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Foreword

CoNLL has turned ten! With a mix of pride and amazement over how time flies, we now celebrate
the tenth time that ACL’s special interest group on natural language learning, SIGNLL, holds its yearly
conference.

Having a yearly meeting was the major pillar of the design plan for SIGNLL, drawn up by a circle of
enthusiastic like-minded people around 1995, headed by first president David Powers and first secretary
Walter Daelemans. The first CoNLL was organized as a satellite event of ACL-97 in Madrid, in the
capable hands of Mark Ellison. Since then, no single year has gone by without a CoNLL. The boards
of SIGNLL (with consecutive presidents Michael Brent, Walter Daelemans, and Dan Roth) have made
sure that CoNLL toured the world; twice it was held in the Asian-Pacific part of the world, four times
in Europe, and four times in the North-American continent.

Over time, the field of computational linguistics got to know CoNLL for its particular take on empirical
methods for NLP and the ties these methods have with areas outside the focus of the typical ACL
conference. The image of CoNLL was furthermore boosted by the splendid concept of the shared
task, the organized competition that tackles timely tasks in NLP and has produced both powerful and
sobering scientific insights. The CoNLL shared tasks have produced benchmark data sets and results
on which a significant body of work in computational linguistics is based nowadays. The first shared
task was organized in 1999 on NP bracketing, by Erik Tjong Kim Sang and Miles Osborne. With
the help of others, Erik continued the organization of shared tasks until 2003 (on syntactic chunking,
clause identification, and named-entity recognition), after which Lluı́s Màrquez and Xavier Carreras
organized two consecutive shared tasks on semantic role labeling (2004, 2005). This year’s shared task
on multi-lingual dependency parsing holds great promise in becoming a new landmark in NLP research.

With great gratitude we salute all past CoNLL programme chairs and reviewers who have made CoNLL
possible, and who have contributed to this conference series, which we believe has a shining future
ahead. We are still exploring unknown territory in the fields of language learning, where models of
human learning and natural language processing may on one day be one. We hope we will see a long
series of CoNLLs along that path.

1997 - Madrid, Spain (chair: T. Mark Ellison)
1998 - Sydney, Australia (chair: David Powers)
1999 - Bergen, Norway (chairs: Miles Osborne and Erik Tjong Kim Sang)
2000 - Lisbon, Portugal (chairs: Claire Cardie, Walter Daelemans, and Erik Tjong Kim Sang)
2001 - Toulouse, France (chairs: Walter Daelemans and Rémi Zajac)
2002 - Taipei, Taiwan (chairs: Dan Roth and Antal van den Bosch)
2003 - Edmonton, Canada (chairs: Walter Daelemans and Miles Osborne)
2004 - Boston, MA, USA (chairs: Hwee Tou Ng and Ellen Riloff)
2005 - Ann Arbor, MI, USA (chairs: Ido Dagan and Dan Gildea)
2006 - New York City, NY, USA (chairs: Llúıs Màrquez and Dan Klein)

Antal van den Bosch, President
Hwee Tou Ng, Secretary
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Preface

The 2006 Conference on Computational Natural Language Learning is the tenth in a series of yearly
meetings organized by SIGNLL, the ACL special interest group on natural language learning. Due to
the special occasion, we have brought out the celebratory Roman numerals: welcome to CoNLL-X!
Presumably, next year we will return to CoNLL-2007 (until 2016, when perhaps we will see CoNLL-
XX). CoNLL-X will be held in New York City on June 8-9, in conjunction with the HLT-NAACL 2006
conference.

A total of 52 papers were submitted to CoNLL’s main session, from which only 18 were accepted. The
35% acceptance ratio maintains the high competitiveness of recent CoNLLs and is an indicator of this
year’s high-quality programme. We are very grateful to the CoNLL community for the large amount
of exciting, diverse, and high-quality submissions we received. We are equally grateful to the program
committee for their service in reviewing these submissions, on a very tight schedule. Your efforts made
our job a pleasure.

As in previous years, we defined a topic of special interest for the conference. This year, we particularly
encouraged submissions describing architectures, algorithms, methods, or models designed to improve
the robustness of learning-based NLP systems. While the topic of interest was directly addressed by
only a small number of the main session submissions, the shared task setting contributed significantly
in this direction.

Also following CoNLL tradition, a centerpiece of the confernence is a shared task, this year on
multilingual dependency parsing. The shared task was organized by Sabine Buchholz, Amit Dubey,
Yuval Krymolwski, and Erwin Marsi, who worked very hard to make the shared task the success it
has been. Up to 13 different languages were treated. 19 teams submitted results, from which 17 are
presenting description papers in the proceedings. In our opinion, the current shared task constitutes a
qualitative step ahead in the evolution of CoNLL shared tasks, and we hope that the resources created
and the body of work presented will both serve as a benchmark and also have a substantial impact on
future research on syntactic parsing.

Finally, we are delighted to announce that this year’s invited speakers are Michael Collins and Walter
Daelemans. In accordance with the tenth anniversary celebration, Walter Daelemans will look back at
the 10 years of CoNLL conferences, presenting the state of the art in computational natural language
learning, and suggesting a new “mission” for the future of field. Michael Collins, in turn, will talk about
one of the important current research lines in the field: global learning architectures for structural and
relational learning problems in natural language.

In addition to the program committee and shared task organizers, we are very indebted to the SIGNLL
board members for very helpful discussion and advice, Erik Tjong Kim Sang, who acted as the
information officer, and the HLT-NAACL 2006 conference organizers, in particular Robert Moore,
Brian Roark, Sanjeev Khudanpur, Lucy Vanderwende, Roberto Pieraccini, and Liz Liddy for their help
with local arrangements and the publication of the proceedings.

To all the attendees, enjoy the CoNLL-X conference!

Lluı́s Màrquez and Dan Klein
CoNLL-X Program Co-Chairs
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Alexander Clark and Ŕemi Eyraud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125

Using Gazetteers in Discriminative Information Extraction
Andrew Smith and Miles Osborne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133

A Context Pattern Induction Method for Named Entity Extraction
Partha Pratim Talukdar, Thorsten Brants, Mark Liberman and Fernando Pereira . . . . . . . . . . . . . . . .141

Shared Task

CoNLL-X Shared Task on Multilingual Dependency Parsing
Sabine Buchholz and Erwin Marsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149

The Treebanks Used in the Shared Task
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165

Experiments with a Multilanguage Non-Projective Dependency Parser
Giuseppe Attardi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166

LingPars, a Linguistically Inspired, Language-Independent Machine Learner for Dependency Treebanks
Eckhard Bick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171

Dependency Parsing by Inference over High-recall Dependency Predictions
Sander Canisius, Toine Bogers, Antal van den Bosch, Jeroen Geertzen and Erik Tjong Kim Sang176

Projective Dependency Parsing with Perceptron
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Abstract

In this presentation, I will look back at
10 years of CoNLL conferences and the
state of the art of machine learning of lan-
guage that is evident from this decade of
research. My conclusion, intended to pro-
voke discussion, will be that we currently
lack a clear motivation or “mission” to
survive as a discipline. I will suggest that
a new mission for the field could be found
in a renewed interest for theoretical work
(which learning algorithms have a bias
that matches the properties of language?,
what is the psycholinguistic relevance of
learner design issues?), in more sophis-
ticated comparative methodology, and in
solving the problem of transfer, reusabil-
ity, and adaptation of learned knowledge.

1 Introduction

When looking at ten years of CoNLL conferences,
it is clear that the impact and the size of the con-
ference has enormously grown over time. The tech-
nical papers you will find in this proceedings now
are comparable in quality and impact to those of
other distinguished conferences like the Conference
on Empirical Methods in Natural Language Pro-
cessing or even the main conferences of ACL, EACL
and NAACL themselves. An important factor in
the success of CoNLL has been the continued se-
ries of shared tasks (notice we don’t use terms like
challenges or competitions) that has produced a use-

ful set of benchmarks for comparing learning meth-
ods, and that has gained wide interest in the field.
It should also be noted, however, that the success
of the conferences is inversely proportional with
the degree to which the original topics which mo-
tivated the conference are present in the programme.
Originally, the people driving CoNLL wanted it to
be promiscuous (i) in the selection of partners (we
wanted to associate with Machine Learning, Lin-
guistics and Cognitive Science conferences as well
as with Computational Linguistics conferences) and
(ii) in the range of topics to be presented. We wanted
to encourage linguistically and psycholinguistically
relevant machine learning work, and biologically in-
spired and innovative symbolic learning methods,
and present this work alongside the statistical and
learning approaches that were at that time only start-
ing to gradually become the mainstream in Compu-
tational Linguistics. It has turned out differently,
and we should reflect on whether we have become
too much of a mainstream computational linguistics
conference ourselves, a back-off for the good papers
that haven’t made it in EMNLP or ACL because of
the crazy rejection rates there (with EMNLP in its
turn a back-off for good papers that haven’t made
it in ACL). Some of the work targeted by CoNLL
has found a forum in meetings like the workshop on
Psycho-computational models of human language
acquisition, the International Colloquium on Gram-
matical Inference, the workshop on Morphological
and Phonological Learning etc. We should ask our-
selves why we don’t have this type of work more
in CoNLL. In the first part of the presentation I
will sketch very briefly the history of SIGNLL and
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CoNLL and try to initiate some discussion on what
a conference on Computational Language Learning
should be doing in 2007 and after.

2 State of the Art in Computational
Natural Language Learning

The second part of my presentation will be a dis-
cussion of the state of the art as it can be found in
CoNLL (and EMNLP and the ACL conferences).
The field can be divided into theoretical, method-
ological, and engineering work. There has been
progress in theory and methodology, but perhaps
not sufficiently. I will argue that most progress has
been made in engineering with most often incre-
mental progress on specific tasks as a result rather
than increased understanding of how language can
be learned from data.
Machine Learning of Natural Language (MLNL),

or Computational Natural Language Learning
(CoNLL) is a research area lying in the intersec-
tion of computational linguistics and machine learn-
ing. I would suggest that Statistical Natural Lan-
guage Processing (SNLP) should be treated as part
of MLNL, or perhaps even as a synonym. Symbolic
machine learning methods belong to the same part
of the ontology as statistical methods, but have dif-
ferent solutions for specific problems. E.g., Induc-
tive Logic Programming allows elegant addition of
background knowledge, memory-based learning has
implicit similarity-based smoothing, etc.
There is no need here to explain the success of

inductive methods in Computational Linguistics and
why we are all such avid users of the technology:
availability of data, fast production of systems with
good accuracy, robustness and coverage, cheaper
than linguistic labor. There is also no need here
to explain that many of these arguments in favor of
learning in NLP are bogus. Getting statistical and
machine learning systems to work involves design,
optimization, and smoothing issues that are some-
thing of a black art. For many problems, getting
sufficient annotated data is expensive and difficult,
our annotators don’t sufficiently agree, our trained
systems are not really that good. My favorite exam-
ple for the latter is part of speech tagging, which is
considered a solved problem, but still has error rates
of 20-30% for the ambiguities that count, like verb-

noun ambiguity. We are doing better than hand-
crafted linguistic knowledge-based approaches but
from the point of view of the goal of robust lan-
guage understanding unfortunately not that signifi-
cantly better. Twice better than very bad is not nec-
essarily any good. We also implicitly redefined the
goals of the field of Computational Linguistics, for-
getting for example about quantification, modality,
tense, inference and a large number of other sen-
tence and discourse semantics issues which do not
fit the default classification-based supervised learn-
ing framework very well or for which we don’t have
annotated data readily available. As a final irony,
one of the reasons why learning methods have be-
come so prevalent in NLP is their success in speech
recognition. Yet, there too, this success is relative;
the goal of spontaneous speaker-independent recog-
nition is still far away.

2.1 Theory
There has been a lot of progress recently in theoret-
ical machine learning(Vapnik, 1995; Jordan, 1999).
Statistical Learning Theory and progress in Graph-
ical Models theory have provided us with a well-
defined framework in which we can relate differ-
ent approaches like kernel methods, Naive Bayes,
Markov models, maximum entropy approaches (lo-
gistic regression), perceptrons and CRFs. Insight
into the differences between generative and discrim-
inative learning approaches has clarified the rela-
tions between different learning algorithms consid-
erably.
However, this work does not tell us something

general about machine learning of language. The-
oretical issues that should be studied in MLNL are
for example which classes of learning algorithms are
best suited for which type of language processing
task, what the need for training data is for a given
task, which information sources are necessary and
sufficient for learning a particular language process-
ing task, etc. These fundamental questions all re-
late to learning algorithm bias issues. Learning is
a search process in a hypothesis space. Heuristic
limitations on the search process and restrictions on
the representations allowed for input and hypothe-
sis representations together define this bias. There is
not a lot of work on matching properties of learning
algorithms with properties of language processing
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tasks, or more specifically on how the bias of partic-
ular (families of) learning algorithms relates to the
hypothesis spaces of particular (types of) language
processing tasks.
As an example of such a unifying approach,

(Roth, 2000) shows that several different algorithms
(memory-based learning, tbl, snow, decision lists,
various statistical learners, ...) use the same type
of knowledge representation, a linear representation
over a feature space based on a transformation of the
original instance space. However, the only relation
to language here is rather negative with the claim
that this bias is not sufficient for learning higher
level language processing tasks.
As another example of this type of work,

Memory-Based Learning (MBL) (Daelemans and
van den Bosch, 2005), with its implicit similarity-
based smoothing, storage of all training evidence,
and uniform modeling of regularities, subregulari-
ties and exceptions has been proposed as having the
right bias for language processing tasks. Language
processing tasks are mostly governed by Zipfian
distributions and high disjunctivity which makes it
difficult to make a principled distinction between
noise and exceptions, which would put eager learn-
ing methods (i.e. most learning methods apart from
MBL and kernel methods) at a disadvantage.
More theoretical work in this area should make it

possible to relate machine learner bias to properties
of language processing tasks in a more fine-grained
way, providing more insight into both language and
learning. An avenue that has remained largely unex-
plored in this respect is the use of artificial data emu-
lating properties of language processing tasks, mak-
ing possible a much more fine-grained study of the
influence of learner bias. However, research in this
area will not be able to ignore the “no free lunch”
theorem (Wolpert and Macready, 1995). Referring
back to the problem of induction (Hume, 1710) this
theorem can be interpreted that no inductive algo-
rithm is universally better than any other; general-
ization performance of any inductive algorithm is
zero when averaged over a uniform distribution of
all possible classification problems (i.e. assuming
a random universe). This means that the only way
to test hypotheses about bias and necessary infor-
mation sources in language learning is to perform
empirical research, making a reliable experimental

methodology necessary.

2.2 Methodology
Either to investigate the role of different information
sources in learning a task, or to investigate whether
the bias of some learning algorithm fits the proper-
ties of natural language processing tasks better than
alternative learning algorithms, comparative experi-
ments are necessary. As an example of the latter, we
may be interested in investigating whether part-of-
speech tagging improves the accuracy of a Bayesian
text classification system or not. As an example of
the former, we may be interested to know whether
a relational learner is better suited than a propo-
sitional learner to learn semantic function associa-
tion. This can be achieved by comparing the accu-
racy of the learner with and without the information
source or different learners on the same task. Crucial
for objectively comparing algorithm bias and rele-
vance of information sources is a methodology to
reliably measure differences and compute their sta-
tistical significance. A detailed methodology has
been developed for this involving approaches like
k-fold cross-validation to estimate classifier quality
(in terms of measures derived from a confusion ma-
trix like accuracy, precision, recall, F-score, ROC,
AUC, etc.), as well as statistical techniques like Mc-
Nemar and paired cross-validation t-tests for deter-
mining the statistical significance of differences be-
tween algorithms or between presence or absence of
information sources. This methodology is generally
accepted and used both in machine learning and in
most work in inductive NLP.
CoNLL has contributed a lot to this compara-

tive work by producing a successful series of shared
tasks, which has provided to the community a rich
set of benchmark language processing tasks. Other
competitive research evaluations like senseval, the
PASCAL challenges and the NIST competitions
have similarly tuned the field toward comparative
learning experiments. In a typical comparative ma-
chine learning experiment, two or more algorithms
are compared for a fixed sample selection, feature
selection, feature representation, and (default) al-
gorithm parameter setting over a number of trials
(cross-validation), and if the measured differences
are statistically significant, conclusions are drawn
about which algorithm is better suited to the problem
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being studied and why (mostly in terms of algorithm
bias). Sometimes different sample sizes are used to
provide a learning curve, and sometimes parameters
of (some of the) algorithms are optimized on train-
ing data, or heuristic feature selection is attempted,
but this is exceptional rather than common practice
in comparative experiments.
Yet everyone knows that many factors potentially

play a role in the outcome of a (comparative) ma-
chine learning experiment: the data used (the sam-
ple selection and the sample size), the information
sources used (the features selected) and their repre-
sentation (e.g. as nominal or binary features), the
class representation (error coding, binarization of
classes), and the algorithm parameter settings (most
ML algorithms have various parameters that can be
tuned). Moreover,all these factors are known to in-
teract. E.g., (Banko and Brill, 2001) demonstrated
that for confusion set disambiguation, a prototypi-
cal disambiguation in context problem, the amount
of data used dominates the effect of the bias of the
learning method employed. The effect of training
data size on relevance of POS-tag information on top
of lexical information in relation finding was studied
in (van den Bosch and Buchholz, 2001). The pos-
itive effect of POS-tags disappears with sufficient
data. In (Daelemans et al., 2003) it is shown that
the joined optimization of feature selection and algo-
rithm parameter optimization significantly improves
accuracy compared to sequential optimization. Re-
sults from comparative experiments may therefore
not be reliable. I will suggest an approach to im-
prove methodology to improve reliability.

2.3 Engineering
Whereas comparative machine learning work can
potentially provide useful theoretical insights and re-
sults, there is a distinct feeling that it also leads to
an exaggerated attention for accuracy on the dataset.
Given the limited transfer and reusability of learned
modules when used in different domains, corpora
etc., this may not be very relevant. If a WSJ-trained
statistical parser looses 20% accuracy on a compa-
rable newspaper testcorpus, it doesn’t really matter
a lot that system A does 1% better than system B on
the default WSJ-corpus partition.
In order to win shared tasks and perform best on

some language processing task, various clever archi-

tectural and algorithmic variations have been pro-
posed, sometimes with the single goal of getting
higher accuracy (ensemble methods, classifier com-
bination in general, ...), sometimes with the goal of
solving manual annotation bottlenecks (active learn-
ing, co-training, semisupervised methods, ...).
This work is extremely valid from the point of

view of computational linguistics researchers look-
ing for any old method that can boost performance
and get benchmark natural language processing
problems or applications solved. But from the point
of view of a SIG on computational natural language
learning, this work is probably too much theory-
independent and doesn’t teach us enough about lan-
guage learning.
However, engineering work like this can suddenly

become theoretically important when motivated not
by a few percentage decimals more accuracy but
rather by (psycho)linguistic plausibility. For exam-
ple, the current trend in combining local classifiers
with holistic inference may be a cognitively relevant
principle rather than a neat engineering trick.

3 Conclusion
The field of computational natural language learn-
ing is in need of a renewed mission. In two par-
ent fields dominated by good engineering use of ma-
chine learning in language processing, and interest-
ing developments in computational language learn-
ing respectively, our field should focus more on the-
ory. More research should address the question what
we can learn about language from comparative ma-
chine learning experiments, and address or at least
acknowledge methodological problems.
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Abstract

Previous results have shown disappointing
performance when porting a parser trained
on one domain to another domain where
only a small amount of data is available.
We propose the use of data-defined ker-
nels as a way to exploit statistics from a
source domain while still specializing a
parser to a target domain. A probabilistic
model trained on the source domain (and
possibly also the target domain) is used to
define a kernel, which is then used in a
large margin classifier trained only on the
target domain. With a SVM classifier and
a neural network probabilistic model, this
method achieves improved performance
over the probabilistic model alone.

1 Introduction

In recent years, significant progress has been made
in the area of natural language parsing. This re-
search has focused mostly on the development of
statistical parsers trained on large annotated corpora,
in particular the Penn Treebank WSJ corpus (Marcus
et al., 1993). The best statistical parsers have shown
good results on this benchmark, but these statistical
parsers demonstrate far worse results when they are
applied to data from a different domain (Roark and
Bacchiani, 2003; Gildea, 2001; Ratnaparkhi, 1999).
This is an important problem because we cannot ex-
pect to have large annotated corpora available for
most domains. While identifying this problem, pre-
vious work has not proposed parsing methods which

are specifically designed for porting parsers. Instead
they propose methods for training a standard parser
with a large amount of out-of-domain data and a
small amount of in-domain data.

In this paper, we propose using data-defined ker-
nels and large margin methods to specifically ad-
dress porting a parser to a new domain. Data-defined
kernels are used to construct a new parser which ex-
ploits information from a parser trained on a large
out-of-domain corpus. Large margin methods are
used to train this parser to optimize performance on
a small in-domain corpus.

Large margin methods have demonstrated sub-
stantial success in applications to many machine
learning problems, because they optimize a mea-
sure which is directly related to the expected test-
ing performance. They achieve especially good per-
formance compared to other classifiers when only
a small amount of training data is available. Most
of the large margin methods need the definition of a
kernel. Work on kernels for natural language parsing
has been mostly focused on the definition of kernels
over parse trees (e.g. (Collins and Duffy, 2002)),
which are chosen on the basis of domain knowledge.
In (Henderson and Titov, 2005) it was proposed to
apply a class of kernels derived from probabilistic
models to the natural language parsing problem.

In (Henderson and Titov, 2005), the kernel is con-
structed using the parameters of a trained proba-
bilistic model. This type of kernel is called a data-
defined kernel, because the kernel incorporates in-
formation from the data used to train the probabilis-
tic model. We propose to exploit this property to
transfer information from a large corpus to a statis-
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tical parser for a different domain. Specifically, we
propose to train a statistical parser on data including
the large corpus, and to derive the kernel from this
trained model. Then this derived kernel is used in a
large margin classifier trained on the small amount
of training data available for the target domain.

In our experiments, we consider two different
scenarios for porting parsers. The first scenario is
the pure porting case, which we call “transferring”.
Here we only require a probabilistic model trained
on the large corpus. This model is then reparameter-
ized so as to extend the vocabulary to better suit the
target domain. The kernel is derived from this repa-
rameterized model. The second scenario is a mixture
of parser training and porting, which we call “focus-
ing”. Here we train a probabilistic model on both
the large corpus and the target corpus. The kernel
is derived from this trained model. In both scenar-
ios, the kernel is used in a SVM classifier (Tsochan-
taridis et al., 2004) trained on a small amount of data
from the target domain. This classifier is trained to
rerank the candidate parses selected by the associ-
ated probabilistic model. We use the Penn Treebank
Wall Street Journal corpus as the large corpus and
individual sections of the Brown corpus as the tar-
get corpora (Marcus et al., 1993). The probabilis-
tic model is a neural network statistical parser (Hen-
derson, 2003), and the data-defined kernel is a TOP
reranking kernel (Henderson and Titov, 2005).

With both scenarios, the resulting parser demon-
strates improved accuracy on the target domain over
the probabilistic model alone. In additional experi-
ments, we evaluate the hypothesis that the primary
issue for porting parsers between domains is differ-
ences in the distributions of words in structures, and
not in the distributions of the structures themselves.
We partition the parameters of the probability model
into those which define the distributions of words
and those that only involve structural decisions, and
derive separate kernels for these two subsets of pa-
rameters. The former model achieves virtually iden-
tical accuracy to the full model, but the later model
does worse, confirming the hypothesis.

2 Data-Defined Kernels for Parsing

Previous work has shown how data-defined kernels
can be applied to the parsing task (Henderson and

Titov, 2005). Given the trained parameters of a prob-
abilistic model of parsing, the method defines a ker-
nel over sentence-tree pairs, which is then used to
rerank a list of candidate parses.

In this paper, we focus on the TOP reranking ker-
nel defined in (Henderson and Titov, 2005), which
are closely related to Fisher kernels. The rerank-
ing task is defined as selecting a parse tree from the
list of candidate trees (y1, . . . , ys) suggested by a
probabilistic model P (x, y|θ̂), where θ̂ is a vector of
model parameters learned during training the prob-
abilistic model. The motivation for the TOP rerank-
ing kernel is given in (Henderson and Titov, 2005),
but for completeness we note that the its feature ex-
tractor is given by:

φ
θ̂
(x, yk) =

(v(x, yk, θ̂),
∂v(x,yk,θ̂)

∂θ1
, . . . ,

∂v(x,yk,θ̂)
∂θl

),
(1)

where v(x, yk, θ̂) = log P (x, yk|θ̂) −
log

∑
t6=k P (x, yt|θ̂). The first feature reflects

the score given to (x, yk) by the probabilistic
model (relative to the other candidates for x), and
the remaining features reflect how changing the
parameters of the probabilistic model would change
this score for (x, yk).

The parameters θ̂ used in this feature extractor do
not have to be exactly the same as the parameters
trained in the probabilistic model. In general, we
can first reparameterize the probabilistic model, pro-
ducing a new model which defines exactly the same
probability distribution as the old model, but with a
different set of adjustable parameters. For example,
we may want to freeze the values of some parame-
ters (thereby removing them from θ̂), or split some
parameters into multiple cases (thereby duplicating
their values in θ̂). This flexibility allows the features
used in the kernel method to be different from those
used in training the probabilistic model. This can be
useful for computational reasons, or when the kernel
method is not solving exactly the same problem as
the probabilistic model was trained for.

3 Porting with Data-Defined Kernels

In this paper, we consider porting a parser trained on
a large amount of annotated data to a different do-
main where only a small amount of annotated data
is available. We validate our method in two different
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scenarios, transferring and focusing. Also we verify
the hypothesis that addressing differences between
the vocabularies of domains is more important than
addressing differences between their syntactic struc-
tures.

3.1 Transferring to a Different Domain

In the transferring scenario, we are given just a prob-
abilistic model which has been trained on a large
corpus from a source domain. The large corpus is
not available during porting, and the small corpus
for the target domain is not available during training
of the probabilistic model. This is the case of pure
parser porting, because it only requires the source
domain parser, not the source domain corpus. Be-
sides this theoretical significance, this scenario has
the advantage that we only need to train a single
probabilistic parser, thereby saving on training time
and removing the need for access to the large cor-
pus once this training is done. Then any number of
parsers for new domains can be trained, using only
the small amount of annotated data available for the
new domain.

Our proposed porting method first constructs a
data-defined kernel using the parameters of the
trained probabilistic model. A large margin clas-
sifier with this kernel is then trained to rerank the
top candidate parses produced by the probabilistic
model. Only the small target corpus is used during
training of this classifier. The resulting parser con-
sists of the original parser plus a very computation-
ally cheap procedure to rerank its best parses.

Whereas training of standard large margin meth-
ods, like SVMs, isn’t feasible on a large corpus, it
is quite tractable to train them on a small target cor-
pus.1 Also, the choice of the large margin classifier
is motivated by their good generalization properties
on small datasets, on which accurate probabilistic
models are usually difficult to learn.

We hypothesize that differences in vocabulary
across domains is one of the main difficulties with
parser portability. To address this problem, we pro-
pose constructing the kernel from a probabilistic
model which has been reparameterized to better suit

1In (Shen and Joshi, 2003) it was proposed to use an en-
semble of SVMs trained the Wall Street Journal corpus, but we
believe that the generalization performance of the resulting clas-
sifier is compromised in this approach.

the target domain vocabulary. As in other lexicalized
statistical parsers, the probabilistic model we use
treats words which are not frequent enough in the
training set as ‘unknown’ words (Henderson, 2003).
Thus there are no parameters in this model which
are specifically for these words. When we consider
a different target domain, a substantial proportion
of the words in the target domain are treated as un-
known words, which makes the parser only weakly
lexicalized for this domain.

To address this problem, we reparameterize the
probability model so as to add specific parameters
for the words which have high enough frequency
in the target domain training set but are treated as
unknown words by the original probabilistic model.
These new parameters all have the same values as
their associated unknown words, so the probability
distribution specified by the model does not change.
However, when a kernel is defined with this repa-
rameterized model, the kernel’s feature extractor in-
cludes features specific to these words, so the train-
ing of a large margin classifier can exploit differ-
ences between these words in the target domain. Ex-
panding the vocabulary in this way is also justified
for computational reasons; the speed of the proba-
bilistic model we use is greatly effected by vocabu-
lary size, but the large-margin method is not.

3.2 Focusing on a Subdomain

In the focusing scenario, we are given the large cor-
pus from the source domain. We may also be given
a parsing model, but as with other approaches to this
problem we simply throw this parsing model away
and train a new one on the combination of the source
and target domain data. Previous work (Roark and
Bacchiani, 2003) has shown that better accuracy can
be achieved by finding the optimal re-weighting be-
tween these two datasets, but this issue is orthogonal
to our method, so we only consider equal weighting.
After this training phase, we still want to optimize
the parser for only the target domain.

Once we have the trained parsing model, our pro-
posed porting method proceeds the same way in this
scenario as in transferring. However, because the
original training set already includes the vocabulary
from the target domain, the reparameterization ap-
proach defined in the preceding section is not nec-
essary so we do not perform it. This reparameter-
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ization could be applied here, thereby allowing us
to use a statistical parser with a smaller vocabulary,
which can be more computationally efficient both
during training and testing. However, we would ex-
pect better accuracy of the combined system if the
same large vocabulary is used both by the proba-
bilistic parser and the kernel method.

3.3 Vocabulary versus Structure

It is commonly believed that differences in vo-
cabulary distributions between domains effects the
ported parser performance more significantly than
the differences in syntactic structure distributions.
We would like to test this hypothesis in our frame-
work. The probabilistic model (Henderson, 2003)
allows us to distinguish between those parameters
responsible for the distributions of individual vocab-
ulary items, and those parameters responsible for the
distributions of structural decisions, as described in
more details in section 4.2. We train two additional
models, one which uses a kernel defined in terms of
only vocabulary parameters, and one which uses a
kernel defined in terms of only structure parameters.
By comparing the performance of these models and
the model with the combined kernel, we can draw
conclusion on the relative importance of vocabulary
and syntactic structures for parser portability.

4 An Application to a Neural Network
Statistical Parser

Data-defined kernels can be applied to any kind
of parameterized probabilistic model, but they are
particularly interesting for latent variable models.
Without latent variables (e.g. for PCFG models), the
features of the data-defined kernel (except for the
first feature) are a function of the counts used to esti-
mate the model. For a PCFG, each such feature is a
function of one rule’s counts, where the counts from
different candidates are weighted using the probabil-
ity estimates from the model. With latent variables,
the meaning of the variable (not just its value) is
learned from the data, and the associated features of
the data-defined kernel capture this induced mean-
ing. There has been much recent work on latent
variable models (e.g. (Matsuzaki et al., 2005; Koo
and Collins, 2005)). We choose to use an earlier
neural network based probabilistic model of pars-

ing (Henderson, 2003), whose hidden units can be
viewed as approximations to latent variables. This
parsing model is also a good candidate for our exper-
iments because it achieves state-of-the-art results on
the standard Wall Street Journal (WSJ) parsing prob-
lem (Henderson, 2003), and data-defined kernels de-
rived from this parsing model have recently been
used with the Voted Perceptron algorithm on the
WSJ parsing task, achieving a significant improve-
ment in accuracy over the neural network parser
alone (Henderson and Titov, 2005).

4.1 The Probabilistic Model of Parsing

The probabilistic model of parsing in (Henderson,
2003) has two levels of parameterization. The first
level of parameterization is in terms of a history-
based generative probability model. These param-
eters are estimated using a neural network, the
weights of which form the second level of param-
eterization. This approach allows the probability
model to have an infinite number of parameters; the
neural network only estimates the bounded number
of parameters which are relevant to a given partial
parse. We define our kernels in terms of the second
level of parameterization (the network weights).

A history-based model of parsing first defines a
one-to-one mapping from parse trees to sequences
of parser decisions, d1,..., dm (i.e. derivations). Hen-
derson (2003) uses a form of left-corner parsing
strategy, and the decisions include generating the
words of the sentence (i.e. it is generative). The
probability of a sequence P (d1,..., dm) is then de-
composed into the multiplication of the probabilities
of each parser decision conditioned on its history of
previous decisions ΠiP (di|d1,..., di−1).

4.2 Deriving the Kernel

The complete set of neural network weights isn’t
used to define the kernel, but instead reparameteriza-
tion is applied to define a third level of parameteriza-
tion which only includes the network’s output layer
weights. As suggested in (Henderson and Titov,
2005) use of the complete set of weights doesn’t
lead to any improvement of the resulting reranker
and makes the reranker training more computation-
ally expensive.

Furthermore, to assess the contribution of vocab-
ulary and syntactic structure differences (see sec-
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tion 3.3), we divide the set of the parameters into vo-
cabulary parameters and structural parameters. We
consider the parameters used in the estimation of the
probability of the next word given the history repre-
sentation as vocabulary parameters, and the param-
eters used in the estimation of structural decision
probabilities as structural parameters. We define the
kernel with structural features as using only struc-
tural parameters, and the kernel with vocabulary fea-
tures as using only vocabulary parameters.

5 Experimental Results

We used the Penn Treebank WSJ corpus and the
Brown corpus to evaluate our approach. We used
the standard division of the WSJ corpus into train-
ing, validation, and testing sets. In the Brown corpus
we ran separate experiments for sections F (informa-
tive prose: popular lore), K (imaginative prose: gen-
eral fiction), N (imaginative prose: adventure and
western fiction), and P (imaginative prose: romance
and love story). These sections were selected be-
cause they are sufficiently large, and because they
appeared to be maximally different from each other
and from WSJ text. In each Brown corpus section,
we selected every third sentence for testing. From
the remaining sentences, we used 1 sentence out of
20 for the validation set, and the remainder for train-
ing. The resulting datasets sizes are presented in ta-
ble 1.

For the large margin classifier, we used the SVM-
Struct (Tsochantaridis et al., 2004) implementation
of SVM, which rescales the margin with F1 mea-
sure of bracketed constituents (see (Tsochantaridis
et al., 2004) for details). Linear slack penalty was
employed.2

5.1 Experiments on Transferring across
Domains

To evaluate the pure porting scenario (transferring),
described in section 3.1, we trained the SSN pars-
ing model on the WSJ corpus. For each tag, there is
an unknown-word vocabulary item which is used for
all those words not sufficiently frequent with that tag
to be included individually in the vocabulary. In the

2Training of the SVM takes about 3 hours on a standard
desktop PC. Running the SVM is very fast, once the probabilis-
tic model has finished computing the probabilities needed to
select the candidate parses.

testing training validation
WSJ 2,416 39,832 1,346

(54,268) (910,196) (31,507)
Brown F 1,054 2,005 105

(23,722) (44,928) (2,300)
Brown K 1,293 2,459 129

(21,215) (39,823) (1,971)
Brown N 1,471 2,797 137

(22,142) (42,071) (2,025)
Brown P 1,314 2,503 125

(21,763) (41,112) (1,943)

Table 1: Number of sentences (words) for each
dataset.

vocabulary of the parser, we included the unknown-
word items and the words which occurred in the
training set at least 20 times. This led to the vo-
cabulary of 4,215 tag-word pairs.

We derived the kernel from the trained model for
each target section (F, K, N, P) using reparameteriza-
tion discussed in section 3.1: we included in the vo-
cabulary all the words which occurred at least twice
in the training set of the corresponding section. This
approach led to a smaller vocabulary than that of the
initial parser but specifically tied to the target do-
main (3,613, 2,789, 2,820 and 2,553 tag-word pairs
for sections F, K, N and P respectively). There is no
sense in including the words from the WSJ which do
not appear in the Brown section training set because
the classifier won’t be able to learn the correspond-
ing components of its decision vector. The results
for the original probabilistic model (SSN-WSJ) and
for the kernel method (TOP-Transfer) on the testing
set of each section are presented in table 2.3

To evaluate the relative contribution of our porting
technique versus the use of the TOP kernel alone,
we also used this TOP kernel to train an SVM on the
WSJ corpus. We trained the SVM on data from the
development set and section 0, so that the size of this
dataset (3,267 sentences) was about the same as for
each Brown section.4 This gave us a “TOP-WSJ”

3All our results are computed with the evalb program fol-
lowing the standard criteria in (Collins, 1999).

4We think that using an equivalently sized dataset provides
a fair test of the contribution of the TOP kernel alone. It would
also not be computationally tractable to train an SVM on the full
WSJ dataset without using different training techniques, which
would then compromise the comparison.
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model, which we tested on each of the four Brown
sections. In each case, the TOP-WSJ model did
worse than the original SSN-WSJ model, as shown
in table 2. This makes it clear that we are getting no
improvement from simply using a TOP kernel alone
or simply using more data, and all our improvement
is from the proposed porting method.

5.2 Experiments on Focusing on a Subdomain

To perform the experiments on the approach sug-
gested in section 3.2 (focusing), we trained the SSN
parser on the WSJ training set joined with the train-
ing set of the corresponding section. We included
in the vocabulary only words which appeared in the
joint training set at least 20 times. Resulting vocab-
ularies comprised 4,386, 4,365, 4,367 and 4,348 for
sections F, K, N and P, respectively.5 Experiments
were done in the same way as for the parser transfer-
ring approach, but reparameterization was not per-
formed. Standard measures of accuracy for the orig-
inal probabilistic model (SSN-WSJ+Br) and the ker-
nel method (TOP-Focus) are also shown in table 2.

For the sake of comparison, we also trained the
SSN parser on only training data from one of the
Brown corpus sections (section P), producing a
“SSN-Brown” model. This model achieved an F1

measure of only 81.0% for the P section testing
set, which is worse than all the other models and
is 3% lower than our best results on this testing set
(TOP-Focus). This result underlines the need to port
parsers from domains in which there are large anno-
tated datasets.

5.3 Experiments Comparing Vocabulary to
Structure

We conducted the same set of experiments with the
kernel with vocabulary features (TOP-Voc-Transfer
and TOP-Voc-Focus) and with the kernel with the
structural features (TOP-Str-Transfer and TOP-Str-
Focus). Average results for classifiers with these
kernels, as well as for the original kernel and the
baseline, are presented in table 3.

5We would expect some improvement if we used a smaller
threshold on the target domain, but preliminary results suggest
that this improvement would be small.

section LR LP Fβ=1

TOP-WSJ F 83.9 84.9 84.4
SSN-WSJ F 84.4 85.2 84.8
TOP-Transfer F 84.5 85.6 85.0
SSN-WSJ+Br F 84.2 85.2 84.7
TOP-Focus F 84.6 86.0 85.3

TOP-WSJ K 81.8 82.3 82.1
SSN-WSJ K 82.2 82.6 82.4
TOP-Transfer K 82.4 83.5 83.0
SSN-WSJ+Br K 83.1 84.2 83.6
TOP-Focus K 83.6 85.0 84.3

TOP-WSJ N 83.3 84.5 83.9
SSN-WSJ N 83.5 84.6 84.1
TOP-Transfer N 84.3 85.7 85.0
SSN-WSJ+Br N 85.0 86.5 85.7
TOP-Focus N 85.0 86.7 85.8

TOP-WSJ P 81.3 82.1 81.7
SSN-WSJ P 82.3 83.0 82.6
TOP-Transfer P 82.7 83.8 83.2
SSN-WSJ+Br P 83.1 84.3 83.7
TOP-Focus P 83.3 84.8 84.0

Table 2: Percentage labeled constituent recall (LR),
precision (LP), and a combination of both (Fβ=1) on
the individual test sets.

5.4 Discussion of Results

For the experiments which directly test the useful-
ness of our proposed porting technique (SSN-WSJ
versus TOP-Transfer), our technique demonstrated
improvement for each of the Brown sections (ta-
ble 2), and this improvement was significant for
three out of four of the sections (K, N, and P).6 This
demonstrates that data-defined kernels are an effec-
tive way to port parsers to a new domain.

For the experiments which combine training a
new probability model with our porting technique
(SSN-WSJ+Br versus TOP-Focus), our technique
still demonstrated improvement over training alone.
There was improvement for each of the Brown sec-
tions, and this improvement was significant for two

6We measured significance in F1 measure at the 5% level
with the randomized significance test of (Yeh, 2000). We think
that the reason the improvement on section F was only signif-
icant at the 10% level was that the baseline model (SSN-WSJ)
was particularly lucky, as indicated by the fact that it did even
better than the model trained on the combination of datasets
(SSN-WSJ+Br).
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LR LP Fβ=1

SSN-WSJ 83.1 83.8 83.5
TOP-Transfer 83.5 84.7 84.1
TOP-Voc-Transfer 83.5 84.7 84.1
TOP-Str-Transfer 83.1 84.3 83.7

SSN-WSJ+Br 83.8 85.0 84.4
TOP-Focus 84.1 85.6 84.9
TOP-Voc-Focus 84.1 85.6 84.8
TOP-Str-Focus 83.9 85.4 84.7

Table 3: Average accuracy of the models on chapters
F, K, N and P of the Brown corpus.

out of four of the sections (F and K). This demon-
strates that, even when the probability model is well
suited to the target domain, there is still room for
improvement from using data-defined kernels to op-
timize the parser specifically to the target domain
without losing information about the source domain.

One potential criticism of these conclusions is that
the improvement could be the result of reranking
with the TOP kernel, and have nothing to do with
porting. The lack of an improvement in the TOP-
WSJ results discussed in section 5.1 clearly shows
that this cannot be the explanation. The opposite
criticism is that the improvement could be the result
of optimizing to the target domain alone. The poor
performance of the SSN-Brown model discussed in
section 5.2 makes it clear that this also cannot be
the explanation. Therefore reranking with data de-
fined kernels must be both effective at preserving
information about the source domain and effective
at specializing to the target domain.

The experiments which test the hypothesis that
differences in vocabulary distributions are more im-
portant than difference in syntactic structure distri-
butions confirm this belief. Results for the classi-
fier which uses the kernel with only vocabulary fea-
tures are better than those for structural features in
each of the four sections with both the Transfer and
Focus scenarios. In addition, comparing the results
of TOP-Transfer with TOP-Voc-Transfer and TOP-
Focus with TOP-Voc-Focus, we can see that adding
structural features in TOP-Focus and TOP-Transfer
leads to virtually no improvement. This suggest that
differences in vocabulary distributions are the only
issue we need to address, although this result could
possibly also be an indication that our method did

not sufficiently exploit structural differences.
In this paper we concentrate on the situation

where a parser is needed for a restricted target do-
main, for which only a small amount of data is avail-
able. We believe that this is the task which is of
greatest practical interest. For this reason we do not
run experiments on the task considered in (Gildea,
2001) and (Roark and Bacchiani, 2003), where they
are porting from the restricted domain of the WSJ
corpus to the more varied domain of the Brown cor-
pus as a whole. However, to help emphasize the
success of our proposed porting method, it is rele-
vant to show that even our baseline models are per-
forming better than this previous work on parser
portability. We trained and tested the SSN parser in
their “de-focusing” scenario using the same datasets
as (Roark and Bacchiani, 2003). When trained
only on the WSJ data (analogously to the SSN-
WSJ baseline for TOP-Transfer) it achieves results
of 82.9%/83.4% LR/LP and 83.2% F1, and when
trained on data from both domains (analogously
to the SSN-WSJ+Br baselines for TOP-Focus) it
achieves results of 86.3%/87.6% LR/LP and 87.0%
F1. These results represent a 2.2% and 1.3% in-
crease in F1 over the best previous results, respec-
tively (see the discussion of (Roark and Bacchiani,
2003) below).

