A →N 0 0
l i t e i t e 0 0 0
i t e i t e n 0 0 0
t e i t e n 0 0 plural
e i t e n 0 plural 0
i t e n plural 0

Table 2: Examples with morphological analysis tri-
gram classes derived from the example wordabnor-
maliteiten.

morphological information for the two languages in
a coding scheme which is rather straightforward in
the case of English, and somewhat more compli-
cated for Dutch. For English, as exemplified in Ta-
ble 1, a simple segmentation label marks the begin-
ning of either a stem, an inflection (“s” and “i” in
Table 1), a stress-affecting affix, or a stress-neutral
affix (“1” and “2”, not shown in Table 1). The cod-
ing scheme for Dutch incorporates additional infor-
mation on the part-of-speech of every stem and non-
inflectional affix, the type of inflection, and also en-
codes all spelling changes between the base lemma
forms and the surface word form.

To illustrate the more complicated construction of
examples for Dutch morphological analysis, Table 2
displays the 15 instances derived from the Dutch
example wordabnormaliteiten(abnormalities) and
their associated classes. The class of the first in-
stance is A, which signifies that the morpheme start-
ing in a is an adjective (A). The class of the eighth
instance, 0+Da, indicates that at that position no seg-
ment starts (0), but that ana was deleted at that po-
sition (+Da, “delete a” here). Next to deletions, in-
sertions (+I) and replacements (+R, with a deletion
and an insertion argument) can also occur. Together

46

Language Task Unigrams Trigrams
English Letter-phon. 58 13,005

Morphology 5 80
Dutch Letter-phon. 201 17,538

Morphology 3,831 14,795

Table 3: Numbers of unigram and trigram classes
for the four tasks.

these two classification labels code that the first mor-
pheme is the adjectiveabnormaal. The second mor-
pheme, the suffixiteit, has class A→N. This com-
plex tag, which is in fact a rewrite rule, indicates that
wheniteit attaches right to an adjective (encoded by
A), the new combination becomes a noun (→N).
Rewrite rule class labels occur exclusively with suf-
fixes, that do not have a part-of-speech tag of their
own, but rather seek an attachment to form a com-
plex morpheme with the part-of-speech tag. Finally,
the third morpheme isen, which is a plural inflection
that by definition attaches to a noun.

Logically, the number of trigram classes for each
task is larger than the number of atomic classes;
the actual numbers for the four tasks investigated
here are displayed in Table 3. The English morpho-
logical analysis task has the lowest number of tri-
gram classes, 80, due to the fact that there are only
five atomic classes in the original task, but for the
other tasks the number of trigram classes is quite
high; above 10,000. With these numbers of classes,
several machine learning algorithms are practically
ruled out, given their high sensitivity to numbers of
classes (e.g., support vector machines or rule learn-
ers). Memory-based learning algorithms, however,
are among a small set of machine learning algo-
rithms that are insensitive to the number of classes
both in learning and in classification.

4 Results

We performed experiments with the memory-based
learning algorithmIB1, equipped with constraint
satisfaction inference post-processing, on the four
aforementioned tasks. In one variant,IB1 was sim-
ply used to predict atomic classes, while in the other
variant IB1 predicted trigram classes, and constraint
satisfaction inference was used for post-processing
the output sequences. We chose to measure the gen-

Language Method Word accuracy
English Unigram 80.0±0.75

CSInf 85.4±0.71

Dutch Unigram 41.3±0.48
CSInf 51.9±0.48

Table 4: Word accuracies on English and Dutch
morphological analysis by the default unigram clas-
sifier and the trigram method with constraint satis-
faction inference, with confidence intervals.

Language Method Word accuracy
English Unigram 79.0±0.82

CSInf 84.5±0.76

Dutch Unigram 92.8±0.25
CSInf 94.4±0.22

Table 5: Word accuracies on English and Dutch
letter-phoneme conversion by the default unigram
classifier and the trigram method with constraint sat-
isfaction inference, with confidence intervals.

eralization performance of our trained classifiers on
a single 90% training set – 10% test set split of each
data set (after shuffling the data randomly at the
word level), and measuring the percentage of fully
correctly phonemized words or fully correctly mor-
phologically analyzed words – arguably the most
critical and unbiased performance metric for both
tasks. Additionally we performed bootstrap resam-
pling (Noreen, 1989) to obtain confidence intervals.

Table 4 lists the word accuracies obtained on the
English and Dutch morphological analysis tasks.
Constraint satisfaction inference significantly out-
performs the systems that predict atomic unigram
classes, by a large margin. While the absolute differ-
ences in scores between the two variants of English
morphological analysis is 5.4%, the error reduction
is an impressive 27%.

Table 5 displays the word phonemization accu-
racies of both variants on both languages. Again,
significant improvements over the baseline classifier
can be observed; the confidence intervals are widely
apart. Error reductions for both languages are im-
pressive: 26% for English, and 22% for Dutch.

47

5 Discussion

We have presented constraint satisfaction inference
as a global method to repair errors made by a local
classifier. This classifier is a memory-based learner
predicting overlapping trigrams, creating a space of
possible output sequences in which the inference
procedure finds the globally optimal one. This glob-
ally optimal sequence is the one that adheres best to
the trigram, bigram, and unigram sub-sequence con-
straints present in the predictions of the local classi-
fier, weighted by the confidences of the classifier, in
a back-off order from trigrams to unigrams.

The method is shown to significantly outperform
a memory-based classifier predicting atomic classes
and lacking any global post-processing, which has
previously been shown to exhibit successful perfor-
mance (Van den Bosch and Daelemans, 1993; Van
den Bosch and Daelemans, 1999). (While this was
the reason for using memory-based learning, we
note that the constraint satisfaction inference and its
underlying trigram-based classification method can
be applied to any machine-learning classifier.) The
large improvements (27% and 26% error reductions
on the two English tasks, 18% and 22% on the two
Dutch tasks) can arguably be taken as an indication
that this method may be quite effective in general in
morpho-phonological sequence processing tasks.

Apparently, the constraint-satisfaction method is
able to avoid more errors than to add them. At closer
inspection, comparing cases in which the atomic
classifier generates errors and constraint satisfaction
inference does not, we find that the type of avoided
error, when compared to the unigram classifier, dif-
fers per task. On the morphological analysis task,
we identify repairs where (1) a correct segmentation
is inserted, (2) a false segmentation is not placed,
and (3) a tag is switched. As Table 6 shows in its up-
per four lines, in the case of English most repairs in-
volve correctly inserted segmentations, but the other
two categories are also quite frequent. In the case of
Dutch the most common repair is a switch from an
incorrect tag, placed at the right segmentation posi-
tion, to the correct tag at that point. Given that there
are over three thousand possible tags in our compli-
cated Dutch morphological analysis task, this is in-
deed a likely area where there is room for improve-
ment.

Morphological analysis repairsEnglish Dutch
Insert segmentation 193 1,087
Delete segmentation 158 1,083
Switch tag 138 2,505

Letter-phoneme repairs English Dutch
Alignment 1,049 239
Correct vowel 32 94
Correct consonant 275 73

Table 6: Numbers of repaired errors divided over
three categories of morphological analysis classifi-
cations (top) and letter-phoneme conversions (bot-
tom) of the constraint satisfaction inference method
as compared to the unigram classifier.

The bottom four lines of Table 6 lists the counts of
repaired errors in word phonemization in both lan-
guages, where we distinguish between (1) alignment
repairs between phonemes and alignment symbols
(where phonemes are corrected to phonemic nulls,
or vice versa), (2) switches from incorrect non-null
phonemes to correct vowels, and (3) switches from
incorrect non-null phonemes to correct consonants.
Contrary to expectation, it is not the second vowel
category in which most repairs are made (many of
the vowel errors in fact remain in the output), but
the alignment category, in both languages. At points
where the local unigram classifier sometimes incor-
rectly predicts a phoneme twice, where it should
have predicted it along with a phonemic null, the
constraint satisfaction inference method never gen-
erates a double phoneme. Hence, the method suc-
ceeds in generating sequences that arepossible, and
avoiding impossible sub-sequences. At the same
time, apossiblesequence is not necessarily thecor-
rectsequence, so this method can be expected to still
make errors on the identity of labels in the output se-
quence.

In future work we plan to test a range ofn-gram
widths exceeding the current trigrams. Preliminary
results suggest that the method retains a positive ef-
fect over the baseline withn > 3, but it does not
outperform then = 3 case. We also intend to test
the method with a range of different machine learn-
ing methods, since as we noted before the constraint-
satisfaction inference method and its underlyingn-
gram output subsequence classification method can

48

be applied to any machine learning classification al-
gorithm in principle, as is already supported by pre-
liminary work in this direction.

Also, we plan comparisons to the work of
Stroppa and Yvon (2005) and Damper and East-
mond (1997) on sequence-global analogy-based
models for morpho-phonological processing, since
the main difference between this related work and
ours is that both alternatives are based on work-
ing units of variable width, rather than our fixed-
width n-grams, and also their analogical reasoning
is based on interestingly different principles than our
k-nearest neighbor classification rule, such as the
use of analogical proportions by Stroppa and Yvon
(2005).

Acknowledgements

This research was funded by NWO, the Netherlands
Organization for Scientific Research, as part of the
IMIX Programme. The authors would like to thank
Walter Daelemans for fruitful discussions, and three
anonymous reviewers for their insightful comments.

References

D. W. Aha, D. Kibler, and M. Albert. 1991. Instance-
based learning algorithms.Machine Learning, 6:37–
66.

R. H. Baayen, R. Piepenbrock, and H. van Rijn. 1993.
The CELEX lexical data base on CD-ROM. Linguistic
Data Consortium, Philadelphia, PA.

W. Daelemans, J. Zavrel, K. Van der Sloot, and A. Van
den Bosch. 2004. TiMBL: Tilburg memory based
learner, version 5.1.0, reference guide. Technical Re-
port ILK 04-02, ILK Research Group, Tilburg Univer-
sity.

R. I. Damper and J. F. G. Eastmond. 1997. Pronuncia-
tion by analogy: impact of implementational choices
on performance.Language and Speech, 40:1–23.

E. Daya, D. Roth, and S. Wintner. 2004. Learning
Hebrew roots: Machine learning with linguistic con-
straints. In Dekang Lin and Dekai Wu, editors,Pro-
ceedings of EMNLP 2004, pages 357–364, Barcelona,
Spain, July. Association for Computational Linguis-
tics.

A.P. Dempster, N.M. Laird, and D.B. Rubin. 1977. Max-
imum likelihood from incomplete data via the EM al-
gorithm. Journal of the Royal Statistical Society, Se-
ries B (Methodological), 39(1):1–38.

T. G. Dietterich, H. Hild, and G. Bakiri. 1995. A com-
parison ofID3 and backpropagation for English text-
to-speech mapping.Machine Learning, 19(1):5–28.

E. Noreen. 1989.Computer-intensive methods for test-
ing hypotheses: an introduction. John Wiley and sons.

A. Prince and P. Smolensky. 2004.Optimality The-
ory: Constraint Interaction in Generative Grammar.
Blackwell Publishers.

V. Punyakanok and D. Roth. 2001. The use of classifiers
in sequential inference. InNIPS-13; The 2000 Con-
ference on Advances in Neural Information Processing
Systems, pages 995–1001. The MIT Press.

T.J. Sejnowski and C.S. Rosenberg. 1987. Parallel net-
works that learn to pronounce english text.Complex
Systems, 1:145–168.

N. Stroppa and F. Yvon. 2005. An analogical learner
for morphological analysis. InProceedings of the
9th Conference on Computational Natural Language
Learning, pages 120–127. Association for Computa-
tional Linguistics.

K. Torkkola. 1993. An efficient way to learn English
grapheme-to-phoneme rules automatically. InPro-
ceedings of the International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), volume 2,
pages 199–202, Minneapolis.

A. Van den Bosch and W. Daelemans. 1993. Data-
oriented methods for grapheme-to-phoneme conver-
sion. In Proceedings of the 6th Conference of the
EACL, pages 45–53.

A. Van den Bosch and W. Daelemans. 1999. Memory-
based morphological analysis. InProceedings of the
37th Annual Meeting of the ACL, pages 285–292, San
Francisco, CA. Morgan Kaufmann.

A. Van den Bosch and W. Daelemans. 2005. Improv-
ing sequence segmentation learning by predicting tri-
grams. In I. Dagan and D. Gildea, editors,Proceed-
ings of the Ninth Conference on Computational Natu-
ral Language Learning.

A. Weijters. 1991. A simple look-up procedure supe-
rior to NETtalk? InProceedings of the International
Conference on Artificial Neural Networks -ICANN-91,
Espoo, Finland.

F. Yvon. 1996. Prononcer par analogie: motivation,
formalisation etévaluation. Ph.D. thesis, Ecole Na-
tionale Supérieure des Télécommunication, Paris.

49

Proceedings of the Eighth Meeting of the ACL Special Interest Group on Computational Phonology at HLT-NAACL 2006, pages 50–59,
New York City, USA, June 2006.c©2006 Association for Computational Linguistics

Richness of the Base and Probabilistic Unsupervised Learning in
Optimality Theory

Gaja Jarosz

Department of Cognitive Science
Johns Hopkins University

Baltimore, MD 21218
jarosz@cogsci.jhu.edu

Abstract

This paper proposes an unsupervised
learning algorithm for Optimality Theo-
retic grammars, which learns a complete
constraint ranking and a lexicon given
only unstructured surface forms and mor-
phological relations. The learning algo-
rithm, which is based on the Expectation-
Maximization algorithm, gradually
maximizes the likelihood of the observed
forms by adjusting the parameters of a
probabilistic constraint grammar and a
probabilistic lexicon. The paper presents
the algorithm’s results on three con-
structed language systems with different
types of hidden structure: voicing neu-
tralization, stress, and abstract vowels. In
all cases the algorithm learns the correct
constraint ranking and lexicon. The paper
argues that the algorithm’s ability to iden-
tify correct, restrictive grammars is due in
part to its explicit reliance on the Opti-
mality Theoretic notion of Richness of the
Base.

1 Introduction

In Optimality Theory or OT (Prince and Smolen-
sky, 1993) grammars are defined by a set of ranked
universal and violable constraints. The function of
the grammar is to map underlying or lexical forms
to valid surface forms. The task of the learner is to

find the correct grammar, or correct ranking of
constraints, as well as the set of underlying forms
that correspond to overt surface forms given only
the surface forms and the set of universal con-
straints.

The most well known algorithms for learning
OT grammars (Tesar, 1995; Tesar and Smolensky,
1995; Boersma, 1997, 1998; Prince and Tesar,
1999; Boersma and Hayes, 2001) are supervised
learners and focus on the task of learning the
constraint ranking, given training pairs that map
underlying forms to surface forms. Recent work
has focused on the task of unsupervised learning of
OT grammars, where only unstructured surface
forms are provided to the learner. Some of this
work focuses on grammar learning without training
data (Tesar, 1998; Tesar, 1999; Hayes, 2004;
Apoussidou and Boersma, 2004). The remainder of
this work tackles the problem of learning the
ranking and lexicon simultaneously, the problem
addressed in the present paper (Tesar et al., 2003;
Tesar, 2004; Tesar and Prince, to appear; Merchant
and Tesar, to appear). These proposals adopt an
algebraic approach wherein learning the lexicon
involves iteratively eliminating potential
underlying forms by determining that they have
become logically impossible, given certain
assumptions about the learning problem.1 In
particular, one simplifying assumption of previous
work requires that mappings be one-to-one and
onto. This assumption prohibits input-output
mappings with deletion and insertion as well as

1 An alternative algorithm is proposed in Escudero (2005), but
it has not been tested computationally.

50

constraints that evaluate such mappings. This work
represents a leap forward toward the accurate
modeling of human language acquisition, but the
identification of a general-purpose, unsupervised
learner of OT remains an open problem.

In contrast to previous work, this paper proposes
a gradual, probabilistic algorithm for unsupervised
OT learning based on the Expectation Maximiza-
tion algorithm (Dempster et al., 1977). Because the
algorithm depends on gradually maximizing an
objective function, rather than on wholly eliminat-
ing logically impossible hypotheses, it is not cru-
cial to prohibit insertion or deletion.

A major challenge posed by unsupervised learn-
ing of OT is that of learning restrictive grammars
that generate only grammatical forms. In previous
work, the preference for restrictive grammars is
implemented by encoding a bias into the ranking
algorithm that favors ranking constraints that pro-
hibit marked structures as high as possible. In con-
trast, the solution proposed here involves a
combination of likelihood maximization and ex-
plicit reliance on Richness of the Base, an OT prin-
ciple requiring that the set of potential underlying
forms be universal. This combination favors re-
strictive grammars because grammars that map a
“rich” lexicon onto observed forms with high
probability are preferred. The proposed model is
tested on three constructed language systems, each
exemplifying a different type of hidden structure.

2 Learning Probabilistic OT

While the primary task of the grammar is to map
underlying forms to overt forms, the grammar’s
secondary role is that of a filter – ruling out un-
grammatical forms no matter what underlying form
is fed to the grammar. The role of the grammar as
filter follows from the OT principle of Richness of
the Base, according to which the set of possible
underlying forms is universal (Prince and Smolen-
sky 1993). In other words, the grammar must be
restrictive and not over-generate. The requirement
that grammars be restrictive complicates the learn-
ing problem - it is not sufficient to find a combina-
tion of underlying forms and constraint ranking
that yields the set of observed surface forms: the
constraint ranking must yield only grammatical
forms irrespective of the particular lexical items
selected for the language.

In classic OT, constraint ranking is categorical
and non-probabilistic. In recent years various sto-
chastic versions of OT have been proposed to ac-
count for free variation (Boersma and Hayes,
2001), lexically conditioned variation (Anttila,
1997), child language acquisition (Legendre et al.,
2002) and the modeling of frequencies associated
with these phenomena. In addition to these advan-
tages, probabilistic versions of OT are advanta-
geous from the point of view of learnability. In
particular, the Gradual Learning Algorithm for
Stochastic OT (Boersma, 1997, 1998; Boersma and
Hayes, 2001) is capable of learning in spite of
noisy training data and is capable of learning vari-
able grammars in a supervised fashion. In addi-
tion, probabilistic versions of OT and variants of
OT (Goldwater and Johnson, 2003; Rosenbach and
Jaeger, 2003) enable learning of OT via likelihood
maximization, for which there exist many estab-
lished algorithms. Furthermore, as this paper pro-
poses, unsupervised learning of OT using
likelihood maximization combined with Richness
of the Base provides a natural solution to the
grammar-as-filter problem due to the power of
probabilistic modeling to use negative evidence
implicitly.

The algorithm proposed here relies on a prob-
abilistic extension of OT in which each possible
constraint ranking is assigned a probability P(r).
Thus, the OT grammar is a probability distribution
over constraint rankings rather than a single con-
straint ranking. This notion of probabilistic OT is
similar to - but less restricted than - Stochastic OT,
in which the distribution over possible rankings is
given by the joint probability over independently
normally distributed constraints with fixed, equal
variance. The advantage of the present model is
computational simplicity, but the proposed learn-
ing algorithm does not depend on any particular
instantiation of probabilistic OT.

Tables 1 and 2 illustrate the proposed probabilis-
tic version of OT with an abstract example. Table
1 shows the violation marks assigned by three con-
straints, A, B and C, to five candidate outputs O1-
O5 for the underlying form, or input /I/. To com-
pute the winner of an optimization, constraints are
applied to the candidate set in order according to
their rank. Candidates continue to the next con-
straint if they have the fewest (or tie for fewest)
constraint violation marks (indicated by asterisks).
In this way the winning or optimal candidate, the

51

candidate that violates the higher-ranked con-
straints the least, is selected.

 constraints
input: /I/ A B C

O1 * *
O2 ** *
O3 **
O4 * **

ca
nd

id
at

es

O5 * **
Table 1. OT Candidates and Constraint Violations

The third column of Table 2 identifies the win-

ner under each possible ranking of the three con-
straints. For example, if the ranking is A >> B >>
C, constraint A eliminates all but O3 and O4, then
constraint B eliminates O3, designating O4 as the
winner. The remainder of Table 2 illustrates the
proposed probabilistic instantiation of OT. The
first column shows the probability P(r) that the
grammar assigns to each ranking in this example.
The probability of each ranking determines the
probability with which the winner under that rank-
ing will be selected for the given input. In other
words, it defines the conditional probability Pr(Ok |
I), shown in the fourth column, of the kth output
candidate given the input /I/ under the ranking r.
The last column shows the total conditional prob-
ability for each candidate after summing across
rankings. For instance, O3 is the winner under two
of the rankings, and thus its total conditional prob-
ability P(O3 | I) is found by summing over the con-
ditional probabilities under each ranking. The total
conditional probability P(O3 | I) refers to the prob-
ability that underlying form /I/ will surface as O3,
and this probability depends on the grammar.

P(r) ranking winner Pr(Ok | I) P(Ok | I)
0.20 A>>B>>C O4 0.2 0.2
0.15 A>>C>>B O3 0.15
0.05 C>>A>>B O3 0.05

0.2

0.10 B>>A>>C O5 0.1 0.1
0.00 B>>C>>A O2 0.0 0.0
0.50 C>>B>>A O1 0.5 0.5
Table 2: Probabilistic OT

In addition to the conditional probability as-
signed by the grammar, this model relies on a
probability distribution P(I | M) over possible un-
derlying forms for a given morpheme M. This
property of the model implements the standard lin-

guistic proposition that each morpheme has a con-
sistent underlying form across contexts, while the
grammar drives allomorphic variation that may
result in the morpheme having different surface
realizations in different contexts. Rather than iden-
tifying a single underlying form for each mor-
pheme, this model represents the underlying form
as a distribution over possible underlying forms,
and this distribution is constant across contexts. To
determine the probability of an underlying form for
a morphologically complex word, the product of
the morpheme’s individual distributions is taken –
the probability of an underlying form is taken to be
independent of morphological context. For exam-
ple, suppose that some morpheme Mk has two pos-
sible underlying forms, I1 and I2, and the two
underlying forms are equally likely. This means
that the conditional probabilities of both underly-
ing forms are 50%: P(I1 | Mk) = P(I2 | Mk) = 50%.

In sum, the probabilistic model described here
consists of a grammar and lexicon, both of which
are probabilistic. The task of learning involves
selecting the appropriate parameter settings of both
the grammar and lexicon simultaneously.

3 Expectation Maximization and Richness
of the Base in OT

This section presents the details of the learning
algorithm for probabilistic OT. First, in Section
3.1 the objective function and its properties are
discussed. Next, Section 3.2 proposes the solution
to the grammar-as-filter problem, which involves
restricting the search space available to the learn-
ing algorithm. Finally, Section 3.3 describes the
likelihood maximization algorithm – the input to
the algorithm, the initial state, and the form of the
solution.

3.1 The Objective Function

The learning algorithm relies on the following ob-
jective function:

PH (O | M) = [PH (Ok | Mk)]
Fk

k

∏
= [PH (Ok & Ik, j | Mk)

j

�
]Fk

k

∏

= [PH (Ok | Ik, j)PH (Ik, j | Mk)
j

�
]Fk

k

∏

52

The likelihood of the data, or set of overt surface
forms, PH(O | M) depends on the parameter set-
tings, the probability distributions over rankings
and underlying forms, under the hypothesis H. It
is also conditional on M, the set of observed mor-
phemes, which are annotated in the data provided
to the algorithm. M is constant, however, and does
not differ between hypotheses for the same data
set. Under this model each unique surface form Ok
is treated independently, and the likelihood of the
data is simply the product of the probability of
each surface form, raised to the power correspond-
ing to its observed frequency Fk. Each surface
form Ok is composed of a set of morphemes Mk,
and each of these morphemes has a set of underly-
ing forms Ik,j. The probability of each surface form
PH(Ok | Mk) is found by summing the joint distribu-
tion PH(Ok & I k,j | Mk) over all possible underlying
forms Ik,J for morphemes Mk that compose Ok.
Finally, the joint probability is simply the product
of the conditional probability PH(Ok | Ik,j) and lexi-
cal probability PH(IK,j | Mk), both of which were
defined in the previous section.

The primary property of this objective function
is that it is maximal only when the hypothesis gen-
erates the observed data with high probability. In
other words, the grammar must map the selected
lexicon onto observed surface forms without wast-
ing probability mass on unobserved forms. Be-
cause there are two parameters in the model, this
can be accomplished by adjusting the ranking dis-
tributions or by adjusting lexicon distributions.
The probability model itself does not specify
whether the grammar or the lexicon should be ad-
justed in order to maximize the objective function.
In other words, the objective function is indifferent
to whether the restrictions observed in the lan-
guage are accounted for by having a restrictive
grammar or by selecting a restrictive lexicon. As
discussed in Section 2, according to Richness of
the Base, only the first option is available in OT:
the grammar must be restrictive and must neutral-
ize noncontrastive distinctions in the language.
The next subsection addresses the proposed solu-
tion – a restriction of the search procedure that fa-
vors maximizing probability by restricting the
grammar rather than the lexicon.

3.2 Richness of the Base

Although the notion of a restrictive grammar is
intuitively clear, it is difficult to implement for-
mally. Previous work on OT learnability (Tesar,
1995; Tesar and Smolensky, 1995; Smolensky
1996; Tesar, 1998, Tesar, 1999; Tesar et al., 2003;
Tesar and Prince, to appear; Hayes, 2004) has pro-
posed the heuristic of Markedness over Faithful-
ness during learning to favor restrictive grammars.
In OT there are two basic types of constraints,
markedness constraints, which penalize dis-
preferred surface structures, and faithfulness con-
straints, which penalize nonidentical mappings
from underlying to surface forms. In general, a
restrictive grammar will have markedness con-
straints ranked high, because these constraints will
restrict the type of surface forms that are allowed
in a language. On the other hand, if faithfulness
constraints are ranked high, all the distinctions in-
troduced into the lexicon will surface. Thus, a
heuristic preferring markedness constraints to rank
high whenever possible does in general prefer re-
strictive grammars. However, the markedness over
faithfulness heuristic does not exhaust the notion
of restrictiveness. In particular, markedness over
faithfulness does not favor grammar restrictiveness
that follows from particular rankings between
markedness constraints or between faithfulness
constraints.

This work aims to provide a general solution
that does not require distinguishing various types
of constraints – the proposed solution implements
Richness of the Base explicitly in the initial state
of the lexicon. Specifically, the solution involves
requiring that initial distributions over the lexicon
be uniform, or rich. Although the objective func-
tion alone does not prefer restrictive grammars
over restrictive lexicons, a lexicon constrained to
be uniform, or nonrestrictive, will in turn force the
grammar to be restrictive. Another way to think
about it is that a restrictive grammar is one that
compresses the input distributions maximally by
mapping as much of the lexicon onto observed sur-
face forms as possible. By requiring the lexicon to
be rich the proposed solution relies on the objec-
tive function’s natural preference for grammars
that maximally compress the lexicon. The objec-
tive function prefers restrictive grammars in this
situation because restrictive grammars will allow
the highest probability to be assigned to observed

53

forms. In contrast, if the lexicon is not rich, there
is nothing for the grammar to compress, and the
objective function’s natural preference for com-
pression will not be employed. The next subsection
discusses the algorithm and the initialization of the
parameters in more detail.

3.3 Likelihood Maximization Algorithm

As discussed above, the goal of the learning algo-
rithm is to find the probability distributions over
rankings and lexicons that maximize the probabil-
ity assigned to the observed set of data according
to the objective function. In addition, any regulari-
ties present in the data should be accommodated by
the grammar rather than by restricting the lexicon.
As in previous work on unsupervised learning of
OT, the algorithm assumes knowledge of OT con-
straints, the possible underlying forms of overt
forms, and sets of candidate outputs and their con-
straint violation profiles for all possible underlying
forms. While the present version of the algorithm
receives this information as input, recent work in
computational OT (Riggle, 2004; Eisner, 2000)
suggests that this information is formally derivable
from the constraints and overt surface forms and
can be generated automatically.

In addition, the algorithm receives information
about the morphological relations between ob-
served surface forms. Specifically, output forms
are segmented into morphemes, and the mor-
phemes are indexed by a unique identifier. This
information, which has also been assumed in pre-
vious work, cannot be derived directly from the
constraints and observed forms but is a necessary
component of a model that refers to underlying
forms of morphemes. The present work assumes
this information is available to the learner although
Section 5 will discuss the possibility of learning
these morphological relations in conjunction with
the learning of phonology.

The set of potential underlying forms is derived
from observed surface forms, morphological rela-
tions, and the constraint set. On the one hand the
set of potential underlying forms, which is initially
uniformly distributed, should be rich enough to
constitute a rich base for the reasons discussed ear-
lier. On the other hand, the set should be re-
stricted enough so that the search space is not too
large and so that the grammar is not pressured to
favor mapping underlying forms to completely

unrelated surface forms. For this reason, potential
underlying forms are derived from surface forms
by considering all featural variants of surface
forms for features that are evaluated by the gram-
mar. Of these potential underlying forms, only
those that can yield each of the observed surface
allomorphs of the morpheme under some ranking
of the constraints are included. This formulation
differs substantially from previous work, which
aimed to construct the lexicon via discrete steps,
the first of which involved permanently setting the
values for features that do not alternate. In contrast,
the approach taken here aims to create a rich initial
lexicon, to compel the selection of a restrictive
grammar.

In addition to featural variants, variants of sur-
face forms that differ in length are included if they
are supported by allomorphic alternation. In par-
ticular, featural variants of all the observed surface
allomorphs of the morpheme are considered as po-
tential underlying forms for the morpheme if each
of the observed surface forms can be generated
under some ranking. Including these types of un-
derlying forms extends previous work, which did
not allow segmental insertion or deletion or con-
straints that evaluate these unfaithful mappings,
such as MAX and DEP.

The algorithm initializes both the lexicon and
grammar to uniform probability distributions. This
means that all rankings are initially equally likely.
Likewise, all potential underlying forms for a mor-
pheme are initially equally likely. Thus, the prob-
ability distributions begin unbiased, but choosing
an unbiased lexicon initially begins the search
through parameter space at a position that favors
restrictive grammars. The experiments in the fol-
lowing section suggest that this choice of initializa-
tion correctly selects a restrictive final grammar.

The learning algorithm itself is based on the Ex-
pectation Maximization algorithm (Dempster et al.,
1977) and alternates between an expectation stage
and a maximization stage. During the expectation
stage the algorithm computes the likelihood of the
observed surface forms under the current hypothe-
sis. During the maximization stage the algorithm
adjusts the grammar and lexicon distributions in
order to increase the likelihood of the data. The
probability distribution over rankings is adjusted
according to the following re-estimation formula:

54

PH +1(r) = Fk

Fk

k

� ⋅ PH (Ok |r,Mk)
PH (Ok | Mk)k

�

Intuitively, this formula re-estimates the prob-
ability of a ranking for state H+1 in proportion to
the ranking’s contribution to the overall probability
at state H. The algorithm re-estimates the probabil-
ity distribution for an underlying form according to
an analogous formula:

PH +1(Ik, j | M i) = Fk

Fk

k

� ⋅
PH (Ok & Ik, j | M i)

PH (Ok | M i)k

�

Intuitively, the re-estimate of the probability of
an underlying form Ik,j for state H+1 is propor-
tional to the contribution that underlying form
makes to the total probability due to morpheme Mi
at state H. The algorithm continues to alternate
between the two stages until the distributions con-
verge, or until the change between one stage and
the next reaches some predetermined minimum. At
this point the resulting distributions are taken to
correspond to the learned grammar and lexicon.

4 Experiments

This section describes the results of experiments
with three artificial language systems with differ-
ent types of hidden structure. In all experiments
presented here, each unique surface form is as-
sumed to occur with frequency 1.

4.1 Voicing Neutralization

The first test set is an artificial language system
(Tesar and Prince, to appear) exhibiting voicing
neutralization. The constraint set includes five con-
straints:

• NOVOI - No voiced obstruents

• NOSFV- No syllable-final voiced obstruents

• IVV - No intervocalic voiceless consonants

• IDVOI - Surface voicing must match underly-
ing voicing

• MAX - Input segments must have output cor-
respondents

These five constraints can describe a number of
languages, but of particular interest are languages
in which voicing contrasts are neutralized in one or

more positions. Such languages, three of which
are shown below, test the algorithm’s ability to
identify correct and restrictive grammars. The par-
tial rankings shown below correspond to the neces-
sary rankings that must hold for these languages;
each partial ranking actually corresponds to several
total rankings of the constraints. Also shown below
are the morphologically analyzed surface forms for
each language that are provided as input to the al-
gorithm. The subscripts in these forms indicate
morpheme identities, while the hyphens segment
the words into separate morphemes. For example,
tat1,2 means that the surface form “tat” could be
derived from either morpheme 1 or 2 in this lan-
guage.

• (A) Final devoicing, contrast intervocalically:
• NOSFV, MAX >> IDVOI >> IVV, NOVOI
• tat1,2; dat3,4; tat1-e5; tad2-e5; dat3-e5; dad4-e5

• (B) Final devoicing and intervocalic voicing:
• NOSFV, MAX, IVV >> IDVOI, NOVOI
• tat1,2; dat3,4; tad1,2-e5; dad3,4-e5

• (C) No voiced obstruents:
• MAX, NOVOI >> IDVOI, IVV
• tat1,2,3,4; tat1,2,3,4-e5

In language C, it would be possible to maximize
the objective function by selecting a restrictive
lexicon rather than a restrictive grammar. In par-
ticular, /tat/ could be selected as the underlying
form for morphemes 1-4 in order to account for the
lack of voiced obstruents in the observed surface
forms. In this case, the objective function could
just as well be satisfied by an identity grammar
mapping underlying /tat/ to surface “tat”. However,
as discussed in Section 2, such a grammar would
violate the principle of Richness of the Base by
putting the restriction against voiced obstruents
into the lexicon rather than the grammar. Thus, this
language tests not only whether the algorithm finds
a maximum, but also whether the maximum corre-
sponds to a restrictive grammar.

In fact, for all three languages above, the algo-
rithm converges on the correct, restrictive gram-
mars and correct lexicons. Specifically, the final
grammars for each of the languages above con-
verge on probability distributions that distribute the
probability mass equally among the total rankings
consistent with the partial orders above. For ex-
ample, for language C the algorithm converges on

55

a distribution that assigns equal probability to the
20 total rankings consistent with the partial order
given by MAX, NOVOI >> IDVOI, IVV.

The initial uniform lexicon for language C is
shown in Table 3. Here the numbers 1-5 refer to
morpheme indices, and the possible underlying
forms for each morpheme are uniformly distrib-
uted. This initial lexicon favors a grammar that can
map as much of the rich lexicon as possible onto
surface forms with no voiced obstruents. With
these constraints, this translates into ranking
NOVOI above IDVOI and IVV. As the algorithm
begins learning the lexicon and continues to refine
its hypothesis for this language, nothing drives the
algorithm to abandon the initial rich lexicon. Thus,
in the final state, the lexicon for this language is
identical to the initial lexicon. In general, the final
lexicon will be uniformly distributed over underly-
ing forms that differ in noncontrastive features.

1 /tat/ - 25% /tad/ - 25% /dat/ - 25% /dad/ - 25%
2 /tat/ - 25% /tad/ - 25% /dat/ - 25% /dad/ - 25%
3 /tat/ - 25% /tad/ - 25% /dat/ - 25% /dad/ - 25%
4 /tat/ - 25% /tad/ - 25% /dat/ - 25% /dad/ - 25%
5 /e/ - 100%
Table 3. Initial Lexicon for Language C

4.2 Grammatical and Lexical Stress

The next set of languages from the PAKA system
(Tesar et al., 2003) test the ability of the algorithm
to identify grammatical stress (most restrictive),
lexical stress (least restrictive), and combinations
of the two. The constraint set includes:

• MAINLEFT - Stress the leftmost syllable

• MAINRIGHT - Stress the rightmost syllable

• FAITHACCENT - Stress an accented syllable

• FAITHACCENTROOT - Stress an accented root
syllable

Possible languages and their corresponding par-
tial orders ranging from least restrictive to most
restrictive are shown below. In the first two lan-
guages, the least restrictive languages, lexical dis-
tinctions in stress are realized faithfully, while
grammatical stress surfaces only in forms with no
underlying stress. In the final two languages stress
is entirely grammatical; underlying distinctions are
neutralized in favor of a regular surface stress pat-
tern. Finally, the middle language is a combination

of lexical and grammatical stress, requiring that the
algorithm learn that a contrast in roots is preserved,
while a contrast in suffixes is neutralized.

• Full contrast: roots and suffixes contrast in
stress, default left:

• F >> ML >> MR, FAR
• pá1-ka3; pa1-gá4; bá2-ka3; bá2-ga4

• Full contrast: roots and suffixes contrast in
stress, default right:

• F >> MR >> ML, FAR
• pa1-ká3; pa1-gá4; bá2-ka3; ba2-gá4

• Root contrast only, default right:

• FAR >> MR >> ML

• pa1-ká3; pa1-gá4; bá2-ka3; bá2-ga4

• Predictable left stress:

• ML >> FAR, F, MR
• pá1-ka3; pá1-ga4; bá2-ka3; bá2-ga4

• Predictable right stress:

• MR >> FAR, F, ML
• pa1-ká3; pa1-gá4; ba2-ká3; ba2-gá4

In all cases the algorithm learns the correct, re-
strictive grammars corresponding to the partial
orders shown above. As before, the final lexicon
assigns uniform probability to all underlying forms
that differ in noncontrastive features. For example,
in the case of the language with root contrast only,
the final lexicon selects a unique lexical item for
root morphemes and maintains a uniform probabil-
ity distribution over stressed and unstressed under-
lying forms for suffixes.

4.3 Abstract Underlying Vowels

The final experiment tests the algorithm on an
artificial language, based on Polish, with abstract
underlying vowels that never surface faithfully.
Although the particular phenomenon exhibited by
Slavic alternating vowels is rare, the general phe-
nomenon wherein underlying forms do not corre-
spond to any surface allomorph is not uncommon
and should be accommodated by the learning algo-
rithm. This language presents a challenge for pre-
vious work on unsupervised learning of OT
because alternations in the number of segments are
observed in morpheme 3. The morphologically

56

annotated input to the algorithm for this language
is shown in Table 4.

kater1 vatr2 sater3
kater1-a4 vatr2-a4 satr3-a4
Table 4. Yer Language Surface Forms

In this language morphemes 1, 2 and 4 exhibit no

alternation while morpheme 3 alternates between
sater and satr depending on the context. The con-
straints for this language, based on Jarosz (2005),
are shown below:

• *E = *[+ HIGH][-ATR]

• DEP-V

• MAX-V

• *COMPLEXCODA

• IDENT[HIGH]

1 2 3 4
/kater/ /vatr/ /satEr/ /-a/
Table 5. Desired Final Lexicon

In the proposed analysis of this language, the ab-
stract underlying [E], which is a [+high] version of
[e], is neutralized on the surface and exhibits two
repairs systematically depending on the context. It
deletes in general, but if a complex coda is at stake,
the vowel surfaces as [e] by violating
IDENT[HIGH]. The required partial ranking for this
language is shown below while the desired lexicon
is shown in Table 5.

{*E, {D EP-V >> *COMPLEXCODA }} >>
IDENT[HIGH] >> MAX-V

The algorithm successfully learns the correct rank-
ing above and the lexicon in Table 5. Specifically,
the final grammar assigns equal probability to all
the rankings consistent with the above partial or-
der. The final lexicon selects a single underlying
form for each morpheme as shown in Table 5 be-
cause all underlying distinctions in this language
are contrastive.

4.4 Discussion

In summary, the algorithm is able to find a cor-
rect grammar and lexicon combination for all of
the language systems discussed. As discussed in
Section 3, the objective function itself does not

favor restrictive grammars, but the ability of the
algorithm to learn restrictive grammars in these
experiments suggests that initializing the lexicons
to uniform distributions does compel the learning
algorithm to select restrictive grammars rather than
restrictive lexicons.