6 Related Work

Most research in the field of parsing has focused on
the Wall Street Journal corpus. Several researchers
have addressed the portability of these WSJ parsers
to other domains, but mostly without addressing the
issue of how a parser can be designed specifically
for porting to another domain. Unfortunately, no di-
rect empirical comparison is possible between our
results and results with other parsers, because there
is no standard portability benchmark to date where a
small amount of data from a target domain is used.

(Ratnaparkhi, 1999) performed portability exper-
iments with a Maximum Entropy parser and demon-
strated that the parser trained on WSJ achieves far
worse results on the Brown corpus sections. Adding
a small amount of data from the target domain im-
proves the results, but accuracy is still much lower
than the results on the WSJ. They reported results
when their parser was trained on the WSJ training
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set plus a portion of 2,000 sentences from a Brown
corpus section. They achieved 80.9%/80.3% re-
call/precision for section K, and 80.6%/81.3% for
section N.7 Our analogous method (TOP-Focus)
achieved much better accuracy (3.7% and 4.9% bet-
ter F1, respectively).

In addition to portability experiments with the
parsing model of (Collins, 1997), (Gildea, 2001)
provided a comprehensive analysis of parser porta-
bility. On the basis of this analysis, a tech-
nique for parameter pruning was proposed leading
to a significant reduction in the model size with-
out a large decrease of accuracy. Gildea (2001)
only reports results on sentences of 40 or less
words on all the Brown corpus sections combined,
for which he reports 80.3%/81.0% recall/precision
when training only on data from the WSJ corpus,
and 83.9%/84.8% when training on data from the
WSJ corpus and all sections of the Brown corpus.

(Roark and Bacchiani, 2003) performed experi-
ments on supervised and unsupervised PCFG adap-
tation to the target domain. They propose to use
the statistics from a source domain to define pri-
ors over weights. However, in their experiments
they used only trivial sub-cases of this approach,
namely, count merging and model interpolation.
They achieved very good improvement over their
baseline and over (Gildea, 2001), but the absolute
accuracies were still relatively low (as discussed
above). They report results with combined Brown
data (on sentences of 100 words or less), achieving
81.3%/80.9% when training only on the WSJ cor-
pus and 85.4%/85.9% with their best method using
the data from both domains.

7 Conclusions

This paper proposes a novel technique for improv-
ing parser portability, applying parse reranking with
data-defined kernels. First a probabilistic model of
parsing is trained on all the available data, including
a large set of data from the source domain. This
model is used to define a kernel over parse trees.
Then this kernel is used in a large margin classifier

7The sizes of Brown sections reported in (Ratnaparkhi,
1999) do not match the sizes of sections distributed in the Penn
Treebank 3.0 package, so we couldn’t replicate their split. We
suspect that a preliminary version of the corpus was used for
their experiments.

trained on a small set of data only from the target do-
main. This classifier is used to rerank the top parses
produced by the probabilistic model on the target do-
main. Experiments with a neural network statistical
parser demonstrate that this approach leads to im-
proved parser accuracy on the target domain, with-
out any significant increase in computational cost.
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Abstract

While most work on parsing with PCFGs
has focused on local correlations between
tree configurations, we attempt to model
non-local correlations using a finite mix-
ture of PCFGs. A mixture grammar fit
with the EM algorithm shows improve-
ment over a single PCFG, both in parsing
accuracy and in test data likelihood. We
argue that this improvement comes from
the learning of specialized grammars that
capture non-local correlations.

1 Introduction

The probabilistic context-free grammar (PCFG) for-
malism is the basis of most modern statistical
parsers. The symbols in a PCFG encode context-
freedom assumptions about statistical dependencies
in the derivations of sentences, and the relative con-
ditional probabilities of the grammar rules induce
scores on trees. Compared to a basic treebank
grammar (Charniak, 1996), the grammars of high-
accuracy parsers weaken independence assumptions
by splitting grammar symbols and rules with ei-
ther lexical (Charniak, 2000; Collins, 1999) or non-
lexical (Klein and Manning, 2003; Matsuzaki et al.,
2005) conditioning information. While such split-
ting, or conditioning, can cause problems for sta-
tistical estimation, it can dramatically improve the
accuracy of a parser.

However, the configurations exploited in PCFG
parsers are quite local: rules’ probabilities may de-
pend on parents or head words, but do not depend
on arbitrarily distant tree configurations. For exam-
ple, it is generally not modeled that if one quantifier

phrase (QP in the Penn Treebank) appears in a sen-
tence, the likelihood of finding another QP in that
same sentence is greatly increased. This kind of ef-
fect is neither surprising nor unknown – for exam-
ple, Bock and Loebell (1990) show experimentally
that human language generation demonstrates prim-
ing effects. The mediating variables can not only in-
clude priming effects but also genre or stylistic con-
ventions, as well as many other factors which are not
adequately modeled by local phrase structure.

A reasonable way to add a latent variable to a
generative model is to use a mixture of estimators,
in this case a mixture of PCFGs (see Section 3).
The general mixture of estimators approach was first
suggested in the statistics literature by Titterington
et al. (1962) and has since been adopted in machine
learning (Ghahramani and Jordan, 1994). In a mix-
ture approach, we have a new global variable on
which all PCFG productions for a given sentence
can be conditioned. In this paper, we experiment
with a finite mixture of PCFGs. This is similar to the
latent nonterminals used in Matsuzaki et al. (2005),
but because the latent variable we use is global, our
approach is more oriented toward learning non-local
structure. We demonstrate that a mixture fit with the
EM algorithm gives improved parsing accuracy and
test data likelihood. We then investigate what is and
is not being learned by the latent mixture variable.
While mixture components are difficult to interpret,
we demonstrate that the patterns learned are better
than random splits.

2 Empirical Motivation

It is commonly accepted that the context freedom
assumptions underlying the PCFG model are too
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Figure 1: Self-triggering: QP→ # CD CD. If one British financial occurs in the sentence, the probability of
seeing a second one in the same sentence is highly inreased. There is also a similar, but weaker, correlation
for the American financial ($). On the right hand side we show the ten rules whose likelihoods are most
increased in a sentence containing this rule.

strong and that weakening them results in better
models of language (Johnson, 1998; Gildea, 2001;
Klein and Manning, 2003). In particular, certain
grammar productions often cooccur with other pro-
ductions, which may be either near or distant in the
parse tree. In general, there exist three types of cor-
relations: (i) local (e.g. parent-child), (ii) non-local,
and (iii) self correlations (which may be local or
non-local).

In order to quantify the strength of a correlation,
we use a likelihood ratio (LR). For two rules X→ α

and Y→ β, we compute

LR(X → α, Y → β) =
P(α, β|X,Y )

P(α|X,Y )P(β|X,Y )

This measures how much more often the rules oc-
cur together than they would in the case of indepen-
dence. For rules that are correlated, this score will
be high (≫ 1); if the rules are independent, it will
be around 1, and if they are anti-correlated, it will be
near 0.

Among the correlations present in the Penn Tree-
bank, the local correlations are the strongest ones;
they contribute 65% of the rule pairs with LR scores
above 90 and 85% of those with scores over 200.
Non-local and self correlations are in general com-
mon but weaker, with non-local correlations con-
tributing approximately 85% of all correlations1. By
adding a latent variable conditioning all productions,

1Quantifying the amount of non-local correlation is prob-
lematic; most pairs of cooccuring rules are non-local and will,
due to small sample effects, have LR ratios greater than 1 even
if they were truly independent in the limit.

we aim to capture some of this interdependence be-
tween rules.

Correlations at short distances have been cap-
tured effectively in previous work (Johnson, 1998;
Klein and Manning, 2003); vertical markovization
(annotating nonterminals with their ancestor sym-
bols) does this by simply producing a different dis-
tribution for each set of ancestors. This added con-
text leads to substantial improvement in parsing ac-
curacy. With local correlations already well cap-
tured, our main motivation for introducing a mix-
ture of grammars is to capture long-range rule cooc-
currences, something that to our knowledge has not
been done successfully in the past.

As an example, the rule QP→ # CD CD, rep-
resenting a quantity of British currency, cooc-
curs with itself 132 times as often as if oc-
currences were independent. These cooccur-
rences appear in cases such as seen in Figure 1.
Similarly, the rules VP→ VBD NP PP , S and
VP→ VBG NP PP PP cooccur in the Penn Tree-
bank 100 times as often as we would expect if they
were independent. They appear in sentences of a
very particular form, telling of an action and then
giving detail about it; an example can be seen in Fig-
ure 2.

3 Mixtures of PCFGs

In a probabilistic context-free grammar (PCFG),
each rule X→ α is associated with a conditional
probability P(α|X) (Manning and Schütze, 1999).
Together, these rules induce a distribution over trees
P(T ). A mixture of PCFGs enriches the basic model
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Figure 2: Tree fragments demonstrating coocurrences. (a) and (c) Repeated formulaic structure in one
grammar: rules VP→ VBD NP PP , S and VP→ VBG NP PP PP and rules VP→ VBP RB ADJP
and VP→ VBP ADVP PP. (b) Sibling effects, though not parallel structure, rules: NX→ NNS and
NX → NN NNS. (d) A special structure for footnotes has rules ROOT→ X and X→ SYM coocurring
with high probability.

by allowing for multiple grammars,Gi, which we
call individual grammars, as opposed to a single
grammar. Without loss of generality, we can as-
sume that the individual grammars share the same
set of rules. Therefore, each original rule X→ α

is now associated with a vector of probabilities,
P(α|X, i). If, in addition, the individual grammars
are assigned prior probabilitiesP(i), then the entire
mixture induces a joint distribution overderivations
P(T, i) = P(i)P(T |i) from which we recover a dis-
tribution over trees by summing over the grammar
indexi.

As a generative derivation process, we can think
of this in two ways. First, we can imagineG to be
a latent variable on which all productions are con-
ditioned. This view emphasizes that any otherwise
unmodeled variable or variables can be captured by
the latent variableG. Second, we can imagine se-
lecting an individual grammarGi and then gener-
ating a sentence using that grammar. This view is
associated with the expectation that there are multi-
ple grammars for a language, perhaps representing
different genres or styles. Formally, of course, the
two views are the same.

3.1 Hierarchical Estimation

So far, there is nothing in the formal mixture model
to say that rule probabilities in one component have
any relation to those in other components. However,
we have a strong intuition that many rules, such as
NP→ DT NN, will be common in all mixture com-
ponents. Moreover, we would like to pool our data
across components when appropriate to obtain more
reliable estimators.

This can be accomplished with a hierarchical es-
timator for the rule probabilities. We introduce a
shared grammarGs. Associated to each rewrite is
now a latent variableL = {S, I} which indicates
whether the used rule was derived from the shared
grammarGs or one of the individual grammarsGi:

P(α|X, i) =

λP(α|X, i, ℓ= I) + (1− λ)P(α|X, i, ℓ=S),

where λ ≡ P (ℓ = I) is the probability of
choosing the individual grammar and can also
be viewed as a mixing coefficient. Note that
P(α|X, i, ℓ=S) = P(α|X, ℓ=S), since the shared
grammar is the same for all individual grammars.
This kind of hierarchical estimation is analogous to
that used in hierarchical mixtures of naive-Bayes for
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text categorization (McCallum et al., 1998).
The hierarchical estimator is most easily de-

scribed as a generative model. First, we choose a
individual grammarGi. Then, for each nonterminal,
we select a level from the back-off hierarchy gram-
mar: the individual grammarGi with probabilityλ,
and the shared grammarGs with probability1 − λ.
Finally, we select a rewrite from the chosen level. To
emphasize: the derivation of a phrase-structure tree
in a hierarchically-estimated mixture of PCFGs in-
volves two kinds of hidden variables: the grammar
G used for each sentence, and the levelL used at
each tree node. These hidden variables will impact
both learning and inference in this model.

3.2 Inference: Parsing

Parsing involves inference for a given sentenceS.
One would generally like to calculate themost prob-
able parse– that is, the treeT which has the high-
est probability P(T |S) ∝

∑
i P(i)P(T |i). How-

ever, this is difficult for mixture models. For a single
grammar we have:

P(T, i) = P(i)
∏

X→α∈T

P(α|X, i).

This score decomposes into a product and it is sim-
ple to construct a dynamic programming algorithm
to find the optimalT (Baker, 1979). However, for a
mixture of grammars we need to sum over the indi-
vidual grammars:

∑

i

P(T, i) =
∑

i

P(i)
∏

X→α∈T

P(α|X, i).

Because of the outer sum, this expression unfor-
tunately does not decompose into a product over
scores of subparts. In particular, a tree which maxi-
mizes the sum need not be a top tree for any single
component.

As is true for many other grammar formalisms in
which there is a derivation / parse distinction, an al-
ternative to finding the most probable parse is to find
the most probable derivation(Vijay-Shankar and
Joshi, 1985; Bod, 1992; Steedman, 2000). Instead
of finding the treeT which maximizes

∑
i P(T, i),

we find both the treeT and componenti which max-
imize P(T, i). The most probable derivation can be
found by simply doing standard PCFG parsing once
for each component, then comparing the resulting
trees’ likelihoods.

3.3 Learning: Training

Training a mixture of PCFGs from a treebank is an
incomplete data problem. We need to decide which
individual grammar gave rise to a given observed
tree. Moreover, we need to select a generation path
(individual grammar or shared grammar) for each
rule in the tree. To learn estimate parameters, we
can use a standard Expectation-Maximization (EM)
approach.

In the E-step, we compute the posterior distribu-
tions of the latent variables, which are in this case
both the componentG of each sentence and the hier-
archy levelL of each rewrite. Note that, unlike dur-
ing parsing, there is no uncertainty over the actual
rules used, so the E-step does not require summing
over possible trees. Specifically, for the variableG

we have

P(i|T ) =
P(T, i)∑
j P(T, j)

.

For the hierarchy levelL we can write

P(ℓ = I|X → α, i, T ) =

λP(α|X, ℓ= I)

λP(α|X, i, ℓ= I) + (1− λ)P(α|X, ℓ=S)
,

where we slightly abuse notation since the rule
X → α can occur multiple times in a tree T.

In the M-step, we find the maximum-likelihood
model parameters given these posterior assign-
ments; i.e., we find the best grammars given the way
the training data’s rules are distributed between in-
dividual and shared grammars. This is done exactly
as in the standard single-grammar model using rela-
tive expected frequencies. The updates are shown in
Figure 3.3, whereT = {T1, T2, . . . } is the training
set.

We initialize the algorithm by setting the assign-
ments from sentences to grammars to be uniform
between all the individual grammars, with a small
random perturbation to break symmetry.

4 Results

We ran our experiments on the Wall Street Jour-
nal (WSJ) portion of the Penn Treebank using the
standard setup: We trained on sections 2 to 21,
and we used section 22 as a validation set for tun-
ing model hyperparameters. Results are reported
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P(i|Tk)P(ℓ = I|Tk, i,X → α′)

Figure 3: Parameter updates. The shared grammar’s parameters are re-estimated in the same manner.

on all sentences of 40 words or less from section
23. We use a markovized grammar which was an-
notated with parent and sibling information as a
baseline (see Section 4.2). Unsmoothed maximum-
likelihood estimates were used for rule probabili-
ties as in Charniak (1996). For the tagging proba-
bilities, we used maximum-likelihood estimates for
P(tag|word). Add-one smoothing was applied to
unknown and rare (seen ten times or less during
training) words before inverting those estimates to
give P(word|tag). Parsing was done with a sim-
ple Java implementation of an agenda-based chart
parser.

4.1 Parsing Accuracy

The EM algorithm is guaranteed to continuously in-
crease the likelihood on the training set until conver-
gence to a local maximum. However, the likelihood
on unseen data will start decreasing after a number
of iterations, due to overfitting. This is demonstrated
in Figure 4. We use the likelihood on the validation
set to stop training before overfitting occurs.

In order to evaluate the performance of our model,
we trained mixture grammars with various numbers
of components. For each configuration, we used EM
to obtain twelve estimates, each time with a different
random initialization. We show the F1-score for the
model with highest log-likelihood on the validation
set in Figure 4. The results show that a mixture of
grammars outperforms a standard, single grammar
PCFG parser.2

4.2 Capturing Rule Correlations

As described in Section 2, we hope that the mix-
ture model will capture long-range correlations in

2This effect is statistically significant.

the data. Since local correlations can be captured
by adding parent annotation, we combine our mix-
ture model with a grammar in which node probabil-
ities depend on the parent (the last vertical ancestor)
and the closest sibling (the last horizontal ancestor).
Klein and Manning (2003) refer to this grammar as
a markovized grammar of vertical order = 2 and hor-
izontal order = 1. Because many local correlations
are captured by the markovized grammar, there is a
greater hope that observed improvements stem from
non-local correlations.

In fact, we find that the mixture does capture
non-local correlations. We measure the degree to
which a grammar captures correlations by calculat-
ing the total squared error between LR scores of the
grammar and corpus, weighted by the probability
of seeing nonterminals. This is 39422 for a sin-
gle PCFG, but drops to 37125 for a mixture with
five individual grammars, indicating that the mix-
ture model better captures the correlations present
in the corpus. As a concrete example, in the Penn
Treebank, we often see the rules FRAG→ ADJP
and PRN→ , SBAR , cooccurring; their LR is 134.
When we learn a single markovized PCFG from the
treebank, that grammar gives a likelihood ratio of
only 61. However, when we train with a hierarchi-
cal model composed of a shared grammar and four
individual grammars, we find that the grammar like-
lihood ratio for these rules goes up to 126, which is
very similar to that of the empirical ratio.

4.3 Genre

The mixture of grammars model can equivalently be
viewed as capturing either non-local correlations or
variations in grammar. The latter view suggests that
the model might benefit when the syntactic structure
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Figure 4: (a) Log likelihood of training, validation, and test data during training (transformed to fit on the
same plot). Note that when overfitting occurs the likelihoodon the validation and test data starts decreasing
(after 13 iterations). (b) The accuracy of the mixture of grammars model withλ = 0.4 versus the number of
grammars. Note the improvement over a 1-grammar PCFG model.

varies significantly, as between different genres. We
tested this with the Brown corpus, of which we used
8 different genres (f, g, k, l, m, n, p, andr). We fol-
low Gildea (2001) in using the ninth and tenth sen-
tences of every block of ten as validation and test
data, respectively, because a contiguous test section
might not be representative due to the genre varia-
tion.

To test the effects of genre variation, we evalu-
ated various training schemes on the Brown corpus.
The single grammar baseline for this corpus gives
F1 = 79.75, with log likelihood (LL) on the testing
data=-242561. The first test, then, was to estimate
each individual grammar from only one genre. We
did this by assigning sentences to individual gram-
mars by genre, without using any EM training. This
increases the data likelihood, though it reduces the
F1 score (F1 = 79.48, LL=-242332). The increase
in likelihood indicates that thereare genre-specific
features that our model can represent. (The lack of
F1 improvement may be attributed to the increased
difficulty of estimating rule probabilities after divid-
ing the already scant data available in the Brown cor-
pus. This small quantity of data makes overfitting
almost certain.)

However, local minima and lack of data cause dif-
ficulty in learning genre-specific features. If we start
with sentences assigned by genre as before, but then
train with EM, both F1 and test data log likelihood

drop (F1 = 79.37, LL=-242100). When we use
EM with a random initialization, so that sentences
are not assigned directly to grammars, the scores go
down even further (F1 = 79.16, LL=-242459). This
indicates that the model can capture variation be-
tween genres, but that maximum training data likeli-
hood does not necessarily give maximum accuracy.
Presumably, with more genre-specific data avail-
able, learning would generalize better. So, genre-
specific grammar variation is real, but it is difficult
to capture via EM.

4.4 Smoothing Effects

While the mixture of grammars captures rule cor-
relations, it may also enhance performance via
smoothing effects. Splitting the data randomly could
produce a smoothed shared grammar,Gs, that is
a kind of held-out estimate which could be supe-
rior to the unsmoothed ML estimates for the single-
component grammar.

We tested the degree of generalization by eval-
uating the shared grammar alone and also a mix-
ture of the shared grammar with the known sin-
gle grammar. Those shared grammars were ex-
tracted after training the mixture model with four in-
dividual grammars. We found that both the shared
grammar alone (F1=79.13, LL=-333278) and the
shared grammar mixed with the single grammar
(F1=79.36, LL=-331546) perform worse than a sin-
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gle PCFG (F1=79.37, LL=-327658). This indicates
that smoothing is not the primary learning effect
contributing to increasedF1.

5 Conclusions

We examined the sorts of rule correlations that may
be found in natural language corpora, discovering
non-local correlations not captured by traditional
models. We found that using a model capable of
representing these non-local features gives improve-
ment in parsing accuracy and data likelihood. This
improvement is modest, however, primarily because
local correlations are so much stronger than non-
local ones.
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Abstract

We present an improved approach for
learning dependency parsers from tree-
bank data. Our technique is based on two
ideas for improving large margin train-
ing in the context of dependency parsing.
First, we incorporate local constraints that
enforce the correctness of each individ-
ual link, rather than just scoring the global
parse tree. Second, to cope with sparse
data, we smooth the lexical parameters ac-
cording to their underlying word similar-
ities using Laplacian Regularization. To
demonstrate the benefits of our approach,
we consider the problem of parsing Chi-
nese treebank data using only lexical fea-
tures, that is, without part-of-speech tags
or grammatical categories. We achieve
state of the art performance, improving
upon current large margin approaches.

1 Introduction

Over the past decade, there has been tremendous
progress on learning parsing models from treebank
data (Collins, 1997; Charniak, 2000; Wang et al.,
2005; McDonald et al., 2005). Most of the early
work in this area was based on postulating gener-
ative probability models of language that included
parse structure (Collins, 1997). Learning in this con-
text consisted of estimating the parameters of the
model with simple likelihood based techniques, but
incorporating various smoothing and back-off esti-
mation tricks to cope with the sparse data problems
(Collins, 1997; Bikel, 2004). Subsequent research
began to focus more on conditional models of parse
structure given the input sentence, which allowed

discriminative training techniques such as maximum
conditional likelihood (i.e. “maximum entropy”)
to be applied (Ratnaparkhi, 1999; Charniak, 2000).
In fact, recently, effective conditional parsing mod-
els have been learned using relatively straightfor-
ward “plug-in” estimates, augmented with similar-
ity based smoothing (Wang et al., 2005). Currently,
the work on conditional parsing models appears to
have culminated in large margin training (Taskar
et al., 2003; Taskar et al., 2004; Tsochantaridis et
al., 2004; McDonald et al., 2005), which currently
demonstrates the state of the art performance in En-
glish dependency parsing (McDonald et al., 2005).

Despite the realization that maximum margin
training is closely related to maximum conditional
likelihood for conditional models (McDonald et
al., 2005), a sufficiently unified view has not yet
been achieved that permits the easy exchange of
improvements between the probabilistic and non-
probabilistic approaches. For example, smoothing
methods have played a central role in probabilistic
approaches (Collins, 1997; Wang et al., 2005), and
yet they are not being used in current large margin
training algorithms. However, as we demonstrate,
not only can smoothing be applied in a large mar-
gin training framework, it leads to generalization im-
provements in much the same way as probabilistic
approaches. The second key observation we make is
somewhat more subtle. It turns out that probabilistic
approaches pay closer attention to the individual er-
rors made by each component of a parse, whereas
the training error minimized in the large margin
approach—the “structured margin loss” (Taskar et
al., 2003; Tsochantaridis et al., 2004; McDonald et
al., 2005)—is a coarse measure that only assesses
the total error of an entire parse rather than focusing
on the error of any particular component.
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Figure 1: A dependency tree

In this paper, we make two contributions to the
large margin approach to learning parsers from su-
pervised data. First, we show that smoothing based
on lexical similarity is not only possible in the large
margin framework, but more importantly, allows
better generalization to new words not encountered
during training. Second, we show that the large mar-
gin training objective can be significantly refined to
assess the error of each component of a given parse,
rather than just assess a global score. We show that
these two extensions together lead to greater train-
ing accuracy and better generalization to novel input
sentences than current large margin methods.

To demonstrate the benefit of combining useful
learning principles from both the probabilistic and
large margin frameworks, we consider the prob-
lem of learning a dependency parser for Chinese.
This is an interesting test domain because Chinese
does not have clearly defined parts-of-speech, which
makes lexical smoothing one of the most natural ap-
proaches to achieving reasonable results (Wang et
al., 2005).

2 Lexicalized Dependency Parsing

A dependency tree specifies which words in a sen-
tence are directly related. That is, the dependency
structure of a sentence is a directed tree where the
nodes are the words in the sentence and links rep-
resent the direct dependency relationships between
the words; see Figure 1. There has been a grow-
ing interest in dependency parsing in recent years.
(Fox, 2002) found that the dependency structures
of a pair of translated sentences have a greater de-
gree of cohesion than phrase structures. (Cherry and
Lin, 2003) exploited such cohesion between the de-
pendency structures to improve the quality of word
alignment of parallel sentences. Dependency rela-
tions have also been found to be useful in informa-
tion extraction (Culotta and Sorensen, 2004; Yan-
garber et al., 2000).

A key aspect of a dependency tree is that it does

not necessarily report parts-of-speech or phrase la-
bels. Not requiring parts-of-speech is especially
beneficial for languages such as Chinese, where
parts-of-speech are not as clearly defined as En-
glish. In Chinese, clear indicators of a word’s part-
of-speech such as suffixes “-ment”, “-ous” or func-
tion words such as “the”, are largely absent. One
of our motivating goals is to develop an approach to
learning dependency parsers that is strictly lexical.
Hence the parser can be trained with a treebank that
only contains the dependency relationships, making
annotation much easier.

Of course, training a parser with bare word-to-
word relationships presents a serious challenge due
to data sparseness. It was found in (Bikel, 2004) that
Collins’ parser made use of bi-lexical statistics only
1.49% of the time. The parser has to compute back-
off probability using parts-of-speech in vast majority
of the cases. In fact, it was found in (Gildea, 2001)
that the removal of bi-lexical statistics from a state
of the art PCFG parser resulted in very little change
in the output. (Klein and Manning, 2003) presented
an unlexicalized parser that eliminated all lexical-
ized parameters. Its performance was close to the
state of the art lexicalized parsers.

Nevertheless, in this paper we follow the re-
cent work of (Wang et al., 2005) and consider a
completely lexicalized parser that uses no parts-of-
speech or grammatical categories of any kind. Even
though a part-of-speech lexicon has always been
considered to be necessary in any natural language
parser, (Wang et al., 2005) showed that distributional
word similarities from a large unannotated corpus
can be used to supplant part-of-speech smoothing
with word similarity smoothing, to still achieve state
of the art dependency parsing accuracy for Chinese.

Before discussing our modifications to large mar-
gin training for parsing in detail, we first present the
dependency parsing model we use. We then give
a brief overview of large margin training, and then
present our two modifications. Subsequently, we
present our experimental results on fully lexical de-
pendency parsing for Chinese.

3 Dependency Parsing Model

Given a sentence � � �����
	����	������ we are in-
terested in computing a directed dependency tree,
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�
, over � . In particular, we assume that a di-

rected dependency tree
�

consists of ordered pairs������������� of words in � such that each word ap-
pears in at least one pair and each word has in-degree
at most one. Dependency trees are usually assumed
to be projective (no crossing arcs), which means that
if there is an arc ������������� , then ��� is an ancestor
of all the words between ��� and ��� . Let � �!�"� de-
note the set of all the directed, projective trees that
span � .

Given an input sentence � , we would like to be
able to compute the best parse; that is, a projective
tree,

�$# � �!�"� , that obtains the highest “score”.
In particular, we follow (Eisner, 1996; Eisner and
Satta, 1999; McDonald et al., 2005) and assume that
the score of a complete spanning tree

�
for a given

sentence, whether probabilistically motivated or not,
can be decomposed as a sum of local scores for each
link (a word pair). In which case, the parsing prob-
lem reduces to�&% �('*),+.-/'�0132*46587:9 ;5=<?>�@A<CB,9D2�1 s ��� � �E� � � (1)

where the score s �����F� ���G� can depend on any
measurable property of ��� and ��� within the tree�

. This formulation is sufficiently general to capture
most dependency parsing models, including proba-
bilistic dependency models (Wang et al., 2005; Eis-
ner, 1996) as well as non-probabilistic models (Mc-
Donald et al., 2005). For standard scoring functions,
parsing requires an H:��IKJ�� dynamic programming
algorithm to compute a projective tree that obtains
the maximum score (Eisner and Satta, 1999; Wang
et al., 2005; McDonald et al., 2005).

For the purpose of learning, we decompose each
link score into a weighted linear combination of fea-
tures

s ��� � �L� � �.� M6NKOP��� � �$� � � (2)

where M are the weight parameters to be estimated
during training.

Of course, the specific features used in any real
situation are critical for obtaining a reasonable de-
pendency parser. The natural sets of features to con-
sider in this setting are very large, consisting at the
very least of features indexed by all possible lexical
items (words). For example, natural features to use

for dependency parsing are indicators of each possi-
ble word pairQ�R�S �����3�E���G�.� T 5U<?>WV R 9 T 5=<CBXV S 9
which allows one to represent the tendency of two
words, Y and Z , to be directly linked in a parse. In
this case, there is a corresponding parameter [ R
S to
be learned for each word pair, which represents the
strength of the possible linkage.

A large number of features leads to a serious risk
of over-fitting due to sparse data problems. The stan-
dard mechanisms for mitigating such effects are to
combine features via abstraction (e.g. using parts-
of-speech) or smoothing (e.g. using word similarity
based smoothing). For abstraction, a common strat-
egy is to use parts-of-speech to compress the feature
set, for example by only considering the tag of the
parentQ]\�S �����^�L���G�.� T 5 pos

5=<?>_9WV \ 9 T 5U<CB`V S 9
However, rather than use abstraction, we will follow
a purely lexical approach and only consider features
that are directly computable from the words them-
selves (or statistical quantities that are directly mea-
surable from these words).

In general, the most important aspect of a link
feature is simply that it measures something about
a candidate word pair that is predictive of whether
the words will actually be linked in a given sen-
tence. Thus, many other natural features, beyond
parts-of-speech and abstract grammatical categories,
immediately suggest themselves as being predictive
of link existence. For example, one very useful fea-
ture is simply the degree of association between the
two words as measured by their pointwise mutual
informationQ

PMI �����^�L���G�.� PMI �����a	����G�
(We describe in Section 6 below how we compute
this association measure on an auxiliary corpus of
unannotated text.) Another useful link feature is
simply the distance between the two words in the
sentence; that is, how many words they have be-
tween themQ

dist �����3�E�����b� c position �����d�fe position ��������c
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In fact, the likelihood of a direct link between two
words diminishes quickly with distance, which mo-
tivates using more rapidly increasing functions of
distance, such as the squareQ

dist2 �����g�$�����h�i� position �����D�je position ���������ak
In our experiments below, we used only these sim-

ple, lexically determined features, l QmR
S*n , Q PMI,
Q

dist

and
Q

dist2, without the parts-of-speech l Q�\�S*n . Cur-
rently, we only use undirected forms of these fea-
tures, where, for example,

Q R
S � Q S,R
for all pairs

(or, put another way, we tie the parameters [ R
S �[ S,R together for all YK	�Z ). Ideally, we would like
to use directed features, but we have already found
that these simple undirected features permit state of
the art accuracy in predicting (undirected) depen-
dencies. Nevertheless, extending our approach to di-
rected features and contextual features, as in (Wang
et al., 2005), remains an important direction for fu-
ture research.

4 Large Margin Training

Given a training set of sentences annotated with their
correct dependency parses, �!� � 	 � � �`	����	��!�poh	 � o&� ,
the goal of learning is to estimate the parameters of
the parsing model, M . In particular, we seek values
for the parameters that can accurately reconstruct the
training parses, but more importantly, are also able
to accurately predict the dependency parse structure
on future test sentences.

To train M we follow the large margin training ap-
proach of (Taskar et al., 2003; Tsochantaridis et al.,
2004), which has been applied with great success to
dependency parsing (Taskar et al., 2004; McDonald
et al., 2005). Large margin training can be expressed
as minimizing a regularized loss (Hastie et al., 2004)

-:qsrM
t u M N M v (3)

; � -/'�0wC>yx �{z��|	 � �d�fe}� s �DMK	 � �d�~e s �DMK	,z��d���
where

� � is the target tree for sentence � � ; z �
ranges over all possible alternative trees in � �!���!� ;
s �DMf	 � ��� � 5=<?>_@ <CB�9D2�1 M6NfOC�����i� ���G� ; andx �{z��|	 � �d� is a measure of distance between the two
trees z�� and

� � .

Using the techniques of (Hastie et al., 2004) one
can show that minimizing (4) is equivalent to solving
the quadratic program

-/qsr�G� � t u M6NfM�vb��NK� subject to (4)� �f� x � � �a	,z��d�gv s �DMK	,z��D�~e s �DMf	 � �!�
for all �,	,z�� # � �!���D�

which corresponds to the training problem posed in
(McDonald et al., 2005).

Unfortunately, the quadratic program (4) has three
problems one must address. First, there are expo-
nentially many constraints—corresponding to each
possible parse of each training sentence—which
forces one to use alternative training procedures,
such as incremental constraint generation, to slowly
converge to a solution (McDonald et al., 2005;
Tsochantaridis et al., 2004). Second, and related,
the original loss (4) is only evaluated at the global
parse tree level, and is not targeted at penalizing any
specific component in an incorrect parse. Although
(McDonald et al., 2005) explicitly describes this
as an advantage over previous approaches (Ratna-
parkhi, 1999; Yamada and Matsumoto, 2003), below
we find that changing the loss to enforce a more de-
tailed set of constraints leads to a more effective ap-
proach. Third, given the large number of bi-lexical
features l Q*R
S�n in our model, solving (4) directly will
over-fit any reasonable training corpus. (Moreover,
using a large

t
to shrink the M values does not mit-

igate the sparse data problem introduced by having
so many features.) We now present our refinements
that address each of these issues in turn.

5 Training with Local Constraints

We are initially focusing on training on just an
undirected link model, where each parameter in the
model is a weight [ <�<�� between two words, � and��� , respectively. Since links are undirected, these
weights are symmetric [ <�<�� ��[ <���< , and we can
also write the score in an undirected fashion as:
s ����	�� � ����M N OC����	�� � � . The main advantage of
working with the undirected link model is that the
constraints needed to ensure correct parses on the
training data are much easier to specify in this case.
Ignoring the projective (no crossing arcs) constraint
for the moment, an undirected dependency parse can
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be equated with a maximum score spanning tree of a
sentence. Given a target parse, the set of constraints
needed to ensure the target parse is in fact the max-
imum score spanning tree under the weights M , by
at least a minimum amount, is a simple set of lin-
ear constraints: for any edge ���,� k that is not in the
target parse, one simply adds two constraints

M�NfOP���A�
	�� � � �(� M6NfOC���A�
	�� k �gv�TM�NfOP��� k 	�� �k �(� M6NfOC��� � 	�� k �gv�T (5)

where the edges ���,� � � and � k � �k are the adjacent
edges that actually occur in the target parse that are
also on the path between ��� and � k . (These would
have to be the only such edges, or there would be
a loop in the parse tree.) These constraints behave
very naturally by forcing the weight of an omitted
edge to be smaller than the adjacent included edges
that would form a loop, which ensures that the omit-
ted edge would not be added to the maximum score
spanning tree before the included edges.

In this way, one can simply accumulate the set of
linear constraints (5) for every edge that fails to be
included in the target parse for the sentences where
it is a candidate. We denote this set of constraints by� � l�M N OP���A��	�� � � ���}M N OC���A�
	�� k �3v�T n
Importantly, the constraint set

�
is convex in the link

weight parameters M , as it consists only of linear
constraints.

Ignoring the non-crossing condition, the con-
straint set

�
is exact. However, because of the

non-crossing condition, the constraint set
�

is more
restrictive than necessary. For example, consider
the word sequence �������{���s�K�,���� k ���s� J ��� , where the
edge ���s�K�,���s� J is in the target parse. Then the edge� � � �� k can be ruled out of the parse in one of two
ways: it can be ruled out by making its score less
than the adjacent scores as specified in (5), or it
can be ruled out by making its score smaller than
the score of ���s�K�����s� J . Thus, the exact constraint
contains a disjunction of two different constraints,
which creates a non-convex constraint in M . (The
union of two convex sets is not necessarily convex.)
This is a weakening of the original constraint set

�
.

Unfortunately, this means that, given a large train-
ing corpus, the constraint set

�
can easily become

infeasible.

Nevertheless, the constraints in
�

capture much
of the relevant structure in the data, and are easy
to enforce. Therefore, we wish to maintain them.
However, rather than impose the constraints exactly,
we enforce them approximately through the intro-
duction of slack variables � . The relaxed constraints
can then be expressed asM N OC���A��	�� � � �a��M N OC���A�
	�� k �gv�T�e � <g�D<�� � <g�D< � � (6)

and therefore a maximum soft margin solution can
then be expressed as a quadratic program

-/qsr�
� � t u M N M�v � N � subject to (7)

lGM6NfOC���A�
	�� � � ����M6NfOC���A�
	�� k �^v�T�e � <g�D<�� � <g�D< � � n
for all constraints in

�
where � denotes the vector of all 1’s.

Even though the slacks are required because we
have slightly over-constrained the parameters, given
that there are so many parameters and a sparse data
problem as well, it seems desirable to impose a
stronger set of constraints. A set of solution pa-
rameters achieved in this way will allow maximum
weight spanning trees to correctly parse nearly all
of the training sentences, even without the non-
crossing condition (see the results in Section 8).

This quadratic program has the advantage of pro-
ducing link parameters that will correctly parse most
of the training data. Unfortunately, the main draw-
back of this method thus far is that it does not of-
fer any mechanism by which the link weights [ <�< �
can be generalized to new or rare words. Given the
sparse data problem, some form of generalization is
necessary to achieve good test results. We achieve
this by exploiting distributional similarities between
words to smooth the parameters.

6 Distributional Word Similarity

Treebanks are an extremely precious resource. The
average cost of producing a treebank parse can run
as high as 30 person-minutes per sentence (20 words
on average). Similarity-based smoothing, on the
other hand, allows one to tap into auxiliary sources
of raw unannotated text, which is practically unlim-
ited. With this extra data, one can estimate parame-
ters for words that have never appeared in the train-
ing corpus.
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The basic intuition behind similarity smoothing
is that words that tend to appear in the same con-
texts tend to have similar meanings. This is known
as the Distributional Hypothesis in linguistics (Har-
ris, 1968). For example, the words test and exam are
similar because both of them can follow verbs such
as administer, cancel, cheat on, conduct, etc.

Many methods have been proposed to compute
distributional similarity between words, e.g., (Hin-
dle, 1990; Pereira et al., 1993; Grefenstette, 1994;
Lin, 1998). Almost all of the methods represent a
word by a feature vector where each feature corre-
sponds to a type of context in which the word ap-
peared. They differ in how the feature vectors are
constructed and how the similarity between two fea-
ture vectors is computed.

In our approach below, we define the features of
a word � to be the set of words that occurred within
a small window of � in a large corpus. The con-
text window of � consists of the closest non-stop-
word on each side of � and the stop-words in be-
tween. The value of a feature � � is defined as the
pointwise mutual information between the ��� and� : PMI ���¡�{	��A�¢�L£s¤¥+���¦ 5=< � < � 9¦ 5=<g9 ¦ 5U<��89 � . The similarity
between two words, §������
	�� k � , is then defined as
the cosine of the angle between their feature vectors.

We use this similarity information both in training
and in parsing. For training, we smooth the parame-
ters according to their underlying word-pair similar-
ities by introducing a Laplacian regularizer, which
will be introduced in the next section. For parsing,
the link scores in (1) are smoothed by word similar-
ities (similar to the approach used by (Wang et al.,
2005)) before the maximum score projective depen-
dency tree is computed.

7 Laplacian Regularization

We wish to incorporate similarity based smoothing
in large margin training, while using the more re-
fined constraints outlined in Section 5.

Recall that most of the features we use, and there-
fore most of the parameters we need to estimate are
based on bi-lexical parameters [ <�<�� that serve as
undirected link weights between words � and � � in
our dependency parsing model (Section 3). Here we
would like to ensure that two different link weights,[ <g�D< � � and [ <��|< �� , that involve similar words also

take on similar values. The previous optimization
(7) needs to be modified to take this into account.

Smoothing the link parameters requires us to first
extend the notion of word similarity to word-pair
similarities, since each link involves two words.
Given similarities between individual words, com-
puted above, we then define the similarity between
word pairs by the geometric mean of the similarities
between corresponding words.

§����A�,� � � 	�� k � �k �¨� © §����A�
	�� k ��§���� � � 	�� �k � (8)

where §���� �
	�� k � is defined as in Section 6 above.
Then, instead of just solving the constraint system
(7) we can also ensure that similar links take on sim-
ilar parameter values by introducing a penalty on
their deviations that is weighted by their similarity
value. Specifically, we use

;<g�D< � � ;<��|< �� §����A�,� � � 	�� k � �k �]�{[ < � < � � eª[ < � < �� � k� u M � N z&�!§��«M � (9)

Here z¡�!§�� is the Laplacian matrix of § , which
is defined by z¡�!§��¬� ®�!§��/e¯§ where ®�!§��
is a diagonal matrix such that  <3�{< � � � <g�D< � � �� <��|< �� §����A�,���� 	�� k ���k � . Also, M � corresponds to the
vector of bi-lexical parameters. In this penalty func-
tion, if two edges � � � � � and � k � �k have a high sim-
ilarity value, their parameters will be encouraged to
take on similar values. By contrast, if two edges
have low similarity, then there will be little mutual
attraction on their parameter values.

Note, however, that we do not smooth the param-
eters, [ PMI, [ dist, [ dist2, corresponding to the point-
wise mutual information, distance, and squared dis-
tance features described in Section 5, respectively.
We only apply similarity smoothing to the bi-lexical
parameters.

The Laplacian regularizer (9) provides a natural
smoother for the bi-lexical parameter estimates that
takes into account valuable word similarity informa-
tion computed as above. The Laplacian regularizer
also has a significant computational advantage: it is
guaranteed to be a convex quadratic function of the
parameters (Zhu et al., 2001). Therefore, by com-
bining the constraint system (7) with the Laplacian
smoother (9), we can obtain a convex optimization
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Table 1: Accuracy Results on CTB Test Set
Features used Trained w/ Trained w/

local loss global loss
Pairs 0.6426 0.6184
+ Lap 0.6506 0.5622
+ Dist 0.6546 0.6466
+ Lap + Dist 0.6586 0.5542
+ MI + Dist 0.6707 0.6546
+ Lap + MI + Dist 0.6827 n/a

Table 2: Accuracy Results on CTB Dev Set
Features used Trained w/ Trained w/

local loss global loss
Pairs 0.6130 0.5688
+ Lap 0.6390 0.4935
+ Dist 0.6364 0.6130
+ Lap + Dist 0.6494 0.5299
+ MI + Dist 0.6312 0.6182
+ Lap + MI + Dist 0.6571 n/a

procedure for estimating the link parameters

-/qsr�G� � t u M N�°z&�!§��«M�v±� N � subject to (10)

l�M N OC���A�
	�� � � ���²M N OP���A�
	�� k �gv�T�e � <g�D<�� � <g�D< � � n
for all constraints in

�
where °z¡�!§�� does not apply smoothing to [ PMI, [ dist,[ dist2.