While the experiments presented in this section
focus on the task of learning a grammar and lexi-
con simultaneously, the proposed algorithm is also
capable of learning grammars from structurally
ambiguous forms. The same likelihood maximiza-
tion procedure proposed here could be used for
unsupervised learning of grammars that assign full
structural description to overt forms. Future direc-
tions include testing the algorithm on language
data of this sort.

5 Conclusion

In sum, this paper has presented an unsupervised,
probabilistic algorithm for OT learning. The paper
argues that combining the OT principle of Rich-
ness of the Base and likelihood maximization pro-
vides a novel and general solution to the problem
of finding a restrictive grammar. The proposed
solution involves explicitly implementing Richness
of the Base in the initialization of the lexicon in
order to fully utilize the properties of the objective
function. By relying on Richness of the Base and
likelihood maximization, the algorithm is able to
use negative evidence implicitly to find restrictive
grammars. The algorithm is shown to be successful
on three constructed languages featuring different
types of neutralization and hidden structure.

One potential extension of the proposed algo-
rithm involves combining a system for unsuper-
vised learning of morphological relations with the
proposed algorithm for learning phonology. Sev-
eral algorithms have been proposed for automati-
cally inducing morphological relations, like those
assumed by the present learner (Goldsmith, 2001;
Snover and Brent, 2001). The task of uncovering
morphological relations is complicated by allo-
morphic alternations that obscure the underlying
identity of related morphemes. While these algo-
rithms are very promising, their performance may
be significantly enhanced if they were combined
with an algorithm that models such phonological
alternations.

In conclusion, this is the first proposed unsuper-
vised algorithm for OT learning that takes advan-

57

tage of the power of probabilistic modeling to learn
a grammar and lexicon simultaneously. This paper
demonstrates that combining OT theoretic princi-
ples with results from computational language
learning is a worthwhile pursuit that may inform
both disciplines. In this case the theoretical princi-
ple of Richness of the Base has provided a novel
solution to a learning problem, but at the same
time, this work also informs theoretical OT by
providing a formal characterization of this theo-
retical principle. Future work includes testing on
larger, more realistic languages, including lan-
guage data with noise and variation, in order to
determine the algorithm’s resistance to noise and
ability to model variable grammars like those ob-
served in natural languages and in human language
acquisition.

Acknowledgements

I would like to thank Paul Smolensky for his in-
valuable feedback on this work and for his sugges-
tions on the preparation of this paper. I am also
grateful to Luigi Burzio, Robert Frank, Jason Eis-
ner, and members of the Johns Hopkins Linguistics
Research Group (especially Joan Chen-Main,
Adam Wayment, and Sara Finley) for additional
comments and helpful discussion.

References

Apoussidou, Diana and Paul Boersma. 2004. Compar-
ing Different Optimality-Theoretic Learning Algo-
rithms:the Case of Metrical Phonology. Proceedings
of the 2004 Spring Symposium Series of the Ameri-
can Association for Artificial Intelligence.

Anttila, Arto. 1997. Deriving variation from grammar.
In F. Hinskens, R. Van Hout and W. L. Wetzels
(eds.) Variation, Change and Phonological Theory.
Amsterdam, John Benjamins.

Boersma, Paul. 1997. How we Learn Variation, Option-
ality, and Probability. Proc. Institute of Phonetic Sci-
ences of the University of Amsterdam 21:43-58.

Boersma, P. 1998. Functional Phonology. Doctoral Dis-
sertation, University of Amsterdam. The Hague: Hol-
land Academic Graphics.

Boersma, P. and B. Hayes. 2001. Empirical Tests of the
Gradual Learning Algorithm. Linguistic Inquiry
32(1):45-86.

Dempster, A.P., N.M. Laird, and D.B. Rubin. 1977.
Maximum Likelihood from incomplete data via the

EM Algorithm. Journal of Royal Statistics Society.
39(B):1-38

Eisner, Jason. 2000. Easy and hard constraint ranking in
optimality theory: Algorithms and complexity. In Ja-
son Eisner, Lauri Karttunen and Alain Thériault
(eds.), Finite-State Phonology: Proceedings of the
5th Workshop of the ACL Special Interest Group in
Computational Phonology (SIGPHON), pages 22-33,
Luxembourg, August.

Escudero, Paola. 2005. Linguistic Perception and Sec-
ond Language Acquisition.Explaining the attainment
of optimal phonological categorization. Doctoral dis-
sertation, Utrecht University.

Goldsmith, John. 2001. Unsupervised Learning of Mor-
phology of a Natural Language. Computational Lin-
guistics, 27: 153-198.

Goldwater, Sharon and Mark Johnson. 2003. Learning
OT constraint rankings using a maximum entropy
model. In Jennifer Spenader, Anders Eriksson and
Osten Dahl (eds.), Proceedings of the Stockholm
Workshop on Variation within Optimality Theory.
Stockholm University, pages 111-120.

Hayes, Bruce. 2004. Phonological acquisition in Opti-
mality Theory: the early stages. Appeared 2004 in
Kager, Rene, Pater, Joe, and Zonneveld, Wim, (eds.),
Fixing Priorities: Constraints in Phonological Ac-
quisition. Cambridge University Press.

Jarosz, Gaja. 2005. Polish Yers and the Finer Structure
of Output-Output Correspondence. 31st Annual Meet-
ing of the Berkeley Linguistics Society, Berkeley,
California.

Lari, K. and S.J. Young. 1990. The estimation of sto-
chastic context-free grammars using the inside-
outside algorithm. Computer Speech and Language.
4:35-56

Legendre, Geraldine, Paul Hagstrom, Anne Vainikka
and Marina Todorova. 2002. Partial Constraint Or-
dering in Child French Syntax. to appear Language
Acquisition 10(3). 189-227.

Merchant, Nazarré, and Bruce Tesar. to appear. Learn-
ing underlying forms by searching restricted lexical
subspaces. In The Proceedings of Chicago Linguis-
tics Society 41. ROA-811.

Pereira, F. and Y. Schabes. 1992. Inside-Outside re-
estimation from partially bracketed corpora. In Pro-
ceedings of the ACL 1992, Newark, Delaware.

Prince, Alan and Paul Smolensky. 1993. Optimality
Theory: Constraint Interaction in Generative Gram-
mar. Technical Report 2, Center for Cognitive Sci-
ence, Rutgers University.

58

Prince, Alan, and Bruce Tesar. 1999. Learning phono-
tactic distributions. Technical Report RuCCS-TR-54,
Rutgers Center for Cognitive Science, Rutgers Uni-
versity.

Riggle, Jason. 2004. Generation, Recognition, and
Learning in Finite State Optimality Theory. Ph.D.
Dissertation, UCLA, Los Angeles, California.

Rosenbach, Anette and Gerhard Jaeger. 2003. Cumula-
tivity in Variation: testing different versions of Sto-
chastic OT empirically. Presented at the Seventh
Workshop on Optimality Theoretic Syntax, Univer-
sity of Nijmegen.

Smolensky, Paul. 1996. The initial state and `richness of
the base' in Optimality Theory. Technical Report
JHU-CogSci-96-4, Department of Cognitive Science,
Johns Hopkins University.

Snover, Matthew and Michael R. Brent. 2001 A Bayes-
ian Model for Morpheme and Paradigm Identifica-
tion. In Proceedings of the 39th Annual Meeting of
the ACL, pages 482-490. Association for Computa-
tional Linguistics.

Tesar, Bruce. 1995. Computational Optimality Theory.
Ph.D. thesis, University of Colorado at Boulder,
June.

Tesar, Bruce. 1998. An iterative strategy for language
learning. Lingua 104:131-145. ROA-177.

Tesar, Bruce. 1999. Robust interpretive parsing in met-
rical stress theory. In The Proceedings of Seventeenth
West Coast Conference on Formal Linguistics, pp.
625-639. ROA-262.

Tesar, Bruce. 2004. Contrast analysis in phonological
learning. Manuscript, Linguistics Dept., Rutgers
University. ROA-695.

Tesar, Bruce, John Alderete, Graham Horwood, Nazarré
Merchant, Koichi Nishitani, and Alan Prince. 2003.
“Surgery in language learning”. In The Proceedings
of Twenty-Second West Coast Conference on Formal
Linguistics, pp. 477-490. ROA-619.

Tesar, Bruce and Alan Prince. to appear. “Using phono-
tactics to learn phonological alternations.” Revised
version will appear in The Proceedings of CLS 39,
Vol. II: The Panels. ROA-620.

Tesar, Bruce and Paul Smolensky. 1995. “The Learn-
ability of Optimality Theory”. In Proceedings of the
Thirteenth West Coast Conference on Formal Lin-
guistics, 122-137.

59

Proceedings of the Eighth Meeting of the ACL Special Interest Group on Computational Phonology at HLT-NAACL 2006, pages 60–68,
New York City, USA, June 2006.c©2006 Association for Computational Linguistics

Morphology Induction from Limited Noisy Data
Using Approximate String Matching

Burcu Karagol-Ayan, David Doermann, and Amy Weinberg
Institute for Advanced Computer Studies (UMIACS)

University of Maryland
College Park, MD 20742

{burcu,doermann,weinberg }@umiacs.umd.edu

Abstract

For a language with limited resources, a
dictionary may be one of the few available
electronic resources. To make effective
use of the dictionary for translation, how-
ever, users must be able to access it us-
ing the root form of morphologically de-
formed variant found in the text. Stem-
ming and data driven methods, however,
are not suitable when data is sparse. We
present algorithms for discovering mor-
phemes from limited, noisy data obtained
by scanning a hard copy dictionary. Our
approach is based on the novel applica-
tion of the longest common substring and
string edit distance metrics. Results show
that these algorithms can in fact segment
words into roots and affixes from the lim-
ited data contained in a dictionary, and ex-
tract affixes. This in turn allows non na-
tive speakers to perform multilingual tasks
for applications where response must be
rapid, and their knowledge is limited. In
addition, this analysis can feed other NLP
tools requiring lexicons.

1 Introduction

In order to develop morphological analyzers for lan-
guages that have limited resources (either in terms of
experienced linguists, or electronic data), we must
move beyond data intensive methods developed for
rich resource languages that rely on large amounts

of data for statistical methods. New approaches that
can deal with limited, and perhaps noisy, data are
necessary for these languages.

Printed dictionaries often exist for languages be-
fore large amounts of electronic text, and provide
a variety of information in a structured format. In
this paper, we proposeMorphology Induction from
Noisy Data (MIND), a natural language morphology
induction framework that operates on from informa-
tion in dictionaries, specifically headwords and ex-
amples of usage. We use string searching algorithms
to morphologically segment words and identify pre-
fixes, suffixes, circumfixes, and infixes in noisy and
limited data. We present our preliminary results on
two data sources (Cebuano and Turkish), give a de-
tailed analysis of results, and compare them to a
state-of-the-art morphology learner. We employ the
automatically induced affixes in a simple word seg-
mentation process, decreasing the error rate of in-
correctly segmented words by 35.41%.

The next section discusses prior work on mor-
phology learning. In Section 3 and 4, we describe
our approach and MIND framework in detail. Sec-
tion 6 explains the experiments and presents results.
We conclude with future work.

2 Related Work

Much of the previous work on morphology learning
has been reported on automatically acquiring affix
lists. Inspired by works of Harris (1955), Dejean
(1998) attempted to find a list of frequent affixes
for several languages. He used successor and pre-
decessor frequencies of letters in a given sequence
of letters in identifying possible morpheme bound-

60

aries. The morpheme boundaries are where the pre-
dictability of the next letter in the letter sequence is
the lowest.

Several researchers (Brent, 1993; Brent et al.,
1995; Goldsmith, 2001) used Minimum Description
Length (MDL) for morphology learning. Snover
and Brent (2001) proposed a generative probabil-
ity model to identify stems and suffixes. Schone
and Jurafsky (2001) used latent semantic analysis
to find affixes. Baroni et al. (2002) produced a
ranked list of morphologically related pairs from
a corpus using orthographic or semantic similarity
with minimum edit distance and mutual informa-
tion metrics. Creutz and Lagus (2002) proposed
two unsupervised methods for word segmentation,
one based on maximum description length, and one
based on maximum likelihood. In their model,
words consisted of lengthy sequences of segments
and there is no distinction between stems and af-
fixes. The Whole Word Morphologizer (Neuvel and
Fulop, 2002) uses a POS-tagged lexicon as input, in-
duces morphological relationships without attempt-
ing to discover or identify morphemes. It is also ca-
pable of generating new words beyond the learning
sample.

Mystem (Segalovich, 2003) uses a dictionary for
unknown word guessing in a morphological analysis
algorithm for web search engines. Using a very sim-
ple idea of morphological similarity, unknown word
morphology is taken from all the closest words in
the dictionary, where the closeness is the number of
letters on its end.

The WordFrame model (Wicentowski, 2004) uses
inflection-root pairs, where unseen inflections are
transformed into their corresponding root forms.
The model works with imperfect data, and can han-
dle prefixes, suffixes, stem-internal vowel shifts, and
point-of-affixation stem changes. The WordFrame
model can be used for co-training with low-accuracy
unsupervised algorithms.

Monson (2004) concentrated on languages with
limited resources. The proposed language-
independent framework used a corpus of full word
forms. Candidate suffixes are grouped into candi-
date inflection classes, which are then arranged in a
lattice structure.

A recent work (Goldsmith et al., 2005) proposed
to use string edit distance algorithm as a bootstrap-

ping heuristic to analyze languages with rich mor-
phologies. String edit distance is used for rank-
ing and quantifying the robustness of morphological
generalizations in a set of clean data.

All these methods require clean and most of the
time large amounts of data, which may not exist
for languages with limited electronic resources. For
such languages, the morphology induction is still a
problem. The work in this paper is applicable to
noisy and limited data. String searching algorithms
are used with information found in dictionaries to
extract the affixes.

3 Approach

Dictionary entries contain headwords, and the exam-
ples of how these words are used in context (i.e. ex-
amples of usage). Our algorithm assumes that each
example of usage will contain at least one instance
of the headword, either in its root form, or as one
of its morphological variants. For each headword–
example of usage pair, we find the headword occur-
rence in the example of usage, and extract the affix
if the headword is in one of its morphological vari-
ants. We should note that we do not require the data
to be perfect. It may have noise such as OCR errors,
and our approach successfully identifies the affixes
in such noisy data.

4 Framework

Our framework has two stages,exact matchandap-
proximate match, and uses three string distance met-
rics, thelongest common substring(LCS), approx-
imate string matching with k differences(k-DIFF),
andstring edit distance(SED). We differentiate be-
tween exact and approximate matches and assign
two counts for each identified affix,exact count
andapproximate count. We require that each affix
should have a positive exact count in order to be in
the final affix list. Although approximate match can
be used to find exact matches to identify prefixes,
suffixes, and circumfixes, it is not possible to differ-
entiate between infixes and OCR errors. For these
reasons, we process the two cases separately.

First we briefly describe the three metrics we use
and the adaptations we made to find the edit opera-
tions in SED, and then we explain how we use these
metrics in our framework.

61

4.1 String Searching Algorithms

Longest Common Substring (LCS) Given two
stringsp = p1...pn andq = q1...qm, LCS finds the
longest contiguous sequence appearing inp andq.
The longest common substring is not same as the
longest common subsequence because the longest
common subsequence need not be contiguous.

There is a dynamic programming solution for
LCS1 that finds the longest common substring for
two strings with lengthn andm in O(nm).

String Edit Distance (SED)Given two stringsp
andq, SED is the minimum number of edit opera-
tions which transformsp to q. The edit operations al-
lowed are insertions, deletions, and substitutions. In
our algorithm, we set the cost of each edit operation
to 1. A solution based on dynamic programming
computes the distance between strings inO(mn),
wherem andn are the lengths of the strings (Wag-
ner and Fischer, 1974).

Approximate string matching with k differ-
ences (k-DIFF)Given two stringsp andq, the prob-
lem of approximate string matching withk differ-
ences is finding all the substrings ofq which are
at a distance less than or equal to a given valuek
from p. Insertions, deletions and substitutions are
all allowed. A dynamic programming solution to
this problem is the same as the classical string edit
distance solution with one difference: the values of
the first row of the table are initialized to 0 (Sellers,
1980). This initialization means that the cost of in-
sertions of letters ofq at the beginning ofp is zero.
The solutions are all the values of the last row of ta-
ble which are less or equal tok. Consequently, the
minimum value on the last row gives us the distance
of the closest occurrence of the pattern.

String Edit Distance with Edit Operations
(SED-path) In our framework, we are also inter-
ested in tracing back the editing operations per-
formed in achieving the minimum cost alignment.
In order to obtain the sequence of edit operations,
we can work backwards from the complete distance
matrix. For two stringsp andq with lengthsn and
m respectively, the cellL[n,m] of the distance ma-
trix L gives us the SED betweenp and q. To get
to the cellL[n,m], we had to come from one of 1)
L[n − 1,m] (insertion), 2)L[n,m − 1] (deletion),

1http://www.ics.uci.edu/ dan/class/161/notes/6/Dynamic.html

or 3)L[n − 1,m − 1] (substitution). Which of the
three options was chosen can be reconstructed given
these costs, edit operation costs, and the characters
p[n], q[m] of the strings. By working backwards,
we can trace the entire path and thus reconstruct the
alignment. However, there are ambiguous cases; the
same minimum cost may be obtained by a number
of edit operation sequences. We adapted the trace of
the path for our purposes as explained below.

Let pathbe the list of editing operations to obtain
minimum distance, andSED-pathbe the SED algo-
rithm that also returns apath. The length of thepath
is max(n,m), andpath[j] contains the edit oper-
ation to changeq[j] (or p[j] if n > m). Path can
contain four different types of operations: Match
(M), substitution (S), insertion (I), and deletion (D).
Our goal is finding affixes and in case of ambiguity,
we employed the following heuristics for finding the
SED operations leading the minimum distance:

Case 1: If one string is longer than the other, choose
I for extra characters

Case 2: Until an M is found, choose I in case of
ambiguity

Case 3: If an M is found previously, choose M/S in
case of ambiguity

Case 4: If there is an M between two I’s, switch this
with the last I

Case 1 ensures that if one word has more charac-
ters than the other, an insertion operation is selected
for those characters.

If there is an ambiguity, and an M/S or I oper-
ation have the same minimum cost, Case 2 gives
priority to the insertion operation until a match
case is encountered, while Case 3 gives priority to
match/substitution operations if a match case was
seen previously.

Below example shows how Case 4 helps us
to localize all the insertion operations. For the
headword–candidate example word pairabirids→
makaabiŕıds, thepathchanges from (1) to (2) using
Case 4, and correct prefix is identified as we explain
in the next section.

(1) I M I I I M M M S M M⇒ Prefixm-
(2) I I I I M M M M S M M⇒ Prefixmaka-

62

5 Morphology Induction from Noisy Data
(MIND)

The MIND framework consists of two stages. In the
exact match stage, MIND framework checks if the
headword occurs without any changes or errors (i.e.
if headword occurs exactly in the example of us-
age). If no such occurrence is found an approximate
match search is performed in second stage. Below
we describe these two stages in detail.

5.1 Exact Match

Given a list of (noisy) headword–example of usage
pairs (w,E), the exact match first checks if the head-
word occurs inE in its root form.2 If the headword
cannot be found inE in its root form, for eachei
in E, the longest common substring,LCS(w, ei),
is computed.3 Let el be theei that has the longest
common substring (l) with w.4 If w = l, and for
some suffixs and some prefixp one of the following
conditions is true, the affix is extracted.

1. el = ws (suffix) or

2. el = pw (prefix) or

3. el = pws (circumfix)

The extracted affixes are added to the induced af-
fix list, and theirexact counts are incremented. In
the third casep–sis treated together as a circumfix.

For the infixes, there is one further step. Ifw =
w′l andel = e′ll, we computeLCS(w′, e′l). If e′l =
w′s, for some suffixs, s is added as an infix to the
induced affix list. (This meansel = w′sl wherew =
w′l.)