Clearly, (10) describes a large margin training
program for dependency parsing, but one which uses
word similarity smoothing for the bi-lexical param-
eters, and a more refined set of constraints devel-
oped in Section 5. Although the constraints are
more refined, they are fewer in number than (4).
That is, we now only have a polynomial number of
constraints corresponding to each word pair in (5),
rather than the exponential number over every pos-
sible parse tree in (4). Thus, we obtain a polynomial
size quadratic program that can be solved for moder-
ately large problems using standard software pack-
ages. We used CPLEX in our experiments below.
As before, once optimized, the solution parametersM can be introduced into the dependency model (1)
according to (2).

8 Experimental Results

We tested our method experimentally on the Chinese
Treebank (CTB) (Xue et al., 2004). The parse trees

Table 3: Accuracy Results on CTB Training Set
Features used Trained w/ Trained w/

local loss global loss
Pairs 0.9802 0.8393
+ Lap 0.9777 0.7216
+ Dist 0.9755 0.8376
+ Lap + Dist 0.9747 0.7216
+ MI + Dist 0.9768 0.7985
+ Lap + MI + Dist 0.9738 n/a

in CTB are constituency structures. We converted
them into dependency trees using the same method
and head-finding rules as in (Bikel, 2004). Follow-
ing (Bikel, 2004), we used Sections 1-270 for train-
ing, Sections 271-300 for testing and Sections 301-
325 for development. We experimented with two
sets of data: CTB-10 and CTB-15, which contains
sentences with no more than 10 and 15 words re-
spectively. Table 1, Table 2 and Table 3 show our
experimental results trained and evaluated on Chi-
nese Treebank sentences of length no more than 10,
using the standard split. For any unseen link in the
new sentences, the weight is computed as the simi-
larity weighted average of similar links seen in the
training corpus. The regularization parameter

t
was

set by 5-fold cross-validation on the training set.
We evaluate parsing accuracy by comparing the

undirected dependency links in the parser outputs
against the undirected links in the treebank. We de-
fine the accuracy of the parser to be the percentage
of correct dependency links among the total set of
dependency links created by the parser.

Table 1 and Table 2 show that training based on
the more refined local loss is far superior to training
with the global loss of standard large margin train-
ing, on both the test and development sets. Parsing
accuracy also appears to increase with the introduc-
tion of each new feature. Notably, the pointwise mu-
tual information and distance features significantly
improve parsing accuracy—and yet we know of no
other research that has investigated these features in
this context. Finally, we note that Laplacian regular-
ization improved performance as expected, but not
for the global loss, where it appears to systemati-
cally degrade performance (n/a results did not com-
plete in time). It seems that the global loss model
may have been over-regularized (Table 3). However,
we have picked the

t
parameter which gave us the
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best resutls in our experiments. One possible ex-
planation for this phenomenon is that the interaction
between the Laplician regularization in training and
the similarity smoothing in parsing, since distribu-
tional word similarities are used in both cases.

Finally, we compared our results to the probabilis-
tic parsing approach of (Wang et al., 2005), which on
this data obtained accuracies of 0.7631 on the CTB
test set and 0.6104 on the development set. How-
ever, we are using a much simpler feature set here.

9 Conclusion

We have presented two improvements to the stan-
dard large margin training approach for dependency
parsing. To cope with the sparse data problem, we
smooth the parameters according to their underlying
word similarities by introducing a Laplacian regular-
izer. More significantly, we use more refined local
constraints in the large margin criterion, rather than
the global parse-level losses that are commonly con-
sidered. We achieve state of the art parsing accuracy
for predicting undirected dependencies in test data,
competitive with previous large margin and previous
probabilistic approaches in our experiments.

Much work remains to be done. One extension
is to consider directed features, and contextual fea-
tures like those used in current probabilistic parsers
(Wang et al., 2005). We would also like to apply our
approach to parsing English, investigate the confu-
sion showed in Table 3 more carefully, and possibly
re-investigate the use of parts-of-speech features in
this context.
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Abstract

We explore a novel computational ap-
proach to identifying “constructions” or
“multi-word expressions” (MWEs) in an
annotated corpus. In this approach,
MWEs have no special status, but emerge
in a general procedure for finding the best
statistical grammar to describe the train-
ing corpus. The statistical grammar for-
malism used is that of stochastic tree sub-
stitution grammars (STSGs), such as used
in Data-Oriented Parsing. We present an
algorithm for calculating the expected fre-
quencies of arbitrary subtrees given the
parameters of an STSG, and a method
for estimating the parameters of an STSG
given observed frequencies in a tree bank.
We report quantitative results on the ATIS
corpus of phrase-structure annotated sen-
tences, and give examples of the MWEs
extracted from this corpus.

1 Introduction

Many current theories of language use and acquisi-
tion assume that language users store and use much
larger fragments of language than the single words
and rules of combination of traditional linguistic
models. Such fragments are often called construc-
tions, and the theories that assign them a central
role “construction grammar” (Goldberg, 1995; Kay
and Fillmore, 1999; Tomasello, 2000; Jackendoff,
2002, among others). For construction grammar-

ians, multi-word expressions (MWEs) such as id-
ioms, collocations, fixed expressions and compound
verbs and nouns, are not so much exceptions to the
rule, but rather extreme cases that reveal some fun-
damental properties of natural language.

In the construction grammar tradition, co-
occurrence statistics from corpora have often been
used as evidence for hypothesized constructions.
However, such statistics are typically gathered on
a case-by-case basis, and no reliable procedure ex-
ists to automatically identify constructions. In con-
trast, in computational linguistics, many automatic
procedures are studied for identifying MWEs (Sag
et al., 2002) – with varying success – but here they
are treated as exceptions: identifying multi-word ex-
pressions is a pre-processing step, where typically
adjacent words are grouped together after which the
usual procedures for syntactic or semantic analysis
can be applied. In this paper I explore an alter-
native formal and computational approach, where
multi-word constructions have no special status,
but emerge in a general procedure to find the best
statistical grammar to describe a training corpus.
Crucially, I use a formalism known as “Stochastic
Tree Substitution Grammars” (henceforth, STSGs),
which can represent single words, contiguous and
noncontiguous MWEs, context-free rules or com-
plete parse trees in a unified representation.

My approach is closely related to work in statisti-
cal parsing known as Data-Oriented Parsing (DOP),
an empirically highly successful approach with la-
beled recall and precision scores on the Penn Tree
Bank that are among the best currently obtained
(Bod, 2003). DOP, first proposed in (Scha, 1990),
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can be seen as an early formalization and combina-
tion of ideas from construction grammar and statis-
tical parsing. Its key innovations were (i) the pro-
posal to use fragments of trees from a tree bank as
the symbolic backbone; (ii) the proposal to allow, in
principle, trees of arbitrary size and shape as the el-
ementary units of combination; (iii) the proposal to
use the occurrence and co-occurrence frequencies as
the basis for structural disambiguation in parsing.

The model I develop in this paper is true to these
general DOP ideals, although it differs in impor-
tant respects from the many DOP implementations
that have been studied since its first inception (Bod,
1993; Goodman, 1996; Bod, 1998; Sima’an, 2002;
Collins and Duffy, 2002; Bod et al., 2003, and many
others). The crucial difference is in the estimation
procedure for choosing the weights of the STSG
based on observed frequencies in a corpus. Existing
DOP models converge to STSGs that either (i) give
all subtrees of the observed trees nonzero weights
(Bod, 1993; Bod, 2003), or (ii) give only the largest
possible fragments nonzero weights (Sima’an and
Buratto, 2003; Zollmann and Sima’an, 2005). The
model in this paper, in contrast, aims at finding the
smallest set of productive units that explain the oc-
currences and co-occurrences in a corpus. Large
subtrees only receive non-zero weights, if they occur
more frequently than can be expected on the basis of
the weights of smaller subtrees.

2 Formalism, Notation and Definitions

2.1 Stochastic Tree Substitution Grammars

STSGs are a simple generalization of Stochas-
tic Context Free Grammars (henceforth, SCFGs),
where the productive units are elementary trees of
arbitrary size instead of the rewrite rules in SCFGs
(which can be viewed as trees of depth 1). STSGs
form a restricted subclass of Stochastic Tree Adjoin-
ing Grammars (henceforth, STAGs) (Resnik, 1992;
Schabes, 1992), the difference being that STSGs
only allow for substitution and not for adjunction
(Joshi and Sarkar, 2003). This limits the genera-
tive capacity to that of context-free grammars, and
means STSGs cannot be fully lexicalized. These
limitations notwithstanding, the close relationship
with STAGs is an attractive feature with extensions
to the class of mildly context-sensitive languages

(Joshi et al., 1991) in mind. Most importantly, how-
ever, STSGs are already able to model a vast range
of statistical dependencies between words and con-
stituents, which allows them to rightly predict the
occurrences of many constructions (Bod, 1998).

For completeness, we include the usual defi-
nitions of STSGs, the substitution operation and
derivation and parse probabilities (Bod, 1998), us-
ing our own notation. An STSG is a 5-tuple
〈Vn, Vt, S, T, w〉, where Vn is the set of non-terminal
symbols; Vt is the set of terminal symbols; S ∈ Vn is
the start symbol; T is a set of elementary trees, such
that for every t ∈ T the unique root node r(t) ∈ Vn,
the set of internal nodes i(t) ⊂ Vn and the set of leaf
nodes l(t) ⊂ Vn ∪ Vt; finally, w : T → [0, 1] is a
probability (weight) distribution over the elementary
trees, such that for any t ∈ T ,

∑
t′∈R(t) w(t′) = 1,

where R(t) is the set of elementary trees with the
same root label as t. It will prove useful to also de-
fine the set of all possible trees θ over the defined
alphabets (with the same conditions on root, internal
and leaf nodes as for T ), and the set of all possible
complete parse trees Θ (with r(t) = S and all leaf
nodes l(t) ⊂ Vt). Obviously, T ⊂ θ and Θ ⊂ θ.

The substitution operation ◦ is defined if the left-
most nonterminal leaf in t1 is identical to the root of
t2. Performing substitution t1 ◦ t2 yields t3, if t3 is
identical to t1 with the leftmost nonterminal leaf re-
placed by t2. A derivation is a sequence of elemen-
tary trees, where the first tree t ∈ T has root-label
S and every next tree combines through substitution
with the result of the substitutions before it. The
probability of a derivation d is defined as the prod-
uct of weights of the elementary trees involved:

P (d = t1 ◦ . . . ◦ tn) =

n∏

i=1

(w (ti)) . (1)

A parse tree is any tree t ∈ Θ. Multiple derivations
can yield the same parse tree; the probability of a
parse tree p equals the sum of the probabilities of
the different derivations that yield that same tree:

P (p) =
∑

d:d̂=p

(P (d)) , (2)

where d̂ is the tree derived by derivation d.
In this paper, we are only concerned with gram-

mars that define proper probability distributions over
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trees, such that the probability of all derivations sum
up to 1 and no probability mass gets lost in deriva-
tions that never reach a terminal yield. We require:

∑

p∈Θ

P (p) =
∑

d:d̂∈Θ

P (d) = 1. (3)

2.2 Usage Frequency and Occurrence
Frequency

In addition to these conventional definitions, we will
make use in this paper of the concepts “usage fre-
quency” and “occurrence frequency”. When we
consider an arbitrary subtree t, the usage frequency
u(t) describes the relative frequency with which el-
ementary tree t is involved in a set of derivations.
Given a grammar G ∈ STSG, the expected usage
frequency is:

u(t) =
∑

d:t∈d

(P (d) C (t, d)) , (4)

where C (t, d) gives the number of occurrences of
t in d. The set of derivations, and hence usage fre-
quency, is usually considered hidden information.

The occurrence frequency f(t) describes the rela-
tive frequency with which t occurs as a subtree of a
set of parse trees, which is usually assumed to be
observable information. If grammar G is used to
generate trees, it will create a tree bank where each
parse tree will occur with an expected frequency as
in equation (2). More generally, the expected oc-
currence frequency f(t) (relative to the number n of
complete trees in the tree bank) of a subtree t is:

E[f(t)] =
∑

p:t∈p∗

(P (p)C (t, p∗)) , (5)

where p∗ is the multiset of all subtrees of p.
Hence, w(t), u(t) and f(t) all assign values (the

latter two not necessarily between 0 and 1) to trees.
An important question is how these different val-
ues can be related. For STSGs which have only
elementary trees of depth 1, and are thus equiva-
lent to SCFGs, these relations are straightforward:
the usage frequency of an elementary tree simply
equals its expected frequency, and can be derived
from the weights by multiplying inside and out-
side probabilities (Lari and Young, 1990). Estimat-
ing the weights of an (unconstrained and untrans-
formed) SCFG from an tree bank is straightforward,

as weights, in the limit, simply equal the relative
frequency of each depth-1 subtree (relative to other
depth-1 subtrees with the same root label).

When elementary trees can be of arbitrary depth,
however, many different derivations can yield the
same tree, and a given subtree t can emerge with-
out the corresponding elementary tree ever having
been used. The expected frequencies are sums of
products, and – if one wants to avoid exhaustively
enumerating all possible parse trees – surprisingly
difficult to calculate, as will become clear below.

2.3 From weights to usage frequencies and
back

Relating usage frequencies to weights is relatively
simple. With a bit of algebra we can work out the
following relations:

u(t) =





w(t) if r(t) = S

w(t)
∑

t′ :r(t)∈l(t′)

u(t′)Ct′

t otherwise

(6)
where C t′

t gives the number of occurrences of the
root label r(t) of t among the leaves of t′. The in-
verse relation is straightforward:

w(t) =
u(t)∑

t′∈R(t) u(t′)
. (7)

2.4 From usage frequency to expected
frequency

The two remaining problems – calculating expected
frequencies from weights and estimating the weights
from observed frequencies – are surprisingly dif-
ficult and heretofore not satisfactorily solved. In
(Zuidema, 2006) we evaluate existing estimation
methods for Data-Oriented Parsing, and show that
they are ill-suited for learning tasks such as stud-
ied in this paper. In the next section, we present a
new algorithm for estimation, which makes use of
a method for calculating expected frequencies that
we sketch in this section. This method makes use of
sub- and supertree relations that we explain first.

We define two types of subtrees of a given tree t,
which, for lack of better terminology, we will call
“twigs” and “prunes” of t. Twigs are those subtrees
headed by any of t’s internal nodes and everything
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below. Prunes are those subtrees headed by t’s root-
node, pruned at any number (≥ 0) of internal nodes.
Using ◦ to indicate left-most substitution, we write:
• t1 is a twig of t2, if either t1 = t2 or ∃t3, such

that t3 ◦ t1 = t2;
• t1 is a prune of t2, if either t1 = t2 or ∃t3 . . . tn,

such that t1 ◦ t3 . . . ◦ tn = t2;
• t′ = prx(t), if x is a set of nodes in t, such that

if t is pruned at each i ∈ x it equals t′.
Thus defined, the set of all subtrees st(t) of t cor-
responds to the set of all prunes of all twigs of t:
st(t) = {t′′|∃t′(t′ ∈ tw(t) ∧ t′′ ∈ pr(t′)).

We further define the sets of supertwigs, super-
prunes and supertrees as follows:
• t̂w(t) = {t′|t ∈ tw(t′)}
• p̂rx(t) = {t′|t = prx(t′)}
• ŝt(t) = {t′|t ∈ st(t′)}.
Using these sets, and the set of derivations D(t) of

the fragment t, a general expression for the expected
frequency of t is:

E[f(t)] =
∑

d∈D(t)

αβ

α =
∑

τ∈ctw(d1)

∑

τ ′∈ dprx(t)(τ)

u(τ ′)

β =
∏

t′∈
〈d2,...,dn〉

∑

τ ′∈ dprx(t)(t′)

w
(
τ ′

)
(8)

where 〈d1, . . . , dn〉 is the sequence of elementary
trees in derivation d. A derivation of this equation
is provided on the author’s website1. Note that it

1http://staff.science.uva.nl/∼jzuidema. The intuition behind
it is as follows. Observe first that there are many ways in which
an arbitrary fragment t can emerge, many of which do not in-
volve the usage of the elementary tree t. It is useful to partition
the set of all derivations of complete parse trees according to the
substitution sites inside t that they involve, and hence according
to the corresponding derivations of t. The first summation in (8)
simply sums over all these cases.

Each derivation of t involves a first elementary tree d1, and
possibly a sequence of further elementary trees 〈d2, . . . , dn〉.
Roughly speaking, the α-term in equation (8) describes the fre-
quency with which a d1 will be generated. The β-term then
describes the probability that d1 will be expanded as t. The
equation simplifies considerably for those fragments that have
no nonterminal leaves: the set dprx(t) then only contains t, and
the two summations over this set disappear. The equation fur-
ther simplifies if only depth-1 elementary trees have nonzero
weights (i.e. for SCFGs): α and β then essentially give outside
and inside probabilities (Lari and Young, 1990). However, for
unconstrained STSGs we need all sums and products in (8).

will, in general, be computationally extremely ex-
pensive to calculate E[f(t)] . We will come back to
computational efficiency issues in the discussion.

3 Estimation: push-n-pull

The goal of this paper is an automatic discovery
procedure for finding “constructions” based on oc-
currence and co-occurrence frequencies in a corpus.
Now that we have introduced the necessary termi-
nology, we can reformulate this goal as follows:
What are the elementary trees with multiple words
with the highest usage frequency in the STSG esti-
mated from an annotated corpus? Thus phrased, the
crucial next step is to decide on an estimation proce-
dure for learning an STSG from a corpus.

Here we develop an estimation procedure we call
“push-n-pull”. The basic idea is as follows. Given
an initial setting of the parameters, the method cal-
culates the expected frequency of all complete and
incomplete trees. If a tree’s expected frequency is
higher than its observed frequency, the method sub-
tracts the difference from the tree’s score, and dis-
tributes (“pushes”) it over the trees involved in its
derivations. If it is lower, it “pulls” the difference
from these same derivations. The method includes a
bias for moving probability mass to smaller elemen-
tary trees, to avoid overfitting; its effects become
smaller as more data gets observed.

Because the method for calculating estimated fre-
quency works with usage-frequencies, the push-n-
pull algorithm also uses these as parameters. More
precisely, it manipulates a “score”, which is the
product of usage frequency and the total number of
parse trees observed. Implicit here is the assumption
that by shifting usage frequencies between different
derivations, the relation with weights remains as in
equation (6). Simulations suggest this is reasonable.

In the current implementation, the method starts
with all frequency mass in the longest derivations,
i.e. in the depth-1 elementary trees. Finally, the cur-
rent implementation is incremental. It keeps track of
the frequencies with which it observes subtrees in a
corpus. For each tree received, it finds all derivations
and all probabilities, updates frequencies and scores
according to the rules sketched above. In pseudo-
code, the push-n-pull algorithm is as follows:

for each observed parse tree p
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for each depth-1 subtree t in p
update-score(t, 1.0)

for each subtree t of p
∆ =min(sc(t), B + γ(E[f(t)]− f(t)))
∆′ = 0
for each of n derivations d of t

let t′ . . . t′′ be all elementary trees in d
δ =min(sc(t′), . . . , sc(t′′),−∆/n)

∆′− = δ
for each elementary tree t′ in d

update-score(t′ , δ)
update-score (t,∆′)

where sc(t) is the score of t, B is the bias to-
wards smaller subtrees, γ is the learning rate param-
eter and f(t) is the observed frequency of t. ∆′ thus
gives the actual change in the score of t, based on
the difference between expected and observed fre-
quency, bias, learning rate and how much scores can
be pushed or pulled2. For computational efficiency,
only subtrees with a depth no larger than d = 3 or
d = 4 and only derivations involving 2 elementary
trees are considered.

4 Results

We have implemented the algorithms for calculat-
ing the expected frequency, and the push-n-pull al-
gorithm for estimation. We have evaluated the algo-
rithms on a number of simple example STSGs and
found that the expected frequency algorithm cor-
rectly predicts observed frequencies. We have fur-
ther found that – unlike existing estimation meth-
ods – the push-n-pull algorithm converges to STSGs
that closely model the observed frequencies (i.e. that
maximize the likelihood of the data) without putting
all probability mass in the largest elementary trees
(i.e. whilst retaining generalizations about the data).

Here we report first quantitative results on the
ATIS3 corpus (Hemphill et al., 1990). Before pro-
cessing, all trees (train and test set) were converted
to a format that our current implementation requires
(all non-terminal labels are unique, all internal nodes
have two daughters, all preterminal nodes have a
single lexical daughter; all unary productions and
all traces were removed). The set of trees was ran-
domly split in a train set of 462 trees, and a test set

2An important topic for future research is to clarify the rela-
tion between push-n-pull and Expectation Maximization.

of 116 trees. The push-n-pull algorithm was then
run in 10 passes over the train set, with d = 3,
B = 0 and γ = 0.1. By calculating the most proba-
ble parse3 for each yield of the trees in test set, and
running “evalb” we arrive at the following quantita-
tive results: a string set coverage of 84% (19 failed
parses), labeled recall of 95.07, and labeled preci-
sion of 95.07. We obtained almost identical num-
bers on the same data with a reimplementation of
the DOP1 algorithm (Bod, 1998).

method # rules Cov. LR LP EM
DOP1 77852 84% 95.07 95.07 83.5
p-n-p 58799 84% 95.07 95.07 83.5

Table 1: Parseval scores of DOP1 and push-n-pull
on the same 462-116 random train-testset split of a
treebank derived from the ATIS3 corpus (we empha-
size that all trees, also those of the test-set, were con-
verted to Chomsky Normal Form, whereby unary
production and traces were removed and top-nodes
relabeled “TOP”. These results are thus not compa-
rable to previous methods evaluated on the ATIS3
corpus.) EM is “exact match”.

method # rules Cov. LR LP EM
sc > 0.3 8593 77% 80.8 80.8 46.3
sc > 0.1 98443 77% 81.9 81.9 48.8

Table 2: Parseval scores using a p-n-p induced
STSG on the same treebank as in table 1, using a
different random 525-53 train-testset split. Shown
are results were only elementary trees with scores
higher than 0.3 and 0.1 respectively are used.

However, more interesting is a qualitative anal-
ysis of the STSG induced, which shows that, un-
like DOP1, push-n-pull arrives at a grammar that
gives high weights (and scores) to those elementary

3We approximated the most probable parse as follows (fol-
lowing (Bod, 2003)). We first converted the induced STSG to
an isomorph SCFG, by giving the internal nodes of every ele-
mentary tree t unique address-labels, and reading off all CFG
productions (all with weight 1.0, except for the top-production,
which receives the weight of t). An existing SCFG parser
(Schmid, 2004) was then used, with a simple unknown word
heuristic, to generate the Viterbi n-best parses with n = 100,
and, after removing the address labels, all equal parses and their
probabilities were summed, and the one with highest probabil-
ity chosen.
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trees that best explain the overrepresentation of cer-
tain constructions in the data. For instance, in a run
with d = 4, γ = 1.0, B = 1.0, the 50 elemen-
tary trees with the highest scores, as shown in fig-
ure 1, are all exemplary of frequent formulas in the
ATIS corpus such as “show me X”, “I’d like to X”,
“which of these”, “what is the X”, “cheapest fare”
and “flights from X to Y”. In short, the push-n-pull
algorithm – while starting out considering all possi-
ble subtrees – converges to a grammar which makes
linguistically relevant generalizations. This allows
for a more compact grammar (58799 rules in the
SCFG reduction, vs. 77852 for DOP1), whilst re-
taining DOP’s excellent empirical performance.

5 Discussion

Calculating E[f(t)] using equation (8) can be ex-
tremely expensive in computational terms. One will
typically want to calculate this value for all subtrees,
the number of which is exponential in the size of the
trees in the training data. For each subtree t, we will
need to consider the set of all its derivations (expo-
nential in the size of t), and for each derivation the
set of supertwigs of the first elementary trees and,
for incompletely lexicalized subtrees, the set of su-
perprunes of all elementary trees in their derivations.
The latter two sets, however, need not be constructed
for every time the expected frequency E[f(t)] is cal-
culated. Instead, we can, as we do in the current im-
plementation, keep track of the two sums for every
change of the weights.

However, there are many further possibilities for
improving the efficiency of the algorithm that are
currently not implemented. Equation (8) remains
valid under various restrictions on the elementary
trees that we are willing to consider as productive
units. Some of these will remove the exponential de-
pendence on the size of the trees in the training data.
For instance, in the case where we restrict the pro-
ductive units (with nonzero weights) to depth-1 trees
(i.e. CFG rules), equation (8) collapses to the prod-
uct of inside and outside probabilities, which can be
calculated using dynamical programming in polyno-
mial time (Lari and Young, 1990). A major topic for
future research is to define linguistically motivated
restrictions that allow for efficient computation.

Another concern is the size of the grammar the

estimation procedure produces, and hence the time
and space efficiency of the resulting parser. Ta-
ble 1 already showed that push-n-pull leads to a
more concise grammar. The reason is that many po-
tential elementary trees receive a score (and weight)
0. More generally, push-n-pull generates extremely
tilted score distributions, which allows for even
more compact but highly accurate approximations.
In table 2 we show, for the d = 4 grammar of fig-
ure 1, that a 10-fold reduction of the grammar size
by pruning elementary trees with low scores, leads
only to a small decrease in the LP and LR measures.

Another interesting question is if and how the
current algorithm can be extended to the full class
of Stochastic Tree-Adjoining Grammars (Schabes,
1992; Resnik, 1992). With the added operation of
adjunction, equation (8) is not valid anymore. Given
the computational complexities that it already gives
rise to, however, it seems that issue of linguisti-
cally motivated restrictions (other than lexicaliza-
tion) should be considered first. Finally, given that
the current approach is dependent on the availability
of a large annotated corpus, an important question
is if and how it can be extended to work with un-
labeled data. That is, can we transform the push-n-
pull algorithm to perform the unsupervised learning
of STSGs? Although most work on unsupervised
grammar learning concerns SCFGs (including some
of our own (Zuidema, 2003)) it is interesting to note
that much of the evidence for construction grammar
in fact comes from the language acquisition litera-
ture (Tomasello, 2000).

6 Conclusions

Theoretical linguistics has long strived to account
for the unbounded productivity of natural language
syntax with as few units and rules of combination
as possible. In contrast, construction grammar and
related theories of grammar postulate a heteroge-
neous and redundant storage of “constructions”. If
this view is correct, we expect to see statistical sig-
natures of these constructions in the distributional
information that can be derived from corpora of nat-
ural language utterances. How can we recover those
signatures? In this paper we have presented an ap-
proach to identifying the relevant statistical correla-
tions in a corpus based on the assumption that the
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TOP

VB

”SHOW”

VP*

PRP

”ME”

NP

NP*

DT NNS

NP**

PP-DIR PP-DIR*

(a) The “show me NP PP” frame,
which occurs very frequently in
the training data and is repre-
sented in several elementary trees
with high weight.

WHNP-1

WDT

”WHICH”

PP

IN

”OF”

NP

DT

”THESE”

NNS

”FLIGHTS”

(b) The complete parse tree
for the sentence “Which of
these flights”, which occurs
16 times in training data.

TOP

NNS

”FLIGHTS”

NP*

PP-DIR

IN

”FROM”

NP**

NNP NNP*

PP-DIR*

TO

”TO”

NNP**

(c) The frame for “flights from NP to
NP”

1. ((TOP (VB ”SHOW”) (VP* (PRP ”ME”) (NP (NP* DT NNS) (NP** PP-DIR PP-DIR*)))) 17.79 0.008 30)
2. ((TOP (VB ”SHOW”) (VP* (PRP ”ME”) (NP (NP* DT NNS) NP**))) 10.34 0.004 46
3. (TOP (PRP ”I”) (VP (MD ”WOULD”) (VP* (VB ”LIKE”) (VP** TO VP***)))) 10.02 0.009 20
4. (WHNP-1 (WDT ”WHICH”) (PP (IN ”OF”) (NP (DT ”THESE”) (NNS ”FLIGHTS”)))) 8.80 0.078 16
5. (TOP (WP ”WHAT”) (SQ (VBZ ”IS”) (NP-SBJ (DT ”THE”) (NN ”PRICE”)))) 8.76 0.005 20
6. (TOP (WHNP (WDT ”WHAT”) (NNS ”FLIGHTS”)) (SQ (VBP ”ARE”) (SQ* (EX ”THERE”) SQ**))) 8.25 0.006 36
7. (VP* (PRP ”ME”) (NP (NP* (DT ”THE”) (NNS ”FLIGHTS”)) (NP** (PP-DIR IN NNP) (PP-DIR* TO NNP*)))) 7.90 0.023 18
8. (TOP (WHNP (WDT ”WHAT”) (NNS ”FLIGHTS”)) (SQ (VBP ”ARE”) (SQ* (EX ”THERE”) (SQ** PP-DIR-3 PP-DIR-4)))) 6.64 0.005 26
9. (TOP (PRP ”I”) (VP MD (VP* (VB ”LIKE”) (VP** TO VP***)))) 6.48 0.006 20

10. (TOP (PRP ”I”) (VP (VBP ”NEED”) (NP (NP* DT NN) (NP** PP-DIR NP***)))) 5.01 0.004 10
11. (TOP (VB ”SHOW”) (VP* (PRP ”ME”) (NP (DT ”THE”) NNS))) 4.94 0.002 16
12. (TOP WP (SQ (VBZ ”IS”) (NP-SBJ (DT ”THE”) (NN ”PRICE”)))) 4.91 0.0028 20
13. (TOP (WHNP (WDT ”WHAT”) (NNS ”FLIGHTS”)) (SQ (VBP ”ARE”) (SQ* EX (SQ** PP-DIR-3 PP-DIR-4)))) 4.16 0.003 26
14. (TOP (VB ”SHOW”) (VP* (PRP ”ME”) (NP (NNS ”FLIGHTS”) NP*))) 4.01 0.001 16
15. (TOP (VB ”SHOW”) (VP* (PRP ”ME”) (NP (DT ”THE”) NP*))) 3.94 0.002 12
16. (TOP (WHNP (WDT ”WHAT”) (NNS ”FLIGHTS”)) (SQ (VBP ”ARE”) (SQ* EX SQ**))) 3.92 0.003 36
17. (TOP (PRP ”I”) (VP (VBP ”NEED”) (NP (NP* DT NN) NP**))) 3.85 0.003 14
18. (TOP (WP ”WHAT”) (SQ VBZ (NP-SBJ (DT ”THE”) (NN ”PRICE”)))) 3.79 0.002 20
19. (WHNP-1 (WDT ”WHICH”) (PP (IN ”OF”) (NP (DT ”THESE”) NNS))) 3.65 0.032 16
20. (TOP (VB ”SHOW”) (VP* (PRP ”ME”) (NP NP* (SBAR WDT VP**)))) 3.64 0.002 14
21. (TOP (VB ”SHOW”) (VP* PRP (NP (NP* DT NNS) (NP** PP-DIR PP-DIR*)))) 3.61 0.002 30
22. (TOP (WHNP (WDT ”WHAT”) NNS) (SQ (VBP ”ARE”) (SQ* (EX ”THERE”) (SQ** PP-DIR-3 PP-DIR-4)))) 3.30 0.002 26
23. (VP (MD ”WOULD”) (VP* (VB ”LIKE”) (VP** (TO ”TO”) (VP*** VB* VP****)))) 3.25 0.012 16
24. (TOP (WDT ”WHICH”) VP) 3.1460636 0.001646589 12
25. (TOP (VB ”SHOW”) (VP* (PRP ”ME”) (NP (NP* DT NP**) NP***))) 3.03 0.001 12
26. (TOP (VB ”SHOW”) (VP* (PRP ”ME”) (NP NP* (NP*** PP-DIR PP-DIR*)))) 2.97 0.001 12
27. (PP (IN ”OF”) (NP* (NN* ”FLIGHT”) (NP** NNP (NP*** NNP* NP****)))) 2.95 0.015 8
28. (TOP (VB ”SHOW”) (VP* (PRP ”ME”) (NP (DT ”THE”) (NNS ”FARES”)))) 2.85 0.001 8
29. (VP (VBP ”NEED”) (NP (NP* (DT ”A”) (NN ”FLIGHT”)) (NP** PP-DIR NP***))) 2.77 0.009 12
30. (TOP (VB ”SHOW”) (VP* (PRP ”ME”) (NP NP* (NP** PP-DIR PP-DIR*)))) 2.77 0.001 34
31. (TOP (JJS ”CHEAPEST”) (NN ”FARE”)) 2.74 0.001 6
32. (TOP (VB ”SHOW”) (VP* (PRP ”ME”) (NP (NP* DT NP**) (NP*** PP-DIR PP-DIR*)))) 2.71 0.001 8
33. (TOP (NN ”PRICE”) (PP (IN ”OF”) (NP* (NN* ”FLIGHT”) (NP** NNP NP***)))) 2.69 0.001 6
34. (TOP (NN ”PRICE”) (PP (IN ”OF”) (NP* (NN* ”FLIGHT”) NP**))) 2.68 0.001 8
35. (PP-DIR (IN ”FROM”) (NP (NNP ”WASHINGTON”) (NP* (NNP* ”D”) (NNP** ”C”)))) 2.67 0.006 6
36. (PP-DIR (IN ”FROM”) (NP** (NNP ”NEWARK”) (NP*** (NNP* ”NEW”) (NNP** ”JERSEY”)))) 2.60 0.005 6
37. (S* (PRP ”I”) (VP (MD ”WOULD”) (VP* (VB ”LIKE”) (VP** TO VP***)))) 2.59 0.11 8
38. (TOP (VBZ ”DOES”) (SQ* (NP-SBJ DT (NN ”FLIGHT”)) (VP (VB ”SERVE”) (NN* ”DINNER”)))) 2.48 0.002 8
39. (TOP (PRP ”I”) (VP (MD ”WOULD”) (VP* (VB ”LIKE”) VP**))) 2.37 0.002 20
40. (TOP (WP ”WHAT”) (SQ (VBZ ”IS”) (NP-SBJ DT (NN ”PRICE”)))) 2.33 0.001 20
41. (S* (PRP ”I”) (VP MD (VP* (VB ”LIKE”) (VP** TO VP***)))) 2.33 0.100 8
42. (WHNP**** (PP-TMP (IN* ”ON”) (NNP** ”FRIDAY”)) (PP-LOC (IN** ”ON”) (NP (NNP*** ”AMERICAN”) (NNP**** ”AIRLINES”)))) 2.30 0.086 6
43. (VP* (PRP ”ME”) (NP (NP* (DT ”THE”) NNS) (NP** (PP-DIR IN NNP) (PP-DIR* TO NNP*)))) 2.29 0.007 18
44. (TOP (WHNP* (WDT ”WHAT”) (NNS ”FLIGHTS”)) (WHNP** (PP-DIR (IN ”FROM”) NNP) (WHNP*** (PP-DIR* TO NNP*) (PP-TMP IN* NNP**)))) 2.28 0.001 12
45. (SQ (VBP ”ARE”) (SQ* EX (SQ** (PP-DIR-3 IN NNP) (PP-DIR-4 TO NNP*)))) 2.26 0.015 14
46. (TOP (VB ”SHOW”) (VP* (PRP ”ME”) (NP (NP* DT NNS) (SBAR WDT VP**)))) 2.22 0.001 8
47. (TOP (NNS ”FLIGHTS”) (NP* (PP-DIR (IN ”FROM”) (NP** NNP NNP*)) (PP-DIR* (TO ”TO”) NNP**))) 2.20 0.001 10)
48. ((VP (VBP ”NEED”) (NP (NP* (DT ”A”) (NN ”FLIGHT”)) (NP** (PP-DIR IN NNP) NP***))) 2.1346128 0.007185978 10)
49. ((NP (NP* (DT ”THE”) (NNS ”FLIGHTS”)) (NP** (PP-DIR (IN ”FROM”) (NNP ”BALTIMORE”)) (PP-DIR* (TO ”TO”) (NNP* ”OAKLAND”)))) 2.1335514 0.00381956 10)
50. ((TOP (VB ”SHOW”) (VP* (PRP ”ME”) (NP (NP* DT NNS) (NP** PP-DIR NP***)))) 2.09 0.001 8)

Figure 1: Three examples and a list of the first 50 elementary trees with multiple words of an STSG induced
using the push-n-pull algorithm on the ATIS3 corpus. For use in the current implementation, the parse
trees have been converted to Chomsky Normal Form (all occurrences of A → B, B → ω are replaced by
A → ω; all occurrences of A → BCω are replaced by A → BA∗, A∗ → Cω), all non-terminal labels are
made unique for a particular parse tree (address labeling not shown) and all top nodes are replaced by the
non-terminal “TOP”. Listed are the elementary trees of the induced STSG with for each tree the score, the
weight and the frequency with which it occurs in the training set.
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corpus is generated by an STSG, and by inferring
the properties of that underlying STSG. Given our
best guess of the STSG that generated the data, we
can start to ask questions like: which subtrees are
overrepresented in the corpus? Which correlations
are so strong that it is reasonable to think of the cor-
related phrases as a single unit? We presented a new
algorithm for estimating weights of an STSG from a
corpus, and reported promising empirical results on
a small corpus.
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Abstract

We demonstrate an original and success-
ful approach for both resolving and gen-
erating definite anaphora. We propose
and evaluate unsupervised models for ex-
tracting hypernym relations by mining co-
occurrence data of definite NPs and po-
tential antecedents in an unlabeled cor-
pus. The algorithm outperforms a stan-
dard WordNet-based approach to resolv-
ing and generating definite anaphora. It
also substantially outperforms recent re-
lated work using pattern-based extraction
of such hypernym relations for corefer-
ence resolution.

1 Introduction

Successful resolution and generation of definite
anaphora requires knowledge of hypernym and hy-
ponym relationships. For example, determining the
antecedent to the definite anaphor “the drug” in text
requires knowledge of what previous noun-phrase
candidates could be drugs. Likewise, generating a
definite anaphor for the antecedent “Morphine” in
text requires both knowledge of potential hypernyms
(e.g. “the opiate”, “the narcotic”, “the drug”, and
“the substance”), as well as selection of the most ap-
propriate level of generality along the hypernym tree
in context (i.e. the “natural” hypernym anaphor).
Unfortunately existing manual hypernym databases
such as WordNet are very incomplete, especially
for technical vocabulary and proper names. Word-
Nets are also limited or non-existent for most of the

world’s languages. Finally, WordNets also do not
include notation of the “natural” hypernym level for
anaphora generation, and using the immediate par-
ent performs quite poorly, as quantified in Section 5.
In first part of this paper, we propose a novel ap-
proach for resolving definite anaphora involving hy-
ponymy relations. We show that it performs substan-
tially better than previous approaches on the task of
antecedent selection. In the second part we demon-
strate how this approach can be successfully ex-
tended to the problem of generating a natural def-
inite NP given a specific antecedent.
In order to explain the antecedent selection task for
definite anaphora clearly, we provide the follow-
ing example taken from the LDC Gigaword corpus
(Graff et al., 2005).

(1)...pseudoephedrine is found in an allergy treat-
ment, which was given to Wilson by a doctor when
he attended Blinn junior college in Houston. In a
unanimous vote, the Norwegian sports confedera-
tion ruled that Wilson had not taken the drug to en-
hance his performance...

In the above example, the task is to resolve
the definite NP the drug to its correct antecedent
pseudoephedrine, among the potential antecedents
<pseudoephedrine, allergy, blinn, college, hous-
ton, vote, confederation, wilson>. Only Wilson can
be ruled out on syntactic grounds (Hobbs, 1978).
To be able to resolve the correct antecedent from
the remaining potential antecedents, the system re-
quires the knowledge that pseudoephedrine is a
drug. Thus, the problem is to create such a knowl-
edge source and apply it to this task of antecedent
selection. A total of 177 such anaphoric examples
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were extracted randomly from the LDC Gigaword
corpus and a human judge identified the correct an-
tecedent for the definite NP in each example (given a
context of previous sentences).1 Two human judges
were asked to perform the same task over the same
examples. The agreement between the judges was
92% (of all 177 examples), indicating a clearly de-
fined task for our evaluation purposes.
We describe an unsupervised approach to this task
that extracts examples containing definite NPs from
a large corpus, considers all head words appearing
before the definite NP as potential antecedents and
then filters the noisy <antecedent, definite-NP> pair
using Mutual Information space. The co-occurence
statistics of such pairs can then be used as a mecha-
nism for detecting a hypernym relation between the
definite NP and its potential antecedents. We com-
pare this approach with a WordNet-based algorithm
and with an approach presented by Markert and Nis-
sim (2005) on resolving definite NP coreference that
makes use of lexico-syntactic patterns such as ’X
and Other Ys’ as utilized by Hearst (1992).

2 Related work
There is a rich tradition of work using lexical and se-
mantic resources for anaphora and coreference res-
olution. Several researchers have used WordNet as
a lexical and semantic resource for certain types of
bridging anaphora (Poesio et al., 1997; Meyer and
Dale, 2002). WordNet has also been used as an im-
portant feature in machine learning of coreference
resolution using supervised training data (Soon et
al., 2001; Ng and Cardie, 2002). However, sev-
eral researchers have reported that knowledge incor-
porated via WordNet is still insufficient for definite
anaphora resolution. And of course, WordNet is not
available for all languages and is missing inclusion
of large segments of the vocabulary even for cov-
ered languages. Hence researchers have investigated
use of corpus-based approaches to build a Word-
Net like resource automatically (Hearst, 1992; Cara-

1The test examples were selected as follows: First, all
the sentences containing definite NP “The Y” were extracted
from the corpus. Then, the sentences containing instances
of anaphoric definite NPs were kept and other cases of defi-
nite expressions (like existential NPs “The White House”,“The
weather”) were discarded. From this anaphoric set of sentences,
177 sentence instances covering 13 distinct hypernyms were
randomly selected as the test set and annotated for the correct
antecedent by human judges.

ballo, 1999; Berland and Charniak, 1999). Also,
several researchers have applied it to resolving dif-
ferent types of bridging anaphora (Clark, 1975).
Poesio et al. (2002) have proposed extracting lexical
knowledge about part-of relations using Hearst-style
patterns and applied it to the task of resolving bridg-
ing references. Poesio et al. (2004) have suggested
using Google as a source of computing lexical dis-
tance between antecedent and definite NP for mere-
ological bridging references (references referring to
parts of an object already introduced). Markert et al.
(2003) have applied relations extracted from lexico-
syntactic patterns such as ’X and other Ys’ for Other-
Anaphora (referential NPs with modifiers other or
another) and for bridging involving meronymy.
There has generally been a lack of work in the exist-
ing literature for automatically building lexical re-
sources for definite anaphora resolution involving
hyponyms relations such as presented in Example
(1). However, this issue was recently addressed by
Markert and Nissim (2005) by extending their work
on Other-Anaphora using lexico syntactic pattern ’X
and other Y’s to antecedent selection for definite NP
coreference. However, our task is more challeng-
ing since the anaphoric definite NPs in our test set
include only hypernym anaphors without including
the much simpler cases of headword repetition and
other instances of string matching. For direct eval-
uation, we also implemented their corpus-based ap-
proach and compared it with our models on identical
test data.
We also describe and evaluate a mechanism for com-
bining the knowledge obtained from WordNet and
the six corpus-based approaches investigated here.
The resulting models are able to overcome the weak-
nesses of a WordNet-only model and substantially
outperforms any of the individual models.

3 Models for Lexical Acquisition
3.1 TheY-Model
Our algorithm is motivated by the observation that in
a discourse, the use of the definite article (“the”) in a
non-deictic context is primarily licensed if the con-
cept has already been mentioned in the text. Hence a
sentence such as “The drug is very expensive” gen-
erally implies that either the word drug itself was
previously mentioned (e.g. “He is taking a new drug
for his high cholesterol.”) or a hyponym of drug was
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previously mentioned (e.g. “He is taking Lipitor for
his high cholesterol.”). Because it is straightforward
to filter out the former case by string matching, the
residual instances of the phrase “the drug” (without
previous mentions of the word “drug” in the dis-
course) are likely to be instances of hypernymic def-
inite anaphora. We can then determine which nouns
earlier in the discourse (e.g. Lipitor) are likely an-
tecedents by unsupervised statistical co-occurrence
modeling aggregated over the entire corpus. All we
need is a large corpus without any anaphora annota-
tion and a basic tool for noun tagging and NP head
annotation. The detailed algorithm is as follows:

1. Find each sentence in the training corpus that
contains a definite NP (’the Y’) and does not
contain ’a Y’, ’an Y’ or other instantiations of
Y2 appearing before the definite NP within a
fixed window.3

2. In the sentences that pass the above definite NP
and a/an test, regard all the head words (X) oc-
curring in the current sentence before the defi-
nite NP and the ones occurring in previous two
sentences as potential antecedents.

3. Count the frequency c(X,Y) for each pair ob-
tained in the above two steps and pre-store it in
a table.4 The frequency table can be modified
to give other scores for pair(X,Y) such as stan-
dard TF-IDF and Mutual Information scores.

4. Given a test sentence having an anaphoric def-
inite NP Y, consider the nouns appearing be-
fore Y within a fixed window as potential an-
tecedents. Rank the candidates by their pre-
computed co-occurence measures as computed
in Step 3.

Since we consider all head words preceding the defi-
nite NP as potential correct antecedents, the raw fre-
quency of the pair (X ,Y ) can be very noisy. This
can be seen clearly in Table 1, where the first col-
umn shows the top potential antecedents of definite
NP the drug as given by raw frequency. We nor-
malize the raw frequency using standard TF-IDF

2While matching for both ’the Y’ and ’a/an Y’, we also ac-
count for Nouns getting modified by other words such as adjec-
tives. Thus ’the Y’ will still match to ’the green and big Y’.

3Window size was set to two sentences, we also experi-
mented with a larger window size of five sentences and the re-
sults obtained were similar.

4Note that the count c(X,Y) is asymmetric

Rank Raw freq TF-IDF MI
1 today kilogram amphetamine
2 police heroin cannabis
3 kilogram police cocaine
4 year cocaine heroin
5 heroin today marijuana
6 dollar trafficker pill
7 country officer hashish
8 official amphetamine tablet

Table 1: A sample of ranked hyponyms proposed for
the definite NP The drug by TheY-Model illustrat-
ing the differences in weighting methods.

Acc Acctag Av Rank
MI 0.531 0.577 4.82

TF-IDF 0.175 0.190 6.63
Raw Freq 0.113 0.123 7.61

Table 2: Results using different normalization tech-
niques for the TheY-Model in isolation. (60 million
word corpus)

and Mutual Information scores to filter the noisy
pairs.5 In Table 2, we report our results for an-
tecedent selection using Raw frequency c(X,Y), TF-
IDF 6 and MI in isolation. Accuracy is the fraction
of total examples that were assigned the correct an-
tecedent and Accuracytag is the same excluding the
examples that had POS tagging errors for the cor-
rect antecedent.7 Av Rank is the rank of the true
antecedent averaged over the number of test exam-
ples.8 Based on the above experiment, the rest of
this paper assumes Mutual Information scoring tech-
nique for TheY-Model.

5Note that MI(X, Y ) = log P (X,Y )
P (X)P (Y )

and this is directly

proportional to P (Y |X) = c(X,Y )
c(X)

for a fixed Y . Thus, we
can simply use this conditional probability during implementa-
tion since the definite NP Y is fixed for the task of antecedent
selection.

6For the purposes of TF-IDF computation, document fre-
quency df(X) is defined as the number of unique definite NPs
for which X appears as an antecedent.

7Since the POS tagging was done automatically, it is possi-
ble for any model to miss the correct antecedent because it was
not tagged correctly as a noun in the first place. There were 14
such examples in the test set and none of the model variants can
find the correct antecdent in these instances.

8Knowing average rank can be useful when a n-best ranked
list from coreference task is used as an input to other down-
stream tasks such as information extraction.
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Acc Acctag Av Rank
TheY+WN 0.695 0.755 3.37
WordNet 0.593 0.644 3.29

TheY 0.531 0.577 4.82

Table 3: Accuracy and Average Rank showing com-
bined model performance on the antecedent selec-
tion task. Corpus Size: 60 million words.

3.2 WordNet-Model (WN)
Because WordNet is considered as a standard re-
source of lexical knowledge and is often used in
coreference tasks, it is useful to know how well
corpus-based approaches perform as compared to
a standard model based on the WordNet (version
2.0).9 The algorithm for the WordNet-Model is as
follows:
Given a definite NP Y and its potential antecedent
X, choose X if it occurs as a hyponym (either direct
or indirect inheritance) of Y. If multiple potential an-
tecedents occur in the hierarchy of Y, choose the one
that is closest in the hierarchy.

3.3 Combination: TheY+WordNet Model
Most of the literature on using lexical resources
for definite anaphora has focused on using individ-
ual models (either corpus-based or manually build
resources such as WordNet) for antecedent selec-
tion. Some of the difficulties with using WordNet is
its limited coverage and its lack of empirical rank-
ing model. We propose a combination of TheY-
Model and WordNet-Model to overcome these prob-
lems. Essentially, we rerank the hypotheses found
in WordNet-Model based on ranks of TheY-model
or use a backoff scheme if WordNet-Model does not
return an answer due to its limited coverage. Given
a definite NP Y and a set of potential antecedents Xs
the detailed algorithm is specified as follows:

1. Rerank with TheY-Model: Rerank the potential
antecedents found in the WordNet-Model ta-
ble by assiging them the ranks given by TheY-
Model. If TheY-Model does not return a rank
for a potential antecedent, use the rank given by

9We also computed the accuracy using a weaker baseline,
namely, selecting the closest previous headword as the correct
antecedent. This recency based baseline obtained a low accu-
racy of 15% and hence we used the stronger WordNet based
model for comparison purposes.

the WordNet-Model. Now pick the top ranked
antecedent after reranking.

2. Backoff: If none of the potential antecedents
were found in the WordNet-Model then pick
the correct antecedent from the ranked list of
The-Y model. If none of the models return an
answer then assign ranks uniformly at random.

The above algorithm harnesses the strength of
WordNet-Model to identify good hyponyms and the
strength of TheY-model to identify which are more
likely to be used as an antecedent. Note that this
combination algorithm can be applied using any
corpus-based technique to account for poor-ranking
and low-coverage problems of WordNet and the
Sections 3.4, 3.5 and 3.6 will show the results for
backing off to a Hearst-style hypernym model. Ta-
ble 4 shows the decisions made by TheY-model,
WordNet-Model and the combined model for a sam-
ple of test examples. It is interesting to see how both
the models mutually complement each other in these
decisions. Table 3 shows the results for the models
presented so far using a 60 million word training text
from the Gigaword corpus. The combined model re-
sults in a substantially better accuracy than the indi-
vidual WordNet-Model and TheY-Model, indicating
its strong merit for the antecedent selection task.10

3.4 OtherY-Modelfreq

This model is a reimplementation of the corpus-
based algorithm proposed by Markert and Nissim
(2005) for the equivalent task of antecedent selec-
tion for definite NP coreference. We implement their
approach of using the lexico-syntactic pattern X and
A* other B* Y{pl} for extracting (X,Y) pairs.The A*
and B* allow for adjectives or other modifiers to be
placed in between the pattern. The model presented
in their article uses the raw frequency as the criteria
for selecting the antecedent.
3.5 OtherY-ModelMI (normalized)
We normalize the OtherY-Model using Mutual In-
formation scoring method. Although Markert and
Nissim (2005) report that using Mutual Information
performs similar to using raw frequency, Table 5
shows that using Mutual Information makes a sub-
stantial impact on results using large training cor-
pora relative to using raw frequency.

10The claim is statistically significant with a p < 0.01 ob-
tained by sign-test
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Summary Keyword True TheY Truth WordNet Truth TheY+WN Truth
(Def. Ana) Antecedent Choice Rank Choice Rank Choice Rank

Both metal gold gold 1 gold 1 gold 1
correct sport soccer soccer 1 soccer 1 soccer 1

TheY-Model drug steroid steroid 1 NA NA steroid 1
helps drug azt azt 1 medication 2 azt 1

WN-Model instrument trumpet king 10 trumpet 1 trumpet 1
helps drug naltrexone alcohol 14 naltrexone 1 naltrexone 1
Both weapon bomb artillery 3 NA NA artillery 3

incorrect instrument voice music 9 NA NA music 9

Table 4: A sample of output from different models on antecedent selection (60 million word corpus).

3.6 Combination: TheY+OtherYMI Model
Our two corpus-based approaches (TheY and Oth-
erY) make use of different linguistic phenomena and
it would be interesting to see whether they are com-
plementary in nature. We used a similar combina-
tion algorithm as in Section 3.3 with the WordNet-
Model replaced with the OtherY-Model for hyper-
nym filtering, and we used the noisy TheY-Model
for reranking and backoff. The results for this ap-
proach are showed as the entry TheY+OtherYMI in
Table 5. We also implemented a combination (Oth-
erY+WN) of Other-Y model and WordNet-Model
by replacing TheY-Model with OtherY-Model in the
algorithm described in Section 3.3. The respective
results are indicated as OtherY+WN entry in Table
5.

4 Further Anaphora Resolution Results
Table 5 summarizes results obtained from all the
models defined in Section 3 on three different sizes
of training unlabeled corpora (from Gigaword cor-
pus). The models are listed from high accuracy to
low accuracy order. The OtherY-Model performs
particularly poorly on smaller data sizes, where cov-
erage of the Hearst-style patterns maybe limited,
as also observed by Berland and Charniak (1999).
We further find that the Markert and Nissim (2005)
OtherY-Model and our MI-based improvement do
show substantial relative performance growth at in-
creased corpus sizes, although they still underper-
form our basic TheY-Model at all tested corpus
sizes. Also, the combination of corpus-based mod-
els (TheY-Model+OtherY-model) does indeed per-
forms better than either of them in isolation. Fi-
nally, note that the basic TheY-algorithm still does

Acc Acctag Av Rank
60 million words

TheY+WN 0.695 0.755 3.37
OtherYMI+WN 0.633 0.687 3.04

WordNet 0.593 0.644 3.29
TheY 0.531 0.577 4.82

TheY+OtherYMI 0.497 0.540 4.96
OtherYMI 0.356 0.387 5.38
OtherYfreq 0.350 0.380 5.39

230 million words
TheY+WN 0.678 0.736 3.61

OtherYMI+WN 0.650 0.705 2.99
WordNet 0.593 0.644 3.29

TheY+OtherYMI 0.559 0.607 4.50
TheY 0.519 0.564 4.64

OtherYMI 0.503 0.546 4.37
OtherYfreq 0.418 0.454 4.52

380 million words
TheY+WN 0.695 0.755 3.47

OtherYMI+WN 0.644 0.699 3.03
WordNet 0.593 0.644 3.29

TheY+OtherYMI 0.554 0.601 4.20
TheY 0.537 0.583 4.26

OtherYMI 0.525 0.571 4.20
OtherYfreq 0.446 0.485 4.36

Table 5: Accuracy and Average Rank of Models de-
fined in Section 3 on the antecedent selection task.
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relatively well by itself on smaller corpus sizes,
suggesting its merit on resource-limited languages
with smaller available online text collections and the
unavailability of WordNet. The combined models
of WordNet-Model with the two corpus-based ap-
proaches still significantly (p < 0.01) outperform
any of the other individual models.11

5 Generation Task
Having shown positive results for the task of an-
tecedent selection, we turn to a more difficult task,
namely generating an anaphoric definite NP given
a nominal antecedent. In Example (1), this would
correspond to generating “the drug” as an anaphor
knowing that the antecedent is pseudoephedrine.
This task clearly has many applications: current gen-
eration systems often limit their anaphoric usage to
pronouns and thus an automatic system that does
well on hypernymic definite NP generation can di-
rectly be helpful. It also has strong potential appli-
cation in abstractive summarization where rewriting
a fluent passage requires a good model of anaphoric
usage.
There are many interesting challenges in this prob-
lem: first of all, there maybe be multiple acceptable
choices for definite anaphor given a particular an-
tecedent, complicating automatic evaluation. Sec-
ond, when a system generates a definite anaphora,
the space of potential candidates is essentially un-
bounded, unlike in antecdent selection, where it is
limited only to the number of potential antecedents
in prior context. In spite of the complex nature
of this problem, our experiments with the human
judgements, WordNet and corpus-based approaches
show a simple feasible solution. We evaluate our
automatic approaches based on exact-match agree-
ment with definite anaphora actually used in the cor-
pus (accuracy) and also by agreement with definite
anaphora predicted independently by a human judge
in an absence of context.

11Note that syntactic co-reference candidate filters such as
the Hobbs algorithm were not utilized in this study. To assess
the performance implications, the Hobbs algorithm was applied
to a randomly selected 100-instance subset of the test data. Al-
though the Hobbs algorithm frequently pruned at least one of
the coreference candidates, in only 2% of the data did such can-
didate filtering change system output. However, since both of
these changes were improvements, it could be worthwhile to
utilize Hobbs filtering in future work, although the gains would
likely be modest.

5.1 Human experiment

We extracted a total of 103 <true antecedent, defi-
nite NP> pairs from the set of test instances used in
the resolution task. Then we asked a human judge (a
native speaker of English) to predict a parent class
of the antecedent that could act as a good definite
anaphora choice in general, independent of a par-
ticular context. Thus, the actual corpus sentence
containing the antecedent and definite NP and its
context was not provided to the judge. We took
the predictions provided by the judge and matched
them with the actual definite NPs used in the corpus.
The agreement between corpus and the human judge
was 79% which can thus be considered as an upper
bound of algorithm performance. Table 7 shows a
sample of decisions made by the human and how
they agree with the definite NPs observed in the cor-
pus. It is interesting to note the challenge of the
sense variation and figurative usage. For example,
“corruption” is refered to as a “tool” in the actual
corpus anaphora, a metaphoric usage that would be
difficult to predict unless given the usage sentence
and its context. However, a human agreement of
79% indicate that such instances are relatively rare
and the task of predicting a definite anaphor with-
out its context is viable. In general, it appears from
our experiements that humans tend to select from
a relatively small set of parent classes when gener-
ating hypernymic definite anaphora. Furthermore,
there appears to be a relatively context-independent
concept of the “natural” level in the hypernym hi-
erarchy for generating anaphors. For example, al-
though <“alkaloid”, “organic compound”, “com-
pound”, “substance”, “entity”> are all hypernyms
of “Pseudoephederine” in WordNet, “the drug”
appears to be the preferred hypernym for definite
anaphora in the data, with the other alternatives be-
ing either too specific or too general to be natural.
This natural level appears to be difficult to define by
rule. For example, using just the immediate parent
hypernym in the WordNet hierarchy only achieves
4% match with the corpus data for definite anaphor
generation.

5.2 Algorithms

The following sections presents our corpus-based al-
gorithms as more effective alternatives.
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Agreement Agreement
w/ human w/ corpus

judge
TheY+OtherY+WN 47% 46%

OtherY +WN 43% 43%
TheY+WN 42% 37%

TheY +OtherY 39% 36%
OtherY 39% 36%

WordNet 4% 4%
Human judge 100% 79%

Corpus 79% 100%

Table 6: Agreement of different generation models
with human judge and with definite NP used in the
corpus.

5.2.1 Individual Models

For the corpus-based approaches, the TheY-Model
and OtherY-Model were trained in the same manner
as for the antecedent selection task. The only differ-
ence was that in the generation case, the frequency
statistics were reversed to provide a hypernym given
a hyponym. Additionally, we found that raw fre-
quency outperformed either TF-IDF or Mutual In-
formation and was used for all results in Table 6.
The stand-alone WordNet model is also very simple:
Given an antecedent, we lookup its direct hypernym
(using first sense) in the WordNet and use it as the
definite NP, for lack of a better rule for preferred hy-
pernym location.

5.2.2 Combining corpus-based approaches and
WordNet

Each of the corpus-based approaches was combined
with WordNet resulting in two different models as
follows: Given an antecedent X, the corpus-based
approach looks up in its table the hypernym of X,
for example Y, and only produces Y as the output if
Y also occurs in the WordNet as hypernym. Thus
WordNet is used as a filtering tool for detecting vi-
able hypernyms. This combination resulted in two
models: ’TheY+WN’ and ’OtherY+WN’.
We also combined all the three approaches, ’TheY’,
’OtherY’ and WordNet resulting in a single model
’TheY+OtherY+WN’. This was done as follows: We
first combine the models ’TheY’ and ’OtherY’ using
a backoff model. The first priority is to use the hy-

Antecedent Corpus Human TheY+OtherY
Def Ana Choice +WN

racing sport sport sport
azt drug drug drug

missile weapon weapon weapon
alligator animal animal animal

steel metal metal metal
osteporosis disease disease condition

grenade device weapon device
baikonur site city station

corruption tool crime activity

Table 7: Sample of decisions made by hu-
man judge and our best performing model
(TheY+OtherY+WN) on the generation task.

pernym from the model ’OtherY’, if not found then
use the hypernym from the model ’TheY’. Given a
definite NP from the backoff model, apply the Word-
Net filtering technique, specifically, choose it as the
correct definite NP if it also occurs as a hypernym in
the WordNet hierarchy of the antecedent.

5.3 Evaluation of Anaphor Generation

We evaluated the resulting algorithms from Section
5.2 on the definite NP prediction task as described
earlier. Table 6 shows the agreement of the algo-
rithm predictions with the human judge as well as
with the definite NP actually observed in the corpus.
It is interesting to see that WordNet by itself per-
forms very poorly on this task since it does not have
any word-specific mechanism to choose the correct
level in the hierarchy and the correct word sense for
selecting the hypernym. However, when combined
with our corpus-based approaches, the agreement
increases substantially indicating that the corpus-
based approaches are effectively filtering the space
of hypernyms that can be used as natural classes.
Likewise, WordNet helps to filter the noisy hyper-
nyms from the corpus predictions. Thus, this inter-
play between the corpus-based and WordNet algo-
rithm works out nicely, resulting in the best model
being a combination of all three individual models
and achieving a substantially better agreement with
both the corpus and human judge than any of the in-
dividual models. Table 7 shows decisions made by
this algorithm on a sample test data.
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6 Conclusion
This paper provides a successful solution to the
problem of incomplete lexical resources for definite
anaphora resolution and further demonstrates how
the resources built for resolution can be naturally ex-
tended for the less studied task of anaphora genera-
tion. We first presented a simple and noisy corpus-
based approach based on globally modeling head-
word co-occurrence around likely anaphoric definite
NPs. This was shown to outperform a recent ap-
proach by Markert and Nissim (2005) that makes use
of standard Hearst-style patterns extracting hyper-
nyms for the same task. Even with a relatively small
training corpora, our simple TheY-model was able
to achieve relatively high accuracy, making it suit-
able for resource-limited languages where annotated
training corpora and full WordNets are likely not
available. We then evaluated several variants of this
algorithm based on model combination techniques.
The best combined model was shown to exceed 75%
accuracy on the resolution task, beating any of the
individual models. On the much harder anaphora
generation task, where the stand-alone WordNet-
based model only achieved an accuracy of 4%, we
showed that our algorithms can achieve 35%-47%
accuracy on blind exact-match evaluation, thus mo-
tivating the use of such corpus-based learning ap-
proaches on the generation task as well.
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Abstract

This paper investigates an isolated setting
of the lexical substitution task of replac-
ing words with their synonyms. In par-
ticular, we examine this problem in the
setting of subtitle generation and evaluate
state of the art scoring methods that pre-
dict the validity of a given substitution.
The paper evaluates two context indepen-
dent models and two contextual models.
The major findings suggest that distribu-
tional similarity provides a useful comple-
mentary estimate for the likelihood that
two Wordnet synonyms are indeed substi-
tutable, while proper modeling of contex-
tual constraints is still a challenging task
for future research.

1 Introduction

Lexical substitution - the task of replacing a word
with another one that conveys the same meaning -
is a prominent task in many Natural Language Pro-
cessing (NLP) applications. For example, in query
expansion for information retrieval a query is aug-
mented with synonyms of the original query words,
aiming to retrieve documents that contain these syn-
onyms (Voorhees, 1994). Similarly, lexical substi-
tutions are applied in question answering to identify
answer passages that express the sought answer in
different terms than the original question. In natu-
ral language generation it is common to seek lex-
ical alternatives for the same meaning in order to
reduce lexical repetitions. In general, lexical sub-
stitution aims to preserve a desired meaning while

coping with the lexical variability of expressing that
meaning. Lexical substitution can thus be viewed
within the general framework of recognizing entail-
ment between text segments (Dagan et al., 2005), as
modeling entailment relations at the lexical level.

In this paper we examine the lexical substitu-
tion problem within a specific setting of text com-
pression for subtitle generation (Daelemans et al.,
2004). Subtitle generation is the task of generat-
ing target language TV subtitles for video recordings
of a source language speech. The subtitles should
be of restricted length, which is often shorter than
the full translation of the original speech, yet they
should maintain as much as possible the meaning
of the original content. In a typical (automated)
subtitling process the original speech is first trans-
lated fully into the target language and then the tar-
get translation is compressed to optimize the length
requirements. One of the techniques employed in
the text compression phase is to replace a target lan-
guage word in the original translation with a shorter
synonym of it, thus reducing the character length of
the subtitle. This is a typical lexical substitution
task, which resembles similar operations in other
text compression and generation tasks (e.g. (Knight
and Marcu, 2002)).

This paper investigates the task of assigning like-
lihood scores for the correctness of such lexical sub-
stitutions, in which words in the original translation
are replaced with shorter synonyms. In our experi-
ments we use WordNet as a source of candidate syn-
onyms for substitution. The goal is to score the like-
lihood that the substitution is admissible, i.e. yield-
ing a valid sentence that preserves the original mean-
ing. The focus of this paper is thus to utilize the
subtitling setting in order to investigate lexical sub-
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stitution models in isolation, unlike most previous
literature in which this sub-task has been embedded
in larger systems and was not evaluated directly.

We examine four statistical scoring models, of
two types. Context independent models score the
general likelihood that the original word is “replace-
able” with the candidate synonym, in an arbitrary
context. That is, trying to filter relatively bizarre
synonyms, often of rare senses, which are abundant
in WordNet but are unlikely to yield valid substitu-
tions. Contextual models score the “fitness” of the
replacing word within the context of the sentence, in
order to filter out synonyms of senses of the original
word that are not the right sense in the given context.

We set up an experiment using actual subti-
tling data and human judgements and evaluate the
different scoring methods. Our findings suggest
the dominance, in this setting, of generic context-
independent scoring. In particular, considering dis-
tributional similarity amongst WordNet synonyms
seems effective for identifying candidate substitu-
tions that are indeed likely to be applicable in actual
texts. Thus, while distributional similarity alone is
known to be too noisy as a sole basis for meaning-
preserving substitutions, its combination with Word-
Net allows reducing the noise caused by the many
WordNet synonyms that are unlikely to correspond
to valid substitutions.

2 Background and Setting

2.1 Subtitling

Automatic generation of subtitles is a summariza-
tion task at the level of individual sentences or occa-
sionally of a few contiguous sentences. Limitations
on reading speed of viewers and on the size of the
screen that can be filled with text without the image
becoming too cluttered, are the constraints that dy-
namically determine the amount of compression in
characters that should be achieved in transforming
the transcript into subtitles. Subtitling is not a trivial
task, and is expensive and time-consuming when ex-
perts have to carry it out manually. As for other NLP

tasks, both statistical (machine learning) and linguis-
tic knowledge-based techniques have been consid-
ered for this problem. Examples of the former are
(Knight and Marcu, 2002; Hori et al., 2002), and of
the latter are (Grefenstette, 1998; Jing and McKe-

own, 1999). A comparison of both approaches in
the context of a Dutch subtitling system is provided
in (Daelemans et al., 2004). The required sentence
simplification is achieved either by deleting mate-
rial, or by paraphrasing parts of the sentence into
shorter expressions with the same meaning. As a
special case of the latter, lexical substitution is often
used to achieve a compression target by substituting
a word by a shorter synonym. It is on this subtask
that we focus in this paper. Table 1 provides a few
examples. E.g. by substituting “happen” by “occur”
(example 3), one character is saved without affecting
the sentence meaning .

2.2 Experimental Setting

The data used in our experiments was collected in
the context of the MUSA (Multilingual Subtitling of
Multimedia Content) project (Piperidis et al., 2004)1

and was kindly provided for the current study. The
data was provided by the BBC in the form of Hori-
zon documentary transcripts with the corresponding
audio and video. The data for two documentaries
was used to create a dataset consisting of sentences
from the transcripts and the corresponding substitu-
tion examples in which selected words are substi-
tuted by a shorter Wordnet synonym. More con-
cretely, a substitution example thus consists of an
original sentence s = w1 . . . wi . . . wn, a specific
source word wi in the sentence and a target (shorter)
WordNet synonym w′ to substitute the source. See
Table 1 for examples. The dataset consists of 918
substitution examples originating from 231 different
sentences.

An annotation environment was developed to al-
low efficient annotation of the substitution examples
with the classes true (admissible substitution, in the
given context) or false (inadmissible substitution).
About 40% of the examples were judged as true.
Part of the data was annotated by an additional an-
notator to compute annotator agreement. The Kappa
score turned out to be 0.65, corresponding to ”Sub-
stantial Agreement” (Landis and Koch, 1997). Since
some of the methods we are comparing need tuning
we held out a random subset of 31 original sentences
(with 121 corresponding examples) for development
and kept for testing the resulting 797 substitution ex-

1http://sinfos.ilsp.gr/musa/
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id sentence source target judgment
1 The answer may be found in the behaviour of animals. answer reply false
2 . . . and the answer to that was - Yes answer reply true
3 We then wanted to know what would happen if

we delay the movement of the subject’s left hand

happen occur true
4 subject topic false
5 subject theme false
6 people weren’t laughing they were going stone sober. stone rock false
7 if we can identify a place where the seizures are coming from then we can go in

and remove just that small area.
identify place false

8 my approach has been the first to look at the actual structure of the laugh sound. approach attack false
9 He quickly ran into an unexpected problem. problem job false
10 today American children consume 5 times more Ritalin than the rest of the world

combined
consume devour false

Table 1: Substitution examples from the dataset along with their annotations

amples from the remaining 200 sentences.

3 Compared Scoring Models

We compare methods for scoring lexical substitu-
tions. These methods assign a score which is ex-
pected to correspond to the likelihood that the syn-
onym substitution results in a valid subtitle which
preserves the main meaning of the original sentence.

We examine four statistical scoring models, of
two types. The context independent models score
the general likelihood that the source word can be
replaced with the target synonym regardless of the
context in which the word appears. Contextual mod-
els, on the other hand, score the fitness of the target
word within the given context.

3.1 Context Independent Models

Even though synonyms are substitutable in theory,
in practice there are many rare synonyms for which
the likelihood of substitution is very low and will be
substitutable only in obscure contexts. For exam-
ple, although there are contexts in which the word
job is a synonym of the word problem2, this is not
typically the case and overall job is not a good tar-
get substitution for the source problem (see example
9 in Table 1). For this reason synonym thesauruses
such as WordNet tend to be rather noisy for practi-
cal purposes, raising the need to score such synonym
substitutions and accordingly prioritize substitutions
that are more likely to be valid in an arbitrary con-
text.

2WordNet lists job as a possible member of the synset for a
state of difficulty that needs to be resolved, as might be used in
sentences like “it is always a job to contact him”

As representative approaches for addressing this
problem, we chose two methods that rely on statisti-
cal information of two types: supervised sense dis-
tributions from SemCor and unsupervised distribu-
tional similarity.

3.1.1 WordNet based Sense Frequencies
(semcor)

The obvious reason that a target synonym cannot
substitute a source in some context is if the source
appears in a different sense than the one in which
it is synonymous with the target. This means that a
priori, synonyms of frequent senses of a source word
are more likely to provide correct substitutions than
synonyms of the word’s infrequent senses.

To estimate such likelihood, our first measure is
based on sense frequencies from SemCor (Miller et
al., 1993), a corpus annotated with Wordnet senses.
For a given source word u and target synonym v the
score is calculated as the percentage of occurrences
of u in SemCor for which the annotated synset con-
tains v (i.e. u’s occurrences in which its sense is
synonymous with v). This corresponds to the prior
probability estimate that an occurrence of u (in an
arbitrary context) is actually a synonym of v. There-
fore it is suitable as a prior score for lexical substi-
tution.3

3.1.2 Distributional Similarity (sim)
The SemCor based method relies on a supervised

approach and requires a sense annotated corpus. Our

3Note that WordNet semantic distance measures such as
those compared in (Budanitsky and Hirst, 2001) are not appli-
cable here since they measure similarity between synsets rather
than between synonymous words within a single synset.
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second method uses an unsupervised distributional
similarity measure to score synonym substitutions.
Such measures are based on the general idea of
Harris’ Distributional Hypothesis, suggesting that
words that occur within similar contexts are seman-
tically similar (Harris, 1968).

As a representative of this approach we use Lin’s
dependency-based distributional similarity database.
Lin’s database was created using the particular dis-
tributional similarity measure in (Lin, 1998), applied
to a large corpus of news data (64 million words) 4.
Two words obtain a high similarity score if they oc-
cur often in the same contexts, as captured by syn-
tactic dependency relations. For example, two verbs
will be considered similar if they have large common
sets of modifying subjects, objects, adverbs etc.

Distributional similarity does not capture directly
meaning equivalence and entailment but rather a
looser notion of meaning similarity (Geffet and Da-
gan, 2005). It is typical that non substitutable words
such as antonyms or co-hyponyms obtain high sim-
ilarity scores. However, in our setting we apply
the similarity score only for WordNet synonyms in
which it is known a priori that they are substitutable
is some contexts. Distributional similarity may thus
capture the statistical degree to which the two words
are substitutable in practice. In fact, it has been
shown that prominence in similarity score corre-
sponds to sense frequency, which was suggested as
the basis for an unsupervised method for identifying
the most frequent sense of a word (McCarthy et al.,
2004).

3.2 Contextual Models

Contextual models score lexical substitutions based
on the context of the sentence. Such models
try to estimate the likelihood that the target word
could potentially occur in the given context of the
source word and thus may replace it. More con-
cretely, for a given substitution example consist-
ing of an original sentence s = w1 . . . wi . . . wn,
and a designated source word wi, the contextual
models we consider assign a score to the substi-
tution based solely on the target synonym v and
the context of the source word in the original sen-

4available at http://www.cs.ualberta.ca/
˜lindek/downloads.htm

tence, {w1, . . . , wi−1, wi+1, . . . , wn}, which is rep-
resented in a bag-of-words format.

Apparently, this setting was not investigated much
in the context of lexical substitution in the NLP lit-
erature. We chose to evaluate two recently proposed
models that address exactly the task at hand: the first
model was proposed in the context of lexical model-
ing of textual entailment, using a generative Naı̈ve
Bayes approach; the second model was proposed
in the context of machine learning for information
retrieval, using a discriminative neural network ap-
proach. The two models were trained on the (un-
annotated) sentences of the BNC 100 million word
corpus (Burnard, 1995) in bag-of-words format. The
corpus was broken into sentences, tokenized, lem-
matized and stop words and tokens appearing only
once were removed. While training of these models
is done in an unsupervised manner, using unlabeled
data, some parameter tuning was performed using
the small development set described in Section 2.

3.2.1 Bayesian Model (bayes)
The first contextual model we examine is the one

proposed in (Glickman et al., 2005) to model tex-
tual entailment at the lexical level. For a given tar-
get word this unsupervised model takes a binary text
categorization approach. Each vocabulary word is
considered a class, and contexts are classified as to
whether the given target word is likely to occur in
them. Taking a probabilistic Naı̈ve-Bayes approach
the model estimates the conditional probability of
the target word given the context based on corpus co-
occurrence statistics. We adapted and implemented
this algorithm and trained the model on the sen-
tences of the BNC corpus.

For a bag-of-words context C =
{w1, . . . , wi−1, wi+1, . . . , wn} and target word
v the Naı̈ve Bayes probability estimation for the
conditional probability of a word v may occur in a
given a context C is as follows:

P(v|C) =
P(C|v) P(v)

P(C|v) P(v)+P(C|¬v) P(¬v) ≈
P(v)

∏
w∈C P(w|v)

P(v)
∏

w∈C P(w|v)+P(¬v)
∏

w∈C P(w|¬v)

(1)

where P(w|v) is the probability that a word w ap-
pears in the context of a sentence containing v and
correspondingly P(w|¬v) is the probability that w
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appears in a sentence not containing v. The prob-
ability estimates were obtained from the processed
BNC corpus as follows:

P(w|v) = |w appears in sentences containing v|
|words in sentences containing v|

P(w|¬v) = |w occurs in sentences not containing v|
|words in sentences not containing v|

To avoid 0 probabilities these estimates were
smoothed by adding a small constant to all counts
and normalizing accordingly. The constant value
was tuned using the development set to maximize
average precision (see Section 4.1). The estimated
probability, P(v|C), was used as the confidence
score for each substitution example.

3.2.2 Neural Network Model (nntr)
As a second contextual model we evaluated the

Neural Network for Text Representation (NNTR)
proposed in (Keller and Bengio, 2005). NNTR is
a discriminative approach which aims at modeling
how likely a given word v is in the context of a piece
of text C, while learning a more compact represen-
tation of reduced dimensionality for both v and C.

NNTR is composed of 3 Multilayer Perceptrons,
noted mlpA(), mlpB() and mlpC(), connected as
follow:

NNTR(v, C) = mlpC [mlpA(v),mlpB(C)].

mlpA(v) and mlpB(C) project respectively the
vector space representation of the word and text
into a more compact space of lower dimensionality.
mlpC() takes as input the new representations of v
and C and outputs a score for the contextual rele-
vance of v to C.

As training data, couples (v,C) from the BNC cor-
pus are provided to the learning scheme. The target
training value for the output of the system is 1 if v is
indeed in C and -1 otherwise. The hope is that the
neural network will be able to generalize to words
which are not in the piece of text but are likely to be
related to it.

In essence, this model is trained by minimizing
the weighted sum of the hinge loss function over
negative and positive couples, using stochastic Gra-
dient Descent (see (Keller and Bengio, 2005) for fur-
ther details). The small held out development set of

the substitution dataset was used to tune the hyper-
parameters of the model, maximizing average preci-
sion (see Section 4.1). For simplicity mlpA() and
mlpB() were reduced to Perceptrons. The output
size of mlpA() was set to 20, mlpB() to 100 and the
number of hidden units of mlpC() was set to 500.

There are a couple of important conceptual differ-
ences of the discriminative NNTR model compared
to the generative Bayesian model described above.
First, the relevancy of v to C in NNTR is inferred
in a more compact representation space of reduced
dimensionality, which may enable a higher degree
of generalization. Second, in NNTR we are able to
control the capacity of the model in terms of num-
ber of parameters, enabling better control to achieve
an optimal generalization level with respect to the
training data (avoiding over or under fitting).

4 Empirical Results

4.1 Evaluation Measures

We compare the lexical substitution scoring methods
using two evaluation measures, offering two differ-
ent perspectives of evaluation.

4.1.1 Accuracy

The first evaluation measure is motivated by simu-
lating a decision step of a subtitling system, in which
the best scoring lexical substitution is selected for
each given sentence. Such decision may correspond
to a situation in which each single substitution may
suffice to obtain the desired compression rate, or
might be part of a more complex decision mecha-
nism of the complete subtitling system. We thus
measure the resulting accuracy of subtitles created
by applying the best scoring substitution example
for every original sentence. This provides a macro
evaluation style since we obtain a single judgment
for each group of substitution examples that corre-
spond to one original sentence.

In our dataset 25.5% of the original sentences
have no correct substitution examples and for 15.5%
of the sentences all substitution examples were an-
notated as correct. Accordingly, the (macro aver-
aged) accuracy has a lower bound of 0.155 and up-
per bound of 0.745.
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4.1.2 Average Precision
As a second evaluation measure we compare the

average precision of each method over all the exam-
ples from all original sentences pooled together (a
micro averaging approach). This measures the po-
tential of a scoring method to ensure high precision
for the high scoring examples and to filter out low-
scoring incorrect substitutions.

Average precision is a single figure measure com-
monly used to evaluate a system’s ranking ability
(Voorhees and Harman, 1999). It is equivalent to the
area under the uninterpolated recall-precision curve,
defined as follows:

average precision =
∑N

i=1 P(i)T (i)∑N

i=1
T (i)

P(i) =
∑i

k=1
T (k)

i

(2)

where N is the number of examples in the test
set (797 in our case), T (i) is the gold annotation
(true=1, false=0) and i ranges over the examples
ranked by decreasing score. An average precision
of 1.0 means that the system assigned a higher score
to all true examples than to any false one (perfect
ranking). A lower bound of 0.26 on our test set cor-
responds to a system that ranks all false examples
above the true ones.

4.2 Results
Figure 1 shows the accuracy and average precision
results of the various models on our test set. The ran-
dom baseline and corresponding significance levels
were achieved by averaging multiple runs of a sys-
tem that assigned random scores. As can be seen in
the figures, the models’ behavior seems to be con-
sistent in both evaluation measures.

Overall, the distributional similarity based
method (sim) performs much better than the
other methods. In particular, Lin’s similarity
also performs better than semcor, the other
context-independent model. Generally, the context
independent models perform better than the contex-
tual ones. Between the two contextual models, nntr
is superior to Bayes. In fact the Bayes model is not
significantly better than random scoring.

4.3 Analysis and Discussion
When analyzing the data we identified several rea-
sons why some of the WordNet substitutions were

judged as false. In some cases the source word as
appearing in the original sentence is not in a sense
for which it is a synonym of the target word. For ex-
ample, in many situations the word answer is in the
sense of a statement that is made in reply to a ques-
tion or request. In such cases, such as in example 2
from Table 1, answer can be successfully replaced
with reply yielding a substitution which conveys the
original meaning. However, in situations such as in
example 1 the word answer is in the sense of a gen-
eral solution and cannot be replaced with reply. This
is also the case in examples 4 and 5 in which subject
does not appear in the sense of topic or theme.

Having an inappropriate sense, however, is not the
only reason for incorrect substitutions. In example 8
approach appears in a sense which is synonymous
with attack and in example 9 problem appears in a
sense which is synonymous with a quite uncommon
use of the word job. Nevertheless, these substitu-
tions were judged as unacceptable since the desired
sense of the target word after the substitution is not
very clear from the context. In many other cases,
such as in example 7, though semantically correct,
the substitution was judged as incorrect due to stylis-
tic considerations.

Finally, there are cases, such as in example 6
in which the source word is part of a collocation
and cannot be replaced with semantically equivalent
words.

When analyzing the mistakes of the distributional
similarity method it seems as if many were not nec-
essarily due to the method itself but rather to imple-
mentation issues. The online source we used con-
tains only the top most similar words for any word.
In many cases substitutions were assigned a score of
zero since they were not listed among the top scoring
similar words in the database. Furthermore, the cor-
pus that was used for training the similarity scores
was news articles in American English spelling and
does not always supply good scores to words of
British spelling in our BBC dataset (e.g. analyse,
behavioural, etc.).

The similarity based method seems to perform
better than the SemCor based method since, as noted
above, even when the source word is in the appro-
priate sense it not necessarily substitutable with the
target. For this reason we hypothesize that apply-
ing Word Sense Disambiguation (WSD) methods to
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Figure 1: Accuracy and Average Precision Results

classify the specific WordNet sense of the source and
target words may have only a limited impact on per-
formance.

Overall, context independent models seem to per-
form relatively well since many candidate synonyms
are a priori not substitutable. This demonstrates that
such models are able to filter out many quirky Word-
Net synonyms, such as problem and job.

Fitness to the sentence context seems to be a less
frequent factor and not that trivial to model. Local
context (adjacent words) seems to play more of a
role than the broader sentence context. However,
these two types of contexts were not distinguished in
the bag-of-words representations of the two contex-
tual methods that we examined. It will be interesting
to investigate in future research using different fea-
ture types for local and global context, as commonly
done for Word Sense Disambiguation (WSD). Yet,
it would still remain a challenging task to correctly
distinguish, for example, the contexts for which an-
swer is substitutable by reply (as in example 2) from
contexts in which it is not (as in example 1).

So far we have investigated separately the perfor-
mance of context independent and contextual mod-
els. In fact, the accuracy performance of the (con-
text independent) sim method is not that far from
the upper bound, and the analysis above indicated a
rather small potential for improvement by incorpo-
rating information from a contextual method. Yet,
there is still a substantial room for improvement in
the ranking quality of this model, as measured by av-

erage precision, and it is possible that a smart com-
bination with a high-quality contextual model would
yield better performance. In particular, we would
expect that a good contextual model will identify the
cases in which for potentially good synonyms pair,
the source word appears in a sense that is not substi-
tutable with the target, such as in examples 1, 4 and
5 in Table 1. Investigating better contextual models
and their optimal combination with context indepen-
dent models remains a topic for future research.

5 Conclusion

This paper investigated an isolated setting of the lex-
ical substitution task, which has typically been em-
bedded in larger systems and not evaluated directly.
The setting allowed us to analyze different types of
state of the art models and their behavior with re-
spect to characteristic sub-cases of the problem.

The major conclusion that seems to arise from
our experiments is the effectiveness of combining a
knowledge based thesaurus such as WordNet with
distributional statistical information such as (Lin,
1998), overcoming the known deficiencies of each
method alone. Furthermore, modeling the a pri-
ori substitution likelihood captures the majority of
cases in the evaluated setting, mostly because Word-
Net provides a rather noisy set of substitution candi-
dates. On the other hand, successfully incorporating
local and global contextual information, as similar
to WSD methods, remains a challenging task for fu-
ture research. Overall, scoring lexical substitutions
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is an important component in many applications and
we expect that our findings are likely to be broadly
applicable.
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Abstract

We present a method for recognizing se-
mantic role arguments using a kernel on
weighted marked ordered labeled trees
(the WMOLT kernel). We extend the
kernels on marked ordered labeled trees
(Kazama and Torisawa, 2005) so that the
mark can be weighted according to its im-
portance. We improve the accuracy by
giving more weights on subtrees that con-
tain the predicate and the argument nodes
with this ability. Although Kazama and
Torisawa (2005) presented fast training
with tree kernels, the slow classification
during runtime remained to be solved. In
this paper, we give a solution that uses an
efficient DP updating procedure applica-
ble in argument recognition. We demon-
strate that the WMOLT kernel improves
the accuracy, and our speed-up method
makes the recognition more than 40 times
faster than the naive classification.