The following sample run illustrates how the ex-
act match part identifies affixes. Given the Ce-
buano headword–example of usage pair (abtik) —
(naabtikan sad ku sa bátá), the wordnaabtikanis
marked as the candidate that has the longest com-
mon substring with headwordabtik. These two
words have the following alignment, and we ex-
tract the circumfixna–an. In the illustration below,

2Headwords consisting of one character are not checked.
3In order to reduce the search space, we do not check the

example words that are shorter than the headword. Although
there are some languages, such as Russian, in which headwords
may be longer than the inflected forms, such cases are not in the
scope of this paper.

4Note that the length of the longest common substring can
be at most the length of the headword, in which case the longest
common substring is the headword itself.

straight lines represent matches, and short lines end-
ing in square boxes represent insertions.

5.2 Approximate Match

When we cannot find an exact match, there may be
an approximate match resulting from an error with
OCR or morphophonemic rules5, and we deal with
such cases separately in the second part of the al-
gorithm. For eachei in E, we compute the dif-
ference between headword, and example word,k-
DIFF(w, ei). The example word that has the min-
imum difference from the headword is selected as
the most likely candidate (ecand). We then find the
sequence of the edit operations performed in achiev-
ing the minimum distance alignment to transform
ecand to w using SED-path algorithm we described
above.6

Let cnt(X) be the count ofX operation in the
computed path. Ifcnt(I) = 0, this case is consid-
ered as an approximate root form (with OCR errors).
The following conditions are considered as possible
errors and no further analysis is done for such cases:

cnt(M) = 0 ||
cnt(M) < max(cnt(S), cnt(D), cnt(I)) ||
cnt(M) < cnt(S) + cnt(D) + cnt(I)

Otherwise, we use the insertion operations at the
beginning and at the end of the path to identify the
type of the affix (prefix, suffix, or circumfix) and the
length of the suffix (number of insertion operations).
The identified affix is added to the affix list, and
its approximate countis incremented. All the other
cases are dismissed as errors. In its current state, the
infix affixes are not handled in approximate match
case.

The following sample shows how approximate
match works with noisy data. In the Cebuano input

5At this initial version, MIND does not make any distinc-
tions between noise in the data such as OCR errors, and mor-
phophonemic rules. Making this distinction will be one of our
future focuses

6Computing k-difference, and the edit path can be done in
parallel to reduce the computing time.

63

pair (ambihas) — (ambsh́asa pagbutang ang duha
ka silya arun makakit́a ang maglingkud sa luyu), the
first word in the example of usage has an OCR er-
ror, i is misrecognized ass. Moreover, there is a
vowel change in the word caused by the affix. An
exact match of the headword cannot be found in the
example of usage. The k-DIFF algorithm returns
ambsh́asaas the candidate example of usage word,
with a distance 2. Then, the SED-path algorithm
returns the pathM M M S M S M I, and algorithm
successfully concludes thata is the suffix as shown
below in illustration (dotted lines represent substitu-
tions).

6 Experiments

6.1 Dictionaries

The BRIDGE system (Ma et al., 2003) processes
scanned and OCRed dictionaries to reproduce elec-
tronic versions and extract information from dictio-
nary entries. We used the BRIDGE system to pro-
cess two bilingual dictionaries, a Cebuano-English
(CebEng) dictionary (Wolff, 1972) and a Turkish-
English (TurEng) dictionary (Avery et al., 1974),
and extract a list of headword-example of usage
pairs for our experiments. The extracted data is not
perfect: it has mistagged information, i.e. it may in-
clude some information that is not the headword or
example of usage, or some useful information may
be missing, and OCR errors may occur. OCR errors
can be in different forms: Two words can be merged
into one, one word can be split into two, or charac-
ters can be misrecognized.

Dictionary # of # of # of
Dictionary pages hw-ex pairs words
Cebuano-all 1163 27129 206149
Turkish-all 1000 27487 111334
Cebuano-20 20 562 4134
Turkish-20 20 503 1849

Table 1: Details of Data from Two Dictionaries Used
in Experiments

Along with the headword–example of usage pairs
from more than 1000 pages, we randomly selected
20 pages for detailed analysis. Table 1 provides de-

tails of the data from two dictionaries we use in our
experiments.

Both Cebuano and Turkish are morphologically
rich. Cebuano allows prefixes, suffixes, circumfixes,
infixes, while Turkish is an agglunative language.
The two dictionaries have different characteristics.
The example of usages in CebEng are complete sen-
tences given in italic font while TurEng has phrases,
idioms, or complete sentences as examples of usages
indicated in bold font.

6.2 Protocol

We ran our algorithm first on all of the data and then
on a randomly selected 20 pages from each dictio-
nary. We manually extracted the affixes from each
of the 20 pages. We then evaluated the MIND re-
sults with this ground truth. During the evaluation,
even if the number of an affix in the ground truth and
result are same, if they were extracted from different
words, this is counted as an error. We also examined
the cause of each error in this data.

We then compare our results from the whole
TurEng data with the state-of-the-art Linguistica
(Goldsmith, 2001) algorithm. Finally, we used the
suffixes extracted by MIND and Linguistica to seg-
ment words in a Turkish treebank.

6.3 Analysis

Dict. Affix Sample words
mu- galing/mugaling hiḱuh́ıkú/muhik̀uh́ıkù

C nag- kisdum/nagkisdum kugkugl/nagkugkug
E mi- iktin/miiktin k ı́rus/miḱarus
B i- kunsuylu/ikunsuylu paźıha/ipaŕıha
U na- ṕıl/naṕıl ulatl/náulat
A gi- buga/gibuga d́alit/gidádit
N gi-an labuk/gilabukańıkug/giikúgan
O -un gihay/gihayun ǵayung/gaýungun

-a pisar/pisara sirnpul/simpúla
-ı ad/adı ilaç/ilaeı

T -i heves/hevesi ilim/ilmi
U -a saz/saza sonsuz/sonsuza
R -e deniz/denize zmim/mime
K -ına etraf/etrafına kolay/kolayına
I -ya hasta/hastaya orta/ortaya
S -ü üst/̈usẗu zyüz/yüzü
H -ini bel/belini zevk/zevkini

-ine derin/derinine iç/içine

Table 3: Sample Affixes Extracted from Two Dictio-
naries

Table 2 shows result of MIND runs. The total
number of affixes and number of different types of

64

Cebuano Turkish
Whole dict. 20 pages Whole dict. 20 pages

Total 26106 542 27314 502
Root form 5727 180 18416 345
Prefix (diff. type) 10300 (180) 197 (26) 6 (6) 0 (0)
Suffix (diff. type) 1315 (253) 16 (8) 6983 (447) 128 (59)
Infix (diff. type) 25 (11) 0 (0) 1 (1) 0 (0)
Circumfix (diff. type) 717 (221) 18 (11) 9 (9) 0 (0)
App. Root form 1023 14 103 1
App. Prefix (diff. type) 1697 (116) 23 (9) 8 (8) 1 (1)
App. Suffix (diff. type) 2930 (199) 63 (19) 168 (100) 5 (5)
App. Circumfix (diff. type) 1060 (207) 14 (5) 20 (20) 0 (0)
Couldn’t decide 1159 13 765 15

Table 2: Total Number and Different Types of Affixes Extracted from Two Dictionaries Using MIND

affixes (in parenthesis) are presented for two dictio-
naries, CebEng and TurEng, and two data sets, the
whole dictionary and 20 randomly selected pages.
The top part of the table gives the exact match results
and the bottom part shows the approximate match
results. For Cebuano, approximate match part of the
framework finds many more affixes than it does for
Turkish. This is due to the different structures in
the two dictionaries. We should note that although
MIND incorrectly finds a few prefixes, circumfixes,
and infixes for Turkish, these all have count one.
Table 3 contains some of the most frequent ex-
tracted affixes along with their exact and approxi-
mate counts, and samples of headword–example of
usage word pairs they were extracted from. Each
word is segmented into one root and one suffix,
therefore when a word takes multiple affixes, they
are all treated as a compound affix.

Dictionary GT cnt. Res.cnt. Misses Additions
Cebuano 311 314 17 14
Turkish 155 142 8 10

Table 4: Detailed Analysis of Affixes from 20 Pages

Table 4 shows the number of affixes in ground
truth and MIND results along with number of
missed and incorrectly added affixes on 20 of these
pages of data. MIND only missed 5% of the affixes
in the ground truth in both data sets.

We also examined the causes of each miss and ad-
dition. Table 5 presents the causes of errors in the
output of MIND with an example for each cause. We
should emphasize that a valid affix such as Turkish
suffix -mı is counted as an error since the suffix-
ını should be extracted for that particular headword–
example of usage pair. An OCR error such as the

misrecognition ofa asd, causes both the miss of the
prefix mag-and incorrect addition ofmdg- for Ce-
buano. There are some cases that cannot be correctly
identified by the framework. These usually involve
dropping the last vowel because of morphophone-
mic rules. For the Cebuano dictionary, merge and
split caused several errors, while Turkish data does
not have any such errors. Main reason is the differ-
ent structure and format of the original dictionaries.
In the Cebuano dictionary, an italic font which may
result in merge and split is used to indicate example
of usages.

For the Cebuano data, five invalid suffixes, three
invalid prefixes, and two invalid circumfixes are
found, while one valid suffix and one valid circumfix
are missed. For the Turkish data, three invalid suf-
fixes, one invalid prefix, and two valid suffixes are
found while two valid suffix are missed. When we
look at the invalid affixes in the data, most of them
(six of the Cebuano, and all of the Turkish ones)
have count one, and maximum count in an invalid
affix is five. Therefore, if we use a low threshold,
we can eliminate many of the invalid affixes.

6.4 Comparison to Linguistica

We compared our system withLinguistica, a pub-
licly available unsupervised corpus-based morphol-
ogy learner (Goldsmith, 2001). Linguistica induces
paradigms in a noise-free corpus, while MIND
makes use of string searching algorithms and allows
one to deal with noise at the cost of correctness.
MIND emphasize segmenting a word into its root
and affixes. We trained Linguistica using two dif-
ferent data sets from TurEng7: 1) Whole headword-

7We would like to do the same comparison in Cebuano. For
the time being, we could not find a treebank and native speakers

65

Reason Cebuano Turkish
OCR 8 M→lbi 11 ını→mı or ım
Algorithm 8 (uluy, giuylan)→ 7 (alın, alnında)→

not gi-an, -lan is found not -ında, -da is found
Merge 9 ı́mung giĺaug→ı́munggiĺaug 0 -
Split 1 nag-ḱugus→nag- ḱugus 0 -
Other 5 apr.→april 0 -

Headword is an abbreviation

Table 5: The Distribution of the Causes of Errors in 20 Pages with Samples

example of usage sentence pairs, and 2) Headword-
candidate example words that our algorithm returns.
In the first case (Ling-all), Linguistica uses more
data than our algorithm, so to avoid any biases re-
sulting from this, we also trained Linguistica using
the headword and candidate example word (Ling-
cand). We only used the suffixes, since Turkish is a
suffix-based language. The evaluation is done by a
native speaker.

Figure 1 presents the analysis of the suffix lists
produced by Linguistica using two sets of training
data, and MIND. The suffix lists are composed of
suffixes the systems return that have counts more
than a threshold. The results are presented for six
threshold values for all of the data. We use thresh-
olding to decrease the number of invalid affixes
caused primarily by the noise in the data. For the
MIND results, the suffixes over threshold are the
ones that have positive exact counts and total counts
(sum of exact and approximate counts) more than
the threshold. Although Linguistica is not designed
for thresholding, the data we use is noisy, and we
explored if suffixes with a corpus count more than
a threshold will eliminate invalid suffixes. The ta-
ble on the left gives the total number of suffixes,
the percentage of suffixes that have a count more
than a threshold value, the percentage of invalid suf-
fixes, and percentage of missed suffixes that are dis-
carded by thresholding for the whole TurEng dictio-
nary. The number of affixes MIND finds are much
more than that of Linguistica. Furthermore, number
of invalid affixes are lower. On the other hand, the
number of missed affixes is also higher for MIND
since, for this particular data, there are many affixes
with counts less than 5. 41% of the affixes have an
exact count of 1. The main reason for this is the
agglunative nature of Turkish language. The effect
of thresholding can also be examined in the graph

for Cebuano.

on the right in Figure1 which gives the percentage
of valid suffixes as a function of threshold values.
MIND takes advantage of thresholding, and percent-
age of valid suffixes rapidly decrease for threshold
value 1.

System Th. Total Over Th. Invalid Missed
Ling-cand 0 6 100.00 0.00 0.00
Ling-all 0 4 100.00 0.00 0.00
MIND 0 60 96.67 1.72 0.00
Ling-cand 1 6 66.67 0.00 33.33
Ling-all 1 4 100.00 0.00 0.00
MIND 1 60 41.67 0.00 53.33
Ling-cand 2 6 50.00 0.00 50.00
Ling-all 2 4 75.00 0.00 25.00
MIND 2 60 18.33 0.00 76.67

Table 6: Total Number and Percentage of Over the
Threshold, Invalid, and Missed Suffixes Found by
Linguistica and MIND for Different Threshold Val-
ues for 20 pages of Turkish Data

Table 6 presents the same results for 20 pages
from TurEng for three threshold values. MIND per-
forms well even with very small data and finds many
valid affixes. Linguistica on the other hand finds
very few.

6.5 Stemming

To test the utility of the results, we perform a sim-
ple word segmentation, with the aim of stripping the
inflectional suffixes, and find the bare form of the
word. A word segmenter takes a list of suffixes, and
their counts from the morphology induction system
(Linguistica or MIND), a headword list as a dictio-
nary, a threshold value, and the words from a tree-
bank. For each word in the treebank, there is a root
form (rf), and a usage form (uf). The suffixes with
a count more than the threshold are indexed accord-
ing to their last letters. For each word in the tree-
bank, we first check ifuf is already in the dictio-
nary, i.e. in the headword list. If we cannot find it

66

System Th. Total % Over Th. % Invalid % Missed
Ling-cand 0 116 100.00 18.10 0.00
Ling-all 0 274 100.00 34.67 0.00
MIND 0 499 89.58 13.20 3.61
Ling-cand 1 116 98.28 17.54 0.86
Ling-all 1 274 94.89 32.69 1.46
MIND 1 499 50.50 4.37 33.07
Ling-cand 2 116 92.24 16.82 5.17
Ling-all 2 274 87.96 31.12 4.74
MIND 2 499 38.48 4.17 44.49
Ling-cand 3 116 91.38 16.98 6.03
Ling-all 3 274 85.40 31.20 6.57
MIND 3 499 28.86 2.78 53.31
Ling-cand 4 116 81.03 12.77 11.21
Ling-all 4 274 81.39 30.94 9.12
MIND 4 499 25.65 3.13 56.51
Ling-cand 5 116 80.17 12.90 12.07
Ling-all 5 274 79.56 31.19 10.58
MIND 5 499 23.25 2.59 58.72

Figure 1: Total Number and Percentage of Over the Threshold, Invalid, Missed and Valid Suffixes Found by
Linguistica and MIND for Different Threshold Values

in the dictionary, we repeatedly attempt to find the
longest suffix that matches the end ofuf , and check
the dictionary again. The process stops when a dic-
tionary word is found or when no matching suffixes
can be found at the end of the word. If the word the
segmenter returns is same asrf in the treebank, we
increase the correct count. Otherwise, this case is
counted as an error.

In our stemming experiments we used METU-
Sabanci Turkish Treebank8, a morphologically and
syntactically annotated treebank corpus of 7262
grammatical sentences (Atalay et al., 2003; Oflazer
et al., 2003). We skipped the punctuation and mul-
tiple parses,9 and ran our word segmentation on
14950 unique words. We also used the headword
list extracted from TurEng as the dictionary. Note
that, the headword list is not error-free, it has OCR
errors. Therefore even if the word segmenter returns
the correct root form, it may not be in the dictionary
and the word may be stripped further.

The percentage of correctly segmented words are
presented in Figure 2. We show results for six
threshold values. Suffixes with counts more than the
threshold are used in each case. Again for MIND
results, we require that the exact match counts are
more than zero, and the total of exact match and ap-

8http://www.ii.metu.edu.tr/ corpus/treebank.html
9Multiple parses are the cases where a suffix is attached not

to a single word, but to a group of words. The suffix-ti in takip
etti is attached totakip et.

Figure 2: Percentage of Correctly Segmented Words
by Different Systems for Different Threshold Values

proximate match counts are more than the thresh-
old. For Linguistica, suffixes with a corpus count
more than the threshold are used. For each thresh-
old value, MIND did much better than Ling-cand.
MIND outperformed Ling-all for thresholds 0 and
1. For the other values, the difference is small. We
should note that Ling-all uses much more training
data than MIND (503 vs. 1849 example of words),
and even with this difference the performance of
MIND is close to Ling-all. We believe the reason
for the close performance of MIND and Ling-all in
segmentation despite the huge difference in the num-
ber of correct affixes they found due to the fact that
affixes Ling-all finds are shorter, and more frequent.
In its current state, MIND does not segment com-
pound affixes, and find several long and less fre-
quent affixes. These long affixes can be composed

67

by shorter affixes Linguistica finds.

7 Conclusion and Future Work

We presented a framework for morphology induc-
tion from noisy data, that is especially useful for lan-
guages which have limited electronic data. We use
the information in dictionaries, specifically head-
word and the corresponding example of usage sen-
tences, to acquire affix lists of the language. We pre-
sented results on two data sets and demonstrated that
our framework successfully finds the prefixes, suf-
fixes, circumfixes, and infixes. We also used the ac-
quired suffix list from one data set in a simple word
segmentation process, and outperformed a state-of-
the-art morphology learner using the same amount
of training data.

At this point we are only using headword and
corresponding example of usage pairs. Dictionaries
provide much more information. We plan to make
use of other information, such as POS, to categorize
the acquired affixes. We will also investigate how
using all the words in example of usages and split-
ting the compound affixes in agglunative languages
can help us to increase the confidence of correct af-
fixes, and decrease the number of invalid affixes.
Finally we will work on identifying morphophone-
mic rules (especially stem-interval vowel shifts and
point-of-affixation stem changes).

Acknowledgments

The partial support of this research under contract
MDA-9040-2C-0406 is gratefully acknowledged.

References
Nart B. Atalay, Kemal Oflazer, and Bilge Say. 2003. The an-

notation process in the Turkish Treebank. InProceedings of
the EACL Workshop on Linguistically Interpreted Corpora–
LINC, Budapest, Hungary, April.

Robert Avery, Serap Bezmez, Anna G. Edmonds, and Mehlika
Yaylalı. 1974. RedhousėIngilizce-T̈urkçe S̈ozlük. Red-
house Yayınevi.

Marco Baroni, Johannes Matiasek, and Harald Trost. 2002.
Unsupervised discovery of morphologically related words
based on orthographic and semantic similarity. InProceed-
ings of the ACL-02 Workshop on Morphological and Phono-
logical Learning, pages 48–57.

Michael R. Brent, Sreerama K. Murthy, and Andrew Lundberg.
1995. Discovering morphemic suffixes: A case study in
minimum description length induction. InProceedings of
the 15th Annual Conference of the Cognitive Science Soci-
ety, pages 28–36, Hillsdale, NJ.

Michael R. Brent. 1993. Minimal generative models: A mid-
dle ground between neurons and triggers. InProceedings of
the 5th International Workshop on Artificial Intelligence and
Statistics, Ft. Laudersdale, FL.

Mathias Creutz and Krista Lagus. 2002. Unsupervised discov-
ery of morphemes. InProceedings of the ACL-02 Workshop
on Morphological and Phonological Learning.

H. Dejean. 1998. Morphemes as necessary concepts for struc-
tures: Discovery from untagged corpora. InWorkshop on
Paradigms and Grounding in Natural Language Learning,
pages 295–299.

John Goldsmith, Yu Hu, Irina Matveeva, and Colin Sprague.
2005. A heuristic for morpheme discovery based on string
edit distance. Technical Report TR-2205-04, Department of
Computer Science, University of Chicago.

John Goldsmith. 2001. Unsupervised learning of the mor-
phology of a natural language.Computational Linguistics,
27(2):153–198.

Zellig Harris. 1955. From phoneme to morpheme.Language,
31:190–222.