1 Introduction

Semantic role labeling (SRL) is a task that recog-
nizes the arguments of a predicate (verb) in a sen-
tence and assigns the correct role to each argument.
As this task is recognized as an important step after
(or the last step of) syntactic analysis, many stud-
ies have been conducted to achieve accurate seman-
tic role labeling (Gildea and Jurafsky, 2002; Mos-
chitti, 2004; Hacioglu et al., 2004; Punyakanok et
al., 2004; Pradhan et al., 2005a; Pradhan et al.,
2005b; Toutanova et al., 2005).

Most of the studies have focused on machine
learning because of the availability of standard
datasets, such as PropBank (Kingsbury and Palmer,
2002). Naturally, the usefulness of parse trees in

this task can be anticipated. For example, the recent
CoNLL 2005 shared task (Carreras and Màrquez,
2005) provided parse trees for use and their useful-
ness was ensured. Most of the methods heuristically
extract features from parse trees, and from other
sources, and use them in machine learning methods
based on feature vector representation. As a result,
these methods depend on feature engineering, which
is time-consuming.

Tree kernels (Collins and Duffy, 2001; Kashima
and Koyanagi, 2002) have been proposed to directly
handle trees in kernel-based methods, such as SVMs
(Vapnik, 1995). Tree kernels calculate the similar-
ity between trees, taking into consideration all of the
subtrees, and, therefore there is no need for such fea-
ture engineering.

Moschitti and Bejan (2004) extensively studied
tree kernels for semantic role labeling. However,
they reported that they could not successfully build
an accurate argument recognizer, although the role
assignment was improved. Although Moschitti et al.
(2005) reported on argument recognition using tree
kernels, it was a preliminary evaluation because they
used oracle parse trees.

Kazama and Torisawa (2005) proposed a new tree
kernel for node relation labeling, as which SRL can
be cast. This kernel is defined on marked ordered la-
beled trees, where a node can have a mark to indicate
the existence of a relation. We refer to this kernel
as the MOLT kernel. Compared to (Moschitti and
Bejan, 2004) where tree fragments are heuristically
extracted before applying tree kernels, the MOLT
kernel is general and desirable since it does not re-
quire such fragment extraction. However, the eval-
uation conducted by Kazama and Torisawa (2005)
was limited to preliminary experiments for role as-
signment. In this study, we first evaluated the per-
formance of the MOLT kernel for argument recogni-
tion, and found that the MOLT kernel cannot achieve
a high accuracy if used in its original form.
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Figure 1: (a)-(c): Argument recognition as node relation recognition. (a’): relation (a) represented as marked
ordered tree.

Therefore, in this paper we propose a modifica-
tion of the MOLT kernel, which greatly improves
the accuracy. The problem with the original MOLT
kernel is that it treats subtrees with one mark, i.e.,
those including only the argument or the predicate
node, and subtrees with two marks, i.e., those in-
cluding both the argument and the predicate nodes
equally, although the latter is likely to be more im-
portant for distinguishing difficult arguments. Thus,
we modified the MOLT kernel so that the marks can
be weighted in order to give large weights to the sub-
trees with many marks. We call the modified kernel
the WMOLT kernel (the kernel on weighted marked
ordered labeled trees). We show that this modifica-
tion greatly improves the accuracy when the weights
for marks are properly tuned.

One of the issues that arises when using tree ker-
nels is time complexity. In general, tree kernels can
be calculated in O(|T1||T2|) time, where |Ti| is the
number of nodes in tree Ti, using dynamic program-
ming (DP) procedures (Collins and Duffy, 2001;
Kashima and Koyanagi, 2002). However, this cost
is not negligible in practice. Kazama and Torisawa
(2005) proposed a method that drastically speeds up
the calculation during training by converting trees
into efficient vectors using a tree mining algorithm.
However, the slow classification during runtime re-
mained an open problem.

We propose a method for speeding up the runtime
classification for argument recognition. In argument
recognition, we determine whether a node is an ar-
gument or not for all the nodes in a tree . This
requires a series of calculations between a support
vector tree and a tree with slightly different mark-
ing. By exploiting this property, we can efficiently
update DP cells to obtain the kernel value with less
computational cost.

In the experiments, we demonstrated that the
WMOLT kernel drastically improved the accuracy

and that our speed-up method enabled more than
40 times faster argument recognition. Despite these
successes, the performance of our current system is
F1 = 78.22 on the CoNLL 2005 evaluation set when
using the Charniak parse trees, which is far worse
than the state-of-the-art system. We will present
possible reasons and future directions.

2 Semantic Role Labeling

Semantic role labeling (SRL) recognizes the argu-
ments of a given predicate and assigns the correct
role to each argument. For example, the sentence “I
saw a cat in the park” will be labeled as follows with
respect to the predicate “see”.

[A0 I] [V saw] [A1 a cat] [AM-LOC in the park]

In the example, A0, A1, and AM-LOC are the roles
assigned to the arguments. In the CoNLL 2005
dataset, there are the numbered arguments (AX)
whose semantics are predicate dependent, the ad-
juncts (AM-X), and the references (R-X) for rel-
ative clauses.

Many previous studies employed two-step SRL
methods, where (1) we first recognize the argu-
ments, and then (2) classify the argument to the cor-
rect role. We also assume this two-step processing
and focus on the argument recognition.

Given a parse tree, argument recognition can be
cast as the classification of tree nodes into two
classes, “ARG” and “NO-ARG”. Then, we consider
the words (a phrase) that are the descendants of an
“ARG” node to be an argument. Since arguments
are defined for a given predicate, this classification
is the recognition of a relation between the predicate
and tree nodes. Thus, we want to build a binary clas-
sifier that returns a +1 for correct relations and a -1
for incorrect relations. For the above example, the
classifier will output a +1 for the relations indicated
by (a), (b), and (c) in Figure 1 and a -1 for the rela-
tions between the predicate node and other nodes.
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Since the task is the classification of trees with
node relations, tree kernels for usual ordered la-
beled trees, such as those proposed by Collins and
Duffy (2001) and Kashima and Koyanagi (2002),
are not useful. Kazama and Torisawa (2005) pro-
posed to represent a node relation in a tree as a
marked ordered labeled tree and presented a kernel
for it (MOLT kernel). We adopted the MOLT kernel
and extend it for accurate argument recognition.

3 Kernels for Argument Recognition

3.1 Kernel-based classification
Kernel-based methods, such as support vector ma-
chines (SVMs) (Vapnik, 1995), consider a mapping
Φ(x) that maps the object x into a, (usually high-
dimensional), feature space and learn a classifier in
this space. A kernel function K(xi, xj) is a function
that calculates the inner product 〈Φ(xi), Φ(xj)〉 in
the feature space without explicitly computing Φ(x),
which is sometimes intractable. Then, any classifier
that is represented by using only the inner products
between the vectors in a feature space can be re-
written using the kernel function. For example, an
SVM classifier has the form:

f(x) =
∑

i

αiK(xi, x) + b,

where αi and b are the parameters learned in the
training. With kernel-based methods, we can con-
struct a powerful classifier in a high-dimensional
feature space. In addition, objects x do not need
to be vectors as long as a kernel function is defined
(e.g., x can be strings, trees, or graphs).

3.2 MOLT kernel
A marked ordered labeled tree (Kazama and Tori-
sawa, 2005) is an ordered labeled tree in which each
node can have a mark in addition to a label. We can
encode a k-node relation by using k distinct marks.
In this study, we determine an argument node with-
out considering other arguments of the same pred-
icate, i.e., we represent an argument relation as a
two-node relation using two marks. For example,
the relation (a) in Figure 1 can be represented as the
marked ordered labeled tree (a’).1

1Note that we use mark *0 for the predicate node and mark
*1 for the argument node.

Table 1: Notations for MOLT kernel.

• ni denotes a node of a tree. In this paper, ni is an ID assigned in the
post-order traversal.

• |Ti| denotes the number of nodes in tree Ti.

• l(ni) returns the label of node ni.

• m(ni) returns the mark of node ni. If ni has no mark, m(ni)
returns the special mark no-mark.

• marked(ni) returns true iff m(ni) is not no-mark.

• nc(ni) is the number of children of node ni.

• chk(ni) is the k-th child of node ni.

• pa(ni) is the parent of node ni.

• root(Ti) is the root node of Ti

• ni ≽ nj means that ni is an elder sister of nj .

Kazama and Torisawa (2005) presented a kernel
on marked ordered trees (the MOLT kernel), which
is defined as:2

K(T1, T2) =
E∑

i=1

W (Si) ·#Si(T1) ·#Si(T2),

where Si is a possible subtree and #Si(Tj) is
the number of times Si is included in Tj . The
mapping corresponding to this kernel is Φ(T ) =
(
√

W (S1)#S1(T ), · · · ,
√

W (SE)#SE
(T )), which

maps the tree into the feature space of all the possi-
ble subtrees.

The tree inclusion is defined in many ways. For
example, Kashima and Koyanagi (2002) presented
the following type of inclusion.

1 DEFINITION S is included in T iff there exists a
one-to-one function ψ from a node of S to a node
of T , such that (i) pa(ψ(ni)) = ψ(pa(ni)), (ii)
ψ(ni) ≽ ψ(nj) iff ni ≽ nj , , and (iii) l(ψ(ni)) =
l(ni) (and m(ψ(ni)) = m(ni) in the MOLT kernel).

See Table 1 for the meaning of each function. This
definition means that any subtrees preserving the
parent-child relation, the sibling relation, and label-
marks, are allowed. In this paper, we employ this
definition, since Kazama and Torisawa (2005) re-
ported that the MOLT kernel with this definition has
a higher accuracy than one with the definition pre-
sented by Collins and Duffy (2001).

W (Si) is the weight of subtree Si. The weight-
ing in Kazama and Torisawa (2005) is written as fol-

2This notation is slightly different from (Kazama and Tori-
sawa, 2005).
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Table 2: Example of subtree inclusion and sub-
tree weights. The last row shows the weights for
WMOLT kernel.

T included subtrees

W (Si) 0 λ λ λ2 λ2 λ3

W (Si) 0 λγ λγ λ2γ λ2γ2 λ3γ2

lows.

W (Si) =

{
λ|Si| if marked(Si),
0 otherwise,

(1)

where marked(Si) returns true iff marked(ni) =
true for at least one node in tree Si. By this weight-
ing, only the subtrees with at least one mark are con-
sidered. The idea behind this is that subtrees having
no marks are not useful for relation recognition or
labeling. λ (0 ≤ λ ≤ 1) is a factor to prevent the ker-
nel values from becoming too large, which has been
used in previous studies (Collins and Duffy, 2001;
Kashima and Koyanagi, 2002).

Table 2 shows an example of subtree inclusion
and the weights given to each included subtree. Note
that the subtrees are treated differently when the
markings are different, even if the labels are the
same.

Although the dimension of the feature space
is exponential, tree kernels can be calculated in
O(|T1||T2|) time using dynamic programming (DP)
procedures (Collins and Duffy, 2001; Kashima and
Koyanagi, 2002). The MOLT kernel also has an
O(|T1||T2|) DP procedure (Kazama and Torisawa,
2005).

3.3 WMOLT kernel

Although Kazama and Torisawa (2005) evaluated
the MOLT kernel for SRL, the evaluation was only
on the role assignment task and was preliminary. We
evaluated the MOLT kernel for argument recogni-
tion, and found that the MOLT kernel cannot achieve
a high accuracy for argument recognition.

The problem is that the MOLT kernel treats sub-
trees with one mark and subtrees with two marks
equally, although the latter seems to be more impor-
tant in distinguishing difficult arguments.

Consider the sentence, “He said industry should

build plants”. For “say”, we have the following la-
beling.

[A0 He] [V said] [A1 industry should build plants]

On the other hand, for “build”, we have

He said [A0 industry] [AM-MOD should] [V build]
[A1 plants].

As can be seen, “he” is the A0 argument of “say”,
but not an argument of “build”. Thus, our classifier
should return a +1 for the tree where “he” is marked
when the predicate is “say”, and a -1 when the pred-
icate is “build”. Although the subtrees around the
node for “say” and “build” are different, the subtrees
around the node for “he” are identical for both cases.
If “he” is often the A0 argument in the corpus, it is
likely that the classifier returns a +1 even for “build”.
Although the subtrees containing both the predicate
and the argument nodes are considered in the MOLT
kernel, they are given relatively small weights by Eq.
(1), since such subtrees are large.

Thus, we modify the MOLT kernel so that the
mark can be weighted according to its importance
and the more marks the subtrees contain, the more
weights they get. The modification is simple. We
change the definition of W (Si) as follows.

W (Si) =

{
λ|Si| ∏

ni∈Si
γ(m(ni)) if marked(Si),

0 otherwise,

where γ(m) (≥ 1) is the weight of mark m. We
call a kernel with this weight the WMOLT kernel.
In this study, we assume γ(no-mark) = 1 and
γ(*0) = γ(*1) = γ. Then, the weight is simpli-
fied as follows.

W (Si) =

{
λ|Si|γ#m(Si) if marked(Si),
0 otherwise,

where #m(Si) is the number of marked nodes in
Si. The last row in Table 2 shows how the subtree
weights change by introducing this mark weighting.

For the WMOLT kernel, we can derive
O(|T1||T2|) DP procedure by slightly modify-
ing the procedure presented by Kazama and
Torisawa (2005). The method for speeding up
training described in Kazama and Torisawa (2005)
can also be applied with a slight modification.
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Algorithm 3.1: WMOLT-KERNEL(T1, T2)

for n1 ← 1 to |T1| do // nodes are ordered by the post-order traversal
m ← marked(n1)
for n2 ← 1 to |T2| do // actually iterate only on n2 with l(n1) = l(n2)
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:

if l(n1) ̸= l(n2) or m(n1) ̸= m(n2) then
C(n1, n2) ← 0 Cr(n1, n2) ← 0

else if n1 and n2 are leaf nodes then
if m then C(n1, n2) ← λ · γ; Cr(n1, n2) ← λ · γ else C(n1, n2) ← λ; Cr(n1, n2) ← 0

else
S(0, j) ← 1, S(i, 0) ← 1 (i ∈ [0, nc(n1)], j ∈ [0, nc(n2)])
if m then Sr(0, j) ← 1, Sr(i, 0) ← 1 else Sr(0, j) ← 0, Sr(i, 0) ← 0
for i ← 1 to nc(n1) do

for j ← 1 to nc(n2) do
S(i, j) ← S(i−1, j) + S(i, j−1)− S(i−1, j−1) + S(i−1, j−1) · C(chi(n1), chj(n2))
Sr(i, j) ← Sr(i−1, j) + Sr(i, j−1)− Sr(i−1, j−1) + Sr(i−1, j−1) · C(chi(n1), chj(n2))

+S(i−1, j−1) · Cr(chi(n1), chj(n2))− Sr(i−1, j−1) · Cr(chi(n1), chj(n2))
if m then C(n1, n2) ← λ · γ · S(nc(n1), nc(n2)) else C(n1, n2) ← λ · S(nc(n1), nc(n2))
if m then Cr(n1, n2) ← λ · γ · Sr(nc(n1), nc(n2)) else Cr(n1, n2) ← λ · Sr(nc(n1), nc(n2))

return (
P|T1|

n1=1

P|T2|
n2=1 Cr(n1, n2))

We describe this DP procedure in some detail.
The key is the use of two DP matrices of size
|T1| × |T2|. The first is C(n1, n2) defined as:

C(n1, n2)≡
P

Si
W ′(Si) ·#Si(T1 △ n1) ·#Si(T2 △ n2),

where #Si(Tj △ nk) represents the number of times
subtree Si is included in tree Tj with ψ(root(Si)) =
nk. W ′(Si) is defined as W ′(Si) = λ|Si|γ#m(Si).
This means that this matrix records the values that
ignore whether marked(Si) = true or not. The
second is Cr(n1, n2) defined as:

Cr(n1, n2)≡
P

Si
W (Si) ·#Si(T1 △ n1) ·#Si(T2 △ n2).

With these matrices, the kernel is calculated as:

K(T1, T2) =
∑

n1∈T1

∑
n2∈T2

Cr(n1, n2).

C(n1, n2) and Cr(n1, n2) are calculated recur-
sively, starting from the leaves of the trees. The re-
cursive procedure is shown in Algorithm 3.1. See
also Table 1 for the meaning of the functions used.

4 Fast Argument Recognition

We use the SVMs for the classifiers in argument
recognition in this study and describe the fast clas-
sification method based on SVMs.3 We denote a
marked ordered labeled tree where node nk of an
ordered labeled tree U is marked by mark X , nl by
Y , and so on, by U@{nk = X,nl = Y, . . . }.

3The method can be applied to a wide range of kernel-based
methods that have the same structure as SVMs.

Algorithm 4.1: CALCULATE-T(U, Tj)

procedure FAST-UPDATE(nk)
diff ← 0, m(nk) ← *1, U ← φ
for n2 ← 1 to |Tj | do change(n2) ← true
n1 ← nk

while n1 ̸= nil do
8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

for n2 ← 1 to |Tj | do
// actually iterate only on n2 with l(pa(n1)) = l(n2)
nchange(n2) ← false

for n2 ← 1 to |Tj | do
// actually iterate only on n2 with l(n1) = l(n2)
if change(n2) then

pre ← Cr(n1, n2), U ← U ∪ (n1, n2)
update C(n1, n2) and Cr(n1, n2)

using (A) of Algorithm 3.1
diff += (Cr(n1, n2)− pre)
if pa(n2) ̸= nil then nchange(pa(n2)) ← true

n1 ← pa(n1), change ← nchange
for (n1, n2) ∈ U do //restore DP cells

C(n1, n2) ← C′(n1, n2), Cr(n1, n2) ← Cr ′(n1, n2)
m(nk) ← no-mark
return (diff )

main
m(nv) ← ∗0, k ← WMOLT-KERNEL(U, Tj)
C′(n1, n2) ← C(n1, n2), Cr ′(n1, n2) ← Cr(n1, n2)
for nk ← 1 to |U | do (nk ̸= nv)

diff ← FAST-UPDATE(nk), t(nk) ← k + diff

Given a sentence represented by tree U and the
node for the target predicate nv, the argument recog-
nition requires the calculation of:

s(nk) =
∑

Tj∈SV
αjK(U@{nv =*0, nk =*1}, Tj)+b,

(2)
for all nk ∈ U (̸= nv), where SV represents the
support vectors. Naively, this requires O(|U | ×
|SV| × |U ||Tj |) time, which is rather costly in prac-
tice.
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However, if we exploit the fact that U@{nv =
*0, nk = *1} is different from U@{nv = *0} at one
node, we can greatly speed up the above calculation.
At first, we calculate K(U@{nv = *0}, Tj) using
the DP procedure presented in the previous section,
and then calculate K(U@{nv = *0, nk = *1}, Tj)
using a more efficient DP that updates only the val-
ues of the necessary DP cells of the first DP. More
specifically, we only need to update the DP cells in-
volving the ancestor nodes of nk.

Here we show the procedure for calculating
t(nk) = K(U@{nv = *0, nk = *1}, Tj) for all
nk for a given support vector Tj , which will suf-
fice for calculating s(nk). Algorithm 4.1 shows the
procedure. For each nk, this procedure updates at
most (nk’s depth) × |Tj | cells, which is much less
than |U | × |Tj | cells. In addition, when updating
the cells for (n1, n2), we only need to update them
when the cells for any child of n2 have been updated
in the calculation of the cells for the children of n1.
To achieve this, change(n2) in the algorithm stores
whether the cells of any child of n2 have been up-
dated. This technique will also reduce the number
of updated cells.

5 Non-overlapping Constraint

Finally, in argument recognition, there is a strong
constraint that the arguments for a given predicate
do not overlap each other. To enforce this constraint,
we employ the approach presented by Toutanova
et al. (2005). Given the local classification proba-
bility p(nk = Xk) (Xk ∈ {ARG, NO-ARG}),
this method finds the assignment that maximizes∏

k p(nk = Xk) while satisfying the above non-
overlapping constraint, by using a dynamic pro-
gramming procedure. Since the output of SVMs is
not a probability value, in this study we obtain the
probability value by converting the output from the
SVM, s(nk), using the sigmoid function:4

p(nk = ARG) = 1/(1 + exp(−s(nk))).

6 Evaluation

6.1 Setting
For our evaluation we used the dataset pro-
vided for the CoNLL 2005 SRL shared task

4Parameter fitting (Platt, 1999) is not performed.

(www.lsi.upc.edu/˜srlconll). We used only the train-
ing part and divided it into our training, develop-
ment, and test sets (23,899, 7,966, and 7,967 sen-
tences, respectively). We used the outputs of the
Charniak parser provided with the dataset. We also
used POS tags, which were also provided, by insert-
ing the nodes labeled by POS tags above the word
nodes. The words were downcased.

We used TinySVM5 as the implementation of the
SVMs, adding the WMOLT kernel. We normalized
the kernel as: K(Ti, Tj)/

√
K(Ti, Ti)×K(Tj , Tj).

To train the classifiers, for a positive example we
used the marked ordered labeled tree that encodes
an argument in the training set. Although nodes
other than the argument nodes were potentially neg-
ative examples, we used 1/5 of these nodes that were
randomly-sampled, since the number of such nodes
is so large that the training cannot be performed in
practice. Note that we ignored the arguments that
do not match any node in the tree (the rate of such
arguments was about 3.5% in the training set).

6.2 Effect of mark weighting

We first evaluated the effect of the mark weight-
ing of the WMOLT kernel. For several fixed γ, we
tuned λ and the soft-margin constant of the SVM, C,
and evaluated the recognition accuracy. We tested
30 different values of C ∈ [0.1 . . . 500] for each
λ ∈ [0.05, 0.1, 0.15, 0.2, 0.25, 0.3]. The tuning was
performed using the method for speeding up the
training with tree kernels described by Kazama and
Torisawa (2005). We conducted the above experi-
ment for several training sizes.

Table 3 shows the results. This table shows the
best setting of λ and C, the performance on the de-
velopment set with the best setting, and the perfor-
mance on the test set. The performance is shown
in the F1 measure. Note that we treated the region
labeled C-k in the CoNLL 2005 dataset as an inde-
pendent argument.

We can see that the mark weighting greatly im-
proves the accuracy over the original MOLT kernel
(i.e., γ = 1). In addition, we can see that the best
setting for γ is somewhere around γ = 4, 000. In
this experiment, we could only test up to 1,000 sen-
tences due to the cost of SVM training, which were

5chasen.org/˜taku/software/TinySVM
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Table 3: Effect of γ in mark weighting of WMOLT kernel.
training size (No. of sentences)

250 500 700 1,000
setting dev test setting dev test setting dev test setting dev test

γ (λ,C) (F1) (F1) (λ,C) (F1) (F1) (λ,C) (F1) (F1) (λ,C) (F1) (F1)
1 0.15, 20.50 63.66 65.13 0.2, 20.50 69.01 70.33 0.2, 20.50 72.11 73.57 0.25, 12.04 75.38 76.25
100 0.3, 12.04 80.13 80.85 0.3,500 82.25 82.98 0.3, 34.92 83.93 84.72 0.3, 3.18 85.09 85.85
1,000 0.2, 2.438 82.65 83.36 0.2, 2.438 84.80 85.45 0.2, 3.182 85.58 86.20 0.2, 7.071 86.40 86.80
2,000 0.2, 2.438 83.43 84.12 0.2, 2.438 85.56 86.24 0.2, 2.438 86.23 86.80 0.2, 12.04 86.61 87.18
4,000 0.2, 2.438 83.87 84.50 0.15, 4.15 84.94 85.61 0.15, 7.07 85.84 86.32 0.2, 12.04 86.82 87.31
4,000 (w/o) 80.81 81.41 80.71 81.51 81.86 82.33 84.27 84.63

empirically O(L2) where L is the number of train-
ing examples, regardless of the use of the speed-up
method (Kazama and Torisawa, 2005), However, we
can observe that the WMOLT kernel achieves a high
accuracy even when the training data is very small.

6.3 Effect of non-overlapping constraint

Additionally, we observed how the accuracy
changes when we do not use the method described
in Section 5 and instead consider the node to be an
argument when s(nk) > 0. The last row in Ta-
ble 3 shows the accuracy for the model obtained
with γ = 4, 000. We could observe that the non-
overlapping constraint also improves the accuracy.

6.4 Recognition speed-up

Next, we examined the method for fast argument
recognition described in Section 4. Using the clas-
sifiers with γ = 4, 000, we measured the time re-
quired for recognizing the arguments for 200 sen-
tences with the naive classification of Eq. (2) and
with the fast update procedure shown in Algorithm
4.1. The time was measured using a computer with
2.2-GHz dual-core Opterons and 8-GB of RAM.

Table 4 shows the results. We can see a constant
speed-up by a factor of more than 40, although the
time was increased for both methods as the size of
the training data increases (due to the increase in the
number of support vectors).

Table 4: Recognition time (sec.) with naive classifi-
cation and proposed fast update.

training size (No. of sentences)
250 500 750 1,000

naive 11,266 13,008 18,313 30,226
proposed 226 310 442 731
speed-up 49.84 41.96 41.43 41.34

6.5 Evaluation on CoNLL 2005 evaluation set

To compare the performance of our system with
other systems, we conducted the evaluation on the
official evaluation set of the CoNLL 2005 shared
task. We used a model trained using 2,000 sen-
tences (57,547 examples) with (γ = 4, 000, λ =
0.2, C = 12.04), the best setting in the previous ex-
periments. This is the largest model we have suc-
cessfully trained so far, and has F1 = 88.00 on the
test set in the previous experiments.

The accuracy of this model on the official evalua-
tion set was F1 = 79.96 using the criterion from the
previous experiments where we treated a C-k argu-
ment as an independent argument. The official eval-
uation script returned F1 = 78.22. This difference
is caused because the official script takes C-k argu-
ments into consideration, while our system cannot
output C-k labels since it is just an argument rec-
ognizer. Therefore, the performance will become
slightly higher than F1 = 78.22 if we perform the
role assignment step. However, our current system
is worse than the systems reported in the CoNLL
2005 shared task in any case, since it is reported that
they had F1 = 79.92 to 83.78 argument recognition
accuracy (Carreras and Màrquez, 2005).

7 Discussion

Although we have improved the accuracy by intro-
ducing the WMOLT kernel, the accuracy for the offi-
cial evaluation set was not satisfactory. One possible
reason is the accuracy of the parser. Since the Char-
niak parser is trained on the same set with the train-
ing set of the CoNLL 2005 shared task, the pars-
ing accuracy is worse for the official evaluation set
than for the training set. For example, the rate of the
arguments that do not match any node of the parse
tree is 3.93% for the training set, but 8.16% for the
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evaluation set. This, to some extent, explains why
our system, which achieved F1 = 88.00 for our test
set, could only achieved F1 = 79.96. To achieve a
higher accuracy, we need to make the system more
robust to parsing errors. Some of the non-matching
arguments are caused by incorrect treatment of quo-
tation marks and commas. These errors seem to be
solved by using simple pre-processing. Other major
non-matching arguments are caused by PP attach-
ment errors. To solve these errors, we need to ex-
plore more, such as using n-best parses and the use
of several syntactic views (Pradhan et al., 2005b).

Another reason for the low accuracy is the size of
the training data. In this study, we could train the
SVM with 2,000 sentences (this took more than 30
hours including the conversion of trees), but this is
a very small fraction of the entire training set. We
need to explore the methods for incorporating a large
training set within a reasonable training time. For
example, the combination of small SVMs (Shen et
al., 2003) is a possible direction.

The contribution of this study is not the accuracy
achieved. The first contribution is the demonstration
of the drastic effect of the mark weighting. We will
explore more accurate kernels based on the WMOLT
kernel. For example, we are planning to use dif-
ferent weights depending on the marks. The sec-
ond contribution is the method of speeding-up argu-
ment recognition. This is of great importance, since
the proposed method can be applied to other tasks
where all nodes in a tree should be classified. In ad-
dition, this method became possible because of the
WMOLT kernel, and it is hard to apply to Moschitti
and Bejan (2004) where the tree structure changes
during recognition. Thus, the architecture that uses
the WMOLT kernel is promising, if we assume fur-
ther progress is possible with the kernel design.

8 Conclusion
We proposed a method for recognizing semantic role
arguments using the WMOLT kernel. The mark
weighting introduced in the WMOLT kernel greatly
improved the accuracy. In addition, we presented
a method for speeding up the recognition, which re-
sulted in more than a 40 times faster recognition. Al-
though the accuracy of the current system is worse
than the state-of-the-art system, we expect to further
improve our system.
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Abstract

Recent work on Semantic Role Labeling
(SRL) has shown that to achieve high
accuracy a joint inference on the whole
predicate argument structure should be ap-
plied. In this paper, we used syntactic sub-
trees that span potential argument struc-
tures of the target predicate in tree ker-
nel functions. This allows Support Vec-
tor Machines to discern between correct
and incorrect predicate structures and to
re-rank them based on the joint probabil-
ity of their arguments. Experiments on the
PropBank data show that both classifica-
tion and re-ranking based on tree kernels
can improve SRL systems.

1 Introduction

Recent work on Semantic Role Labeling (SRL)
(Carreras and M̀arquez, 2005) has shown that to
achieve high labeling accuracy a joint inference on
the whole predicate argument structure should be
applied. For this purpose, we need to extract fea-
tures from the sentence’s syntactic parse tree that
encodes the target semantic structure. This task is
rather complex since we do not exactly know which
are the syntactic clues that capture the relation be-
tween the predicate and its arguments. For exam-
ple, to detect the interesting context, the modeling
of syntax/semantics-based features should take into
account linguistic aspects like ancestor nodes or se-
mantic dependencies (Toutanova et al., 2004).

A viable approach to generate a large number of
features has been proposed in (Collins and Duffy,
2002), where convolution kernels were used to im-
plicitly define a tree substructure space. The selec-
tion of the relevant structural features was left to the
Voted Perceptron learning algorithm. Such success-
ful experimentation shows that tree kernels are very
promising for automatic feature engineering, espe-
cially when the available knowledge about the phe-
nomenon is limited.

In a similar way, we can model SRL systems with
tree kernels to generate large feature spaces. More
in detail, most SRL systems split the labeling pro-
cess into two different steps: Boundary Detection
(i.e. to determine the text boundaries of predicate
arguments) and Role Classification (i.e. labeling
such arguments with a semantic role, e.g. Arg0 or
Arg1 as defined in (Kingsbury and Palmer, 2002)).
The former relates to the detection of syntactic parse
tree nodes associated with constituents that corre-
spond to arguments, whereas the latter considers the
boundary nodes for the assignment of the suitable
label. Both steps require the design and extraction
of features from parse trees. As capturing the tightly
interdependent relations among a predicate and its
arguments is a complex task, we can apply tree ker-
nels on the subtrees thatspan the whole predicate
argument structure to generate the feature space of
all the possible subtrees.

In this paper, we apply the traditional bound-
ary (TBC) and role (TRC) classifiers (Pradhan
et al., 2005a), which are based on binary predi-
cate/argument relations, to label all parse tree nodes
corresponding to potential arguments. Then, we ex-
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tract the subtrees which span the predicate-argument
dependencies of such arguments, i.e. Argument
Spanning Trees (ASTs). These are used in a tree
kernel function to generate all possible substructures
that encoden-ary argument relations, i.e. we carry
out an automatic feature engineering process.

To validate our approach, we experimented with
our model and Support Vector Machines for the clas-
sification of valid and invalidASTs. The results
show that this classification problem can be learned
with high accuracy. Moreover, we modeled SRL as a
re-ranking task in line with (Toutanova et al., 2005).
The large number of complex features provided by
tree kernels for structured learning allows SVMs to
reach the state-of-the-art accuracy.

The paper is organized as follows: Section 2 intro-
duces the Semantic Role Labeling based on SVMs
and the tree kernel spaces; Section 3 formally de-
fines theASTs and the algorithm for their classifi-
cation and re-ranking; Section 4 shows the compara-
tive results between our approach and the traditional
one; Section 5 presents the related work; and finally,
Section 6 summarizes the conclusions.

2 Semantic Role Labeling

In the last years, several machine learning ap-
proaches have been developed for automatic role
labeling, e.g. (Gildea and Jurasfky, 2002; Prad-
han et al., 2005a). Their common characteristic is
the adoption of attribute-value representations for
predicate-argument structures. Accordingly, our ba-
sic system is similar to the one proposed in (Pradhan
et al., 2005a) and it is hereby described.

We use a boundary detection classifier (for any
role type) to derive the words compounding an ar-
gument and a multiclassifier to assign the roles (e.g.
Arg0 or ArgM) described in PropBank (Kingsbury
and Palmer, 2002)). To prepare the training data for
both classifiers, we used the following algorithm:

1. Given a sentence from thetraining-set, generate
a full syntactic parse tree;
2. LetP andA be respectively the set of predicates
and the set of parse-tree nodes (i.e. the potential ar-
guments);
3. For each pair〈p, a〉 ∈ P ×A:

- extract the feature representation set,Fp,a;

- if the subtree rooted ina covers exactly the
words of one argument ofp, putFp,a in theT+

set (positive examples), otherwise put it in the
T− set (negative examples).

The outputs of the above algorithm are theT+ and
T− sets. These sets can be directly used to train a
boundary classifier (e.g. an SVM). Regarding the
argument type classifier, a binary labeler for a roler
(e.g. an SVM) can be trained on theT+

r
, i.e. its pos-

itive examples andT−r , i.e. its negative examples,
whereT+ = T+

r ∪ T−r , according to the ONE-vs-
ALL scheme. The binary classifiers are then used
to build a general role multiclassifier by simply se-
lecting the argument associated with the maximum
among the SVM scores.

Regarding the design of features for predicate-
argument pairs, we can use the attribute-values de-
fined in (Gildea and Jurasfky, 2002) or tree struc-
tures (Moschitti, 2004). Although we focus on
the latter approach, a short description of the for-
mer is still relevant as they are used byTBC and
TRC. They include thePhrase Type, Predicate
Word, Head Word, Governing Category, Position
andVoice features. For example, thePhrase Type
indicates the syntactic type of the phrase labeled as
a predicate argument and theParse Tree Pathcon-
tains the path in the parse tree between the predicate
and the argument phrase, expressed as a sequence of
nonterminal labels linked by direction (up or down)
symbols, e.g.V ↑ VP↓ NP.

A viable alternative to manual design of syntac-
tic features is the use of tree-kernel functions. These
implicitly define a feature space based on all possi-
ble tree substructures. Given two treesT1 andT2, in-
stead of representing them with the whole fragment
space, we can apply the kernel function to evaluate
the number of common fragments.

Formally, given a tree fragment spaceF =
{f1, f2, . . . , f|F|}, the indicator function Ii(n)
is equal to 1 if the targetfi is rooted at
node n and equal to 0 otherwise. A tree-
kernel function overt1 and t2 is Kt(t1, t2) =∑

n1∈Nt1

∑
n2∈Nt2

∆(n1, n2), whereNt1 and Nt2

are the sets of thet1’s andt2’s nodes, respectively. In
turn ∆(n1, n2) =

∑|F|
i=1 λl(fi)Ii(n1)Ii(n2), where

0 ≤ λ ≤ 1 and l(fi) is the height of the subtree
fi. Thusλl(fi) assigns a lower weight to larger frag-
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Figure 1: A sentence parse tree with two argument spanning trees (ASTs)

ments. Whenλ = 1, ∆ is equal to the number of
common fragments rooted at nodesn1 andn2. As
described in (Collins and Duffy, 2002),∆ can be
computed inO(|Nt1 | × |Nt2 |).
3 Tree kernel-based classification of

Predicate Argument Structures

Traditional semantic role labeling systems extract
features from pairs of nodes corresponding to a
predicate and one of its argument, respectively.
Thus, they focus on only binary relations to make
classification decisions. This information is poorer
than the one expressed by the whole predicate ar-
gument structure. As an alternative we can select
the set of potential arguments (potential argument
nodes) of a predicate and extract features from them.
The number of the candidate argument sets is ex-
ponential, thus we should consider only those cor-
responding to the most probable correct argument
structures.

The usual approach (Toutanova et al., 2005) uses
a traditional boundary classifier (TBC) to select the
set of potential argument nodes. Such set can be as-
sociated with a subtree which in turn can be classi-
fied by means of a tree kernel function. This func-
tion intuitively measures to what extent a given can-
didate subtree iscompatiblewith the subtree of a
correct predicate argument structure. We can use it
to define two different learning problems: (a) the
simple classification of correct and incorrect pred-
icate argument structures and (b) given the bestm
structures, we can train a re-ranker algorithm able to
exploit argument inter-dependencies.

3.1 The Argument Spanning Trees (ASTs)
We consider predicate argument structures anno-
tated in PropBank along with the corresponding
TreeBank data as our object space. Given the target

predicate nodep and a node subsets = {n1, .., nk}
of the parse treet, we define as the spanning tree
root r the lowest common ancestor ofn1, .., nk and
p. The node set spanning tree (NST ) ps is the sub-
tree oft rooted inr from which the nodes that are
neither ancestors nor descendants of anyni or p are
removed.

Since predicate arguments are associated with
tree nodes (i.e. they exactly fit into syntactic
constituents), we can define theArgument Span-
ning Tree (AST ) of a predicate argument set,
{p, {a1, .., an}}, as the NST over such nodes,
i.e. p{a1,..,an}. An AST corresponds to themin-
imal subtree whose leaves are all and only the
words compounding the arguments and the predi-
cate. For example, Figure 1 shows the parse tree
of the sentence"John took the book and read

its title" . took{Arg0,Arg1} and read{Arg0,Arg1}
are two AST structures associated with the two
predicatestookandread, respectively. All the other
possible subtrees, i.e.NSTs, are not validASTs
for these two predicates. Note that classifyingps in
AST or NST for each node subsets of t is equiva-
lent to solve the boundary detection problem.

The critical points for theAST classification are:
(1) how to design suitable features for the charac-
terization of valid structures. This requires a careful
linguistic investigation about their significant prop-
erties. (2) How to deal with the exponential number
of NSTs.

The first problem can be addressed by means of
tree kernels over theASTs. Tree kernel spaces are
an alternative to the manual feature design as the
learning machine, (e.g. SVMs) can select the most
relevant features from a high dimensional space. In
other words, we can use a tree kernel function to
estimate the similarity between twoASTs (see Sec-
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Figure 2: Two-step boundary classification. a) Sentence tree; b) Two candidateASTs; c) ExtendedAST -
Ord labeling

tion 2), hence avoiding to define explicit features.
The second problem can be approached in two

ways:
(1) We can increase the recall ofTBC to enlarge the
set of candidate arguments. From such set, we can
extract correct and incorrect argument structures. As
the number of such structures will be rather small,
we can apply theAST classifier to detect the cor-
rect ones.
(2) We can consider the classification probability
provided byTBC andTRC (Pradhan et al., 2005a)
and select them most probable structures. Then, we
can apply a re-ranking approach based on SVMs and
tree kernels.

The re-ranking approach is the most promising
one as suggested in (Toutanova et al., 2005) but it
does not clearly reveal if tree kernels can be used
to learn the difference between correct or incorrect
argument structures. Thus it is interesting to study
both the above approaches.

3.2 NST Classification

As we cannot classify all possible candidate argu-
ment structures, we apply theAST classifier just to
detect the correct structures from a set of overlap-
ping arguments. Given two nodesn1 andn2 of an
NST , they overlap if eithern1 is ancestor ofn2 or
vice versa. NSTs that contain overlapping nodes
are not validASTs but subtrees ofNSTs may be
valid ASTs. Assuming this, we defines as the set
of potential argument nodes and we create two node
setss1 = s − {n1} ands2 = s − {n2}. By classi-
fying the two newNSTsps1 andps2 with theAST
classifier, we can select the correct structures. Of
course, this procedure can be generalized to a set of
overlapping nodes greater than 2. However, consid-
ering that the Precision ofTBC is generally high,

the number of overlapping nodes is usually small.
Figure 2 shows a working example of the multi-

stage classifier. In Frame (a),TBC labels as po-
tential arguments (circled nodes) three overlapping
nodes related toArg1 . This leads to two possible
non-overlapping solutions (Frame (b)) but only the
first one is correct. In fact, according to the second
one the propositional phrase ”of the book” would be
incorrectly attached to the verbal predicate, i.e. in
contrast with the parse tree. TheAST classifier, ap-
plied to the twoNSTs, is expected to detect this
inconsistency and provide the correct output.

3.3 Re-rankingNSTs with Tree Kernels

To implement the re-ranking model, we follow the
approach described in (Toutanova et al., 2005).

First, we use SVMs to implement the boundary
TBC and roleTRC local classifiers. As SVMs do
not provide probabilistic output, we use the Platt’s
algorithm (Platt, 2000) and its revised version (Lin
et al., 2003) to trasform scores into probabilities.

Second, we combineTBC andTRC probabil-
ities to obtain them most likely sequencess of
tree nodes annotated with semantic roles. As argu-
ment constituents of the same verb cannot overlap,
we generate sequences that respect such node con-
straint. We adopt the same algorithm described in
(Toutanova et al., 2005). We start from the leaves
and we select them sequences that respect the con-
straints and at the same time have the highest joint
probability ofTBC andTRC.

Third, we extract the following feature represen-
tation:
(a) TheASTs associated with the predicate argu-
ment structures. To make faster the learning process
and to try to only capture the most relevant features,
we also experimented with a compact version of the
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AST which is pruned at the level of argument nodes.
(b) Attribute value features (standard features) re-
lated to the whole predicate structure. These include
the features for each arguments (Gildea and Juras-
fky, 2002) and global features like the sequence of
argument labels, e.g.〈Arg0, Arg1, ArgM〉.

Finally, we prepare the training examples for the
re-ranker considering them best annotations of each
predicate structure. We use the approach adopted
in (Shen et al., 2003), which generates all possible
pairs from them examples, i.e.

(
m
2

)
pairs. Each pair

is assigned to a positive example if the first mem-
ber of the pair has a higher score than the second
member. The score that we use is the F1 measure
of the annotated structure with respect to the gold
standard. More in detail, given training/testing ex-
amplesei = 〈t1i , t2i , v1

i , v
2
i 〉, wheret1i andt2i are two

ASTs andv1
i andv2

i are two feature vectors associ-
ated with two candidate predicate structuress1 and
s2, we define the following kernels:

1) Ktr(e1, e2) = Kt(t11, t
1
2) + Kt(t21, t

2
2)

−Kt(t11, t
2
2)−Kt(t21, t

1
2),

wheretji is the j-th AST of the pairei, Kt is the
tree kernel function defined in Section 2 andi, j ∈
{1, 2}.