Huanfeng Ma, Burcu Karagol-Ayan, David Doermann, Dou-
glas Oard, and Jianqiang Wang. 2003. Parsing and tag-
ging of bilingual dictionaries.Traitement Automatique Des
Langues, pages 125–150.

Christian Monson. 2004. A framework for unsupervised nat-
ural language morphology induction. InProceedings of the
Student Research Workshop: ACL 2004, pages 67–72.

Sylvain Neuvel and Sean A. Fulop. 2002. Unsupervised learn-
ing of morphology without morphemes. InProceedings of
the ACL-02 Workshop on Morphological and Phonological
Learning, pages 31–40.

Kemal Oflazer, Bilge Say, Dilek Hakkani-Tür, and G̈okhan T̈ur.
2003. Building a Turkish Treebank. In Anne Abeillé, edi-
tor, Building and Using Parsed Corpora. Kluwer Academic
Publishers.

Patrick Schone and Daniel Jurafsky. 2001. Knowledge-free
induction of inflectional morphologies. InSecond Meeting
of the NAACL, pages 183–191.

Ilya Segalovich. 2003. A fast morphological algorithm with
unknown word guessing induced by a dictionary for a web
search engine. InProceedings of MLMTA, Las Vegas, NV.

P.H. Sellers. 1980. The theory and computation of evolution-
ary distances: pattern recognition.Journal of Algorithms,
1:359–373.

Matthew G. Snover and Michael R. Brent. 2001. A bayesian
model for morpheme and paradigm identification. InPro-
ceedings of the 39th Annual Meeting of the ACL, pages 482–
490.

Robert A. Wagner and Michael J. Fischer. 1974. The string-
to-string correction problem.Journal of the Association for
Computing Machinery, 21(1):168–173.

Richard Wicentowski. 2004. Multilingual noise-robust super-
vised morphological analysis using the wordframe model.
In Proceedings of the 7th Meeting of the ACL Special In-
terest Group in Computational Phonology, pages 70–77,
Barcelona, Spain.

John U. Wolff. 1972.A Dictionary of Cebuano Visaya. South-
east Asia Program, Cornell University, Ithaca, New York.

68

Proceedings of the Eighth Meeting of the ACL Special Interest Group on Computational Phonology at HLT-NAACL 2006, pages 69–78,
New York City, USA, June 2006.c©2006 Association for Computational Linguistics

Learning Probabilistic Paradigms for Morphology
in a Latent Class Model

 Erwin Chan
 Dept. of Computer and Information Science

 University of Pennsylvania

 Philadelphia, PA 19104
 echan3@seas.upenn.edu

Abstract

This paper introduces the probabilistic
paradigm, a probabilistic, declarative
model of morphological structure. We de-
scribe an algorithm that recursively ap-
plies Latent Dirichlet Allocation with an
orthogonality constraint to discover mor-
phological paradigms as the latent classes
within a suffix-stem matrix. We apply the
algorithm to data preprocessed in several
different ways, and show that when suf-
fixes are distinguished for part of speech
and allomorphs or gender/conjugational
variants are merged, the model is able to
correctly learn morphological paradigms
for English and Spanish. We compare our
system with Linguistica (Goldsmith
2001), and discuss the advantages of the
probabilistic paradigm over Linguistica’s
signature representation.

1 Introduction

In recent years researchers have addressed the task
of unsupervised learning of declarative representa-
tions of morphological structure. These models
include the signature of (Goldsmith 2001), the con-
flation set of (Schone and Jurafsky 2001), the
paradigm of (Brent et. al. 2002), and the inflec-
tional class of (Monson 2004). While these repre-
sentations group morphologically related words in
systematic ways, they are rather different from the
paradigm, the representation of morphology in tra-
ditional grammars. A paradigm lists the prototypi-
cal morphological properties of lexemes belonging

to a particular part of speech (POS) category; for
example, a paradigm for regular English verbs
would include the suffixes {$,ed$,ing$,s$}1.
Hand-built computational implementations of
paradigms as inheritance hierarchies include
DATR (Evans and Gazdar 1996) and Functional
Morphology (Forsberg and Ranta 2004). The two
principal ways in which learned models have dif-
fered from paradigms are that: 1) they do not have
POS types, and 2) they are not abstractions that
generalize beyond the words of the input corpus.

There are important reasons for learning a
POS-associated, paradigmatic representation of
morphology. Currently, the dominant technology
for morphological analysis involves mapping be-
tween inflected and base of forms of words with
finite-state transducers (FSTs), a procedural model
of morphological relations. Rewrite rules are hand-
crafted and compiled into FSTs, and it would be
beneficial if these rules could be learned automati-
cally. One line of research in computational mor-
phology has been directed towards learning finite-
state mapping rules from some sort of paradig-
matic structure, where all morphological forms and
POS types are presumed known for a set of lex-
emes (Clark 2001, Kazakov and Manandhar 2001,
Oflazer et. al. 2001, Zajac 2001, Albright 2002).
This can be accomplished by first deciding on a
base form, then learning rules to convert other
forms of the paradigm into this base form. If one
could develop an unsupervised algorithm for learn-
ing paradigms, it could serve as the input to rule-
learning procedures, effectively leading to an en-
tirely unsupervised system for learning FSTs from
raw data. This is our long-term goal.

1 $ is the null suffix.

69

An alternative approach is to skip the paradigm
formulation step and construct a procedural model
directly from raw data. (Yarowsky and Wicen-
towski 2000) bootstrap inflected and base forms
directly from raw data and learn mappings between
them. Their results are quite successful, but the
morphological information they learn is not struc-
tured as clearly as a paradigmatic model. (Freitag
2005) constructs a morphological automaton,
where nodes are clustered word types and arcs are
suffixation rules.

This paper addresses the problem of finding an
organization of stems and suffixes as probabilistic
paradigms (section 2), a model of morphology
closer to linguistic notion of paradigm than previ-
ously proposed models. We encode the morpho-
logical structure of a language in a matrix
containing frequencies of words, and formulate the
problem of learning paradigms as one of finding
latent classes within the matrix. We present a re-
cursive LDA, a learning algorithm based on Latent
Dirichlet Allocation (section 3), and show that un-
der certain conditions (section 5), it can correctly
learn morphological paradigms for English and
Spanish. In section 6, we compare the probabilistic
paradigm to the signature model of (Goldsmith
2001). In section 7, we sketch some ideas for how
to make our system more unsupervised and more
linguistically adequate.

We assume a model of morphology where
each word is the concatenation of a stem and a sin-
gle suffix representing all of the word's morpho-
logical and POS properties. Although this is a very
simplistic view of morphology, there are many
hitherto unresolved computational issues for learn-
ing even this basic model, and we consider it nec-
essary to address these issues before developing
more sophisticated models. For a stem/suffix rep-
resentation, the task of learning a paradigm from
raw data involves proposing suffixes and stems,
proposing segmentations, and systematically orga-
nizing stems and suffixes into classes. One diffi-
culty is suffix allomorphy: a suffix has multiple
forms depending on its phonological environment
(e.g. s$/es$). Another problem is suffix cate-
gorial ambiguity (s$ is ambiguous for noun and
verb uses). Finally, lexemes appear in only a subset
of their potential forms, due to sparse data. An un-
supervised learner needs to be able to handle all of
these difficulties in order to discover abstract para-
digmatic classes.

In this paper, we are primarily interested in
how the co-occurrence of stems and suffixes in a
corpus leads them to be organized into paradigms.
We use data preprocessed with correct segmenta-
tions of words into stems and suffixes, in order to
focus on the issue of determining what additional
knowledge is needed. We demonstrate that para-
digms for English and Spanish can be successfully
learned when tokens have been assigned POS tags
and allomorphs or gender/conjugational variants
are given a common representation. Our learning
algorithm is not supervised since the target concept
of gold standard "input" POS category of stems is
not known, but rather it is an unsupervised algo-
rithm that relies on preprocessed data for optimal
performance.

2 The Probabilistic Paradigm

We introduce the probabilistic paradigm, a prob-
abilistic, declarative model of regular morphology.
The probabilistic paradigm model consists of three
matrices: the data matrix D, the morphological
probabilities matrix M, and the lexical probabilities
matrix L. Let m be the number of stems, n the
number of stems, and p the number of paradigms.
The D matrix encodes the joint distribution of lexi-
cal and morphological information in a corpus. It is
of size m x n, and each cell contains the fre-
quency of the word formed by concatenating the
appropriate stem and suffix. The M matrix is of
size m x p, and each column contains the condi-
tional probabilities of each suffix given a para-
digm. The L matrix is of size p x n, and contains
the conditional probabilities of each paradigm
given a stem. Each suffix should belong to exactly
one paradigm, and the suffixes of a particular
paradigm should be conditionally independent.
Each column of the M matrix defines a canonical
paradigm, a set of suffixes that attach to stems as-
sociated with that paradigm. A lexical paradigm is
the full set of word forms for a particular stem, and
is an instantiation of the canonical paradigm for a
particular stem.

The probabilistic paradigm is not well-
developed as the usual notion of "paradigm" in
linguistics. First, the system employs no labels
such as "noun", "plural", "past", etc. Second, prob-
abilistic paradigms have only a top-level categori-
zation; induced “verb” paradigms, for example, are
not substructured into different tenses or conjuga-

70

tions. Third, we do not distinguish between inflec-
tional and derivational morphology; traditional
grammars place derived forms in separate lexical
paradigms. Fourth, we do not handle syncretism,
where one suffix belongs in multiple slots of the
paradigm. Fifth, we do not yet not handle irregular
and sub-regular forms. Despite these drawbacks,
our paradigms have an important advantage over
traditional paradigms, in being probabilistic and
therefore able to model language usage.

3 Learning the probabilistic paradigm in a
latent class model

We learn the parameters of the probabilistic para-
digm model by applying a dimensionality reduc-
tion algorithm to the D matrix, in order to produce
the M and L matrices. This reduces the size of the
representation from m*n to m*p + p*n. The main
idea is to discover the latent classes (paradigms)
which represent the underlying structure of the in-
put matrix. This handles two important problems:
1) that words occur in a subset of their possible
morphological forms in a corpus, and 2) that the
words formed from a particular stem can belong to
multiple POS categories. The second problem can
be quantified as follows: in our English data,
14.3% of types occur with multiple open-class base
POS categories, accounting for 56.5% of tokens;
for Spanish, 13.7% of types, 37.8% of tokens.

3.1 LDA model for morphology

The dimensionality reduction algorithm that we
employ is Latent Dirichlet Allocation (LDA) (Blei
et. al. 2003). LDA is a generative probabilistic
model for discrete data. For the application of topic
discovery within a corpus of documents, a docu-
ment consists of a mixture of underlying topics,
and each topic consists of a probability distribution
over the vocabulary. The topic proportions are
drawn from a Dirichlet distribution, and the words
are drawn from a multinomial over the topic. Prob-
ability distributions of documents and words are
conditionally independent of topics. LDA produces
two non-negative parameter matrices, Gamma and
Beta: Gamma is the matrix of Dirichlet posteriors,
encoding the distribution of documents and topics;
Beta encodes the distribution of words and topics.

The mapping of the data structures of LDA to
the probabilistic paradigm is as follows. The

document-word matrix is analogous to the suffix-
stem D matrix. For morphology, a "document" is a
multiset of tokens in a corpus, such that each of
those tokens decomposes into a stem and a speci-
fied suffix. Different underlying canonical para-
digms ("topics") can be associated with suffixes,
and each canonical paradigm allows a set of stems
("words"). For a suffix-stem ("document-word")
matrix of size m x n and k latent classes, the
Gamma matrix is of size m x k, and the Beta ma-
trix is of size k x n. The Gamma matrix, normal-
ized by column, is the M matrix, and the Beta
matrix, normalized by row, is the L matrix.

3.2 Recursive LDA

One standard issue in using these types of algo-
rithms is selecting the number of classes. To deal
with this, we have formulated a recursive wrapper
algorithm for LDA that accomplishes a divisive
clustering of suffixes. LDA is run at each stage to
find the local Gamma and Beta matrices. To split
the suffixes into two classes, we assign each suffix
to the class for which its probability is greater, by
examining the Gamma matrix. The input matrix is
then divided into two smaller matrices based on
this split, and the algorithm continues with each
submatrix. The result is a binary tree describing the
suffix splits at each node.

To construct a classification of suffixes into
paradigms, it is necessary to make a cut in the tree.
Assuming that suffix splits are optimal, we start at
the root of the tree and go down until reaching a
node where there is sufficient uncertainty about
which class a suffix should belong to. A good split
of suffixes is one where the vectors of probabilities
of suffixes given a class are orthogonal; we can
find such a split by minimizing the cosine of the
two columns of the node's Gamma matrix (we call
this the "Gamma cosine"). Thus, a node at which
suffixes should not be split has a high Gamma co-
sine, and when encountering such a node, a cut
should be made. The suffixes below this node are
grouped together as a paradigm; tree structure be-
low the cut node is ignored. In our experiments we
have selected thresholds for the Gamma cosine, but
we do not know if there is a single value that
would be successful cross-linguistically. After the
tree has been cut, the Gamma and Beta matrices
for ancestor nodes are normalized and combined to
form the M and L matrices for the language.

71

Another issue is dealing with suboptimal solu-
tions. Random initializations of parameters lead
the EM training procedure to local maxima in the
solution space, and as a result LDA produces dif-
fering suffix splits across different runs. To get
around this, we simply run LDA multiple times (25
in our experiments) and choose the solution that
minimizes the Gamma cosine.

We also experimented with minimizing the
Beta cosine. The Beta matrix represents stem am-
biguity with respect to a suffix split. Since there
are inherently ambiguous stems, one should not
expect the Beta cosine value to be extremely low.
Minimizing the Beta cosine sometimes made the
Beta matrix "too disambiguated" and forced the
representation of ambiguity into Gamma matrix,
thereby inflating the Gamma cosine and causing
incorrect classifications of suffixes.

4 Data

We conducted experiments on English and
Spanish. For English, we chose the Penn Treebank
(Marcus et. al. 1993), which is already POS-
tagged; for Spanish, we chose an equivalent-sized
portion of newswire (Graff and Galegos 1999),
POS-tagged by the FreeLing morphological ana-
lyzer (Carreras et. al. 2004). We restricted our data
to nouns, verbs, adjectives, and adverbs. Words
that did not follow canonical suffixation patterns
for their POS category (irregulars, foreign words,
incorrectly tagged words, etc.) were excluded. We
segmented each word into stem and suffix for a
specified set of suffixes. Rare suffixes were ex-
cluded, such as many English adjective-forming
suffixes and Spanish 2nd person plural forms.
Stems were not lemmatized, with the result that
there can be multiple stem variants of a particular
lemma, as with the words stemm.ing$ and
stem.s$. Tokens were not disambiguated for
word sense. Stems that occurred with only one suf-
fix were excluded.

We use several different representations of suf-
fixes in constructing the data matrices: 1) merged,
labeled suffixes; 2) merged, unlabeled suffixes; 3)
unmerged, unlabeled suffixes. For unmerged suf-
fixes, allomorphs2 are represented in their original
spelling. A merged suffix is a common representa-

2 We abuse the standard usage of the term "allomorph"
to include gender and conjugational variants.

tion for the multiple surface manifestations of an
underlyingly identical suffix. Suffixes also can be
unlabeled, or labeled with base POS tags. For an
example, a verb created would be segmented as
create.d$ with an unmerged, labeled suffix, or
create.d/ed$V with a merged, labeled suffix.
Labels disambiguate otherwise categorically am-
biguous suffixes.

The gold standard for each language lists the
suffixes that belong to a paradigm for stems of a
particular POS category. We call this the "input"
POS category, which is not indicated in annota-
tions and is the concept to be predicted. This
should be differentiated from the "output" POS
labels on the suffixes: for example, ly$R attaches
to stems of the input category “adjective”. Each
suffix is an atomic entity, so the system actually
has no concept of output POS categories. All that
we require is that distinct suffixes are given dis-
tinct symbols.

In the English gold standard (Table 1), each
slashed pair of suffixes denotes one merged form;
the unmerged forms are the individual suffixes.
ally$R is the suffix ly$R preceded by an epen-
thetic vowel, as in the word basically. In the
Spanish gold standard (Table 2), each slashed
group of suffixes corresponds to one merged form.
For adjectives and nouns, a$ and o$ are feminine
and masculine singular forms, and as$ and os$
are the corresponding plurals. $ and s$ do not
have gender; es$ is a plural allomorph.
mente/amente$R is a derivational suffix. The
first two groups of verbal suffixes are past partici-
ples, agreeing in number and gender. For the other
verb forms, when three are listed they correspond
to forms for the 1st, 2nd, and 3rd conjugations.
When there are two, the first is for the 1st conjuga-
tion, and the other is identical for the 2nd and 3rd.
o$V has the same form across all three conjuga-
tions.

Adjectives: $A, d/ed$A,

 r/er$A, ally/ly$R

Nouns: $N, 's$N, es/s$N

Verbs: $V, d/ed$V, es/s$V,

 ingV, ingA, ing$N, r/er$N

Table 1. Gold standard for English

72

Adjectives: a/o/$A, as/os/es/s$A,
 mente/amente$R
Nouns: a/o/$N, as/os/es/s$N
Verbs: ada/ida/ado/ido$V,
 adas/idas/ados/idos$V, ando/iendo$V,
 ar/er/irV, oV, as/es$V, a/e$V,
 amos/emos/imos$V, an/en$V, aba/ía$V,
 ábamos/íamos$V, aban/ían$V,
 aré/eré/iré$V, ará/erá/irá$V,
 aremos/eremos/iremos$V, arán/erán/irán$V,
 é/í$V, ó/ió$V, aron/ieron$V,
 aría/ería/iría$V, arían/erían/irían$V

Table 2. Gold standard for Spanish

5 Experiments

5.1 Merged, labeled suffixes

Figure 1 shows the recursion tree for English data
preprocessed with merged, labeled suffixes. To
produce a classification of suffixes into paradigms,
we start at the root and go down until reaching
nodes with a Gamma cosine greater than or equal
to the threshold. The cut for a threshold of .0009
produces three paradigms exactly matching the
gold standard for verbs, adjectives, and nouns, re-
spectively. Table 3 shows the complete M matrix,
which contains suffix probabilities for each para-
digm. Table 4 shows a portion of the L matrix,
which contains the probabilities of stems belonging
to paradigms. We list the stems that are most am-
biguous with respect to paradigm membership
(note that this table does not specify the words that
belong to each category, only their stems).

 "Verb" "Adj" "Noun"
 $A 0.000 0.829 0.000
 d/ed$A 0.020 0.000 0.000
 r/er$A 0.000 0.033 0.000
 ing$A 0.008 0.000 0.000
 $N 0.000 0.000 0.706
 's$N 0.000 0.000 0.036
 r/er$N 0.037 0.000 0.000
 ing$N 0.065 0.000 0.000
 es/s$N 0.000 0.000 0.257
 ally/ly$R 0.000 0.138 0.000
 $V 0.342 0.000 0.000
 d/ed$V 0.284 0.000 0.000
 ing$V 0.133 0.000 0.000
 es/s$V 0.110 0.000 0.000

Table 3. M matrix for English merged, labeled

suffixes. Columns: p(suff|paradigm).

1: .0004

$A d/ed$A r/er$A ing$A $N 's$N r/er$N ing$N
es/s$N ally/ly$R $V d/ed$V ing$V es/s$V

2: .0000

$A d/ed$A r/er$A ing$A

r/er$N ing$N ally/ly$R

$V d/ed$V ing$V es/s$V

9: .1413

$N 's$N es/s$N

3: .0009

d/ed$A ing$A r/er$N ing$N

$V d/ed$V ing$V es/s$V

10: .9271

$N 's$N

11: .0000

es/s$N

6: .1604

$A r/er$A

ally/ly$R

4: .0061

d/ed$A $V

d/ed$V ed/s$V

5: .0000

ing$A r/er$N

ing$N ing$V

7: .0000

$A

8: .0000

r/er$A

ally/ly$R

“nouns”

“verbs” “adjectives”

Figure 1. Recursion tree for English merged,
labeled suffixes. Each node shows its current
suffix set, and the Gamma cosine value for the
split. Dotted lines indicate paradigms for a
Gamma cosine threshold of .0009.