2) Kpr(e1, e2) = Kp(v1
1, v

1
2) + Kp(v2

1, v
2
2)

−Kp(v1
1, v

2
2)−Kp(v2

1, v
1
2),

wherevj
i is thej-th feature vector of the pairei and

Kp is the polynomial kernel applied to such vectors.
The final kernel that we use for re-ranking is the

following:

K(e1, e2) =
Ktr(e1, e2)
|Ktr(e1, e2)| +

Kpr(e1, e2)
|Kpr(e1, e2)|

Regarding tree kernel feature engineering, the
next section show how we can generate more effec-
tive features given an established kernel function.

3.4 Tree kernel feature engineering

Consider the Frame (b) of Figure 2, it shows two
perfectly identicalNSTs, consequently, their frag-
ments will also be equal. This prevents the algorithm
to learn something from such examples. To solve the
problem, we can enrich theNSTs by marking their
argument nodes with a progressive number, starting

from the leftmost argument. For example, in the first
NST of Frame (c), we mark asNP-0 andNP-1 the
first and second argument nodes whereas in the sec-
ondNST we trasform the three argument node la-
bels inNP-0 , NP-1 andPP-2 . We will refer to the
resulting structure as aAST -Ord (ordinal number).
This simple modification allows the tree kernel to
generate different argument structures for the above
NSTs. For example, from the firstNST in Fig-
ure 2.c, the fragments[NP-1 [NP][PP]] , [NP
[DT][NN]] and [PP [IN][NP]] are gener-
ated. They do not match anymore with the[NP-0
[NP][PP]] , [NP-1 [DT][NN]] and [PP-2
[IN][NP]] fragments generated from the second
NST in Figure 2.c.

Additionally, it should be noted that the semantic
information provided by the role type can remark-
ably help the detection of correct or incorrect predi-
cate argument structures. Thus, we can enrich the ar-
gument node label with the role type, e.g. theNP-0
andNP-1 of the correctAST of Figure 2.c become
NP-Arg0 andNP-Arg1 (not shown in the figure).
We refer to this structure asAST -Arg. Of course,
to apply theAST -Arg classifier, we need thatTRC
labels the arguments detected byTBC.

4 The experiments

The experiments were carried out within the set-
ting defined in the CoNLL-2005 Shared Task
(Carreras and M̀arquez, 2005). In particular,
we adopted the Charniak parse trees available at
www.lsi.upc.edu/ ∼srlconll/ along with the of-
ficial performance evaluator.

All the experiments were performed with
the SVM-light-TK software available at
http://ai-nlp.info.uniroma2.it/moschitti/

which encodes ST and SST kernels in SVM-light
(Joachims, 1999). ForTBC andTRC, we used the
linear kernel with a regularization parameter (option
-c ) equal to 1. A cost factor (option-j ) of 10 was
adopted forTBC to have a higher Recall, whereas
for TRC, the cost factor was parameterized accord-
ing to the maximal accuracy of each argument class
on the validation set. For theAST -based classifiers
we used aλ equal to0.4 (see (Moschitti, 2004)).
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Section 21 Section 23
AST Class. P. R. F1 P. R. F1

− 69.8 77.9 73.7 62.2 77.1 68.9
Ord 73.7 81.2 77.3 63.7 80.6 71.2
Arg 73.6 84.7 78.7 64.2 82.3 72.1

Table 1: AST , AST -Ord, andAST -Arg perfor-
mance on sections 21 and 23.

4.1 Classification of whole predicate argument
structures

In these experiments, we trainedTBC on sections
02-08 whereas, to achieve a very accurate role clas-
sifier, we trainedTRC on all sections 02-21. To
train theAST , AST -Ord (AST with ordinal num-
bers in the argument nodes), andAST -Arg (AST
with argument type in the argument nodes) clas-
sifiers, we applied theTBC and TRC over sec-
tions 09-20. Then, we considered all the structures
whose automatic annotation showed at least an ar-
gument overlap. From these, we extracted 30,220
valid ASTs and 28,143 non-validASTs, for a total
of 183,642 arguments.

First, we evaluate the accuracy of theAST -based
classifiers by extracting 1,975ASTs and 2,220 non-
ASTs from Section 21 and the 2,159ASTs and
3,461 non-ASTs from Section 23. The accuracy
derived on Section 21 is an upperbound for our clas-
sifiers since it is obtained using an ideal syntactic
parser (the Charniak’s parser was trained also on
Section 21) and an ideal role classifier.

Table 1 shows Precision, Recall andF1 mea-
sures of theAST -based classifiers over the above
NSTs. Rows 2, 3 and 4 report the performance of
AST , AST -Ord, andAST -Arg classifiers, respec-
tively. We note that: (a) The impact of parsing ac-
curacy is shown by the gap of about 6% points be-
tween sections 21 and 23. (b) The ordinal number-
ing of arguments (Ord) and the role type informa-
tion (Arg) provide tree kernels with more meaning-
ful fragments since they improve the basic model
of about 4%. (c) The deeper semantic information
generated by theArg labels provides useful clues to
select correct predicate argument structures since it
improves theOrd model on both sections.

Second, we measured the impact of theAST -
based classifiers on the accuracy of both phases of
semantic role labeling. Table 2 reports the results

on sections 21 and 23. For each of them, Precision,
Recall andF1 of different approaches to bound-
ary identification (bnd) and to the complete task,
i.e. boundary and role classification (bnd+class)
are shown. Such approaches are based on differ-
ent strategies to remove the overlaps, i.e. with the
AST , AST -Ord andAST -Arg classifiers and using
the baseline (RND), i.e. a random selection of non-
overlapping structures. The baseline corresponds to
the system based onTBC andTRC1.
We note that: (a) for any model, the boundary de-
tectionF1 on Section 21 is about 10 points higher
than theF1 on Section 23 (e.g. 87.0% vs. 77.9%
for RND). As expected the parse tree quality is very
important to detect argument boundaries. (b) On the
real test (Section 23) the classification introduces la-
beling errors which decrease the accuracy of about
5% (77.9 vs 72.9 for RND). (c) TheOrd andArg
approaches constantly improve the baselineF1 of
about 1%. Such poor impact does not surprise as
the overlapping structures are a small percentage of
the test set, thus the overall improvement cannot be
very high.

Third, the comparison with the CoNLL 2005 re-
sults (Carreras and M̀arquez, 2005) can only be
carried out with respect to the whole SRL task
(bnd+class in table 2) since boundary detection ver-
sus role classification is generally not provided in
CoNLL 2005. Moreover, our best global result, i.e.
73.9%, was obtained under two severe experimental
factors: a) the use of just 1/3 of the available train-
ing set, and b) the usage of the linear SVM model
for the TBC classifier, which is much faster than the
polynomial SVMs but also less accurate. However,
we note the promising results of theAST meta-
classifier, which can be used with any of the best
figure CoNLL systems.

Finally, the overall results suggest that the tree
kernel model is robust to parse tree errors since pre-
serves the same improvement across trees derived
with different accuracy, i.e. thesemi-automatictrees
of Section 21 and the automatic tree of Section 23.
Moreover, it shows a high accuracy for the classi-
fication of correct and incorrectASTs. This last
property is quite interesting as the best SRL systems

1We needed to remove the overlaps from the baseline out-
come in order to apply the CoNLL evaluator.
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(Punyakanok et al., 2005; Toutanova et al., 2005;
Pradhan et al., 2005b) were obtained by exploit-
ing the information on the whole predicate argument
structure.

Next section shows our preliminary experiments
on re-ranking using theAST kernel based approach.

4.2 Re-ranking based on Tree Kernels

In these experiments, we used the output ofTBC
and TRC2 to provide an SVM tree kernel with a
ranked list of predicate argument structures. More in
detail, we applied a Viterbi-like algorithm to gener-
ate the 20 most likely annotations for each predicate
structure, according to the joint probabilistic model
of TBC andTRC. We sorted such structures based
on theirF1 measure and used them to learn the SVM
re-ranker described in 3.3.

For training, we used Sections 12, 14, 15, 16
and 24, which contain 24,729 predicate structures.
For each of them, we considered the 5 annotations
having the highest F1 score (i.e. 123,674NSTs)
on the span of the 20 best annotations provided by
Viterbi algorithm. With such structures, we ob-
tained 294,296 pairs used to train the SVM-based
re-ranker. As the number of such structures is very
large the SVM training time was very high. Thus,
we sped up the learning process by using only the
ASTs associated with the core arguments. From the
test sentences (which contain 5,267 structures), we
extracted the 20 best Viterbi annotated structures,
i.e. 102,343 (for a total of 315.531 pairs), which
were used for the following experiments:

First, we selected the best annotation (according
to theF1 provided by the gold standard annotations)
out of the 20 provided by the Viterbi’s algorithm.
The resultingF1 of 88.59% is the upperbound of our
approach.

Second, we selected the top ranked annotation in-
dicated by the Viterbi’s algorithm. This provides our
baselineF1 measure, i.e. 75.91%. Such outcome is
slightly higher than our official CoNLL result (Mos-
chitti et al., 2005) obtained without converting SVM
scores into probabilities.

Third, we applied the SVM re-ranker to select

2With the aim of improving the state-of-the-art, we applied
the polynomial kernel for all basic classifiers, at this time.
We used the models developed during our participation to the
CoNLL 2005 shared task (Moschitti et al., 2005).

the best structures according to the core roles. We
achieved 80.68% which is practically equal to the
result obtained in (Punyakanok et al., 2005; Car-
reras and M̀arquez, 2005) for core roles, i.e. 81%.
Their overall F1 which includes all the arguments
was 79.44%. This confirms that the classification of
the non-core roles is more complex than the other
arguments.

Finally, the high computation time of the re-
ranker prevented us to use the larger structures
which include all arguments. The major complexity
issue was the slow training and classification time
of SVMs. The time needed for tree kernel function
was not so problematic as we could use the fast eval-
uation proposed in (Moschitti, 2006). This roughly
reduces the computation time to the one required by
a polynomial kernel. The real burden is therefore the
learning time of SVMs that is quadratic in the num-
ber of training instances. For example, to carry out
the re-ranking experiments required approximately
one month of a 64 bits machine (2.4 GHz and 4Gb
Ram). To solve this problem, we are going to study
the impact on the accuracy of fast learning algo-
rithms such as the Voted Perceptron.

5 Related Work

Recently, many kernels for natural language applica-
tions have been designed. In what follows, we high-
light their difference and properties.

The tree kernel used in this article was proposed
in (Collins and Duffy, 2002) for syntactic parsing
re-ranking. It was experimented with the Voted
Perceptron and was shown to improve the syntac-
tic parsing. In (Cumby and Roth, 2003), a feature
description language was used to extract structural
features from the syntactic shallow parse trees asso-
ciated with named entities. The experiments on the
named entity categorization showed that when the
description language selects an adequate set of tree
fragments the Voted Perceptron algorithm increases
its classification accuracy. The explanation was that
the complete tree fragment set contains many irrel-
evant features and may cause overfitting. In (Pun-
yakanok et al., 2005), a set of different syntactic
parse trees, e.g. then best trees generated by the
Charniak’s parser, were used to improve the SRL
accuracy. These different sources of syntactic infor-
mation were used to generate a set of different SRL
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Section 21 Section 23
bnd bnd+class bnd bnd+class

AST Classifier RND AST Classifier RND AST Classifier RND AST Classifier RND- Ord Arg - Ord Arg - Ord Arg - Ord Arg
P. 87.5 88.3 88.3 86.9 85.5 86.3 86.4 85.0 78.6 79.0 79.3 77.8 73.1 73.5 73.4 72.3
R. 87.3 88.1 88.3 87.1 85.7 86.5 86.8 85.6 78.1 78.4 78.7 77.9 73.8 74.1 74.4 73.6
F1 87.4 88.2 88.3 87.0 85.6 86.4 86.6 85.3 78.3 78.7 79.0 77.9 73.4 73.8 73.9 72.9

Table 2: Semantic Role Labeling performance on automatic trees usingAST -based classifiers.

outputs. A joint inference stage was applied to re-
solve the inconsistency of the different outputs. In
(Toutanova et al., 2005), it was observed that there
are strong dependencies among the labels of the se-
mantic argument nodes of a verb. Thus, to approach
the problem, a re-ranking method of role sequences
labeled by aTRC is applied. In (Pradhan et al.,
2005b), some experiments were conducted on SRL
systems trained using different syntactic views.

6 Conclusions

Recent work on Semantic Role Labeling has shown
that to achieve high labeling accuracy a joint in-
ference on the whole predicate argument structure
should be applied. As feature design for such task is
complex, we can take advantage from kernel meth-
ods to model our intuitive knowledge about then-
ary predicate argument relations.

In this paper we have shown that we can exploit
the properties of tree kernels to engineer syntactic
features for the semantic role labeling task. The ex-
periments suggest that (1) the information related
to the whole predicate argument structure is impor-
tant as it can improve the state-of-the-art and (2)
tree kernels can be used in a joint model to gen-
erate relevant syntactic/semantic features. The real
drawback is the computational complexity of work-
ing with SVMs, thus the design of fast algorithm is
an interesting future work.
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Abstract

This paper investigates whether human as-
sociations to verbs as collected in a web
experiment can help us to identify salient
verb features for semantic verb classes.
Assuming that the associations model as-
pects of verb meaning, we apply a clus-
tering to the verbs, as based on the as-
sociations, and validate the resulting verb
classes against standard approaches to se-
mantic verb classes, i.e. GermaNet and
FrameNet. Then, various clusterings of
the same verbs are performed on the basis
of standard corpus-based types, and eval-
uated against the association-based clus-
tering as well as GermaNet and FrameNet
classes. We hypothesise that the corpus-
based clusterings are better if the instan-
tiations of the feature types show more
overlap with the verb associations, and
that the associations therefore help to
identify salient feature types.

1 Introduction

There are a variety of manual semantic verb clas-
sifications; major frameworks are the Levin classes
(Levin, 1993), WordNet (Fellbaum, 1998), and
FrameNet (Fontenelle, 2003). The different frame-
works depend on different instantiations of seman-
tic similarity, e.g. Levin relies on verb similarity
referring to syntax-semantic alternation behaviour,
WordNet uses synonymy, and FrameNet relies on
situation-based agreement as defined in Fillmore’s
frame semantics (Fillmore, 1982). As an alterna-
tive to the resource-intensive manual classifications,

automatic methods such as classification and clus-
tering are applied to induce verb classes from cor-
pus data, e.g. (Merlo and Stevenson, 2001; Joanis
and Stevenson, 2003; Korhonen et al., 2003; Steven-
son and Joanis, 2003; Schulte im Walde, 2003; Fer-
rer, 2004). Depending on the types of verb classes
to be induced, the automatic approaches vary their
choice of verbs and classification/clustering algo-
rithm. However, another central parameter for the
automatic induction of semantic verb classes is the
selection of verb features.

Since the target classification determines the sim-
ilarity and dissimilarity of the verbs, the verb fea-
ture selection should model the similarity of inter-
est. For example, Merlo and Stevenson (2001) clas-
sify 60 English verbs which alternate between an in-
transitive and a transitive usage, and assign them to
three verb classes, according to the semantic role as-
signment in the frames; their verb features are cho-
sen such that they model the syntactic frame alterna-
tion proportions and also heuristics for semantic role
assignment. In larger-scale classifications such as
(Korhonen et al., 2003; Stevenson and Joanis, 2003;
Schulte im Walde, 2003), which model verb classes
with similarity at the syntax-semantics interface, it
is not clear which features are the most salient. The
verb features need to relate to a behavioural com-
ponent (modelling the syntax-semantics interplay),
but the set of features which potentially influence
the behaviour is large, ranging from structural syn-
tactic descriptions and argument role fillers to ad-
verbial adjuncts. In addition, it is not clear how
fine-grained the features should be; for example,
how much information is covered by low-level win-
dow co-occurrence vs. higher-order syntactic frame
fillers?

69



In this paper, we investigate whether human asso-
ciations to verbs can help us to identify salient verb
features for semantic verb classes. We collected as-
sociations to German verbs in a web experiment, and
hope that these associations represent a useful ba-
sis for a theory-independent semantic classification
of the German verbs, assuming that the associations
model a non-restricted set of salient verb meaning
aspects. In a preparatory step, we perform an un-
supervised clustering on the experiment verbs, as
based on the verb associations. We validate the re-
sulting verb classes (henceforth: assoc-classes) by
demonstrating that they show considerable overlap
with standard approaches to semantic verb classes,
i.e. GermaNet and FrameNet. In the main body of
this work, we compare the associations underlying
the assoc-classes with standard corpus-based feature
types: We check on how many of the associations we
find among the corpus-based features, such as ad-
verbs, direct object nouns, etc.; we hypothesise that
the more associations are found as instantiations in a
feature set, the better is a clustering as based on that
feature type. We assess our hypothesis by applying
various corpus-based feature types to the experiment
verbs, and comparing the resulting classes (hence-
forth: corpus-classes) against the assoc-classes. On
the basis of the comparison we intend to answer the
question whether the human associations help iden-
tify salient features to induce semantic verb classes,
i.e. do the corpus-based feature types which are
identified on the basis of the associations outperform
previous clustering results? By applying the fea-
ture choices to GermaNet and FrameNet, we address
the question whether the same types of features are
salient for different types of semantic verb classes?

In what follows, the paper presents the association
data in Section 2 and the association-based classes in
Section 3. In Section 4, we compare the associations
with corpus-based feature types, and in Section 5 we
apply the insights to induce semantic verb classes.

2 Verb Association Data

We obtained human associations to German verbs
from native speakers in a web experiment (Schulte
im Walde and Melinger, 2005). 330 verbs were se-
lected for the experiment (henceforth: experiment
verbs), from different semantic categories, and dif-

ferent corpus frequency bands. Participants were
given 55 verbs each, and had 30 seconds per verb
to type as many associations as they could. 299
native German speakers participated in the experi-
ment, between 44 and 54 for each verb. In total,
we collected 81,373 associations from 16,445 trials;
each trial elicited an average of 5.16 responses with
a range of 0-16.

All data sets were pre-processed in the following
way: For each target verb, we quantified over all re-
sponses in the experiment. Table 1 lists the 10 most
frequent response types for the verb klagen ‘com-
plain, moan, sue’. The responses were not distin-
guished according to polysemic senses of the verbs.

klagen ‘complain, moan, sue’
Gericht ‘court’ 19
jammern ‘moan’ 18
weinen ‘cry’ 13
Anwalt ‘lawyer’ 11
Richter ‘judge’ 9
Klage ‘complaint’ 7
Leid ‘suffering’ 6
Trauer ‘mourning’ 6
Klagemauer ‘Wailing Wall’ 5
laut ‘noisy’ 5

Table 1: Association frequencies for target verb.

In the clustering experiments to follow, the verb
associations are considered as verb features. The
underlying assumption is that verbs which are se-
mantically similar tend to have similar associations,
and are therefore assigned to common classes. Ta-
ble 2 illustrates the overlap of associations for the
polysemous klagen with a near-synonym of one of
its senses, jammern ‘moan’. The table lists those as-
sociations which were given at least twice for each
verb; the total overlap was 35 association types.

klagen/jammern ‘moan’
Frauen ‘women’ 2/3
Leid ‘suffering’ 6/3
Schmerz ‘pain’ 3/7
Trauer ‘mourning’ 6/2
bedauern ‘regret’ 2/2
beklagen ‘bemoan’ 4/3
heulen ‘cry’ 2/3
nervig ‘annoying’ 2/2
nölen ‘moan’ 2/3
traurig ‘sad’ 2/5
weinen ‘cry’ 13/9

Table 2: Association overlap for target verbs.
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3 Association-based Verb Classes

We performed a standard clustering on the 330 ex-
periment target verbs: The verbs and their features
were taken as input to agglomerative (bottom-up)
hierarchical clustering. As similarity measure in
the clustering procedure (i.e. to determine the dis-
tance/similarity for two verbs), we used the skew
divergence, a smoothed variant of the Kullback-
Leibler divergence (Lee, 2001). The goal of these
experiments was not to explore the optimal feature
combination; thus, we rely on previous experiments
and parameter settings, cf. Schulte im Walde (2003).

Our claim is that the hierarchical verb classes
and their underlying features (i.e. the verb as-
sociations) represent a useful basis for a theory-
independent semantic classification of the German
verbs. To support this claim, we validated the
assoc-classes against standard approaches to seman-
tic verb classes, i.e. GermaNet as the German Word-
Net (Kunze, 2000), and the German counterpart of
FrameNet in the Salsa project (Erk et al., 2003). De-
tails of the validation can be found in (Schulte im
Walde, 2006); the main issues are as follows.

We did not directly compare the assoc-classes
against the GermaNet/FrameNet classes, since not
all of our 330 experiments verbs were covered
by the two resources. Instead, we replicated the
above cluster experiment for a reduced number of
verbs: We extracted those classes from the resources
which contain association verbs; light verbs, non-
association verbs, other classes as well as singletons
were disregarded. This left us with 33 classes from
GermaNet, and 38 classes from FrameNet. These
remaining classifications are polysemous: The 33
GermaNet classes contain 71 verb senses which dis-
tribute over 56 verbs, and the 38 FrameNet classes
contain 145 verb senses which distribute over 91
verbs. Based on the 56/91 verbs in the two gold
standard resources, we performed two cluster anal-
yses, one for the GermaNet verbs, and one for the
FrameNet verbs. As for the complete set of ex-
periments verbs, we performed a hierarchical clus-
tering on the respective subsets of the experiment
verbs, with their associations as verb features. The
actual validation procedure then used the reduced
classifications: The resulting analyses were evalu-
ated against the resource classes on each level in

the hierarchies, i.e. from 56/91 classes to 1 class.
As evaluation measure, we used a pair-wise measure
which calculates precision, recall and a harmonic f-
score as follows: Each verb pair in the cluster anal-
ysis was compared to the verb pairs in the gold stan-
dard classes, and evaluated as true or false positive
(Hatzivassiloglou and McKeown, 1993).

The association-based clusters show overlap with
the lexical resource classes of an f-score of 62.69%
(for 32 verb classes) when comparing to GermaNet,
and 34.68% (for 10 verb classes) when comparing
to FrameNet. The corresponding upper bounds are
82.35% for GermaNet and 60.31% for FrameNet.1
The comparison therefore demonstrates consider-
able overlap between association-based classes and
existing semantic classes. The different results for
the two resources are due to their semantic back-
ground (i.e. capturing synonymy vs. situation-based
agreement), the numbers of verbs, and the degrees
of ambiguity (an average of 1.6 senses per verb in
FrameNet, as compared to 1.3 senses in GermaNet).

The purpose of the validation against semantic
resources was to demonstrate that a clustering as
based on the verb associations and a standard clus-
tering setting compares well with existing semantic
classes. We take the positive validation results as
justification to use the assoc-classes as source for
cluster information: The clustering defines the verbs
in a common association-based class, and the fea-
tures which are relevant for the respective class. For
example, the 100-class analysis contains a class with
the verbs bedauern ‘regret’, heulen ‘cry’, jammern
‘moan’, klagen ‘complain, moan, sue’, verzweifeln
‘become desperate’, and weinen ‘cry’, with the
most distinctive features Trauer ‘mourning’, weinen
‘cry’, traurig ‘sad’, Tränen ‘tears’, jammern ‘moan’,
Angst ‘fear’, Mitleid ‘pity’, Schmerz ‘pain’.

4 Exploring Semantic Class Features

Our claim is that the features underlying the
association-based classes help us guide the feature
selection process in future clustering experiments,
because we know which semantic classes are based

1The upper bounds are below 100%, because the hierarchi-
cal clustering assigns a verb to only one cluster, but the lexical
resources contain polysemy. We created a hard version of the
lexical resource classes where we randomly chose one sense of
each polysemous verb, to calculate the upper bounds.
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on which associations/features. We rely on the
assoc-classes in the 100-class analysis of the hier-
archical clustering2 and features which exist for at
least two verbs in a common class (and therefore
hint to a minimum of verb similarity), and compare
the associations underlying the assoc-classes with
standard corpus-based feature types: We check on
how many of the associations we find among the
corpus-based features, such as adverbs, direct object
nouns, etc. There are various possibilities to deter-
mine corpus-based features that potentially cover the
associations; we decided in favour of feature types
which have been suggested in related work:

a) Grammar-based relations: Previous work
on distributional similarity has focused either on
a specific word-word relation (such as Pereira et
al. (1993) and Rooth et al. (1999) referring to a direct
object noun for describing verbs), or used any syn-
tactic relationship detected by a chunker or a parser
(such as Lin (1998) and McCarthy et al. (2003)). We
used a statistical grammar (Schulte im Walde, 2003)
to filter all verb-noun pairs where the nouns repre-
sent nominal heads in NPs or PPs in syntactic rela-
tion to the verb (subject, object, adverbial function,
etc.), and to filter all verb-adverb pairs where the ad-
verbs modify the verbs.

b) Co-occurrence window: In previous work
(Schulte im Walde and Melinger, 2005), we showed
that only 28% of all noun associates were identi-
fied by the above statistical grammar as subcate-
gorised nouns, but 69% were captured by a 20-word
co-occurrence window in a 200-million word news-
paper corpus. This finding suggests to use a co-
occurrence window as alternative source for verb
features, as compared to specific syntactic relations.
We therefore determined the co-occurring words for
all experiment verbs in a 20-word window (i.e. 20
words preceding and following the verb), irrespec-
tive of the part-of-speech of the co-occurring words.

Relying on the verb information extracted for a)
and b), we checked for each verb-association pair
whether it occurred among the grammar or window
pairs. Table 3 illustrates which proportions of the
associations we found in the two resource types.
For the grammar-based relations, we checked argu-

2The exact number of classes or the verb-per-class ratio are
not relevant for investigating the use of associations.

ment NPs and PPs (as separate sets and together),
and in addition we checked verb-noun pairs in the
most common specific NP functions: n refers to the
(nominative) intransitive subject, na to the transi-
tive subject, and na to the transitive (accusative) ob-
ject. For the windows, all checks on co-occurrence
of verbs and associations in the whole 200-million
word corpus. cut also checks the whole corpus, but
disregards the most and least frequent co-occurring
words: verb-word pairs were only considered if the
co-occurrence frequency of the word over all verbs
was above 100 (disregarding low frequency pairs)
and below 200,000 (disregarding high frequency
pairs). Using the cut-offs, we can distinguish the
relevance of high- and low-frequency features. Fi-
nally, ADJ, ADV, N, V perform co-occurrence checks
for the whole corpus, but breaks down the all results
with respect to the association part-of-speech.

As one would have expected, most of the as-
sociations (66%) were found in the 20-word co-
occurrence window, because the window is neither
restricted to a certain part-of-speech, nor to a certain
grammar relation; in addition, the window is poten-
tially larger than a sentence. Applying the frequency
cut-offs reduces the overlap of association types and
co-occurring words to 58%. Specifying the window
results for the part-of-speech types illustrates that
the nouns play the most important role in describing
verb meaning (39% of the verb association types in
the assoc-classes were found among the nouns in the
corpus windows, 16% among the verbs, 9% among
the adjectives, and 2% among the adverbs).3

The proportions of the nouns with a specific
grammar relationship to the verbs show that we find
more associations among direct objects than intran-
sitive/transitive subjects. This insight confirms the
assumption in previous work where only direct ob-
ject nouns were used as salient features in distribu-
tional verb similarity, such as Pereira et al. (1993).
However, the proportions are all below 10%. Con-
sidering all NPs and/or PPs, we find that the pro-
portions increase for the NPs, and that the NPs play
a more important role than the PPs. This insight
confirms work on distributional similarity where not
only direct object nouns, but all functional nouns

3Caveat: These numbers correlate with the part-of-speech
types of all associate responses: 62% of the responses were
nouns, 25% verbs, 11% adjectives, and 2% adverbs.
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Features grammar relations
n na na NP PP NP&PP ADV

Cov. (%) 3.82 4.32 6.93 12.23 5.36 14.08 3.63

Features co-occurrence: window-20
all cut ADJ ADV N V

Cov. (%) 66.15 57.79 9.13 1.72 39.27 15.51

Table 3: Coverage of verb association features by grammar/window resources.

were considered as verb features, such as Lin (1998)
and McCarthy et al. (2003). Of the adverb associ-
ations, we find only a small proportion among the
parsed adverbs. All in all, the proportions of asso-
ciation types among the nouns/adverbs with a syn-
tactic relationship to the verbs are rather low. Com-
paring the NP/PP proportions with the window noun
proportions shows that salient verb features are not
restricted to certain syntactic relationships, but also
appear in a less restricted context window.

5 Inducing Verb Classes with
Corpus-based Features

In the final step, we applied the corpus-based fea-
ture types to clusterings. The goal of this step was
to determine whether the feature exploration helped
to identify salient verb features, and whether we can
outperform previous clustering results. The cluster-
ing experiments were as follows: The 330 experi-
ment verbs were instantiated by the feature types we
explored in Section 4. As for the assoc-classes, we
then performed an agglomerative hierarchical clus-
tering. We cut the hierarchy at a level of 100 clus-
ters, and evaluated the clustering against the 100-
class analysis of the original assoc-classes. We ex-
pect that feature types with a stronger overlap with
the association types result in a better clustering re-
sult. The assumption is that the associations are
salient feature for verb clustering, and the better
we model the associations with grammar-based or
window-based features, the better the clustering.

For checking the clusterings with respect to the
semantic class type, we also applied the corpus-
based features to GermaNet and FrameNet classes.

• GermaNet: We randomly extracted 100 verb
classes from all GermaNet synsets, and created
a hard classification for these classes, by ran-
domly deleting additional senses of a verb so

as to leave only one sense for each verb. This
selection made the GermaNet classes compara-
ble to the assoc-classes in size and polysemy.
The 100 classes contain 233 verbs. Again, we
performed an agglomerative hierarchical clus-
tering on the verbs (as modelled by the different
feature types). We cut the hierarchy at a level
of 100 clusters, which corresponds to the num-
ber of GermaNet classes, and evaluated against
the GermaNet classes.

• FrameNet: In a pre-release version from May
2005, there were 484 verbs in 214 German
FrameNet classes. We disregarded the high-
frequency verbs gehen, geben, sehen, kommen,
bringen which were assigned to classes mostly
on the basis of multi-word expressions they are
part of. In addition, we disregarded two large
classes which contained mostly support verbs,
and we disregarded singletons. Finally, we cre-
ated a hard classification of the classes, by ran-
domly deleting additional senses of a verb so as
to leave only one sense for each verb. The clas-
sification then contained 77 classes with 406
verbs. Again, we performed an agglomerative
hierarchical clustering on the verbs (as mod-
elled by the different feature types). We cut the
hierarchy at a level of 77 clusters, which corre-
sponds to the number of FrameNet classes, and
evaluated against the FrameNet classes.

For the evaluation of the clustering results, we calcu-
lated the accuracy of the clusters, a cluster similarity
measure that has been applied before, cf. (Stevenson
and Joanis, 2003; Korhonen et al., 2003).4 Accuracy
is determined in two steps:

4Note that we can use accuracy for the evaluation because
we have a fixed cut in the hierarchy as based on the gold stan-
dard, as opposed to the evaluation in Section 3 where we ex-
plored the optimal cut level.
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frames grammar relations
f-pp f-pp-pref n na na NP PP NP&PP ADV

Assoc 37.50 37.80 35.90 37.18 39.25 39.14 37.97 41.28 38.53
GN 46.98 49.14 58.01 53.37 51.90 53.10 54.21 51.77 51.82
FN 33.50 32.76 29.46 30.13 32.74 34.16 28.72 33.91 35.24

co-occurrence: window-20
all cut ADJ ADV N V

Assoc 39.33 39.45 37.31 36.89 39.33 38.84
GN 51.53 52.42 50.88 47.79 52.86 49.12
FN missing 32.84 31.08 31.00 34.24 31.75

Table 4: Accuracy for induced verb classes.

1. For each class in the cluster analysis, the gold
standard class with the largest intersection of
verbs is determined. The number of verbs in the
intersection ranges from one verb only (in case
all clustered verbs are in different classes in the
gold standard) to the total number of verbs in
a cluster (in case all clustered verbs are in the
same gold standard class).

2. Accuracy is calculated as the proportion of the
verbs in the clusters covered by the same gold
standard classes, divided by the total number
of verbs in the clusters. The upper bound of the
accuracy measure is 1.

Table 4 shows the accuracy results for the three
types of classifications (assoc-classes, GermaNet,
FrameNet), and the grammar-based and window-
based features. We added frame-based features, as
to compare with earlier work: The frame-based fea-
tures provide a feature description over 183 syntac-
tic frame types including PP type specification (f-
pp), and the same information plus coarse selec-
tional preferences for selected frame slots, as ob-
tained from GermaNet top-level synsets (f-pp-pref),
cf. (Schulte im Walde, 2003). The following ques-
tions are addressed with respect to the result table.

1. Do the results of the clusterings with respect
to the underlying feature types correspond to
the overlap of associations and feature types,
cf. Table 3?

2. Do the corpus-based feature types which were
identified on the basis of the associations out-
perform previous clustering results?

3. Do the results generalise over the semantic
class type?

First of all, there is no correlation between the
overlap of associations and feature types on the one
hand and the clustering results as based on the fea-
ture types on the other hand (Pearson’s correlation,
p>.1), neither for the assoc-classes or the GermaNet
or FrameNet classes. The human associations there-
fore did not contribute to identify salient feature
types, as we had hoped. In some specific cases, we
find corresponding patterns; for example, the clus-
tering results for the intransitive and transitive sub-
ject and the transitive object correspond to the over-
lap values for the assoc-classes and FrameNet: n <

na < na. Interestingly, the GermaNet clusterings be-
have in the opposite direction.

Comparing the grammar-based relations with
each other shows that for the assoc-classes using
all NPs is better than restricting the NPs to (sub-
ject) functions, and using both NPs and PPs is best;
similarly for the FrameNet classes where using all
NPs is the second best results (but adverbs). Differ-
ently, for the GermaNet classes the specific function
of intransitive subjects outperforms the more gen-
eral feature types, and the PPs are still better than
the NPs. We conclude that not only there is no cor-
relation between the association overlap and feature
types, but in addition the most successful feature
types vary strongly with respect to the gold stan-
dard. None of the differences within the feature
groups (n/na/na and NP/PP/NP&PP) are significant
(χ2, df = 1, α = 0.05). The adverbial features
are surprisingly successful in all three clusterings, in
some cases outperforming the noun-based features.

Comparing the grammar-based clustering results
with previous results, the grammar-based features
outperform the frame-based features in all cluster-
ings for the GermaNet verbs. For the FrameNet
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verbs and the experiment verbs, they outperform the
frame-based features only in specific cases. The
adverbial features outperform the frame-based fea-
tures in any clustering. However, none of the differ-
ences between the frame-based clusterings and the
grammar-based clusterings are significant (χ2, df =

1, α = 0.05).
For all gold standards, the best window-based

clustering results are below the best grammar-based
results. Especially the all results demonstrate
once more the missing correlation between associa-
tion/feature overlap and clustering results. However,
it is interesting that the clusterings based on win-
dow co-occurrence are not significantly worse (and
in some cases even better) than the clusterings based
on selected grammar-based functions. This means
that a careful choice and extraction of specific rela-
tionships for verb features does not have a signifi-
cant impact on semantic classes.

Comparing the window-based features against
each other shows that even though we discovered
a much larger proportion of association types in an
unrestricted window all than elsewhere, the results
in the clusterings do not differ accordingly. Apply-
ing the frequency cut-offs has almost no impact on
the clustering results, which means that it does no
harm to leave away the rather unpredictable features.
Somehow expected but nevertheless impressive is
the fact that only considering nouns as co-occurring
words is as successful as considering all words inde-
pendent of the part-of-speech.

Finally, the overall accuracy values are much
better for the GermaNet clusterings than for the
experiment-based and the FrameNet clusterings.
The differences are all significant (χ2, df = 1, α =

0.05). The reason for these large differences could
be either (a) that the clustering task was easier for
the GermaNet verbs, or (b) that the differences are
caused by the underlying semantics. We argue
against case (a) since we deliberately chose the same
number of classes (100) as for the association-based
gold standard; however, the verbs-per-class ratio for
GermaNet vs. the assoc-classes and the FrameNet
classes is different (2.33 vs. 3.30/5.27) and we can-
not be sure about this influence. In addition, the
average verb frequencies in the GermaNet classes
(calculated in a 35 million word newspaper corpus)
are clearly below those in the other two classifica-

tions (1,040 as compared to 2,465 and 1,876), and
there are more low-frequency verbs (98 out of 233
verbs (42%) have a corpus frequency below 50, as
compared to 41 out of 330 (12%) and 54 out of 406
(13%)). In the case of (b), the difference in the se-
mantic class types is modelling synonyms with Ger-
maNet as opposed to situation-based agreement in
FrameNet. The association-based class semantics
is similar to FrameNet, because the associations are
unrestricted in their semantic relation to the experi-
ment verb (Schulte im Walde and Melinger, 2005).

6 Summary

The questions we posed in the beginning of this pa-
per were (i) whether human associations help iden-
tify salient features to induce semantic verb classes,
and (ii) whether the same types of features are
salient for different types of semantic verb classes.
An association-based clustering with 100 classes
served as source for identifying a set of potentially
salient verb features, and a comparison with stan-
dard corpus-based features determined proportions
of feature overlap. Applying the standard feature
choices to verbs underlying three gold standard verb
classifications showed that (a) in our experiments
there is no correlation between the overlap of associ-
ations and feature types and the respective clustering
results. The associations therefore did not help in the
specific choice of corpus-based features, as we had
hoped. However, the assumption that window-based
features do contribute to semantic verb classes – this
assumption came out of an analysis of the associ-
ations – was confirmed: simple window-based fea-
tures were not significantly worse (and in some cases
even better) than selected grammar-based functions.
This finding is interesting because window-based
features have often been considered too simple for
semantic similarity, as opposed to syntax-based fea-
tures. (b) Several of the grammar-based nomi-
nal and adverbial features and also the window-
based features outperformed feature sets in previ-
ous work, where frame-based features (plus prepo-
sitional phrases and coarse selectional preference
information) were used. Surprisingly well did ad-
verbs: they only represent a small number of verb
features, but obviously this small selection can out-
perform frame-based features and even some nomi-

75



nal features. (c) The clustering results were signif-
icantly better for the GermaNet clusterings than for
the experiment-based and the FrameNet clusterings,
so the chosen feature sets might be more appropri-
ate for the synonymy-based than the situation-based
classifications.

Acknowledgements Thanks to Christoph Clodo
and Marty Mayberry for their system administrative
help when running the cluster analyses.
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Abstract

This paper presents a new application of
the recently proposed machine learning
method Alternating Structure Optimiza-
tion (ASO), to word sense disambiguation
(WSD). Given a set of WSD problems
and their respective labeled examples, we
seek to improve overall performance on
that set by using all the labeled exam-
ples (irrespective of target words) for the
entire set in learning a disambiguator for
each individual problem. Thus, in effect,
on each individual problem (e.g., disam-
biguation of “art”) we benefit from train-
ing examples for other problems (e.g.,
disambiguation of “bar”, “canal”, and so
forth). We empirically study the effective
use of ASO for this purpose in the multi-
task and semi-supervised learning config-
urations. Our performance results rival
or exceed those of the previous best sys-
tems on several Senseval lexical sample
task data sets.

1 Introduction

Word sense disambiguation (WSD) is the task of
assigning pre-defined senses to words occurring in
some context. An example is to disambiguate an oc-
currence of “bank” between the “money bank” sense
and the “river bank” sense. Previous studies e.g.,
(Lee and Ng, 2002; Florian and Yarowsky, 2002),
have applied supervised learning techniques to WSD
with success.

A practical issue that arises in supervised WSD
is the paucity of labeled examples (sense-annotated
data) available for training. For example, the train-
ing set of the Senseval-21 English lexical sample

1http://www.cs.unt.edu/~rada/senseval/. WSD systems have

task has only 10 labeled training examples per sense
on average, which is in contrast to nearly 6K training
examples per name class (on average) used for the
CoNLL-2003 named entity chunking shared task2.
One problem is that there are so many words and so
many senses that it is hard to make available a suf-
ficient number of labeled training examples for each
of a large number of target words.

On the other hand, this indicates that the total
number of available labeled examples (irrespective
of target words) can be relatively large. A natural
question to ask is whether we can effectively useall
the labeled examples (irrespective of target words)
for learning on each individual WSD problem.

Based on these observations, we study a new
application of Alternating Structure Optimization
(ASO)(Ando and Zhang, 2005a; Ando and Zhang,
2005b) to WSD. ASO is a recently proposed ma-
chine learning method for learning predictive struc-
ture (i.e., information useful for predictions) shared
by multiple prediction problems via joint empiri-
cal risk minimization. It has been shown that on
several tasks, performance can be significantly im-
proved by a semi-supervised application of ASO,
which obtains useful information fromunlabeled
data by learning automatically created prediction
problems. In addition to such semi-supervised learn-
ing, this paper explores ASOmulti-task learning,
which learns a number of WSD problems simul-
taneously to exploit the inherent predictive struc-
ture shared by these WSD problems. Thus, in ef-
fect, each individual problem (e.g., disambiguation
of “art”) benefits fromlabeled training examples for
other problems(e.g., disambiguation of “bar”, dis-
ambiguation of “canal”, and so forth).

The notion of benefiting from training data for
other word senses is not new by itself. For instance,

been evaluated in the series of Senseval workshops.
2http://www.cnts.ua.ac.be/conll2003/ner/
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on the WSD task with respect to WordNet synsets,
Kohomban and Lee (2005) trained classifiers for the
top-level synsets of the WordNet semantic hierar-
chy, consolidating labeled examples associated with
the WordNet sub-trees. To disambiguate test in-
stances, these coarse-grained classifiers are first ap-
plied, and then fine-grained senses are determined
using a heuristic mapping. By contrast, our ap-
proach does not require pre-defined relations among
senses such as the WordNet hierarchy. Rather, we
let the machine learning algorithm ASO automati-
cally and implicitly find relations with respect to the
disambiguation problems (i.e., finding shared pre-
dictive structure). Interestingly, in our experiments,
seemingly unrelated or only loosely related word-
sense pairs help to improve performance.

This paper makes two contributions. First, we
present a new application of ASO to WSD. We em-
pirically study the effective use of ASO and show
that labeled examples of all the words can be effec-
tively exploited in learning each individual disam-
biguator. Second, we report performance results that
rival or exceed the state-of-the-art systems on Sen-
seval lexical sample tasks.

2 Alternating structure optimization

This section gives a brief summary of ASO. We first
introduce a standard linear prediction model for a
single task and then extend it to a joint linear model
used by ASO.

2.1 Standard linear prediction models

In the standard formulation of supervised learning,
we seek apredictor that maps an input vector (or
feature vector) x 2 X to the corresponding outputy 2 Y. For NLP tasks, binary features are often used
– for example, if the word to the left is “money”, set
the corresponding entry ofx to 1; otherwise, set it to
0. A k-way classification problem can be cast ask
binary classification problems, regarding outputy =+1 and y = �1 as “in-class” and “out-of-class”,
respectively.