 "Verb" "Adj" "Noun"
 reset 0.333 0.292 0.375
 blunt 0.445 0.278 0.277
 calm 0.417 0.375 0.209
 total 0.312 0.462 0.226
 clean 0.478 0.319 0.203
 parallel 0.222 0.278 0.500
 alert 0.500 0.222 0.277
 sound 0.483 0.184 0.333
 compound 0.372 0.171 0.457
 pale 0.417 0.417 0.166
 fine 0.254 0.230 0.516
 premier 0.235 0.235 0.529
 brief 0.175 0.524 0.301
 polish 0.250 0.556 0.194
 ski 0.378 0.108 0.513
 fake 0.200 0.600 0.200
 light 0.092 0.427 0.481
 foster 0.226 0.161 0.613
 bottom 0.107 0.304 0.589
repurchase 0.333 0.095 0.571

Table 4. Portion of L matrix for English merged,
labeled suffixes, sorted by lowest entropy.
Columns: p(paradigm|stem).

73

Next, we examine the morphological and lexical
conditional probabilities in the M and L matrices.
It is possible that even though the correct
classification of suffixes into paradigms was
learned, the probabilities may be off. Table 5
shows, however, that the M and L matrices are an
extremely accurate approximation of the true
morphological and lexical probabilities. We have
included statistics for the corresponding Spanish
experiment; the paradigms that were discovered for
Spanish also match the gold standard.

 English Spanish

suffixes 14 26

stems 7315 5115

 CRE M .0002 bits .0003 bits

 CRE L .0006 bits .0020 bits

Table 5. Comparison of M and L matrices with
true morphological and lexical probabilities, by
conditional relative entropy (CRE).

5.2 Unmerged, labeled suffixes

The next experiments tested the effect of allomor-
phy on paradigm discovery, using data where suf-
fixes are labeled but not merged. There are
competing pressures at work in determining how
allomorphs are assigned to paradigms: on the one
hand, the disjointedness of stem sets for allo-
morphs would tend to place them in separate para-
digms; on the other hand, if those stem sets have
other suffixes in common that belong to the same
paradigm, the allomorphs might likewise be placed
in that paradigm. In our experiments, we found that
there was much more variability across runs than
in the merged suffix cases. In English, for exam-
ple, the suffix es$N was sometimes placed in the
"verb" paradigm, although the maximally orthogo-
nal solution placed it in the “noun” paradigm.

Figure 2 shows the recursion tree and para-
digms for Spanish. Gold standard noun and adjec-
tive categories are fragmented into multiple
paradigms in the tree. Although nouns have a
common parent node (2), the nouns of the different
genders are placed in separate paradigms -- this is
because a noun can have only one gender. The
verbs are all in a single paradigm (node 10). Node
11 contains all the first-conjugation verbs, and
node 12 contains all the second/third-conjugation
verbs. The reason that they are not in separate

paradigms is that a$V is shared by stems of all
three conjugations, which leads to a split that is not
quite orthogonal.

The case of adjectives is the most interesting.
Gendered and non-gendered adjective stems are
disjoint, so adjectives appear in two separate sub-
trees (nodes 4, 13). In node 4, the gender-
ambiguous plural es$A is in conflict with the plu-
ral s$A, but it would conflict with two plurals
as$A and os$A if it were placed in node 13.
amente$R appears together in node 14 because it
shares stems with the feminine adjectives.
amente$R also shares stems with verbs, as it is
also the derivational suffix which attaches to ver-
bal past participles in the feminine "a" form. This
is probably why the group of adjectives at node 13
is a sister to the verb nodes. The allomorph
mente$R attaches to non-gendered adjectives, and
is thus in the first adjective group.

1: .0000

2: .0000 9: .0009

3: .0000

4: .0008

$A es$A s$A

mente$R

5: .0264

o$N os$N

7: .0000

$N es$N

s$N

10: .0098

8: .0101

a$N as$N

6: .0000

11: .0107

a$V aba$V aban$V ada$V
adas$V ado$V ados$V
amos$V an$V ando$V ar$V
aremos$V aron$V ará$V
arán$V aré$V aría$V
arían$V as$V o$V
ábamos$V ó$V

12: .0056

e$V emos$V en$V er$V eremos$V
erá$V erán$V eré$V ería$V
erían$V es$V ida$V idas$V ido$V
idos$V iendo$V ieron$V imos$V
ir$V iremos$V irá$V irán$V
iré$V iría$V irían$V ió$V é$V
í$V ía$V íamos$V ían$V

13: .0021

14: .0000

a$A as$A

amente$R

15: .0133

o$A os$A

“verbs”

“adjectives”

“adjectives” “nouns” “nouns” “nouns”

Figure 2. Recursion tree for Spanish, unmerged,
labeled suffixes, with Gamma cosine values. Dot-
ted lines indicate paradigms for a Gamma cosine
threshold of .0021.

5.3 Unmerged, unlabeled suffixes

The case of unmerged, unlabeled suffixes is not as
successful. In the Gamma matrix for the root node
(Table 6), there is no orthogonal division of the
suffixes, as indicated by the high Gamma cosine
value of .1705. Despite this, the algorithm has dis-
covered useful information. There is a subpara-

74

digm of unambiguous suffixes {'s$,ally$}, and
another of {d$,ed$,ing$,r$}. The other suf-
fixes ($,er$,es$,ly$,s$) are ambiguous. The
ambiguity of ly$ seems to be a secondary effect:
since adjectives with the null suffix $ are found to
be ambiguous, ly$ is likewise ambiguous.

 $ [0.9055] 0.0703
 's$ [0.0351] 0.0000
 ally$ [0.0007] 0.0000
 d$ 0.0000 [0.1139]
 ed$ 0.0000 [0.1332]
 er$ [0.0087] 0.0084
 es$ [0.0089] 0.0001
 ing$ 0.0000 [0.1176]
 ly$ 0.0033 [0.0603]
 r$ 0.0000 [0.0198]
 s$ 0.0378 [0.4764]

Table 6. Gamma matrix for root node, English,
unmerged, unlabeled suffixes; the categorization
is shown with brackets. Columns indicate
p(suffix|class).

6 Comparison with Linguistica

In this section, we compare our system with
Linguistica3 (Goldsmith 2001), a freely available
program for unsupervised discovery of morpho-
logical structure. We focus our attention on Lin-
guistica's representation of morphology, rather
than the algorithm used to learn it. Linguistica
takes a list of word types, proposes segmentations
of words into stems and suffixes, and organizes
them into signatures. A signature is a non-
probabilistic data structure that groups together all
stems that share a common set of suffixes. Each
stem belongs to exactly one signature, and the set
of suffixes for each signature is unique. For exam-
ple, running Linguistica on our raw English text,
there is a signature {$,ful$,s$} for the stems
{resource, truth, youth}, indicating the
morphology of the words {resource$,
truth$, youth$, resourceful$, truth-
ful$, youthful$, resources$, truths$,

youths$}. There are no POS types in the system.
Thus, even for a prototypically "noun" signature
such as {$,'s$}, it is quite possible that not all of
the words that the signature represents are actually
nouns. For example, the word structure$ is in

3 http://linguistica.uchigago.edu

this signature, but occurs both as a noun (59 times)
and a verb (2 times) in our corpus.

The signature model can be derived from the
suffix-stem data matrix, by first converting all
positive counts to 1, and then placing in separate
groups all the stems that have the same 0/1 column
pattern. Another way to view the signature is as a
special case of the probabilistic paradigm where all
probabilities are restricted to being 0 or 1, for if
this were so, the only way to fit the data would be
to let there be a canonical paradigm for every dif-
ferent subset of suffixes that some stem appears
with. In theory, it is possible for the number of sig-
natures to be exponential in the number of suffixes;
in practice, Linguistica finds hundreds of signa-
tures for English and Spanish. Although there has
been work on reducing the number of signatures
(Goldwater and Johnson 2004; Hu et. al. 2005,
who report a reduction of up to 30%), the number
of remaining signatures is still two orders of mag-
nitude greater than the number of canonical para-
digms we find. The simplest explanation for this is
that a suffix can be listed many times in the differ-
ent signatures, but only has one entry in the M
matrix of the probabilistic paradigm.

It is important for a natural language system to
handle out-of-vocabulary words. A signature does
not predict the forms of potential but unseen forms
of stems. To some extent Linguistica could ac-
commodate this, as it identifies when one signa-
ture's suffixes are a proper subset of another's, but
it does not handle cases where suffixes are partially
overlapping. One principal advantage of the prob-
abilistic paradigm is that the canonical paradigm
allows the instantiation of a lexical paradigm con-
taining a complete set of predicted word forms for
a stem.

Since Linguistica is a system that starts from
raw text, it may seem that it cannot be directly
compared to our work, which assumes that seg-
mentations and suffixes are already known. How-
ever, it is possible to run Linguistica on our data by
doing further preprocessing. We rewrite the corpus
in such a way that Linguistica can detect correct
morphological and POS information for each to-
ken. Each token is replaced by the concatenation of
its stem, the dummy string 12345, and a single-
character encoding of its merged suffix. For exam-
ple, the token accelerate.d/ed$V is mapped to
accelerate12345D, where D represents d/ed$V.
The omnipresence of the dummy string enables

75

Linguistica to discover all the desired stems and
suffixes, but no more. By mapping the input corpus
in this way, we can examine the type of grammar
that Linguistica would find if it knew the informa-
tion that we have assumed in the previous experi-
ments. Linguistica found 565 signatures from the
"cooked" English data (Figure 3). 50% of word
types are represented by the first 13 signatures.

1. { $N, es/s$N } 1540
 abortion absence accent acceptance
 accident accolade accommodation
2. { $N, 's$N } 1168
 aba abbie abc academy achenbaum aclu
 adams addington addison adobe
3. { $N, 's$N, es/s$N } 224
 accountant acquisition actor
 administration airline airport alliance
5. { $A, ally/ly$R } 319
 abrupt absolute abundant accurate
 actual additional adequate adroit
6. { $A, $N, es/s$N } 173
 abrasive acid activist adhesive adult
 afghan african afrikaner aggregate
7. { $V, d/ed$V, es/s$V } 135
 abate achieve administer afflict
 aggravate alienate amass apologize
9. { $V, d/ed$V, ing$V, es/s$V } 73
 abound absorb adopt applaud assert
 assist attend attract avert avoid
13. { $N, $V, d/ed$V, es/s$N, es/s$V } 44
 advocate amount attribute battle
 bounce cause compromise decline

Figure 3. Selected top signatures for merged, labeled
suffix English data. Each signature shows the suffix set,
number of stems, and several example stems. Ranking is
by log(num stems)* log(num suffixes).

We have formulated two metrics to evaluate the
quality of a collection of signatures or paradigms.
Ideally, all suffixes of a particular signature would
be of the same category, and all the words of a par-
ticular category would be contained within one
signature. POS fragmentation measures to what
extent the words of an input POS category are scat-
tered across different signatures. It is the average
number of bits required to encode the probability
distribution of some category’s words over signa-
tures. Signature impurity measures the extent to
which the suffixes of a signature are of mixed in-
put POS types. It is the expected value of the num-
ber of bits required to encode the probability
distribution of some signature’s suffixes over input
POS categories. Table 7 shows that, according to
these metrics, the signature does not organize mor-

phological information as efficiently as probabilis-
tic paradigms4. Linguistica’s impurity scores are
reasonably low because many of the signatures
with the most stems are categorically homogene-
ous. Fragmentation scores show that the placement
of the majority of words within top signatures off-
sets the scattering of a POS category’s suffixes
over many signatures.

(1) POS fragmentation =

 P)) P of words|S((
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑

Ρ

ph

(2) Signature impurity =

∑∑
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
×

SS

S.numstems)) S|P ((S.numstems ph

 h: entropy
P: input POS categories
S: signatures / paradigms

 Linguistica Recursive LDA

English fragmentation 5.422 bits 0 bits
English impurity .404 bits 0 bits
Spanish fragmentation 6.084 bits 0 bits
Spanish impurity .332 bits 0 bits

Table 7. Comparison of Linguistica and recursive LDA
on merged, labeled suffix data. The maximum possible
impurity for 3 POS categories is log2(3) = 1.585 bits.

Finally, a morphological grammar should reflect

the general, abstract morphological structure of the
language from which a corpus was sampled. To
test for consistency of morphological grammars
across corpora, we split our cooked English data
into two equal parts. Linguistica found 449 total
signatures for the first half and 462 for the second.
296 signatures were common to both (in terms of
the suffixes contained by the signatures). Of the
3506 stems shared by both data sets, 1831 (52.2%)
occurred in the same signature. Of the top 50 sig-
natures for each half-corpus, 45 were in common,
and 1651 of 2403 shared stems (68.7%) occurred
in the same signature. Recursive LDA found the

4 Our scores would not be so good if we had chosen a
poor Gamma cosine threshold value for classification.
However, Linguistica’s scores cannot be decreased, as
there is only one signature model for a fixed set of
stems and suffixes.

76

same canonical paradigms for both data sets
(which matched the gold standard). Differences in
word counts between the corpus halves altered
stem inventories and lexical probabilities, but not
the structure of the canonical paradigms. Our sys-
tem thus displays a robustness to corpus choice
that does not hold for Linguistica.

7 Future Work

This section sketches some ideas for future work to
increase the linguistic adequacy of the system, and
to make it more unsupervised.
1. Bootstrapping: for fully unsupervised learning,
we need to hypothesize stems and suffixes. The
output of recursive LDA indicates which suffixes
may be ambiguous. To bootstrap a disambiguator
for the different categorial uses of these suffixes,
one could use various types of distributional in-
formation, as well as knowledge of partial para-
digmatic structure for non-ambiguous suffixes.
2. Automated detection of cut nodes: currently the
system requires that the user select a Gamma co-
sine threshold for extracting paradigms from the
recursion tree. We would like to automate this
process, perhaps with different heuristics.
3. Suffix merging and formulation of generation
rules: when we decide that two suffixes should be
merged (based on some measures of distributional
similarity and word-internal context), we also need
to formulate phonological (i.e., spelling) rules to
determine which surface form to use when instan-
tiating a form from the canonical paradigm.
4. Non-regular forms: we can take advantage of
empty cells in the data matrix in order to identify
non-regularities such as suppletives, stem variants,
semi-regular subclasses, and suffix allomorphs. If
the expected frequency of a word form (as derived
from the M matrix and frequency of a stem) is rela-
tively high but the value in the D matrix is zero,
this is evidence that a non-regular form may oc-
cupy this cell. Locating irregular words could use
methods similar to those of (Yarowsky and Wicen-
towski 2000), who pair irregular inflections and
their roots from raw text. Stem variants and allo-
morphic suffixes could be detected in a similar
manner, by finding sets of stems/suffixes with mu-
tually exclusive matrix entries.
5. Multiple morphological properties per word: we
currently represent all morphological and POS in-
formation with a single suffix. The learning algo-

rithm and representation could perhaps be
modified to allow for multiple morphological
properties. One could perform recursive LDA on a
particular morphological property, then take each
of the learned paradigms and perform recursive
LDA again, but for a different morphological
property. This method might discover Spanish con-
jugational classes as subclasses within “verbs”.

8 Discussion

This paper has introduced the probabilistic para-
digm model of morphology. It has some important
benefits: it is an abstract, compact representation of
a language's morphology, it accommodates lexical
ambiguity, and it predicts forms of words not seen
in the input data.

We have formulated the problem of learning
probabilistic paradigms as one of discovering la-
tent classes within a suffix-stem count matrix,
through the recursive application of LDA with an
orthogonality constraint. Under optimal data condi-
tions, it can learn the correct paradigms, and also
models morphological and lexical probabilities
extremely accurately. It is robust to corpus choice,
so we can say that it learns a morphological gram-
mar for the language. This is a new application of
matrix factorization algorithms, and an usual one:
whereas in document topic modeling, one tries to
find that a document consists of multiple topics,
we want to find orthogonal decompositions where
each suffix (document) belongs to only one input
POS category (topic).

We have demonstrated that the algorithm can
successfully learn morphological paradigms for
English and Spanish under the conditions that
segmentations are known, categorically ambiguous
suffixes have been distinguished, and allomorphs
have been merged. When suffixes have not been
merged, there is a tendency to place allomorphic
variants in different paradigms. The algorithm is
the least successful in the unmerged, unlabeled
case, as ambiguous suffixes do not allow for a
clear split of suffixes into paradigms. However, the
program output indicates which suffixes are poten-
tially ambiguous or unambiguous, and this infor-
mation could be used by bootstrapping procedures
for suffix disambiguation.

Some of the behavior of the learning algorithm
can be explained in terms of several constraints.
First, LDA assumes conditional independence of

77

documents (suffixes) given topics (paradigms). A
stem should be able to occur with each suffix of a
canonical paradigm. But if a stem occurs with one
allomorphic variant of a suffix, we know that it
necessarily cannot occur with the other. Therefore,
allomorphy violates conditional independence of
suffixes given a paradigm, and we cope with this
by merging allomorphs. Second, LDA also as-
sumes conditional independence of words (stems)
given topics (paradigm). As our data contains stem
variants, this assumption does not hold either, but
it is a less serious violation due to the large number
of total stems. Third, we have imposed the con-
straint of orthogonality of suffixes and paradigms,
which is not required by LDA (and actually unde-
sired in document topic modeling, since documents
can contain multiple topics). Orthogonal suffix
splits are possible when categorically ambiguous
suffixes have been disambiguated.

In conclusion, we view morphology learning
as a process of manipulating the representation of
data to fit a learnable computational model. The
alternative would be to complicate the model and
learning algorithm to accommodate raw data and
all its concurrent ambiguities and dependencies.
We hypothesize that successful, fully unsupervised
learning of linguistically adequate representations
of morphology will be more easily accomplished
by first bootstrapping the sorts of information that
we have assumed, or, in other words, fitting the
data to the model.

Acknowledgements

This work was supported by the National Science
Foundation under grant NSF IIS-0415138. The
author thanks Mitch Marcus and anonymous re-
viewers for their helpful comments.

References

A. Albright. 2002. The identification of bases in mor-
phological paradigms. Ph.D. thesis, UCLA.

D. Blei, A. Ng, and M. Jordan. 2003. Latent dirichlet
allocation. Journal of Machine Learning Research 3,
993-1022.

X. Carreras, I. Chao, L. Padró, and M. Padró. 2004.
FreeLing: an open-source suite of language analyz-
ers. Proceedings of LREC. Lisbon, Portugal.

A. Clark. 2001. Learning morphology with pair hidden
markov models. Proceedings of the Student Work-
shop at ACL.

R. Evans and G. Gazdar. 1996. DATR: A language for
lexical knowledge representation. Computational
Linguistics 22(2), 167-216.

M. Forsberg and A. Ranta. 2004. Functional morphol-
ogy. Proceedings of the ICFP, 213-223. ACM Press.

D. Freitag. 2005. Morphology induction from term clus-
ters. Proceedings of CoNLL.

J. Goldsmith. 2001. Unsupervised learning of the mor-
phology of a natural language. Computational Lin-
guistics 27(2), 153-198.

S. Goldwater and M. Johnson. 2004. Priors in bayesian
learning of phonological rules. Proceedings of
SIGPHON.

D. Graff and G. Gallegos. 1999. Spanish newswire text,
volume 2. Linguistic Data Consortium, Philadelphia, PA.

Y. Hu, I. Matveeva, J. Goldsmith, and C. Sprague.
2005. Using morphology and syntax together in un-
supervised learning. Workshop on Psychocomputa-
tional Models of Human Language Acquisition.

D. Kazakov and S. Manandhar. 2001. Unsupervised
learning of word segmentation rules with genetic al-
gorithms and inductive logic programming. Machine
Learning 43, 121-162.

M. Marcus, B. Santorini and M.A. Marcinkiewicz.
1993. Building a large annotated corpus of English:
The Penn Treebank. Computational Linguistics
19(2), 313-330.

C. Monson, A. Lavie, J. Carbonell, and L. Levin. 2004.
Unsupervised induction of natural language mor-
phology inflection classes. Proc. of SIGPHON.

K. Oflazer, S. Nirenburg, and M. McShane. 2001. Boot-
strapping morphological analyzers by combining
human elicitation and machine learning. Computa-
tional Linguistics 27(1), 59-85.

P. Schone and D. Jurafsky. 2001. Knowledge-free in-
duction of inflectional morphologies. Proc. NAACL.

M. Snover, G. Jarosz, and M. Brent. 2002. Unsuper-
vised learning of morphology using a novel directed
search algorithm: taking the first step. Proceedings of
SIGPHON.

D. Yarowsky and R. Wicentowski. 2000. Minimally
supervised morphological analysis by multimodal
alignment. Proceedings of ACL.

R. Zajac. 2001. Morpholog: constrained and supervised
learning of morphology. Proceedings of CoNLL.

78

Proceedings of the Eighth Meeting of the ACL Special Interest Group on Computational Phonology at HLT-NAACL 2006, pages 79–88,
New York City, USA, June 2006.c©2006 Association for Computational Linguistics

A Naive Theory of Affixation and an Algorithm for Extraction

Harald Hammarström
Dept. of Computing Science

Chalmers University of Technology
412 96, Gothenburg Sweden
harald2@cs.chalmers.se

Abstract

We present a novel approach to the unsu-
pervised detection of affixes, that is, to ex-
tract a set of salient prefixes and suffixes
from an unlabeled corpus of a language.
The underlying theory makes no assump-
tions on whether the language uses a lot
of morphology or not, whether it is pre-
fixing or suffixing, or whether affixes are
long or short. It does however make the
assumption that 1. salient affixes have to
be frequent, i.e occur much more often
that random segments of the same length,
and that 2. words essentially are vari-
able length sequences of random charac-
ters, e.g a character should not occur in
far too many words than random without
a reason, such as being part of a very fre-
quent affix. The affix extraction algorithm
uses only information from fluctation of
frequencies, runs in linear time, and is free
from thresholds and untransparent itera-
tions. We demonstrate the usefulness of
the approach with example case studies on
typologically distant languages.

1 Introduction

The problem at hand can be described as follows:

Input : An unlabeled corpus of an arbitrary natural
language

Output : A (possibly ranked) set of prefixes and
suffixes corresponding to true prefixes and suf-

fixes in the linguistic sense, i.e well-segmented
and with grammatical meaning, for the lan-
guage in question.

Restrictions : We consider only concatenative mor-
phology and assume that the corpus comes al-
ready segmented on the word level.

The theory and practice of the problem is relevant
or even essential in fields such as child language ac-
quisition, information retrieval and, of course, the
fuller scope of computational morphology and its
further layers of application (e.g Machine Transla-
tion).

The reasons for attacking this problem in an un-
supervised manner include advantages in elegance,
economy of time and money (no annotated resources
required), and the fact that the same technology may
be used on new languages.

An outline of the paper is as follows: we start
with some notation and basic definitions, with which
we describe the theory that is intended to model
the essential behaviour of affixation in natural lan-
guages. Then we describe in detail and with ex-
amples the thinking behind the affix extraction al-
gorithm, which actually requires only a few lines to
define mathematically. Next, we present and discuss
some experimental results on typologically different
languages. The paper then finishes with a brief but
comprehensive characterization of related work and
its differences to our work. At the very end we state
the most important conclusions and ideas on future
components of unsupervised morphological analy-
sis.

79

2 A Naive Theory of Affixation

Notation and definitions:

• w, s, b, x, y, . . . ∈ Σ∗: lowercase-letter vari-
ables range over strings of some alphabet Σ and
are variously called words, segments, strings,
etc.

• s / w: s is a terminal segment of the word w
i.e there exists a (possibly empty) string x such
that w = xs

• W,S, . . . ⊆ Σ∗: capital-letter variables range
over sets of words/strings/segments

• fW (s) = |{w ∈ W |s / w}|: the number of
words in W with terminal segment s

• SW = {s|s / w ∈ W}: all terminal segments
of the words in W

• | · |: is overloaded to denote both the length of
a string and the cardinality of a set

Assume we have two sets of random strings over
some alphabet Σ:

• Bases B = {b1, b2, . . . , bm}

• Suffixes S = {s1, s2, . . . , sn}

Such that:

Arbitrary Character Assumption (ACA) Each
character c ∈ Σ should be equally likely in any
word-position for any member of B or S.

Note that B and S need not be of the same car-
dinality and that any string, including the empty
string, could end up belonging to both B and S.
They need neither to be sampled from the same
distribution; pace the requirement, the distributions
from which B and S are drawn may differ in how
much probability mass is given to strings of different
lengths. For instance, it would not be violation if B
were drawn from a a distribution favouring strings
of length, say, 42 and S from a distribution with a
strong bias for short strings.

Next, build a set of affixed words W ⊆ {bs|b ∈
B, s ∈ S}, that is, a large set whose members are
concatenations of the form bs for b ∈ B, s ∈ S,
such that:

Frequent Flyer Assumption (FFA) : The mem-
bers of S are frequent. Formally: Given any
s ∈ S: fW (s) >> fW (x) for all x such that 1.
|x| = |s|; and 2. not x / s′ for all s′ ∈ S).

In other words, if we call s ∈ S a true suffix and we
call x an arbitrary segment if it neither a true suffix
nor the terminal segment of a true suffix, then any
true suffix should have much higher frequency than
an arbitrary segment of the same length.

One may legimately ask to what extent words of
real natural languages fit the construction model of
W , with the strong ACA and FFA assumptions, out-
lined above. For instance, even though natural lan-
guages often aren’t written phonemically, it is not
hard to come up with languages that have phonotac-
tic constraints on what may appear at the beginning
or end of a word, e.g, Spanish *st- may not begin
a word and yields est- instead. Another violation
of ACA is that (presumably all (Ladefoged, 2005))
languages disallow or disprefer a consonant vs. a
vowel conditioned by the vowel/consonant status of
its predecessor. However, if a certain element occurs
with less frequency than random (the best example
would be click consonants which, in some languages
e.g Eastern !Xõo (Traill, 1994), occur only initially),
this is not a problem to the theory.

As for FFA, we may have breaches such as Bibli-
cal Aramaic (Rosenthal, 1995) where an old -ā el-
ement appears on virtually everywhere on nouns,
making it very frequent, but no longer has any syn-
chronic meaning. Also, one can doubt the require-
ment that an affix should need to be frequent; for
instance, the Classical Greek inflectional (lacking
synchronic internal segmentation) alternative medial
3p. pl. aorist imperative ending -σθων (Blomqvist
and Jastrup, 1998), is not common at all.

Just how realistic the assumptions are is an empir-
ical question, whose answer must be judged by ex-
periments on the relevant languages. In the absense
of fully annotated annotated test sets for diverse lan-
guages, and since the author does not have access to
the Hutmegs/CELEX gold standard sets for Finnish
and English (Creutz and Lindén, 2004), we can only
give some guidelining experimental data.

ACA On a New Testament corpus of Basque
(Leizarraga, 1571) we computed the probabil-
ity of a character appearing in the initial, sec-

80

Positions Distance
||p1 − p2|| 0.47
||p1 − p3|| 0.36
||p1 − p4|| 0.37
||p2 − p3|| 0.34
||p2 − p4|| 0.23
||p3 − p4|| 0.18

Table 1: Difference between character distributions
according to word position.

ond, third or fourth position of the word. Since
Basque is entirely suffixing, if it complied to
ACA, we’d expect the distributions to be simi-
lar. However, if we look at the difference of the
distributions in terms of variation distance be-
tween two probability distributions (||p− q|| =
1
2

∑
x |p(x) − q(x)|), it shows that they dif-

fer considerably – especially the initial position
proves more special (see table 1).

FFA As for the FFA, we checked a corpus of bible
portions of Warlpiri (Yal, 1968 2001). This was
chosen because it is one of the few languages
known to the author where data was available
and which has a decent amount of frequent suf-
fixes which are also long, e.g case affixes are
typically bisyllabic phonologically and five-ish
characters long orthographically. Since the or-
thography used marked segmentation, it was
easy to compute FFA statistics on the words
as removed from segmentation marking. Com-
paring with the lists in (Nash, 1980, Ch. 2) it
turns out that FFA is remarkably stable for all
grammatical suffixes occuring in the outermost
layer. There are however the expected kind
of breaches; e.g a tense suffix -ku combined
with a last vowel -u which is frequent in some
frequent preceding affixes making the terminal
segment -uku more frequent than some genuine
three-letter suffixes.

The language known to the author which has
shown the most systematic disconcord with the
FFA is Haitian Creole (also in bible corpus
experiments (Hai, 2003 1999)). Haitian cre-
ole has very little morphology of its own but
owes the lion’s share of it’s words from French.
French derivational morphemes abound in

these words, e.g -syon, which have been care-
fully shown by (Lefebvre, 2004) not to be pro-
ductive in Haitian Creole. Thus, the little mor-
phology there is in Haitian creole is very dif-
ficult to get at without also getting the French
relics.

3 An Algorithm for Affix Extraction

The key question is, if words in natural languages
are constructed as W explained above, can we re-
cover the segmentation? That is, can we find B and
S, given only W ? The answer is yes, we can par-
tially decide this. To be more specific, we can com-
pute a score Z such that Z(x) > Z(y) if x ∈ SW

and y /∈ SW . In general, the converse need not hold,
i.e if both x, y ∈ SW , or both x, y /∈ SW , then
it may still be that Z(x) > Z(y). This is equiva-
lent to constructing a ranked list of all possible seg-
ments, where the true members of SW appear at the
top, and somewhere down the list the junk, i.e non-
members of SW , start appearing and fill up the rest
of the list. Thus, it is not said where on the list the
true-affixes/junk border begins, just that there is a
consistent such border.

Now, how should this list be computed? Given the
FFA, it’s tempting to look at frequencies alone, i.e
just go through all words and make a list of all seg-
ments, ranking them by frequency? This won’t do it
because 1. it doesn’t compensate between segments
of different length; naturally, short segments will be
more frequent than long ones, solely by virtue of
their shortness 2. it overcounts ill-segmented true
affixes, e.g -ng will invariably get a higher (or equal)
count than -ing. What we will do is a modification
of this strategy, because 1. can easily be amended
by subtracting estimated prior frequencies (under
ACA) and there is a clever way of tackling 2. Note
that, to amend 2., when going through w and each
s/w, it would be nice if we could count s only when
it is well-segmented in w. We are given only W so
this information is not available to us, but, the FFA
assumption let’s us make a local guess of it.

We shall illustrate the idea with an example of an
evolving frequency curve of a word “playing” and
its segmentations “playing”, “aying”, “ying”, “ing”,
“ng”, “g” (W being the set of words from an Eng-
lish bible corpus (Eng, 1977)). Figure 1 shows a

81

 0

 100

 200

 300

 400

 500

 600

 700

 800

 laying aying ying ing ng g

f
e

 playing

Figure 1: The observed fW (s) and expected eW (s)
frequency for s / w = playing.

frequency curve fW (s) and its expected frequency
curve eW (s). The expected frequency of a suffix s
doesn’t depend on the actual characters of s and is
defined as:

eW (s) = |W | · 1
r|s|

Where r is the size of the alphabet under the assump-
tion that its characters are uniformly distributed. We
don’t simply use 26 in the case of lowercase English
since not all characters are equally frequent. Instead
we estimate the size of a would-be uniform distribu-
tion from the entropy of the distribution of the char-
acters in W . This gives r ≈ 18.98 for English and
other languages with a similar writing practice.

Next, define the adjusted frequency as the differ-
ence between the observed frequency and the ex-
pected frequency:

f ′
W (s) = fW (s)− eW (s)

It is the slope of this curve that predicts the presence
of a good split. Figure 2 shows the appearance of
this curve again exemplified by “playing”.

After these examples, we are ready to define the
segmentation score of a suffix relative to a word Z :
SW ×W → Q:

ZW (s, w) =

{
0 if not s / w
f ′(si)−f ′(si−1)

|f ′(si−1)| if s = si(w) for some i

Table 2 shows the evolution of exact values from
the running example.

To move from a Z-score for a segment that is rel-
ative to a word we simply sum over all words to get

−2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 ng g

Z

playing laying aying ying ing

Figure 2: The slope of the f ′
W (s) curve for s / w =

playing.

Input: A text corpus C

Step 1. Extract the set of words W from C (thus all
contextual and word-frequency information is
discarded)

Step 2. Calculate ZW (s, w) for each w ∈ W and
s / w

Step 3. Accumulate ZW (s) =
∑

w∈W Z(s, w)

Table 3: Summary of affix-extraction algorithm.

the final score Z : SW → Q:

ZW (s) =
∑

w∈W

Z(s, w) (1)

To be extra clear, the FFA assumption is “ex-
ploited” in two ways. On the one hand, frequent
affixes get many oppurtunities to get a score (which
could, however, be negative) in the final sum over
w ∈ W . On the other hand, the frequency is what
make up the appearance of the slope that predicts the
segmentation point.

The final Z-score in equation 1 is the one that
purports to have the property that Z(x) > Z(y) if
x ∈ SW and y /∈ SW – at least if purged (see be-
low). A summary of the algorithm described in this
section is displayed in table 3.

The time-complexity bounding factor is the num-
ber of suffixes, i.e the cardinality of SW , which is
linear (in the size of the input) if words are bounded
in length by a constant and quadratic in the (really)
worst case if not.

82

s playing laying aying ying ing ng g
f(s) 1 4 12 40 706 729 756
eW (s) 0.00 0.00 0.00 0.10 1.90 36.0 684
f(s)− eW (s) 0.99 3.99 11.9 39.8 704 692 71.0
Z(s,”playing”) 0.00 2.99 1.99 2.32 16.6 -0.0 -0.8

Table 2: Exact values of frequency curves and scores from the running “playing” example.

1028682.0 ing 111264.0 ling
594208.0 ed 111132.0 ent
371145.0 s 109725.0 ating
337464.0 ’s 109125.0 ate
326250.0 ation 108228.0 an
289536.0 es 97020.0 ies
238853.5 e 94560.0 ts
222256.0 er 81648.0 ically
191889.0 ers 81504.0 ment
172800.0 ting 78669.0 led
168288.0 ly 77900.0 ering
159408.0 ations 74976.0 er’s
143775.0 ted 73988.0 y
130960.0 able
116352.0 ated -26137.9 l
113364.0 al -38620.6 m
113280.0 ness -78757.3 a

Table 4: Top 30 and bottom 3 extracted suffixes
for English. 47178 unique words yielded a total of
154407 ranked suffixes.

4 Experimental Results

For a regular English 1 million token newspaper
corpus we get the top 30 plus bottom 3 suffixes as
shown in table 4.

English has little affixation compared to e.g Turk-
ish which is at the opposite end of the typological
scale (Dryer, 2005). The corresponding results for
Turkish on a bible corpus (Tur, 1988) is shown in
table 5.

The results largely speak for themselves but some
comments are in order. As is easily seen from the
lists, some suffixes are suffixes of each other so one
could purge the list in some way to get only the
most “competitive” suffixes. One purging strategy
would be to remove x from the list if there is a z

1288402.4 i 33756.55 ler
151056.9 er 29816.53 da
142552.6 in 29404.49 di
141603.3 im 28337.89 le
134403.2 en 26580.41 dan
130794.5 e 26373.54 r
127352.0 an 24183.99 ti
113482.6 a 22527.26 un
82581.95 ya 21388.71 iniz
78447.74 ar 20993.87 sin
76353.77 ak 20117.60 ik
68730.00 n 18612.14 li
64761.37 ir 18316.45 ek
53021.67 la
47218.78 ini -38091.8 t
44858.18 lar -240917.5 l
37229.14 iz -284460.1 s

Table 5: Top 30 and bottom 3 extracted suffixes
for Turkish. 56881 unique words yielded a total of
175937 ranked suffixes.

such that x = yx and Z(z) > Z(x) (this would
remove e.g -ting if -ing is above it on the list). A
more sophisticated purging method is the following,
which does slightly more. First, for a word w ∈ W
define its best segmentation as: Segment(w) =
argmaxs/wZ(s). Then purge by keeping only those
suffixes which are the best parse for at least one
word: S′

W = {s ∈ SW |∃wSegment(w) = s}.
Such purging kicks out the bulk of “junk” suf-

fixes. Table 4 shows the numbers for English, Turk-
ish and the virtually affixless Maori (Bauer et al.,
1993). It should noted that “junk” suffixes still re-
main after purging – typically common stem-final
characters – and that there is no simple relation
between the number of suffixes left after purging
and the amount of morphology of the language in
question. Otherwise we would have expected the
morphology-less Maori to be left with no, or 28-ish,

83

Language Corpus Tokens |W | |SW | |S′
W |

Maori (Mao, 1996) 1101665 8354 23007 78
English (Eng, 1977) 917634 12999 39845 63
Turkish (Tur, 1988) 574592 56881 175937 122

Table 6: Figures for different languages on the ef-
fects on the size of the suffix list after purging.

suffixes or at least less than English.

A good sign is that the purged list and its order
seems to be largely independent of corpus size (as
long as the corpus is not very small) but we do get
some significant differences between bible English
and newspaper English.

We have chosen to illustrate using affixes but the
method readily generalizes to prefixes as well and
even prefixes and suffixes at the same time. As
an example of this, we show top-10 purged prefix-
suffix scores in the same table also for some typo-
logically differing languages in table 7. Again, we
use bible corpora for cross-language comparability
(Swedish (Swe, 1917) and Swahili (Swa, 1953)).
The scores have been normalized in each language
to allow cross-language comparison – which, judg-
ing from the table, seems meaningful. Swahili is an
exclusively prefixing language but verbs tend to end
in -a (whose status as a morpheme is the linguistic
sense can be doubted), whereas Swedish is suffix-
ing, although some prefixes are or were productive
in word-formation.

A full discussion of further aspects such as a more
informed segmentation of words, peeling of multi-
ple suffix layers and purging of unwanted affixes re-
quires, is beyond the scope of this paper.

5 Related Work

For reasons of space we cannot cite and comment
every relevant paper even in the narrow view of
highly unsupervised extraction of affixes from raw
corpus data, but we will cite enough to cover each
line of research. The vast fields of word segmenta-
tion for speech recognition or for languages which
do not mark word boundaries will not be covered.
In our view, segmentation into lexical units is a dif-
ferent problem than that of affix extraction since the
frequencies of lexical items are different, i.e occur

Swedish English Swahili
för- 0.097 -eth 0.086 -a 0.100
-en 0.086 -ing 0.080 wa- 0.095
-na 0.036 -ed 0.063 ali- 0.065
-ade 0.035 -est 0.036 nita- 0.059
-a 0.034 -th 0.035 aka- 0.049
-ar 0.033 -es 0.034 ni- 0.046
-er 0.033 -s 0.033 ku- 0.044
-as 0.032 -ah 0.026 ata- 0.042
-s 0.031 -er 0.026 ha- 0.032
-de 0.031 -ation 0.019 a- 0.031
.

Table 7: Comparative figures for prefix vs. suffix
detection. The high placement of English -eth and
-ah are due to the fact that the bible version used has
drinketh, sitteth etc and a lot of personal names in
-ah.

much more sparsely. Results from this area which
have been carried over or overlap with affic detec-
tion will however be taken into account. A lot of
the papers cited have a wider scope and are still use-
ful even though they are critisized here for having a
non-optimal affix detection component.

Many authors trace their approches back to two
early papers by Zellig Harris (Harris, 1955; Har-
ris, 1970) which count letter successor varieties.
The basic procedure is to ask how many different
phonemes occur (in various utterances e.g a corpus)
after the first n phonemes of some test utterance and
predict that segmentation(s) occur where the number
of succesors reaches a peak. For example, if we have
play, played, playing, player, players, playground
and we wish to test where to segment plays, the suc-
cesor count for the prefix pla would be 1 because
only y occurs after whereas the number of succes-
sors of play peak at three (i.e {e, i, g}). Although
the heuristic has had some success it was shown (in
various interpretations) as early as (Hafer and Weiss,
1974) that it is not really sound – even for English.
A slightly better method is to compile a set of words
into a trie and predict boundaries at nodes with high
actitivity (e.g (Johnson and Martin, 2003; Schone
and Jurafsky, 2001; Kazakov and Manandhar, 2001)
and earlier papers by the same authors), but this not
sound either as non-morphemic short common char-
acter sequences also show significant branching.