Predictors based onlinear prediction modelstake
the form:f(x) = wTx, wherew is called aweight
vector. A common method to obtain a predictorf̂ is regularizedempirical risk minimization, which
minimizes an empirical loss of the predictor (with

regularization) on then labeled training examplesf(Xi; Yi)g:f̂ = argminf  nXi=1 L(f(Xi); Yi) + r(f)! : (1)

A loss functionL(�) quantifies the difference be-
tween the predictionf(Xi) and the true outputYi,
andr(�) is a regularization term to control the model
complexity.

2.2 Joint linear models for ASO

Considerm prediction problems indexed bỳ 2f1; : : : ;mg, each withn` samples(Xì ; Y `i ) for i 2f1; : : : ; n`g, and assume that there exists a low-
dimensional predictive structure shared by thesem
problems. Ando and Zhang (2005a) extend the
above traditional linear model to a joint linear model
so that a predictor for problem̀is in the form:f`(�;x) = wT̀x+ vT̀�x ; ��T = I ; (2)

where I is the identity matrix. w` and v` are
weight vectors specific to each problem̀. Predic-
tive structure is parameterized by thestructure ma-
trix � shared by all them predictors. The goal of
this model can also be regarded as learning a com-
mon good feature map�x used for all them prob-
lems.

2.3 ASO algorithm
Analogous to (1), we compute� and predictors so
that they minimize the empirical risk summed over
all the problems:[�̂; ff̂`g℄ = argmin�;ff`g mX̀=1 nX̀i=1 L(f`(�;Xì); Yì )n` + r(f`)! :

(3)

It has been shown in (Ando and Zhang, 2005a) that
the optimization problem (3) has a simple solution
usingsingular value decomposition (SVD)when we
choose square regularization:r(f`) = �kw`k22
where� is a regularization parameter. Letu` =w` + �Tv` : Then (3) becomes the minimization
of the joint empirical risk written as:mX̀=1 nX̀i=1 L(uT̀Xì ; Yì )n` + �ku` ��Tv`k22! : (4)

This minimization can be approximately solved by
repeating the following alternating optimization pro-
cedure until a convergence criterion is met:
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Nouns art, authority, bar, bum, chair, channel, child, church, circuit, day, detention, dyke, facility, fatigue, feeling,
grip, hearth, holiday, lady, material, mouth, nation, nature, post, restraint, sense, spade, stress, yew

Verbs begin, call, carry, collaborate, develop, draw, dress, drift, drive, face, ferret, find, keep, leave, live, match,
play, pull, replace, see, serve strike, train, treat, turn,use, wander wash, work

Adjectives blind, colourless, cool, faithful, fine, fit, free, graceful, green, local, natural, oblique, simple, solemn, vital

Figure 1:Words to be disambiguated; Senseval-2 English lexical sample task.

1. Fix (�; fv`g), and findm predictorsfu`g that
minimizes the joint empirical risk (4).

2. Fixm predictorsfu`g, and find(�; fv`g) that
minimizes the joint empirical risk (4).

The first step is equivalent to trainingm predictors
independently. The second step, which couples all
the predictors, can be done by setting the rows of� to the most significantleft singular vectorsof the
predictor (weight) matrixU = [u1; : : : ;um℄, and
settingv` = �u`. That is, the structure matrix� is
computed so that the projection of the predictor ma-
trix U onto the subspace spanned by�’s rows gives
the best approximation (in the least squares sense)
of U for the given row-dimension of�. Thus, in-
tuitively, � captures the commonality of them pre-
dictors.

ASO has been shown to be useful in itssemi-
supervised learningconfiguration, where the above
algorithm is applied to a number ofauxiliary prob-
lems that areautomatically createdfrom the unla-
beled data. By contrast, the focus of this paper is the
multi-task learningconfiguration, where the ASO
algorithm is applied to a number ofreal problems
with the goal of improving overall performance on
these problems.

3 Effective use of ASO on word sense
disambiguation

The essence of ASO is to learn information useful
for prediction (predictive structure) shared by mul-
tiple tasks, assuming the existence of such shared
structure. From this viewpoint, consider the target
words of the Senseval-2 lexical sample task, shown
in Figure 1. Here we have multiple disambiguation
tasks; however, at a first glance, it is not entirely
clear whether these tasks share predictive structure
(or are related to each other). There is no direct se-
mantic relationship (such as synonym or hyponym
relations) among these words.

word uni-grams in 5-word window,
Local word bi- and tri-grams of(w�2; w�1),

context (w+1; w+2); (w�1; w+1),(w�3; w�2; w�1); (w+1; w+2; w+3),(w�2; w�1; w+1); (w�1; w+1; w+2).
Syntactic full parser output; see Section 3 for detail.
Global all the words excluding stopwords.
POS uni-, bi-, and tri-grams in 5-word window.

Figure 2: Features. wi stands for the word at positioni
relative to the word to be disambiguated. The 5-word win-
dow is [�2;+2℄. Local context and POS features are position-
sensitive. Global context features are position insensitive (a bag
of words).

The goal of this section is to empirically study
the effective use of ASO for improving overall per-
formance on these seemingly unrelated disambigua-
tion problems. Below we first describe the task set-
ting, features, and algorithms used in our imple-
mentation, and then experiment with the Senseval-
2 English lexical sample data set (with the offi-
cial training / test split) for the development of our
methods. We will then evaluate the methods de-
veloped on the Senseval-2 data set by carrying out
the Senseval-3 tasks, i.e., training on the Senseval-3
training data and then evaluating the results on the
(unseen) Senseval-3 test sets in Section 4.

Task setting In this work, we focus on the Sense-
val lexical sample task. We are given a set of target
words, each of which is associated with several pos-
sible senses, and their labeled instances for training.
Each instance contains an occurrence of one of the
target words and its surrounding words, typically a
few sentences. The task is to assign a sense to each
test instance.

Features We adopt the feature design used by Lee
and Ng (2002), which consists of the following
four types: (1)Local context: n-grams of nearby
words (position sensitive); (2)Global context: all
the words (excluding stopwords) in the given con-
text (position-insensitive; a bag of words); (3)POS:
parts-of-speechn-grams of nearby words; (4)Syn-
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tactic relations: syntactic information obtained from
parser output. To generate syntactic relation fea-
tures, we use the Slot Grammar-based full parser
ESG (McCord, 1990). We use as features syntactic
relation types (e.g., subject-of, object-of, and noun
modifier), participants of syntactic relations, and bi-
grams of syntactic relations / participants. Details of
the other three types are shown in Figure 2.

Implementation Our implementation follows
Ando and Zhang (2005a). We use a modifi-
cation of the Huber’s robust loss for regression:L(p; y) = (max(0; 1�py))2 if py � �1; and�4py
otherwise; with square regularization (� = 10�4),
and perform empirical risk minimization by
stochastic gradient descent (SGD)(see e.g., Zhang
(2004)). We perform one ASO iteration.

3.1 Exploring the multi-task learning
configuration

The goal is to effectively apply ASO to the set of
word disambiguation problems so that overall per-
formance is improved. We consider two factors:fea-
ture splitandpartitioning of prediction problems.

3.1.1 Feature split and problem partitioning

Our features described above inherently consist of
four feature groups: local context (LC), global con-
text (GC), syntactic relation (SR), and POS features.
To exploit such a natural feature split, we explore the
following extension of the joint linear model:f`(f�jg;x) = wT̀x+Xj2F v(j)` T�jx(j) ; (5)

where�j�Tj = I for j 2 F , F is a set of dis-

joint feature groups, andx(j) (or v(j)` ) is a portion
of the feature vectorx (or the weight vectorv`) cor-
responding to the feature groupj, respectively. This
is a slight modification of the extension presented
in (Ando and Zhang, 2005a). Using this model,
ASO computes the structure matrix�j for each fea-
ture group separately. That is, SVD is applied to
the sub-matrix of the predictor (weight) matrix cor-
responding to each feature groupj, which results
in more focused dimension reduction of the predic-
tor matrix. For example, suppose thatF = fSRg.
Then, we compute the structure matrix�SR from

the corresponding sub-matrix of the predictor ma-
trix U, which is the gray region of Figure 3 (a). The
structure matrices�j for j =2 F (associated with the
white regions in the figure) should be regarded as
being fixed to the zero matrices. Similarly, it is pos-
sible to compute a structure matrix from a subset of
the predictors (such as noun disambiguators only),
as in Figure 3 (b). In this example, we apply the
extension of ASO withF = fSRg to three sets of
problems (disambiguation of nouns, verbs, and ad-
jectives, respectively) separately.

LC

GC

SR

POS

(a) Partitioned by features: 
F = { SR }

mpredictors

ΘΘΘΘSR

predictors   
for nouns

predictors 
for verbs

predictors 
for adjectives

ΘΘΘΘSR,Adj

ΘΘΘΘSR,Verb

ΘΘΘΘSR,Noun
(b) Partitioned by F = { SR }

and problem types.

LC

GC

SR

POS

Predictor matrix U Predictor matrix U

Figure 3:Examples of feature split and problem partitioning.

To see why such partitioning may be useful for
our WSD problems, consider the disambiguation of
“bank” and the disambiguation of “save”. Since a
“bank” as in “money bank” and a “save” as in “sav-
ing money” may occur in similar global contexts,
certain global context features effective for recog-
nizing the “money bank” sense may be also effective
for disambiguating “save”, and vice versa. However,
with respect to the position-sensitive local context
features, these two disambiguation problems may
not have much in common since, for instance, we
sometimes say “the bank announced”, but we rarely
say “the save announced”. That is, whether prob-
lems share predictive structure may depend on fea-
ture types, and in that case, seeking predictive struc-
ture for each feature group separately may be more
effective. Hence, we experiment with the configu-
rations with and without various feature splits using
the extension of ASO.

Our target words are nouns, verbs, and adjec-
tives. As in the above example of “bank” (noun)
and “save” (verb), the predictive structure of global
context features may be shared by the problems ir-
respective of the parts of speech of the target words.
However, the other types of features may be more
dependent on the target word part of speech. There-
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fore, we explore two types of configuration. One
applies ASO to all the disambiguation problems at
once. The other applies ASO separately to each of
the three sets of disambiguation problems (noun dis-
ambiguation problems, verb disambiguation prob-
lems, and adjective disambiguation problems) and
uses the structure matrix�j obtained from the noun
disambiguation problems only for disambiguating
nouns, and so forth.

Thus, we explore combinations of two parame-
ters. One is the set of feature groupsF in the model
(5). The other is the partitioning of disambiguation
problems.

3.1.2 Empirical results

64.5

65

65.5

66

66.5

67

67.5

68

1 2 3 4 5 6 7 8

all problems at

once

nouns, verbs,

adjectives,

separately

Baseline {LC} {GC} {SR}{POS} {LC,SR,GC} 

{LC+SR+GC} 

no feature 
split 

Feature group set F

Problem partitioning

Figure 4: F-measure on Senseval-2 English test set. Multi-
task configurations varying feature group setF and problem
partitioning. Performance at the best dimensionality of�j (inf10; 25; 50; 100; � � � g) is shown.

In Figure 4, we compare performance on the
Senseval-2 test set produced by training on the
Senseval-2 training set using the various configura-
tions discussed above. As the evaluation metric, we
use the F-measure (micro-averaged)3 returned by the
official Senseval scorer. Our baseline is the standard
single-taskconfiguration using the same loss func-
tion (modified Huber) and the same training algo-
rithm (SGD).

The results are in line with our expectation. To
learn the shared predictive structure of local context
(LC) and syntactic relations (SR), it is more advanta-
geous to apply ASO to each of the three sets of prob-
lems (disambiguation of nouns, verbs, and adjec-
tives, respectively), separately. By contrast, global
context features (GC) can be more effectively ex-
ploited when ASO is applied to all the disambigua-

3Our precision and recall are always the same since our sys-
tems assign exactly one sense to each instance. That is, our
F-measure is the same as ‘micro-averaged recall’ or ‘accuracy’
used in some of previous studies we will compare with.

tion problems at once. It turned out that the con-
figurationF = fPOSg does not improve the per-
formance over the baseline. Therefore, we exclude
POS from the feature group setF in the rest of our
experiments. Comparison ofF = fLC+SR+GCg
(treating the features of these three types as one
group) andF = fLC;SR;GCg indicates that use
of this feature split indeed improves performance.
Among the configurations shown in Figure 4, the
best performance (67.8%) is obtained by applying
ASO to the three sets of problems (corresponding
to nouns, verbs, and adjectives) separately, with the
feature splitF = fLC;SR;GCg.

ASO has one parameter, the dimensionality of the
structure matrix�j (i.e., the number of left singular
vectors to compute). The performance shown in Fig-
ure 4 is the ceiling performance obtained at the best
dimensionality (inf10; 25; 50; 100; 150; � � � g). In
Figure 5, we show the performance dependency on�j ’s dimensionality when ASO is applied to all the
problems at once (Figure 5 left), and when ASO is
applied to the set of the noun disambiguation prob-
lems (Figure 5 right). In the left figure, the config-
urationF = fGCg (global context) produces bet-
ter performance at a relatively low dimensionality.
In the other configurations shown in these two fig-
ures, performance is relatively stable as long as the
dimensionality is not too low.
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Figure 5: Left: Applying ASO to all the WSD problems at
once. Right: Applying ASO to noun disambiguation problems
only and testing on the noun disambiguation problems only.x-
axis: dimensionality of�j .
3.2 Multi-task learning procedure for WSD

Based on the above results on the Senseval-2 test set,
we develop the following procedure using the fea-
ture split and problem partitioning shown in Figure
6. LetN ;V, andA be sets of disambiguation prob-
lems whose target words are nouns, verbs, and ad-
jectives, respectively. We write�(j;s) for the struc-
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predictors   
for nouns

predictors 
for verbs

predictors 
for adjectives

LC
GC

SR

POS

We compute seven structure 
matrices Θj,s each from the 
seven shaded regions of the 
predictor matrix U. 

Figure 6:Effective feature split and problem partitioning.

ture matrix associated with the feature groupj and
computed from a problem sets. That is, we replace�j in (5) with�(j;s).� Apply ASO to the three sets of disambigua-

tion problems (corresponding to nouns, verbs,
and adjectives), separately, using the extended
model (5) withF = fLC;SRg. As a result,
we obtain�(j;s) for every(j; s) 2 fLC;SRg�fN ;V;Ag.� Apply ASO to all the disambiguation problems
at once using the extended model (5) withF =fGCg to obtain�(GC;N[V[A).� For a problem̀ 2 P 2 fN ;V;Ag, our final
predictor is based on the model:f`(x) = wT̀x+ X(j;s)2T v(j;s)` T�(j;s)x(j) ;
whereT = f(LC; P ); (SR; P ); (GC;N [ V [A)g. We obtain predictor̂f` by minimizing the
regularized empirical risk with respect tow`
andv`.

We fix the dimension of the structure matrix cor-
responding to global context features to 50. The di-
mensions of the other structure matrices are set to
0.9 times the maximum possible rank to ensure rela-
tively high dimensionality. This procedure produces68:1% on the Senseval-2 English lexical sample test
set.

3.3 Previous systems on Senseval-2 data set

Figure 7 compares our performance with those of
previous best systems on the Senseval-2 English lex-
ical sample test set. Since we used this test set for the
development of our method above, our performance
should be understood as thepotential performance.
(In Section 4, we will present evaluation results on

ASO multi-task learning (optimum config.)68.1
classifier combination [FY02] 66.5
polynomial KPCA [WSC04] 65.8
SVM [LN02] 65.4
Our single-task baseline 65.3
Senseval-2 (2001) best participant 64.2

Figure 7: Performance comparison with previous best sys-
tems on Senseval-2 English lexical sample test set. FY02 (Flo-
rian and Yarowsky, 2002), WSC04 (Wu et al., 2004), LN02 (Lee
and Ng, 2002)

the unseenSenseval-3 test sets.) Nevertheless, it is
worth noting that our potential performance (68.1%)
exceeds those of the previous best systems.

Our single-task baseline performance is almost
the same as LN02 (Lee and Ng, 2002), which
uses SVM. This is consistent with the fact that we
adopted LN02’s feature design. FY02 (Florian and
Yarowsky, 2002) combines classifiers by linear av-
erage stacking. The best system of the Senseval-2
competition was an early version of FY02. WSC04
used a polynomial kernel via the kernel Principal
Component Analysis (KPCA) method (Schölkopf et
al., 1998) with nearest neighbor classifiers.

4 Evaluation on Senseval-3 tasks

In this section, we evaluate the methods developed
on the Senseval-2 data set above on the standard
Senseval-3 lexical sample tasks.

4.1 Our methods in multi-task and
semi-supervised configurations

In addition to the multi-task configuration described
in Section 3.2, we test the following semi-supervised
application of ASO. We first create auxiliary prob-
lems following Ando and Zhang (2005a)’s partially-
supervised strategy (Figure 8) with distinct fea-
ture maps	1 and	2 each of which uses one offLC;GC;SRg. Then, we apply ASO to these auxil-
iary problems using the feature split and the problem
partitioning described in Section 3.2.

Note that the difference between the multi-task
and semi-supervised configurations is the source of
information. The multi-task configuration utilizes
the label informationof the training examples that
are labeled for the rest of the multiple tasks, and
the semi-supervised learning configuration exploits
a large amount ofunlabeled data.
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1. Train a classifierC1 only using feature map	1 on the
labeled data for the target task.

2. Auxiliary problems are to predict the labels assigned byC1 to the unlabeled data, using the other feature map	2.
3. Apply ASO to the auxiliary problems to obtain�.
4. Using the joint linear model (2), train the final

predictor by minimizing the empirical risk for fixed�
on the labeled data for the target task.

Figure 8: Ando and Zhang (2005a)’s ASO semi-supervised
learning method using partially-supervised procedure forcreat-
ing relevant auxiliary problems.

4.2 Data and evaluation metric

We conduct evaluations on four Senseval-3 lexical
sample tasks (English, Catalan, Italian, and Spanish)
using the official training / test splits. Data statis-
tics are shown in Figure 9. On the Spanish, Cata-
lan, and Italian data sets, we use part-of-speech in-
formation (as features) and unlabeled examples (for
semi-supervised learning) provided by the organizer.
Since the English data set was not provided with
these additional resources, we use an in-house POS
tagger trained with the PennTree Bank corpus, and
extract 100K unlabeled examples from the Reuters-
RCV1 corpus. On each language, the number of un-
labeled examples is 5–15 times larger than that of the
labeled training examples. We use syntactic relation
features only for English data set. As in Section 3,
we report micro-averaged F measure.

4.3 Baseline methods

In addition to the standard single-task supervised
configuration as in Section 3, we test the following
method as an additional baseline.

Output-based method The goal of our multi-task
learning configuration is to benefit from having the
labeled training examples of a number of words. An
alternative to ASO for this purpose is to use directly
as features the output values of classifiers trained
for disambiguating the other words, which we call
‘output-based method’ (cf. Florian et al. (2003)).
We explore several variations similarly to Section
3.1 and report the ceiling performance.

4.4 Evaluation results

Figure 10 shows F-measure results on the four
Senseval-3 data sets using the official training / test
splits. Both ASO multi-task learning and semi-
supervised learning improve performance over the

#words #train avg #sense avg #train
per word per sense

English 73 8611 10.7 10.0
Senseval-3 data sets

English 57 7860 6.5 21.3
Catalan 27 4469 3.1 53.2
Italian 45 5145 6.2 18.4

Spanish 46 8430 3.3 55.5

Figure 9:Data statistics of Senseval-2 English lexical sample
data set (first row) and Senseval-3 data sets. On each data set, #
of test instances is about one half of that of training instances.

single-task baseline on all the data sets. The best
performance is achieved when we combine multi-
task learning and semi-supervised learning by using
all the corresponding structure matrices�(j;s) pro-
duced by both multi-task and semi-supervised learn-
ing, in the final predictors. This combined configu-
ration outperforms the single-task supervised base-
line by up to 5.7%.

Performance improvements over the supervised
baseline are relatively small on English and Span-
ish. We conjecture that this is because the supervised
performance is already close to the highest perfor-
mance that automatic methods could achieve. On
these two languages, our (and previous) systems out-
perform inter-human agreement, which is unusual
but can be regarded as an indication that these tasks
are difficult.

The performance of the output-based method
(baseline) is relatively low. This indicates that out-
put values or proposed labels are not expressive
enough to integrate information from other predic-
tors effectively on this task. We conjecture that for
this method to be effective, the problems are re-
quired to be more closely related to each other as
in Florian et al. (2003)’s named entity experiments.

A practical advantage of ASO multi-task learning
over ASO semi-supervised learning is that shorter
computation time is required to produce similar
performance. On this English data set, training
for multi-task learning and semi-supervised learning
takes 15 minutes and 92 minutes, respectively, using
a Pentium-4 3.20GHz computer. The computation
time mostly depends on the amount of the data on
which auxiliary predictors are learned. Since our ex-
periments use unlabeled data 5–15 times larger than
labeled training data, semi-supervised learning takes
longer, accordingly.
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methods English Catalan Italian Spanish
multi-task learning 73.8 (+0.8) 89.5 (+1.5) 63.2 (+4.9) 89.0 (+1.0)

ASO semi-supervised learning 73.5 (+0.5) 88.6 (+0.6) 62.4 (+4.1) 88.9 (+0.9)
multi-task+semi-supervised 74.1 (+1.1) 89.9 (+1.9) 64.0 (+5.7) 89.5 (+1.5)

baselines output-based 73.0 (0.0) 88.3 (+0.3) 58.0 (-0.3) 88.2 (+0.2)
single-task supervised learning 73.0 88.0 58.3 88.0

previous SVM with LSA kernel [GGS05] 73.3 89.0 61.3 88.2
systems Senseval-3 (2004) best systems 72.9[G04] 85.2[SGG04] 53.1[SGG04] 84.2 [SGG04]

inter-annotator agreement 67.3 93.1 89.0 85.3

Figure 10:Performance results on the Senseval-3 lexical sample test sets. Numbers in the parentheses are performance gains
compared with the single-task supervised baseline (italicized). [G04] Grozea (2004); [SGG04] Strapparava et al. (2004).

GGS05 combined various kernels, which includes
the LSA kernel that exploits unlabeled data with
global context features. Our implementation of the
LSA kernel with our classifier (and our other fea-
tures) also produced performance similar to that of
GGS05. While the LSA kernel is closely related
to a special case of the semi-supervised application
of ASO (see the discussion of PCA in Ando and
Zhang (2005a)), our approach here is more general
in that we exploit not only unlabeled data and global
context features but also the labeled examples of
other target words and other types of features. G04
achieved high performance on English using regu-
larized least squares with compensation for skewed
class distributions. SGG04 is an early version of
GGS05. Our methods rival or exceed these state-
of-the-art systems on all the data sets.

5 Conclusion

With the goal of achieving higher WSD perfor-
mance by exploiting all the currently available re-
sources, our focus was the new application of the
ASO algorithm in the multi-task learning configu-
ration, which improves performance by learning a
number of WSD problems simultaneously instead of
training for each individual problem independently.
A key finding is that using ASO with appropriate
feature / problem partitioning, labeled examples of
seemingly unrelated words can be effectively ex-
ploited. Combining ASO multi-task learning with
ASO semi-supervised learning results in further im-
provements. The fact that performance improve-
ments were obtained consistently across several lan-
guages / sense inventories demonstrates that our ap-
proach has broad applicability and hence practical
significance.
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Abstract

We propose a generalization of the super-
vised DOP model to unsupervised learning.
This new model, which we call U-DOP,
initially assigns all possible unlabeled binary
trees to a set of sentences and next uses all
subtrees from (a large subset of) these binary
trees to compute the most probable parse
trees. We show how U-DOP can be
implemented by a PCFG-reduction tech-
nique and report competitive results on
English (WSJ), German (NEGRA) and
Chinese (CTB) data. To the best of our
knowledge, this is the first paper which
accurately bootstraps structure for Wall
Street Journal sentences up to 40 words
obtaining roughly the same accuracy as a
binarized supervised PCFG. We show that
previous approaches to unsupervised parsing
have shortcomings in that they either
constrain the lexical or the structural context,
or both.

1   Introduction

How can we learn syntactic structure from unlabeled
data in an unsupervised way? The importance of
unsupervised parsing is nowadays widely acknow-
ledged. While supervised parsers suffer from
shortage of hand-annotated data, unsupervised
parsers operate with unlabeled raw data, of which
unlimited quantities are available. During the last
few years there has been considerable progress in
unsupervised parsing. To give a brief overview: van
Zaanen (2000) achieved 39.2% unlabeled f-score on
ATIS word strings by a sentence-aligning technique
called ABL. Clark (2001) reports 42.0% unlabeled

f-score on the same data using distributional
clustering, and Klein and Manning (2002) obtain
51.2% unlabeled f-score on ATIS part-of-speech
strings using a constituent-context model called
CCM. Moreover, on Penn Wall Street Journal p-o-
s-strings ≤ 10 (WSJ10), Klein and Manning (2002)
report 71.1% unlabeled f-score. And the hybrid
approach of Klein and Manning (2004), which
combines a constituency and a dependency model,
leads to a further increase of 77.6% f-score.

Although there has thus been steady
progress in unsupervised parsing, all these
approaches have shortcomings in that they either
constrain the lexical or the structural context that is
taken into account, or both. For example, the CCM
model by Klein and Manning (2005) is said to
describe "all contiguous subsequences of a
sentence" (Klein and Manning 2005: 1410). While
this is a very rich lexical model, it is still limited in
that it neglects dependencies that are non-contiguous
such as between more and than in "BA carried
more people than cargo". Moreover, by using an
"all-substrings" approach, CCM risks to under-
represent structural context. Similar shortcomings
can be found in other unsupervised models.

In this paper we will try to directly model
structural as well as lexical context without
constraining any dependencies beforehand. An
approach that may seem apt in this respect is an all-
subtrees approach (e.g Bod 2003; Goodman 2003;
Collins and Duffy 2002). Subtrees can model both
contiguous and non-contiguous lexical dependencies
(see section 2) and they also model constituents in a
hierarchical context. Moreover, we can view the all-
subtrees approach as a generalization of Klein and
Manning's all-substrings approach and van Zaanen's
ABL model.

In the current paper, we will use the all-
subtrees approach as proposed in Data-Oriented
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Parsing or DOP (Bod 1998). We will generalize the
supervised version of DOP to unsupervised parsing.
The key idea of our approach is to initially assign all
possible unlabeled binary trees to a set of given
sentences, and to next use counts of all subtrees
from (a large random subset of) these binary trees to
compute the most probable parse trees. To the best
of our knowledge, such a model has never been
tried out. We will refer to this unsupervised DOP
model as U-DOP, while the supervised DOP model
(which uses hand-annotated trees) will be referred to
as S-DOP. Moreover, we will continue to refer to
the general approach simply as DOP.

U-DOP is not just an engineering approach
to unsupervised learning but can also be motivated
from a cognitive perspective (Bod 2006): if we don't
have a clue which trees should be assigned to
sentences in the initial stages of language acquisit-
ion, we can just as well assume that initially all trees
are possible. Only those (sub)trees that partake in
computing the most probable parse trees for new
sentences are actually "learned". We have argued in
Bod (2006) that such an integration of unsupervised
and supervised methods results in an integrated
model for language learning and language use.

In the following we will first explain how
U-DOP works, and how it can be approximated by
a PCFG-reduction technique. Next, in section 3 we
discuss a number of experiments with U-DOP and
compare it to previous models on English (WSJ),
German (NEGRA) and Chinese (CTB) data. To the
best of our knowledge, this is the first paper which
bootstraps structure for WSJ sentences up to 40
words obtaining roughly the same accuracy as a
binarized supervised PCFG. This is remarkable
since unsupervised models are clearly at a
disavantage compared to supervised models which
can literally reuse manually annotated data.

2   Unsupervised data-oriented parsing

At a general level, U-DOP consists of the following
three steps:

1. Assign all possible binary trees to a set of
    sentences

2. Convert the binary trees into a PCFG-reduction
    of DOP

3. Compute the most probable parse tree for each
    sentence

Note that in unsupervised parsing we do not need to
split the data into a training and a test set. In this

paper, we will present results both on entire corpora
and on 90-10 splits of such corpora so as to make
our results comparable to a supervised PCFG using
the treebank grammars of the same data ("S-
PCFG" ).

In the following we will first describe each
of the three steps given above where we initially
focus on inducing trees for p-o-s strings for the
WSJ10 (we will deal with other corpora and the
much larger WSJ40 in section 3). As shown by
Klein and Manning (2002, 2004), the extension to
inducing trees for words instead of p-o-s tags is
rather straightforward since there exist several
unsupervised part-of-speech taggers with high
accuracy, which can be combined with unsupervised
parsing (see e.g. Schütze 1996; Clark 2000).

Step 1: Assign all binary trees to p-o-s strings
from the WSJ10

The WSJ10 contains 7422 sentences ≤ 10 words
after removing empty elements and punctuation. We
assigned all possible binary trees to the
corresponding part-of-speech sequences of these
sentences, where each root node is labeled S and
each internal node is labeled X. As an example,
consider the p-o-s string NNS VBD JJ NNS, which
may correspond for instance to the sentence
Investors suffered heavy losses. This string has a
total of five binary trees shown in figure 1 -- where
for readability we add words as well.

NNS VBD JJ NNS

Investors suffered heavy losses

X

X

S

  

NNS VBD JJ NNS

Investors suffered heavy losses

X

X

S

NNS VBD JJ NNS

Investors suffered heavy losses

X
X

S

  

NNS VBD JJ NNS

Investors suffered heavy losses

X

X

S

NNS VBD JJ NNS

Investors suffered heavy losses

XX

S

Figure 1. All binary trees for NNS VBD JJ NNS
(Investors suffered heavy losses)
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The total number of binary trees for a sentence of
length n is given by the Catalan number Cn−1,
where Cn = (2n)!/((n+1)!n!). Thus while a sentence
of 4 words has 5 binary trees, a sentence of 8 words
has already 429 binary trees, and a sentence of 10
words has 4862 binary trees. Of course, we can
represent the set of binary trees of a string in
polynomial time and space by means of a chart,
resulting in a chart-like parse forest if we also
include pointers. But if we want to extract rules or
subtrees from these binary trees -- as in DOP -- we
need to unpack the parse forest. And since the total
number of binary trees that can be assigned to the
WSJ10 is almost 12 million, it is doubtful whether
we can apply the unrestricted U-DOP model to such
a corpus.

However, for longer sentences the binary
trees are highly redundant. In these larger trees, there
are many rules like X → XX which bear little
information. To make parsing with U-DOP possible
we therefore applied a simple heuristic which takes
random samples from the binary trees for sentences
≥ 7 words before they are fed to the DOP parser.
These samples were taken from the distribution of
all binary trees by randomly choosing nodes and
their expansions from the chart-like parse forests of
the sentences (which effectively favors trees with
more frequent subtrees). For sentences of 7 words
we randomly sample 60% of the trees, and for
sentences of 8, 9 and 10 words we sample
respectively 30%, 15% and 7.5% of the trees. In this
way, the set of remaining binary trees contains 8.23
* 105 trees, which we will refer to as the binary
tree-set. Although it can happen that the correct tree
is deleted for some sentence in the binary tree-set,
there is enough redundancy in the tree-set such that
either the correct binary tree can be generated by
other subtrees or that a remaining tree only
minimally differs from the correct tree. Of course,
we may expect better results if all binary trees are
kept, but this involves enormous computational
resources which will be postponed to future
research.

Step 2: Convert the trees into a PCFG-
reduction of DOP

The underlying idea of U-DOP is to take all subtrees
from the binary tree-set to compute the most
probable tree for each sentence. Subtrees from the
trees in figure 1 include for example the subtrees in
figure 2 (where we again added words for
readability). Note that U-DOP takes into account
both contiguous and non-contiguous substrings.

NNS VBD

Investors suffered

X

X

S

VBD

suffered

X

X

NNS NNS

Investors losses

X

X

S

JJ NNS

heavy losses

XX

S

JJ NNS

heavy losses

X

NNS VBD

Investors suffered

X

VBD JJ

suffered heavy

X

Figure 2. Some subtrees from the binary trees  for
NNS VBD JJ NNS given in figure 1

As in the supervised DOP approach (Bod 1998), U-
DOP parses a sentence by combining corpus-
subtrees from the binary tree-set by means of a
leftmost node substitution operation, indicated as °.
The probability of a parse tree is computed by
summing up the probabilities of all derivations
producing it, while the probability of a derivation is
computed by multiplying the (smoothed) relative
frequencies of its subtrees. That is, the probability of
a subtree t is taken as the number of occurrences of t
in the binary tree-set, | t |, divided by the total
number of occurrences of all subtrees t' with the
same root label as t. Let r(t) return the root label of t:

P(t)  =   

| t |

Σ t': r ( t')=r ( t)   | t' |

The subtree probabilities are smoothed by applying
simple Good-Turing to the subtree distribution (see
Bod 1998: 85-87). The probability of a derivation
t1°...°tn  is computed by the product of the
probabilities of its subtrees t i:

P(t1°...°tn)  =  Π i P(ti)

Since there may be distinct derivations that generate
the same parse tree, the probability of a parse tree T
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is the sum of the probabilities of its distinct
derivations. Let ti d  be the i-th subtree in the
derivation d that produces tree T, then the probability
of T is given by

P(T)  =  ΣdΠi P(tid)

As we will explain under step 3, the most probable
parse tree of a sentence is estimated by Viterbi n-
best summing up the probabilities of derivations that
generate the same tree.

It may be evident that had we only the
sentence Investors suffered heavy losses in our
corpus, there would be no difference in probability
between the five parse trees in figure 1, and U-DOP
would not be able to distinguish between the
different trees. However, if we have a different
sentence where JJ NNS (heavy losses)  appears in a
different context, e.g. in Heavy losses were
reported, its covering subtree gets a relatively higher
frequency and the parse tree where heavy losses
occurs as a constituent gets a higher total probability
than alternative parse trees. Of course, it is left to the
experimental evaluation whether non-constituents
("distituents") such as VBD JJ will be ruled out by
U-DOP (section 3).

An important feature of (U-)DOP is that it
considers counts of subtrees of a wide range of
sizes: everything from counts of single-level rules to
entire trees. A disadvantage of the approach is that
an extremely large number of subtrees (and
derivations) must be taken into account. Fortunately,
there exists a rather compact PCFG-reduction of
DOP which can also be used for U-DOP
(Goodman 2003). Here we will only give a short
summary of this PCFG-reduction. (Collins and
Duffy 2002 show how a tree kernel can be used for
an all-subtrees representation, which we will not
discuss here.)

Goodman's reduction method first assigns
every node in every tree a unique number which is
called its address. The notation A@k denotes the
node at address k where A is the nonterminal
labeling that node. A new nonterminal is created for
each node in the training data. This nonterminal is
called Ak. Let aj represent the number of subtrees
headed by the node A@j. Let a represent the number
of subtrees headed by nodes with nonterminal A,
that is a = Σjaj. Goodman then gives a small PCFG
with the following property: for every subtree in the
training corpus headed by A, the grammar will
generate an isomorphic subderivation with
probability 1/a. For a node A@j(B@k, C@l), the

following eight PCFG rules in figure 3 are
generated, where the number in parentheses
following a rule is its probability.

Aj → BC        (1/aj)    A → BC         (1/a)
Aj → BkC      (bk/aj)    A → BkC       (bk/a)
Aj → BCl       (cl/aj)    A → BCl         (cl/a)
Aj → BkCl     (bkcl/aj)    A → BkCl       (bkcl/a)

Figure 3. PCFG-reduction of DOP

In this PCFG reduction, bk represents the number of
subtrees headed by the node B@k, and cl refers to
the number of subtrees headed by the node C@l.
Goodman shows by simple induction that his
construction produces PCFG derivations
isomorphic to (U-)DOP derivations with equal
probability (Goodman 2003: 130-133). This means
that summing up over derivations of a tree in DOP
yields the same probability as summing over all the
isomorphic derivations in the PCFG.1

The PCFG-reduction for U-DOP is slightly
simpler than in figure 3 since the only labels are S
and X, and the part-of-speech tags. For the tree-set
of 8.23 * 105 binary trees generated under step 1,
Goodman's reduction method results in a total
number of 14.8 * 106 distinct PCFG rules. While it
is still feasible to parse with a rule-set of this size, it
is evident that our approach can deal with longer
sentences only if we further reduce the size of our
binary tree-set.

It should be kept in mind that while the
probabilities of all parse trees generated by DOP
sum up to 1, these probabilities do not converge to
the "true" probabilities if the corpus grows to
infinity (Johnson 2002). In fact, in Bod et al. (2003)
we showed that the most probable parse tree as
defined above has a tendency to be constructed by
the shortest derivation (consisting of the fewest and
thus largest subtrees). A large subtree is overruled
only if the combined relative frequencies of smaller
subtrees yields a larger score. We refer to Zollmann
and Sima'an (2005) for a recently proposed
estimator that is statistically consistent (though it is
not yet known how this estimator performs on the
WSJ) and to Zuidema (2006) for a theoretical
comparison of existing estimators for DOP.

1 As in Bod (2003) and Goodman (2003: 136), we
additionally use a correction factor to redress DOP's
bias discussed in Johnson (2002).
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Step 3: Compute the most probable parse tree
for each WSJ10 string

While Goodman's reduction method allows for
efficiently computing the most probable derivation
for each sentence (i.e. the Viterbi parse), it does not
allow for an efficient computation of (U-)DOP's
most probable parse tree since there may be
exponentially many derivations for each tree whose
probabilities have to be summed up. In fact, the
problem of computing the most probable tree in
DOP is known to be NP hard (Sima'an 1996). Yet,
the PCFG reduction in figure 4 can be used to
estimate DOP's most probable parse tree by a
Viterbi n-best search in combination with a CKY
parser which computes the n most likely derivations
and next sums up the probabilities of the derivations
producing the same tree. (We can considerably
improve efficiency by using k-best hypergraph
parsing as recently proposed by Huang and Chiang
2005, but this will be left to future research).

In this paper, we estimate the most probable
parse tree from the 100 most probable derivations
(at least for the relatively small WSJ10). Although
such a heuristic does not guarantee that the most
probable parse is actually found, it is shown in Bod
(2000) to perform at least as well as the estimation
of the most probable parse with Monte Carlo
techniques. However, in computing the 100 most
probable derivations by means of Viterbi it is
prohibitive to keep track of all subderivations at each
edge in the chart. We therefore use a pruning
technique which deletes any item with a probability
less than 10−5 times of that of the best item from
the chart.

To make our parse results comparable to
those of Klein and Manning (2002, 2004, 2005), we
will use exactly the same evaluation metrics for
unlabeled precision (UP) and unlabeled recall (UR),
defined in Klein (2005: 21-22). Klein's definitions
slightly differ from the standard PARSEVAL
metrics: multiplicity of brackets is ignored, brackets
of span one are ignored and the bracket labels are
ignored. The two metrics of UP and UR are
combined by the unlabled f-score F1 which is
defined as the harmonic mean of UP and UR: F1 =
2*UP*UR/(UP+UR). It should be kept in mind that
these evaluation metrics were clearly inspired by the
evaluation of supervised parsing which aims at
mimicking given tree annotations as closely as
possible. Unsupervised parsing is different in this
respect and it is questionable whether an evaluation
on a pre-annotated corpus such as the WSJ is the

most appropriate one. For a subtle discussion on
this issue, see Clark (2001) or Klein (2005).

3   Experiments

3.1 Comparing U-DOP to previous work

Using the method described above, our parsing
experiment with all p-o-s strings from the WSJ10
results in an f-score of 78.5%. We next tested U-
DOP on two additional domains from Chinese and
German which were also used in Klein and
Manning (2002, 2004): the Chinese treebank (Xue
et al. 2002) and the NEGRA corpus (Skut et al.
1997). The CTB10 is the subset of p-o-s strings
from the Penn Chinese treebank containing 10
words or less after removal of punctuation (2437
strings). The NEGRA10 is the subset of p-o-s
strings of the same length from the NEGRA corpus
using the supplied converson into Penn treebank
format (2175 strings). Table 1 shows the results of
U-DOP in terms of UP, UR and F1 compared to
the results of the CCM model by Klein and
Manning (2002), the DMV dependency learning
model by Klein and Manning (2004) together with
their combined model DMV+CCM.

Model English German Chinese
(WSJ10) (NEGRA10) (CTB10)

UP UR F1 UP UR F1 UP UR F1

CCM 64.2 81.6 71.9 48.1 85.5 61.6 34.6 64.3 45.0

DMV 46.6 59.2 52.1 38.4 69.5 49.5 35.9 66.7 46.7

DMV+CCM 69.3 88.0 77.6 49.6 89.7 63.9 33.3 62.0 43.3

U-DOP 70.8 88.2 78.5 51.2 90.5 65.4 36.3 64.9 46.6

Table 1. Results of U-DOP compared to previous
models on the same data

Table 1 indicates that our model scores slightly
better than Klein and Manning's combined
DMV+CCM model, although the differences are
small (note that for Chinese the single DMV model
scores better than the combined model and slightly
better than U-DOP). But where Klein and
Manning's combined model is based on both a
constituency and a dependency model, U-DOP is,
like CCM, only based on a notion of constituency.
Compared to CCM alone, the all-subtrees approach
employed by U-DOP shows a clear improvement
(except perhaps for Chinese). It thus seems to pay
off to use all subtrees rather than just all
(contiguous) substrings in bootstrapping
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constituency. It would be interesting to investigate
an extension of U-DOP towards dependency
parsing, which we will leave for future research. It is
also noteworthy that U-DOP does not employ a
separate class for non-constituents, so-called
distituents, while CCM does. Thus good results can
be obtained without keeping track of distituents but
by simply assigning all binary trees to the strings
and letting the DOP model decide which substrings
are most likely to form constituents.

To give an idea of the constituents learned
by U-DOP for the WSJ10, table 2 shows the 10
most frequently constituents in the trees induced by
U-DOP together with the 10 actually most
frequently occurring constituents in the WSJ10 and
the 10 most frequently occurring part-of-speech
sequences (bigrams) in the WSJ10.

Rank Most frequent Most Frequent Most frequent
U-DOP constituents WSJ10 constituents WSJ10 substrings

1 DT NN DT NN NNP NNP
2 NNP NNP NNP NNP DT NN
3 DT JJ NN CD CD JJ NN
4 IN DT NN JJ NNS IN DT
5 CD CD DT JJ NN NN IN
6 DT NNS DT NNS DT JJ
7 JJ NNS JJ NN JJ NNS
8 JJ NN CD NN NN NN
9 VBN IN IN NN CD CD
10 VBD NNS IN DT NN NN VBZ

Table 2. Most frequently learned constituents by
U-DOP together with most frequently occurring
constituents and p-o-s sequences (for WSJ10)

Note that there are no distituents among U-DOP's
10 most frequently learned constituents, whilst the
third column shows that distituents such as IN DT
or DT JJ occur very frequently as substrings in the
WSJ10. This may be explained by the fact that (the
constituent) DT NN occurs more frequently as a
substring in the WSJ10 than (the distituent) IN DT,
and therefore U-DOP's probability model will favor
a covering subtree for IN DT NN which consists of
a division into IN X and DT NN rather than into IN
DT and X NN, other things being equal. The same
kind reasoning can be made for a subtree for DT JJ
NN where the constituent JJ NN occurs more
frequently as a substring than the distituent DT JJ.
Of course the situation is somewhat more complex
in DOP's sum-of-products model, but our argument
may illustrate why distituents like IN DT or DT JJ
are not proposed among the most frequent
constituents by U-DOP while larger constituents
like IN DT NN and DT JJ NN are in fact proposed.