84

The algorithm in this paper is differs significantly
from the Harris-inspired varieties. First, we do
not record the number of phonemes/character of a
given prefix/suffix but the total number of contin-
uations. In the example above, that would be the
set {ed, ing, er, ers, ground} rather than the three-
member set of continuing phonemes/characters.
Secondly, segmentation of a given word is not the
immediate objective and what amounts to identifi-
cation of the end of a lexical (thus generally low-
frequency) item is not within the direct reach of the
model. Thirdly, and most importantly, the algorithm
in this paper looks at the slope of the frequency
curve not at peaks in absolute frequency.

A different approach, sometimes used in com-
plement of other sources of information, is to se-
lect aligned pairs (or sets) of strings that share a
long character sequence (work includes (Jacquemin,
1997; Yarowsky and Wicentowski, 2000; Baroni et
al., 2002; Clark, 2001)). A notable advantage is that
one is not restricted to concatenative morphology.

Many publications (Ćavar et al., 2004; Brent et
al., 1995; Goldsmith et al., 2001; Déjean, 1998;
Snover et al., 2002; Argamon et al., 2004; Gold-
smith, 2001; Creutz and Lagus, 2005; Neuvel and
Fulop, 2002; Baroni, 2003; Gaussier, 1999; Sharma
et al., 2002; Wicentowski, 2002; Oliver, 2004),
and various other works by the same authors, de-
scribe strategies that use frequencies, probabilities,
and optimization criteria, often Minimum Descrip-
tion Length (MDL), in various combinations. So far,
all these are unsatisfactory on two main accounts; on
the theretical side, they still owe an explanation of
why compression or MDL should give birth to seg-
mentations coinciding with morphemes as linguisti-
cally defined. On the experimental side, thresholds,
supervised/developed parametres and selective input
still cloud the success of reported results, which, in
any case, aren’t wide enough to sustain some too
rash language independence claims.

To be more specific, some MDL approaches aim
to minimize the description of the set of words in
the input corpus, some to describe all tokens in
the corpus, but, none aims to minimize, what one
would otherwise expect, the set of possible words
in the language. More importantly, none of the re-
viewed works allow any variation in the descrip-
tion language (“model”) during the minimization

search. Therefore they should be more properly la-
beled “weighting schemes” and it’s an open question
whether their yields correspond to linguistic analy-
sis. Given an input corpus and a traditional linguis-
tic analysis, it is trivial to show that it is possible to
decrease description length (according to the given
schemes) by stepping away from linguistic analysis.
Moreover, various forms of codebook compression,
such as Lempel-Ziv compression, yield shorter de-
scription but without any known linguistic relevance
at all. What is clear, however, apart from whether it
is theoretically motivated, is that MDL approaches
are useful.

A systematic test of segmentation algorithms over
many different types of languages has yet to be pub-
lished. For three reasons, it will not be undertaken
here either. First, as e.g already Manning (1998)
notes for sandhi phenomena, it is far from clear
what the gold standard should be (even though we
may agree or agree to disagree on some familiar
European languages). Secondly, segmentation al-
gorithms may have different purposes and it might
not make good sense to study segmentation in isola-
tion from induction of paradigms. Lastly, and most
importantly, all of the reviewed techniques (Wicen-
towski, 2004; Wicentowski, 2002; Snover et al.,
2002; Baroni et al., 2002; Andreev, 1965; Ćavar
et al., 2004; Snover and Brent, 2003; Snover and
Brent, 2001; Snover, 2002; Schone and Jurafsky,
2001; Jacquemin, 1997; Goldsmith and Hu, 2004;
Sharma et al., 2002; Clark, 2001; Kazakov and Man-
andhar, 1998; Déjean, 1998; Oliver, 2004; Creutz
and Lagus, 2002; Creutz and Lagus, 2003; Creutz
and Lagus, 2004; Hirsimäki et al., 2003; Creutz
and Lagus, 2005; Argamon et al., 2004; Gaussier,
1999; Lehmann, 1973; Langer, 1991; Flenner, 1995;
Klenk and Langer, 1989; Goldsmith, 2001; Gold-
smith, 2000; Hu et al., 2005b; Hu et al., 2005a;
Brent et al., 1995), as they are described, have
threshold-parameters of some sort, explicitly claim
not to work well for an open set of languages, or
require noise-free all-form input (Albright, 2002;
Manning, 1998; Borin, 1991). Therefore it is not
possible to even design a fair test.

In any event, we wish to appeal to the merits of
developing a theory in parallel with experimentation
– as opposed to only ad hoc result chasing. If we
have a theory and we don’t get the results we want,

85

we may scrutinize the assumptions behind the theory
in order to modify or reject it (understanding why
we did so). Without a theory there’s no telling what
to do or how to interpret intermediate numbers in a
long series of calculations.

6 Conclusion

We have presented a new theory of affixation and a
parameter-less efficient algorithm for collecting af-
fixes from raw corpus data of an arbitrary language.
Depending on one’s purposes with it, a cut-off point
for the collected list is still missing, or at least, we
do not consider that matter here. The results are very
promising and competitive but at present we lack
formal evaluation in this respect. Future directions
also include a more specialized look into the relation
between affix-segmentation and paradigmatic varia-
tion and further exploits into layered morphology.

7 Acknowledgements

The author has benefited much from discussions
with Bengt Nordström.

References
Adam C. Albright. 2002. The Identification of Bases in

Morphological Paradigms. Ph.D. thesis, University of
California at Los Angeles.

Nikolai Dmitrievich Andreev, editor. 1965. Statistiko-
kombinatornoe modelirovanie iazykov. Akademia
Nauk SSSR, Moskva.

Shlomo Argamon, Navot Akiva, Amihood Amit, and
Oren Kapah. 2004. Efficient unsupervised recursive
word segmentation using minimum description length.
In COLING-04, 22-29 August 2004, Geneva, Switzer-
land.

Marco Baroni, Johannes Matiasek, and Harald Trost.
2002. Unsupervised discovery of morphologically re-
lated words based on orthographic and semantic simi-
larity. In Proceedings of the Workshop on Morpholog-
ical and Phonological Learning of ACL/SIGPHON-
2002, pages 48–57.

Marco Baroni. 2003. Distribution-driven morpheme dis-
covery: A computational/experimental study. Year-
book of Morphology, pages 213–248.

Winifred Bauer, William Parker, and Te Kareongawai
Evans. 1993. Maori. Descriptive Grammars. Rout-
ledge, London & New York.

Jerker Blomqvist and Poul Ole Jastrup. 1998. Grekisk
Grammatik: Graesk grammatik. Akademisk Forlag,
København, 2 edition.

Lars Borin. 1991. The Automatic Induction of Morpho-
logical Regularities. Ph.D. thesis, University of Upp-
sala.

Michael R. Brent, S. Murthy, and A. Lundberg. 1995.
Discovering morphemic suffixes: A case study in min-
imum description length induction. In Fifth Interna-
tional Workshop on Artificial Intelligence and Statis-
tics, Ft. Lauderdale, Florida.

Damir Ćavar, Joshua Herring, Toshikazu Ikuta, Paul Ro-
drigues, and Giancarlo Schrementi. 2004. On in-
duction of morphology grammars and its role in boot-
strapping. In Gerhard Jäger, Paola Monachesi, Gerald
Penn, and Shuly Wintner, editors, Proceedings of For-
mal Grammar 2004, pages 47–62.

Alexander Clark. 2001. Learning morphology with pair
hidden markov models. In ACL (Companion Volume),
pages 55–60.

Mathias Creutz and Krista Lagus. 2002. Unsupervised
discovery of morphemes. In Proceedings of the 6th
Workshop of the ACL Special Interest Group in Com-
putational Phonology (SIGPHON), Philadelphia, July
2002, pages 21–30. Association for Computational
Linguistics.

Mathias Creutz and Krista Lagus. 2003. Unsupervised
discovery of morphemes. In Proceedings of the 6th
Workshop of the ACL Special Interest Group in Com-
putational Phonology (SIGPHON), Philadelphia, July
2002, pages 21–30. Association for Computational
Linguistics.

Mathias Creutz and Krista Lagus. 2004. Induction of
a simple morphology for highly-inflecting languages.
In Proceedings of the 7th Meeting of the ACL Spe-
cial Interest Group in Computational Phonology (SIG-
PHON), pages 43–51. Barcelona.

Mathias Creutz and Krista Lagus. 2005. Unsupervised
morpheme segmentation and morphology induction
from text corpora using morfessor 1.0. Technical re-
port, Publications in Computer and Information Sci-
ence, Report A81, Helsinki University of Technology,
March.

Mathias Creutz and Krister Lindén. 2004. Morpheme
segmentation gold standards for finnish and english.
publications in computer and information science, re-
port a77, helsinki university of technology. Technical
report, Publications in Computer and Information Sci-
ence, Report A77, Helsinki University of Technology,
October.

86

Hervé Déjean. 1998. Concepts et algorithmes pour
la découverte des structures formelles des langues.
Ph.D. thesis, Université de Caen Basse Normandie.

Matthew S. Dryer. 2005. Prefixing versus suffix-
ing in inflectional morphology. In Bernard Comrie,
Matthew S. Dryer, David Gil, and Martin Haspelmath,
editors, World Atlas of Language Structures, pages
110–113. Oxford University Press.

1977. The holy bible, containing the old and new testa-
ments and the apocrypha in the authorized king james
version. Thomas Nelson, Nashville, New York.

Gudrun Flenner. 1995. Quantitative morphseg-
mentierung im spanischen auf phonologischer basis.
Sprache und Datenverarbeitung, 19(2):63–78. Also
cited as: Computatio Linguae II, 1994, pp. 1994 as
well as Sprache und Datenverarbeitung 19(2):31-62,
1994.

Éric Gaussier. 1999. Unsupervised learning of deriva-
tional morphology from inflectional lexicons. In Pro-
ceedings of the 37th Annual Meeting of the Associa-
tion for Computational Linguistics (ACL-1999). Asso-
ciation for Computational Linguistics, Philadephia.

John Goldsmith and Yu Hu. 2004. From signatures to fi-
nite state automata. Technical report TR-2005-05, De-
partment of Computer Science, University of Chicago.

John Goldsmith, Derrick Higgins, and Svetlana Soglas-
nova. 2001. Automatic language-specific stem-
ming in information retrieval. In Carol Peters, edi-
tor, Cross-Language Information Retrieval and Eval-
uation: Proceedings of the CLEF 2000 Workshop,
Lecture Notes in Computer Science, pages 273–283.
Springer-Verlag, Berlin.

John Goldsmith. 2000. Linguistica: An automatic
morphological analyzer. In A. Okrent and J. Boyle,
editors, Proceedings from the Main Session of the
Chicago Linguistic Society’s thirty-sith Meeting.

John Goldsmith. 2001. Unsupervised learning of the
morphology of natural language. Computational Lin-
guistics, 27(2):153–198.

Margaret A. Hafer and Stephen F. Weiss. 1974. Word
segmentation by letter successor varieties. Informa-
tion and Storge Retrieval, 10:371–385.

2003 [1999]. Bib la. American Bible Society.

Zellig S. Harris. 1955. From phoneme to morpheme.
Language, 31(2):190–222.

Zellig S. Harris. 1970. Morpheme boundaries within
words: Report on a computer test. In Zellig S. Harris,
editor, Papers in Structural and Transformational Lin-
guistics, volume 1 of Formal Linguistics Series, pages
68–77. D. Reidel, Dordrecht.

Teemu Hirsimäki, Mathias Creutz, Vesa Siivola, and
Mikko Kurimo. 2003. Unlimited vocabulary speech
recognition based on morphs discovered in an unsu-
pervised manner. In Proceedings of Eurospeech 2003,
Geneva, pages 2293–2996. Geneva, Switzerland.

Yu Hu, Irina Matveeva, John Goldsmith, and Colin
Sprague. 2005a. Refining the SED heuristic for
morpheme discovery: Another look at Swahili. In
Proceedings of the Workshop on Psychocomputational
Models of Human Language Acquisition, pages 28–35,
Ann Arbor, Michigan, June. Association for Computa-
tional Linguistics.

Yu Hu, Irina Matveeva, John Goldsmith, and Colin
Sprague. 2005b. Using morphology and syntax to-
gether in unsupervised learning. In Proceedings of
the Workshop on Psychocomputational Models of Hu-
man Language Acquisition, pages 20–27, Ann Arbor,
Michigan, June. Association for Computational Lin-
guistics.

Christian Jacquemin. 1997. Guessing morphology from
terms and corpora. In Proceedings, 20th Annual In-
ternational ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR ’97),
Philadelphia, PA.

Howard Johnson and Joel Martin. 2003. Unsuper-
vised learning of morphology for english and inukti-
tut. In HLT-NAACL 2003, Human Language Technol-
ogy Conference of the North American Chapter of the
Association for Computational Linguistics, May 27 -
June 1, Edmonton, Canada, volume Companion Vol-
ume - Short papers.

Dimitar Kazakov and Suresh Manandhar. 1998. A hy-
brid approach to word segmentation. In C. D. Page,
editor, Proceedings of the 8th International Workshop
on Inductive Logic Programming (ILP-98) in Madi-
son, Wisconsin, USA, volume 1446 of Lecture Notes
in Artificial Intelligence. Springer-Verlag, Berlin.

Dimitar Kazakov and Suresh Manandhar. 2001. Un-
supervised learning of word segmentation rules with
genetic algorithms and inductive logic programming.
Machine Learning, 43:121–162.

Ursula Klenk and Hagen Langer. 1989. Morphological
segmentation without a lexicon. Literary and Linguis-
tic Computing, 4(4):247–253.

Peter Ladefoged. 2005. Vowels and Consonants. Black-
well, Oxford, 2 edition.

Hagen Langer. 1991. Ein automatisches Morphseg-
mentierungsverfahren für deutsche Wortformen. Ph.D.
thesis, Georg-August-Universität zu Göttingen.

Claire Lefebvre. 2004. Issues in the study of Pidgin and
Creole languages, volume 70 of Studies in Language
Companion Series. John Benjamins, Amsterdam.

87

Hubert Lehmann. 1973. Linguistische Modellbildung
und Methodologie. Max Niemeyer Verlag, Tübingen.
Pp. 71-76 and 88-93.

Joanes Leizarraga. 1571. Iesus krist gure iaunaren tes-
tamentu berria. Pierre Hautin, Inprimizale, Roxellan.
[NT only].

Christopher D. Manning. 1998. The segmentation prob-
lem in morphology learning. In Jill Burstein and Clau-
dia Leacock, editors, Proceedings of the Joint Confer-
ence on New Methods in Language Processing and
Computational Language Learning, pages 299–305.
Association for Computational Linguistics, Somerset,
New Jersey.

1996. Maori bible. The British & Foreign Bible Society,
London, England.

David G. Nash. 1980. Topics in Warlpiri Grammar.
Ph.D. thesis, Massachusetts Institute of Technology.

Sylvain Neuvel and Sean A. Fulop. 2002. Unsuper-
vised learning of morphology without morphemes. In
Workshop on Morphological and Phonological Learn-
ing at Association for Computational Linguistics 40th
Anniversary Meeting (ACL-02), July 6-12, pages 9–15.
ACL Publications.

A. Oliver. 2004. Adquisició d’informació lèxica i mor-
fosintàctica a partir de corpus sense anotar: apli-
cació al rus i al croat. Ph.D. thesis, Universitat de
Barcelona.

Franz Rosenthal. 1995. A grammar of biblical Aramaic,
volume 5 of Porta linguarum Orientalium. Harras-
sowitz, Wiesbaden, 6 edition.

Patrick Schone and Daniel Jurafsky. 2001. Knowledge-
free induction of inflectional morphologies. In Pro-
ceedings of the North American Chapter of the Asso-
ciation for Computational Linguistics, Pittsburgh, PA,
2001.

Utpal Sharma, Jugal Kalita, and Rajib Das. 2002. Unsu-
pervised learning of morphology for building lexicon
for a highly inflectional language. In Proceedings of
the 6th Workshop of the ACL Special Interest Group in
Computational Phonology (SIGPHON), Philadelphia,
July 2002, pages 1–10. Association for Computational
Linguistics.

Matthew G. Snover and Michael R. Brent. 2001. A
bayesian model for morpheme and paradigm identifi-
cation. In Proceedings of the 39th Annual Meeting of
the Association for Computational Linguistics (ACL-
2001), pages 482–490. Morgan Kaufmann Publishers.

Matthew G. Snover and Michael R. Brent. 2003. A prob-
abilistic model for learning concatenative morphology.

In S. Becker, S. Thrun, and K. Obermayer, editors, Ad-
vances in Neural Information Processing Systems 15,
pages 1513–1520. MIT Press, Cambridge, MA.

Matthew G. Snover, Gaja E. Jarosz, and Michael R.
Brent. 2002. Unsupervised learning of morphol-
ogy using a novel directed search algorithm: Taking
the first step. In Workshop on Morphological and
Phonological Learning at Association for Computa-
tional Linguistics 40th Anniversary Meeting (ACL-02),
July 6-12. ACL Publications.

Matthew G. Snover. 2002. An unsupervised knowledge
free algorithm for the learning of morphology in nat-
ural languages. Master’s thesis, Department of Com-
puter Science, Washington University.

1953. Maandiko matakatifu ya mungu yaitwaya biblia,
yaani agano la kale na agano jipya, katika lugha ya
kiswahili. British and Foreign Bible Society, London,
England.

1917. Gamla och nya testamentet: de kanoniska
böckerna. Norstedt, Stockgholm.

Anthony Traill. 1994. A !Xóõ Dictionary, volume 9 of
Quellen zur Khoisan-Forschung/Research in Khoisan
Studies. Rüdiger Köppe Verlag, Köln.

1988. Turkish bible. American Bible Society, Tulsa, Ok-
lahoma.

Richard Wicentowski. 2002. Modeling and Learning
Multilingual Inflectional Morphology in a Minimally
Supervised Framework. Ph.D. thesis, Johns Hopkins
University, Baltimore, MD.

Richard Wicentowski. 2004. Multilingual noise-robust
supervised morphological analysis using the word-
frame model. In Proceedings of the ACL Special Inter-
est Group on Computational Phonology (SIGPHON),
pages 70–77.

1968–2001. Bible: selections in warlpiri. Summer Insti-
tute of Linguistics. Document 0650 of the Aboriginal
Studies Electronic Data Archive (ASEDA), AIATSIS
(Australian Institute of Aboriginal and Torres Strait Is-
lander Studies), Canberra.

David Yarowsky and Richard Wicentowski. 2000. Min-
imally supervised morphological analysis by multi-
modal alignment. In Proceedings of the 38th Annual
Meeting of the Association for Computational Linguis-
tics (ACL-2000), pages 207–216.

88

Author Index

Boersma, Paul,31

Canisius, Sander,41
Chan, Erwin,69

Doermann, David,60

Goldsmith, John,32

Hammarstr̈om, Harald,79
Heinz, Jeffrey,21
Hu, Yu,32

Jarosz, Gaja,50

Karagol-Ayan, Burcu,60

Liu, Chen,1

Melnar, Lynette,1
Müller, Karin,11

van den Bosch, Antal,41

Weinberg, Amy,60

Xanthos, Aris,32

89

	Program
	A Combined Phonetic-Phonological Approach to Estimating Cross-Language Phoneme Similarity in an ASR Environment
	Improving Syllabification Models with Phonotactic Knowledge
	Learning Quantity Insensitive Stress Systems via Local Inference
	Invited Talk: Universal Constraint Rankings Result from Learning and Evolution
	Exploring variant definitions of pointer length in MDL
	Improved morpho-phonological sequence processing with constraint satisfaction inference
	Richness of the Base and Probabilistic Unsupervised Learning in Optimality Theory
	Morphology Induction from Limited Noisy Data Using Approximate String Matching
	Learning Probabilistic Paradigms for Morphology in a Latent Class Model
	A Naive Theory of Affixation and an Algorithm for Extraction