3.2 Testing U-DOP on held-out sets and longer
sentences (up to 40 words)

We were also interested in U-DOP's performance
on a held-out test set such that we could compare the
model with a supervised PCFG treebank grammar
trained and tested on the same data (S-PCFG). We
started by testing U-DOP on 10 different 90%/10%
splits of the WSJ10, where 90% was used for
inducing the trees, and 10% to parse new sentences
by subtrees from the binary trees from the training
set (or actually a PCFG-reduction thereof). The
supervised PCFG was right-binarized as in Klein
and Manning (2005). The following table shows the
results.

Model UP UR F1

U-DOP 70.6 88.1 78.3

S-PCFG 84.0 79.8 81.8

Table 3. Average f-scores of U-DOP compared to a
supervised PCFG (S-PCFG) on 10 different 90-10

splits of the WSJ10

Comparing table 1 with table 3, we see that on 10
held-out WSJ10 test sets U-DOP performs with an
average f-score of 78.3% (SD=2.1%) only slightly
worse than when using the entire WSJ10 corpus
(78.5%). Next, note that U-DOP's results come near
to the average performance of a binarized supervised
PCFG which achieves 81.8% unlabeled f-score
(SD=1.8%). U-DOP's unlabeled recall is even
higher than that of the supervised PCFG. Moreover,
according to paired t-testing, the differences in f-
scores were not statistically significant. (If the
PCFG was not post-binarized, its average f-score
was 89.0%.)

As a final test case for this paper, we were
interested in evaluating U-DOP on WSJ sentences ≤
40 words, i.e. the WSJ40, which is with almost
50,000 sentences a much more challenging test case
than the relatively small WSJ10. The main problem
for U-DOP is the astronomically large number of
possible binary trees for longer sentences, which
therefore need to be even more heavily pruned than
before.

We used a similar sampling heuristic as in
section 2. We started by taking 100% of the trees for
sentences ≤ 7 words. Next, for longer sentences we
reduced this percentage with the relative increase of
the Catalan number. This effectively means that we
randomly selected the same number of trees for
each sentence ≥ 8 words, which is 132 (i.e. the
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number of possible binary trees for a 7-word
sentence). As mentioned in section 2, our sampling
approach favors more frequent trees, and trees with
more frequent subtrees. The binary tree-set obtained
in this way for the WSJ40 consists of 5.11 * 106

different trees. This resulted in a total of 88+ million
distinct PCFG rules according to the reduction
technique in section 2. As this is the largest PCFG
we have ever attempted to parse with, it was
prohibitive to estimate the most probable parse tree
from 100 most probable derivations using Viterbi n-
best. Instead, we used a beam of only 15 most
probable derivations, and selected the most probable
parse from these. (The number 15 is admittedly ad
hoc, and was inspired by the performance of the so-
called SL-DOP model in Bod 2002, 2003). The
following table shows the results of U-DOP on the
WSJ40 using 10 different 90-10 splits, compared to
a  supervised binarized PCFG (S-PCFG) and a
supervised binarized DOP model (S-DOP) on the
same data.

Model F1

U-DOP 64.2

S-PCFG 64.7

S-DOP 81.9

Table 4. Performance of U-DOP on WSJ40
using10 different 90-10 splits, compared to a

binarized  S-PCFG and a binarized S-DOP model.

Table 4 shows that U-DOP obtains about the same
results as a binarized supervised PCFG on WSJ
sentences ≤ 40 words. Moreover, the differences
between U-DOP and S-PCFG were not statistically
significant. This result is important as it shows that
it is possible to parse the rather challinging WSJ in a
completely unsupervised way obtaining roughly the
same accuracy as a supervised PCFG. This seems
to be in contrast with the CCM model which quickly
degrades if sentence length is increased (see Klein
2005). As Klein (2005: 97) notes, CCM's strength
is finding common short constituent chunks. U-
DOP on the other hand has a preference for large
(even largest possible) constituent chunks. Klein
(2005: 97) reports that the combination of CCM and
DMV seems to be more stable with increasing
sentence length. It would be extremely interesting to
see how DMV+CCM performs on the WSJ40.

It should be kept in mind that simple
treebank PCFGs do not constitute state-of-the-art
supervised parsers. Table 4 indicates that U-DOP's

performance remains still far behind that of S-DOP
(and indeed of other state-of-the-art supervised
parsers such as Bod 2003 or Charniak and Johnson
2005). Moreover, if S-DOP is not post-binarized, its
average f-score on the WSJ40 is 90.1% -- and there
are some hybrid DOP models that obtain even
higher scores (see Bod 2003). Our long-term goal is
to try to outperform S-DOP by U-DOP. An
important advantage of U-DOP is of course that it
only needs unannotated data of which unlimited
quanitities are available. Thus it would be interesting
to test how U-DOP performs if trained on e.g. 100
times more data. Yet, as long as we compute our f-
scores on hand-annotated data like Penn's WSJ, the
S-DOP model is clearly at an advantage. We
therefore plan to compare U-DOP and S-DOP (and
other supervised parsers) in a concrete application
such as phrase-based machine translation or as a
language model for speech recognition.

4   Conclusions

We have shown that the general DOP approach can
be generalized to unsupervised learning, effectively
leading to a single model for both supervised and
unsupervised parsing. Our new model, U-DOP,
uses all subtrees from (in principle) all binary trees
of a set of sentences to compute the most probable
parse trees for (new) sentences. Although heavy
pruning of trees is necessary to make our approach
feasible in practice, we obtained competitive results
on English, German and Chinese data. Our parsing
results are similar to the performance of a binarized
supervised PCFG on the WSJ ≤ 40 sentences. This
triggers the provocative question as to whether it is
possible to beat supervised parsing by unsupervised
parsing. To cope with the problem of evaluation, we
propose to test U-DOP in specific applications
rather than on hand-annotated data.
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Abstract

We investigate the appropriateness of us-
ing a technique based on support vector
machines for identifying thematic struc-
ture of text streams. The thematic seg-
mentation task is modeled as a binary-
classification problem, where the different
classes correspond to the presence or the
absence of a thematic boundary. Exper-
iments are conducted with this approach
by using features based on word distri-
butions through text. We provide em-
pirical evidence that our approach is ro-
bust, by showing good performance on
three different data sets. In particu-
lar, substantial improvement is obtained
over previously published results of word-
distribution based systems when evalua-
tion is done on a corpus of recorded and
transcribed multi-party dialogs.

1 Introduction

(Todd, 2005) distinguishes between “local-level top-
ics (of sentences, utterances and short discourse seg-
ments)” and “discourse topics (of more extended
stretches of discourse)”.1 (Todd, 2005) points out
that “discourse-level topics are one of the most elu-
sive and intractable notions in semantics”. Despite
this difficulty in giving a rigorous definition ofdis-
course topic, the task of discourse/dialogue segmen-
tation into thematic episodes can be described by

1In this paper, we make use of the termtopic or themeas
referring to the discourse/dialogue topic.

invoking an “intuitive notion of topic” (Brown and
Yule, 1998). Thematic segmentation also relates
to several notions such as speaker’s intention, topic
flow and cohesion.

In order to find out if thematic segment identi-
fication is a feasible task, previous state-of-the-art
works appeal to experiments, in which several hu-
man subjects are asked to mark thematic segment
boundaries based on their intuition and a minimal
set of instructions. In this manner, previous studies,
e.g. (Passonneau and Litman, 1993; Galley et al.,
2003), obtained a level of inter-annotator agreement
that is statistically significant.

Automatic thematic segmentation (TS), i.e. the
segmentation of a text stream into topically coher-
ent segments, is an important component in ap-
plications dealing with large document collections
such as information retrieval and document brows-
ing. Other tasks that could benefit from the thematic
textual structure include anaphora resolution, auto-
matic summarisation and discourse understanding.

The work presented here tackles the problem
of TS by adopting a supervised learning approach
for capturing linear document structure of non-
overlapping thematic episodes. A prerequisite for
the input data to our system is that texts are divided
into sentences or utterances.2 Each boundary be-
tween two consecutive utterances is a potential the-
matic segmentation point and therefore, we model
the TS task as a binary-classification problem, where
each utterance should be classified as marking the

2Occasionally within this document we employ the term ut-
terance to denote either a sentence or an utterance in its proper
sense.
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presence or the absence of a topic shift in the dis-
course/dialogue based only on observations of pat-
terns in vocabulary use.

The remainder of the paper is organised as fol-
lows. The next section summarizes previous tech-
niques, describes how our method relates to them
and presents the motivations for a support vector ap-
proach. Sections 3 and 4 present our approach in
adopting support vector learning for thematic seg-
mentation. Section 5 outlines the empirical method-
ology and describes the data used in this study. Sec-
tion 6 presents and discusses the evaluation results.
The paper closes with Section 7, which briefly sum-
marizes this work and offers some conclusions and
future directions.

2 Related Work

As in many existing approaches to the thematic seg-
mentation task, we make the assumption that the
thematic coherence of a text segment is reflected at
lexical level and therefore we attempt to detect the
correlation between word distribution and thematic
changes throughout the text. In this manner, (Hearst,
1997; Reynar, 1998; Choi, 2000) start by using a
similarity measure between sentences or fixed-size
blocks of text, based on their word frequencies in
order to find changes in vocabulary use and there-
fore the points at which the topic changes. Sen-
tences are then grouped together by using a cluster-
ing algorithm. (Utiyama and Isahara, 2001) models
the problem of TS as a problem of finding the mini-
mum cost path in a graph and therefore adopts a dy-
namic programming algorithm. The main advantage
of such methods is that no training time and corpora
are required.

By modeling TS as binary-classification problem,
we introduce a new technique based on support vec-
tor machines (SVMs). The main advantage offered
by SVMs with respect to methods such as those de-
scribed above is related to the distance (or similarity)
function used. Thus, although (Choi, 2000; Hearst,
1997) employ a distance function (i.e.cosine dis-
tance) to detect thematic shifts, SVMs are capable
of using a larger variety of similarity functions.

Moreover, SVMs can employ distance functions
that operate in extremely high dimensional feature
spaces. This is an important property for our task,

where handling high dimensionality data represen-
tation is necessary (see section 4).

An alternative to dealing with high dimension
data may be to reduce the dimensionality of the
data representation. Therefore, linear algebra di-
mensionality reduction methods like singular value
decomposition have been adopted by (Choi et al.,
2001; Popescu-Belis et al., 2004) in Latent Seman-
tic Analysis (LSA) for the task of thematic segmen-
tation. A Probabilistic Latent Semantic Analysis
(PLSA) approach has been adopted by (Brants et
al., 2002; Farahat and Chen, 2006) for the TS task.
(Blei and Moreno, 2001) proposed a TS approach,
by embedding a PLSA model in an extended Hid-
den Markov Model (HMM) approach, while (Yam-
ron et al., 1998) have previously proposed a HMM
approach for TS.

A shortcoming of the methods described above
is due to their typically generative manner of train-
ing, i.e. using the maximum likelihood estimation
for a joint sampling model of observation and la-
bel sequences. This poses the challenge of finding
more appropriateobjective functions, i.e. alterna-
tives to the log-likelihood that are more closely re-
lated to application-relevant performance measures.
Secondly, efficient inference and learning for the TS
task often requires making questionable conditional
independence assumptions. In such cases, improved
performance may be obtained by using methods
with a more discriminative character, by allowing
direct dependencies between a label and past/future
observations and by efficient handling higher-order
combinations of input features. Given the discrim-
inative character of SVMs, we expect our model to
attain similar benefits.

3 Support Vector Learning Task and
Thematic Segmentation

The theory of Vapnik and Chervonenkis (Vapnik,
1995) motivated the introduction of support vector
learning. SVMs have originally been used for clas-
sification purposes and their principles have been ex-
tended to the task of regression, clustering and fea-
ture selection. (Kauchak and Chen, 2005) employed
SVMs using features (derived for instance from in-
formation given by the presence of paragraphs, pro-
nouns, numbers) that can be reliably used for topic
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segmentation of narrative documents. Aside from
the fact that we consider the TS task on different
datasets (not only on narrative documents), our ap-
proach is different from the approach proposed by
(Kauchak and Chen, 2005) mainly by the data repre-
sentation we propose and by the fact that we put the
emphasis on deriving the thematic structure merely
from word distribution, while (Kauchak and Chen,
2005) observed that the ‘block similarities provide
little information about the actual segment bound-
aries’ on their data and therefore they concentrated
on exploiting other features.

An excellent general introduction to SVMs and
other kernel methods is given for instance in (Cris-
tianini and Shawe-Taylor, 2000). In the section be-
low, we give some highlights representing the main
elements in using SVMs for thematic segmentation.

The support vector learnerL is given atraining
setof n examples, usually denoted byStrain= ((~u1,
y1),...,(~un, yn))⊆ (U × Y )n drawn independently
and identically distributed according to a fixed dis-
tribution Pr(u, y) = Pr(y|u)Pr(u). Each train-
ing example consists of a high-dimensional vector~u
describing an utterance and the class labely. The
utterance representations we chose are further de-
scribed in Section 4. The class labely has only
two possible values: ‘thematic boundary’ or ‘non-
thematic boundary’. For notational convenience, we
replace these values by +1 and -1 respectively, and
thus we havey ∈ {-1, 1}. Given a hypothesis space
H, of functionsh : U → {−1,+1} having the form
h(~u) = sign(< ~w, ~u > +b), the inductive sup-
port vector learnerLind seeks a decision function
hind fromH, usingStrain so that the expected num-
ber of erroneous predictions is minimized. Using
the structural risk minimization principle (Vapnik,
1995), the support vector learner gets the optimal de-
cision functionh by minimizing the following cost
function:

W ind(~w, b, ξ1, ξ2, ..., ξn) = 1
2 < ~w, ~w > +

+ C+
n∑

i=0,yi=1
ξi + C−

n∑
i=0,yi=−1

ξi,

subject to:

yi[< ~w · ~ui > +b] ≤ 1− ξi for i = 1, 2, ..., n;

ξi ≥ 0 for i = 1, 2, ..., n.

The parameters~w and b follow from the optimi-
sation problem, which is solved by applying La-
grangian theory. The so-calledslack variablesξi,
are introduced in order to be able to handle non-
separable data. The positive parametersC+ andC−

are calledregularization parametersand determine
the amount up to which errors are tolerated. More
exactly, training data may contain noisy or outlier
data that are not representative of the underlying dis-
tribution. On the one hand, fitting exactly to the
training data may lead to overfitting. On the other
hand, dismissing true properties of the data as sam-
pling bias in the training data will result in low accu-
racy. Therefore, the regularization parameter is used
to balance the trade-off between these two compet-
ing considerations. Setting the regularization para-
meter too low can result in poor accuracy, while set-
ting it too high can lead to overfitting. In the TS task,
we used an automated procedure to select the regu-
larization parameters, as further described in section
5.3.

In cases where non-linear hypothesis functions
should be optimised, each~ui can be mapped into
ϕ(~ui) ∈ F , whereF is a higher dimensional space
usually calledfeature space, in order to make linear
the relation between~ui andyi. Thus the original lin-
ear learning machine can be adopted in finding the
classification solution in the feature space.

When using a mapping functionϕ : U → F ,
if we have a way of computing the inner product
〈ϕ(~ui), ϕ(~uj)〉 directly as a function of the origi-
nal input point, then the so-called kernel function
K(~ui, ~uj) = 〈ϕ(~ui), ϕ(~uj)〉 is proved to simplify
the computational complexity implied by the direct
use of the mapping functionϕ. The choice of appro-
priate kernels and its specific parameters is an empir-
ical issue. In our experiments, we used the Gaussian
radial basis function (RBF) kernel:

KRBF (~ui, ~uj) = exp(−γ2||~ui − ~uj ||2).

For the SVM calculations, we used theLIBSVM li-
brary (Chang and Lin, 2001).

4 Representation of the information used
to determine thematic boundaries

As presented in section 3, in the thematic segmen-
tation task, an input~ui to the support vector classi-
fier is a vectorial representation of the utterance to
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be classified and its context. Each dimension of the
input vector indicates the value of a certain feature
characterizing the utterance. All input features here
are indicator functions for a word occurring within
a fixed-size window centered on the utterance being
labeled. More exactly, the input features are com-
puted in the following steps:

1. The text has been pre-processed by tokeniza-
tion, elimination of stop-words and lemmatiza-
tion, usingTreeTagger(Schmid, 1996).

2. We make use of the so-calledbag of wordsap-
proach, by mapping each utterance to abag, i.e.
a set that contains word frequencies. Therefore,
word frequencies have been computed to count
the number of times that each term (i.e. word
lemma) is used in each utterance. Then a trans-
formation of the raw word frequency counts
is applied in order to take into account both
the local (i.e. for each utterance) word fre-
quencies as well as the overall frequencies of
their occurrences in the entire text collection.
More exactly, we made experiments in paral-
lel with three such transformations, which are
very commonly used in information retrieval
domain (Dumais, 1991):tf.idf, tf.normal and
log.entropy.

3. Eachi-th utterance is represented by a vector
~ui, where aj-th element of~ui is computed as:

ui,j =

 i∑
t=i−winSize

ft,j

 i+winSize∑
k=i+1

fk,j

 ,

wherewinSize ≥ 1 andfi,j is the weighted
frequency (determined in the previous step) of
thej-th word from the vocabulary in thei-th ut-
terance. In this manner, we will haveui,j > 0 if
and only if at least two occurrences of thej-th
term occur within(2 · winSize) utterances on
opposite sides of a boundary candidate. That
is, eachui,j is capturing how many word co-
occurrences appear across the candidate utter-
ance in an interval (of(2·winSize) utterances)
centered in the boundary candidate utterance.

4. Each attribute value from the input data is
scaled to the interval[0, 1].

Note that the vector space representation adopted in
the previous steps will result in a sparse high dimen-
sional input data for our system. More exactly, table
1 shows the average number of non-zero features per
example corresponding to each data set (further de-
scribed in section 5.1).

Data set Non zero features
ICSI 3.67%
TDT 0.40%

Brown 0.12%

Table 1: The percentage of non-zero features per ex-
ample.

5 Experimental Setup

5.1 Data sets used

In order to evaluate how robust our SVM approach
is, we performed experiments on three English data
sets of approximately the same dimension (i.e. con-
taining about 260,000 words).

The first dataset is a subset of the ICSI-MR cor-
pus (Janin et al., 2004), where the gold standard for
thematic segmentations has been provided by tak-
ing into account the agreement of at least three hu-
man annotators (Galley et al., 2003). The corpus
consists of high-quality close talking microphone
recordings of multi-party dialogues. Transcriptions
at word level with utterance-level segmentations are
also available. A test sample from this dataset con-
sists of the transcription of an approximately one-
hour long meeting and contains an average of about
seven thematic episodes.

The second data set contains documents randomly
selected from the Topic Detection and Tracking
(TDT) 2 collection, made available by (LDC, 2006).
The TDT collection includes broadcast news and
newswire text, which are segmented into topically
cohesive stories. We use the story segmentation pro-
vided with the corpus as our gold standard labeling.
A test sample from our subset contains an average
of about 24 segments.

The third dataset we use in this study was origi-
nally proposed in (Choi, 2000) and contains artifi-
cial thematic episodes. More precisely, the dataset
is built by concatenating short pieces of texts that
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Data set Weighting schema winSize γ C
ICSI log.entropy 57 0.0625 0.01
TDT tf.idf 17 0.0625 0.1

Brown tf.idf 5 0.0625 0.001

Table 2: The optimal settings found for the SVM model, using the RBF kernel.

have been randomly extracted from the Brown cor-
pus. Any test sample from this dataset consists of
ten segments. Each segment contains at least three
sentences and no more than eleven sentences.

While the focus of our paper is not on the method
of evaluation, it is worth pointing out that the per-
formance on the synthetic data set is a very poor
guide to the performance on naturally occurring data
(Georgescul et al., 2006). We include the synthetic
data for comparison purposes.

5.2 Handling unbalanced data

We have a small percentage of positive examples
relative to the total number of training examples.
Therefore, in order to ensure that positive points are
not considered as being noisy labels, we change the
penalty of the minority (positive) class by setting the
parameterC+ of this class to:

C+ = λ ·
(

n

n+ − 1
− 1

)
· C−,

wheren+ is the number of positive training exam-
ples,n is the total number of training examples and
λ is the scaling factor. In the experiments reported
here, we set the value for the scale factorλ to λ = 1
and we have:C+ = 7 · C− for the synthetic data
derived from Brown corpus;C+ = 18 · C−for the
TDT data andC+ = 62 · C− for the ICSI meeting
data.

5.3 Model selection

We used 80% of each dataset to determine the best
model settings, while the remaining 20% is used
for testing purposes. Each training set (for each
dataset employed) was divided into disjoint subsets
and five-fold cross-validation was applied for model
selection.

In order to avoid too many combinations of pa-
rameter settings, model selection is done in two
phases, by distinguishing two kinds of parameters.
First, the parameters involved in data representation

(see section 4) are addressed. We start with choosing
an appropriate term weighting scheme and a good
value for thewinSize parameter. This choice is
based on a systematic grid search over 20 differ-
ent values forwinSize and the three variantstf.idf,
tf.normal and log.entropyfor term weighting. We
ran five-fold cross validation, by using the RBF ker-
nel with its parameterγ fixed toγ = 1. We also set
the regularization parameterC equal toC = 1.

In the second phase of model selection, we
take the optimal parameter values selected in the
previous phase as a constant factor and search
the most appropriate values forC and γ para-
meters. The range of values we select from is:
C ∈

{
10−3, 10−2, 10−1, 1, 10, 102, 103

}
and γ ∈{

2−6, 2−5, 2−4, ..., 24, 26
}

and for each possible
value we perform five-fold cross validation. There-
fore, we ran the algorithm five times for the91 =
7× 13 parameter settings. The most suitable model
settings found are shown in Table 2. For these set-
tings, we show the algorithm’s results in section 6.

6 Evaluation

6.1 Evaluation Measures

Beeferman et al. (1999) underlined that the stan-
dard evaluation metrics ofprecisionand recall are
inadequate for thematic segmentation, namely by
the fact that these metrics did not account for how
far away a hypothesized boundary (i.e. a boundary
found by the automatic procedure) is from the ref-
erence boundary. On the other hand, for instance,
an algorithm that places a boundary just one utter-
ance away from the reference boundary should be
penalized less than an algorithm that places a bound-
ary ten (or more) utterances away from the reference
boundary.

Hence the use of two other evaluation metrics
is favored in thematic segmentation: thePk met-
ric (Beeferman et al., 1999) and theWindowDiff
error metric (Pevzner and Hearst, 2002). In con-
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Figure 1: Error rates of the segmentation systems.

trast to precision and recall, these metrics allow for a
slight vagueness in where the hypothesized thematic
boundaries are placed and capture “the notion of
nearness in a principled way, gently penalizing algo-
rithms that hypothesize boundaries that aren’t quite
right, and scaling down with the algorithm’s degra-
dation” (Beeferman et al., 1999). That is, comput-
ing both Pk and WindowDiff metrics involves the
use of a fixed-size (i.e. having a fixed number of
either words or utterances) window that is moved
step by step over the data. At each step,Pk and
WindowDiff are basically increased (each metric in
a slightly different way) if the hypothesized bound-
aries and the reference boundaries are not within the
same window.

During the model selection phase, we used pre-
cision and recall in order to measure the system’s
error rate. This was motivated by the fact that pos-
ing the TS task as a classification problem leads to a
loss of the sequential nature of the data, which is an
inconvenient in computing thePk andWindowDiff
measures. However, during the final testing phase
of our system, as well as for the evaluation of the
previous systems, we use both thePk and theWin-
dowDiff error metric.

The relatively small size of our datasets does not
allow for dividing our test set into multiple sub-test
sets for applying statistical significance tests. This
would be desirable in order to indicate whether the
differences in system error rates are statistically sig-
nificant over different data sets. Nevertheless, we

believe that measuring differences in error rates ob-
tained on the test set is indicative of the relative per-
formance. Thus, the experimental results shown in
this paper should be considered as illustrative rather
than exhaustive.

6.2 Results

In order to determine the adequacy of our SVM ap-
proach over different genres, we ran our system over
three datasets, namely the ICSI meeting data, the
TDT broadcast data and the Brown written genre
data.

By measuring the system error rates using the
Pk and theWindowDiff metrics, Figure 1 summa-
rizes the quantitative results obtained in our empir-
ical evaluation. In Figure 1, our SVM approach is
labeled asSVM and we abbreviateWindowDiff as
WD. The results of ourSVM system correspond to
the parameter values detected during model selec-
tion (see Table 2). We compare our system against
an existing thematic segmenter in the literature:C99
(Choi, 2000). We also give for comparison the
error rates of a naive algorithm, labeled asRand
algorithm, which randomly distributes boundaries
throughout the text.

The LCsegsystem (Galley et al., 2003), labeled
here asG03, is to our knowledge the only word dis-
tribution based system evaluated on ICSI meeting
data. Therefore, we replicate the results reported by
(Galley et al., 2003) when evaluation ofLCsegwas
done on ICSI data. The so-labeledG03* algorithm
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indicates the error rates obtained by (Galley et al.,
2003) when extra (meeting specific) features have
been adopted in a decision tree classifier. However,
note that the results reported by (Galley et al.) are
not directly comparable with our results because of
a slight difference in the evaluation procedure: (Gal-
ley et al.) performed 25-fold cross validation and the
averagePk andWD error rates have been computed
on the held-out sets.

Figure 1 illustrates the following interesting re-
sults. For the ICSI meeting data, our SVM approach
provides the best performance relative to the com-
peting word distribution based state-of-the-art meth-
ods. This proves that our SVM-based system is able
to build a parametric model that leads to a segmenta-
tion that highly correlates to a human thematic seg-
mentation. Furthermore, by taking into account the
relatively small size of the data set we used for train-
ing, it can be concluded that the SVM can build
qualitatively good models even with a small train-
ing data. The work of (Galley et al., 2003) shows
that theG03* algorithm is better thanG03 by ap-
proximately 10%, which indicates that on meeting
data the performance of our word-distribution based
approach could possibly be increased by using other
meeting-specific features.

By examining the error rates given byPk metric
for the three systems on the TDT data set, we ob-
serve that our system andC99 performed more or
less equally. With respect to theWindowDiff met-
ric, our system has an error rate approximately 10%
smaller thanC99.

On the synthetic data set, theSVM approach
performed slightly worse thanC99, avoiding how-
ever catastrophic failure, as observed with theC99
method on ICSI data.

7 Conclusions

We have introduced a new approach based on word
distributions for performing thematic segmentation.
The thematic segmentation task is modeled here as
a binary classification problem and support vector
machine learning is adopted. In our experiments, we
make a comparison of our approach versus existing
linear thematic segmentation systems reported in the
literature, by running them over three different data
sets. When evaluating on real data, our approach ei-

ther outperformed the other existing methods or per-
forms comparably to the best. We view this as a
strong evidence that our approach provides a unified
and robust framework for the thematic segmentation
task. The results also suggest that word distributions
themselves might be a good candidate for capturing
the thematic shifts of text and that SVM learning can
play an important role in building an adaptable cor-
relation.

Our experiments also show the sensitivity of a
segmentation method to the type of a corpus on
which it is tested. For instance, the C99 algorithm
which achieves superior performance on a synthetic
collection performs quite poorly on the real-life data
sets.

While we have shown empirically that our tech-
nique can provide considerable gains by using sin-
gle word distribution features, future work will in-
vestigate whether the system can be improved by ex-
ploiting other features derived for instance from syn-
tactic, lexical and, when available, prosodic infor-
mation. If further annotated meeting data becomes
available, it would be also interesting to replicate our
experiments on a bigger data set in order to verify
whether our system performance improves.
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Abstract

In this paper we investigate a new problem
of identifying theperspective from which
a document is written. By perspective we
mean a point of view, for example, from
the perspective of Democrats or Repub-
licans. Can computers learn to identify
the perspective of a document? Not every
sentence is written strongly from a per-
spective. Can computers learn to identify
which sentences strongly convey a partic-
ular perspective? We develop statistical
models to capture how perspectives are
expressed at the document and sentence
levels, and evaluate the proposed mod-
els on articles about the Israeli-Palestinian
conflict. The results show that the pro-
posed models successfully learn how per-
spectives are reflected in word usage and
can identify the perspective of a document
with high accuracy.

1 Introduction

In this paper we investigate a new problem of au-
tomatically identifying theperspective from which
a document is written. By perspective we mean
a “subjective evaluation of relative significance, a
point-of-view.”1 For example, documents about the
Palestinian-Israeli conflict may appear to be about
the same topic but reveal different perspectives:

1The American Heritage Dictionary of the English Lan-
guage, 4th ed.

(1) The inadvertent killing by Israeli forces of
Palestinian civilians – usually in the course of
shooting at Palestinian terrorists – is
considered no different at the moral and ethical
level than the deliberate targeting of Israeli
civilians by Palestinian suicide bombers.

(2) In the first weeks of the Intifada, for example,
Palestinian public protests and civilian
demonstrations were answered brutally by
Israel, which killed tens of unarmed protesters.

Example 1 is written from an Israeli perspective;
Example 2 is written from a Palestinian perspec-
tive. Anyone knowledgeable about the issues of
the Israeli-Palestinian conflict can easily identify the
perspectives from which the above examples were
written. However, can computers learn to identify
the perspective of a document given a training cor-
pus?

When an issue is discussed from different per-
spectives, not every sentence strongly reflects the
perspective of the author. For example, the follow-
ing sentences were written by a Palestinian and an
Israeli.

(3) The Rhodes agreements of 1949 set them as
the ceasefire lines between Israel and the Arab
states.

(4) The green line was drawn up at the Rhodes
Armistice talks in 1948-49.

Examples 3 and 4 both factually introduce the back-
ground of the issue of the “green line” without ex-
pressing explicit perspectives. Can we develop a
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system to automatically discriminate between sen-
tences that strongly indicate a perspective and sen-
tences that only reflect shared background informa-
tion?

A system that can automatically identify the per-
spective from which a document is written will be
a valuable tool for people analyzing huge collec-
tions of documents from different perspectives. Po-
litical analysts regularly monitor the positions that
countries take on international and domestic issues.
Media analysts frequently survey broadcast news,
newspapers, and weblogs for differing viewpoints.
Without the assistance of computers, analysts have
no choice but to read each document in order to iden-
tify those from a perspective of interest, which is ex-
tremely time-consuming. What these analysts need
is to find strong statements from different perspec-
tives and to ignore statements that reflect little or no
perspective.

In this paper we approach the problem of learning
individual perspectives in a statistical framework.
We develop statistical models to learn how perspec-
tives are reflected in word usage, and we treat the
problem of identifying perspectives as a classifica-
tion task. Although our corpus contains document-
level perspective annotations, it lacks sentence-level
annotations, creating a challenge for learning the
perspective of sentences. We propose a novel sta-
tistical model to overcome this problem. The ex-
perimental results show that the proposed statisti-
cal models can successfully identify the perspective
from which a document is written with high accu-
racy.

2 Related Work

Identifying the perspective from which a document
is written is a subtask in the growing area of au-
tomatic opinion recognition and extraction. Sub-
jective language is used to express opinions, emo-
tions, and sentiments. So far, research in automatic
opinion recognition has primarily addressed learn-
ing subjective language (Wiebe et al., 2004; Riloff
et al., 2003), identifying opinionated documents (Yu
and Hatzivassiloglou, 2003) and sentences (Yu and
Hatzivassiloglou, 2003; Riloff et al., 2003), and dis-
criminating between positive and negative language
(Pang et al., 2002; Morinaga et al., 2002; Yu and

Hatzivassiloglou, 2003; Turney and Littman, 2003;
Dave et al., 2003; Nasukawa and Yi, 2003; Popescu
and Etzioni, 2005; Wilson et al., 2005). While by its
very nature we expect much of the language that is
used when presenting a perspective or point-of-view
to be subjective, labeling a document or a sentence
as subjective is not enough to identify the perspec-
tive from which it is written. Moreover, the ideol-
ogy and beliefs authors possess are often expressed
in ways other than positive or negative language to-
ward specific targets.

Research on the automatic classification of movie
or product reviews as positive or negative (e.g.,
(Pang et al., 2002; Morinaga et al., 2002; Turney
and Littman, 2003; Nasukawa and Yi, 2003; Mullen
and Collier, 2004; Beineke et al., 2004; Hu and Liu,
2004)) is perhaps the most similar to our work. As
with review classification, we treat perspective iden-
tification as a document-level classification task, dis-
criminating, in a sense, between different types of
opinions. However, there is a key difference. A pos-
itive or negative opinion toward a particular movie
or product is fundamentally different from an overall
perspective. One’s opinion will change from movie
to movie, whereas one’s perspective can be seen as
more static, often underpinned by one’s ideology or
beliefs about the world.

There has been research in discourse analysis that
examines how different perspectives are expressed
in political discourse (van Dijk, 1988; Pan et al.,
1999; Geis, 1987). Although their research may
have some similar goals, they do not take a compu-
tational approach to analyzing large collections of
documents. To the best of our knowledge, our ap-
proach to automatically identifying perspectives in
discourse is unique.

3 Corpus

Our corpus consists of articles published on the
bitterlemonswebsite2. The website is set up to
“contribute to mutual understanding [between Pales-
tinians and Israelis] through the open exchange of
ideas.”3 Every week an issue about the Israeli-
Palestinian conflict is selected for discussion (e.g.,

2http://www.bitterlemons.org
3http://www.bitterlemons.org/about/

about.html

110



“Disengagement: unilateral or coordinated?”), and
a Palestinian editor and an Israeli editor each con-
tribute one article addressing the issue. In addition,
the Israeli and Palestinian editors invite one Israeli
and one Palestinian to express their views on the
issue (sometimes in the form of an interview), re-
sulting in a total of four articles in a weekly edi-
tion. We choose thebitterlemons website for
two reasons. First, each article is already labeled
as either Palestinian or Israeli by the editors, allow-
ing us to exploit existing annotations. Second, the
bitterlemons corpus enables us to test the gen-
eralizability of the proposed models in a very real-
istic setting: training on articles written by a small
number of writers (two editors) and testing on arti-
cles from a much larger group of writers (more than
200 different guests).

We collected a total of 594 articles published on
the website from late 2001 to early 2005. The dis-
tribution of documents and sentences are listed in
Table 1. We removed metadata from all articles, in-

Palestinian Israeli
Written by editors 148 149
Written by guests 149 148
Total number of documents297 297
Average document length 740.4 816.1
Number of sentences 8963 9640

Table 1: The basic statistics of the corpus

cluding edition numbers, publication dates, topics,
titles, author names and biographic information. We
used OpenNLP Tools4 to automatically extract sen-
tence boundaries, and reduced word variants using
the Porter stemming algorithm.

We evaluated the subjectivity of each sentence us-
ing the automatic subjective sentence classifier from
(Riloff and Wiebe, 2003), and find that 65.6% of
Palestinian sentences and 66.2% of Israeli sentences
are classified as subjective. The high but almost
equivalent percentages of subjective sentences in the
two perspectives support our observation in Sec-
tion 2 that a perspective is largely expressed using
subjective language, but that the amount of subjec-
tivity in a document is not necessarily indicative of

4http://sourceforge.net/projects/
opennlp/

its perspective.

4 Statistical Modeling of Perspectives

We develop algorithms for learning perspectives us-
ing a statistical framework. Denote a training corpus
as a set of documentsWn and their perspectives la-
belsDn, n = 1, . . . ,N , whereN is the total number
of documents in the corpus. Given a new document
W̃ with a unknown document perspective, the per-
spectiveD̃ is calculated based on the following con-
ditional probability.

P (D̃|W̃ , {Dn,Wn}
N
n=1) (5)

We are also interested in how strongly each sen-
tence in a document conveys perspective informa-
tion. Denote the intensity of them-th sentence of
then-th document as a binary random variableSm,n.
To evaluateSm,n, how strongly a sentence reflects
a particular perspective, we calculate the following
conditional probability.

P (Sm,n|{Dn,Wn}
N
n=1) (6)

4.1 Näıve Bayes Model

We model the process of generating documents from
a particular perspective as follows:

π ∼ Beta(απ, βπ)

θ ∼ Dirichlet(αθ)

Dn ∼ Binomial(1, π)

Wn ∼ Multinomial(Ln, θd)

First, the parametersπ andθ are sampled once from
prior distributions for the whole corpus. Beta and
Dirichlet are chosen because they are conjugate pri-
ors for binomial and multinomial distributions, re-
spectively. We set the hyperparametersαπ, βπ, and
αθ to one, resulting in non-informative priors. A
document perspectiveDn is then sampled from a bi-
nomial distribution with the parameterπ. The value
of Dn is eitherd0 (Israeli) ord1 (Palestinian). Words
in the document are then sampled from a multino-
mial distribution, whereLn is the length of the doc-
ument. A graphical representation of the model is
shown in Figure 1.
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Figure 1: Naı̈ve Bayes Model

The model described above is commonly known
as a naı̈ve Bayes (NB) model. NB models have
been widely used for various classification tasks,
including text categorization (Lewis, 1998). The
NB model is also a building block for the model
described later that incorporates sentence-level per-
spective information.

To predict the perspective of an unseen document
using naı̈ve Bayes , we calculate the posterior distri-
bution ofD̃ in (5) by integrating out the parameters,

∫ ∫
P (D̃, π, θ|{(Dn,Wn)}N

n=1, W̃ )dπdθ (7)

However, the above integral is difficult to compute.
As an alternative, we use Markov Chain Monte
Carlo (MCMC) methods to obtain samples from the
posterior distribution. Details about MCMC meth-
ods can be found in Appendix A.

4.2 Latent Sentence Perspective Model

We introduce a new binary random variable,S, to
model how strongly a perspective is reflected at the
sentence level. The value ofS is eithers1 or s0,
where s1 indicates a sentence is written strongly
from a perspective whiles0 indicates it is not. The
whole generative process is modeled as follows:

π ∼ Beta(απ, βπ)

τ ∼ Beta(ατ , βτ )

θ ∼ Dirichlet(αθ)

Dn ∼ Binomial(1, π)

Sm,n ∼ Binomial(1, τ)

Wm,n ∼ Multinomial(Lm,n, θ)

The parametersπ andθ have the same semantics as
in the naı̈ve Bayes model.S is naturally modeled as
a binomial variable, whereτ is the parameter ofS.
S represents how likely it is that a sentence strongly
conveys a perspective. We call this model the La-
tent Sentence Perspective Model (LSPM) becauseS

is not directly observed. The graphical model repre-
sentation of LSPM is shown in Figure 2.

π τ θ

Dn

Sm,n Wm,n

N
Mn

Figure 2: Latent Sentence Perspective Model

To use LSPM to identify the perspective of a new
documentD̃ with unknown sentence perspectivesS̃,
we calculate posterior probabilities by summing out
possible combinations of sentence perspective in the
document and parameters.

∫ ∫ ∫ ∑
Sm,n

∑
S̃

P (D̃, Sm,n, S̃, π, τ, θ| (8)

{(Dn,Wn)}N
n=1, W̃ )dπdτdθ

As before, we resort to MCMC methods to sample
from the posterior distributions, given in Equations
(5) and (6).

As is often encountered in mixture models, there
is an identifiability issue in LSPM. Because the val-
ues ofS can be permuted without changing the like-
lihood function, the meanings ofs0 ands1 are am-
biguous. In Figure 3a, fourθ values are used to rep-
resent the four possible combinations of document
perspectived and sentence perspective intensitys. If
we do not impose any constraints,s1 ands0 are ex-
changeable, and we can no longer strictly interpret
s1 as indicating a strong sentence-level perspective
ands0 as indicating that a sentence carries little or
no perspective information. The other problem of
this parameterization is that any improvement from
LSPM over the naı̈ve Bayes model is not necessarily
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Figure 3: Two different parameterization ofθ

due to the explicit modeling of sentence-level per-
spective. S may capture aspects of the document
collection that we never intended to model. For ex-
ample,s0 may capture the editors’ writing styles and
s1 the guests’ writing styles in thebitterlemons
corpus.

We solve the identifiability problem by forcing
θd1,s0 and θd0,s0 to be identical and reducing the
number ofθ parameters to three. As shown in Fig-
ure 3b, there are separateθ parameters conditioned
on the document perspective (left branch of the tree,
d0 is Israeli andd1 is Palestinian), but there is single
θ parameter whenS = s0 shared by both document-
level perspectives (right branch of the tree). We as-
sume that the sentences with little or no perspective
information, i.e.,S = s0, are generated indepen-
dently of the perspective of a document. In other
words, sentences that are presenting common back-
ground information or introducing an issue and that
do not strongly convey any perspective should look
similar whether they are in Palestinian or Israeli doc-
uments. By forcing this constraint, we become more
confident thats0 represents sentences of little per-
spectives ands1 represents sentences of strong per-
spectives fromd1 andd0 documents.

5 Experiments

5.1 Identifying Perspective at the Document
Level

We evaluate three different models for the task
of identifying perspective at the document level:
two naı̈ve Bayes models (NB) with different infer-
ence methods and Support Vector Machines (SVM)

(Cristianini and Shawe-Taylor, 2000). NB-B uses
full Bayesian inference and NB-M uses Maximum
a posteriori (MAP). We compare NB with SVM not
only because SVM has been very effective for clas-
sifying topical documents (Joachims, 1998), but also
to contrast generative models like NB with discrimi-
native models like SVM. For training SVM, we rep-
resent each document as aV -dimensional feature
vector, whereV is the vocabulary size and each co-
ordinate is the normalized term frequency within the
document. We use a linear kernel for SVM and
search for the best parameters using grid methods.

To evaluate the statistical models, we train them
on the documents in thebitterlemons corpus
and calculate how accurately each model predicts
document perspective in ten-fold cross-validation
experiments. Table 2 reports the average classi-
fication accuracy across the the 10 folds for each
model. The accuracy of a baseline classifier, which
randomly assigns the perspective of a document as
Palestinian or Israeli, is 0.5, because there are equiv-
alent numbers of documents from the two perspec-
tives.

Model Data Set Accuracy Reduction

Baseline 0.5
SVM Editors 0.9724
NB-M Editors 0.9895 61%
NB-B Editors 0.9909 67%
SVM Guests 0.8621
NB-M Guests 0.8789 12%
NB-B Guests 0.8859 17%

Table 2: Results for Identifying Perspectives at the
Document Level

The last column of Table 2 is error reduction
relative to SVM. The results show that the naı̈ve
Bayes models and SVM perform surprisingly well
on both the Editors and Guests subsets of the
bitterlemons corpus. The naı̈ve Bayes mod-
els perform slightly better than SVM, possibly be-
cause generative models (i.e., naı̈ve Bayes models)
achieve optimal performance with a smaller num-
ber of training examples than discriminative models
(i.e., SVM) (Ng and Jordan, 2002), and the size of
thebitterlemonscorpus is indeed small. NB-B,
which performs full Bayesian inference, improves
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on NB-M, which only performs point estimation.
The results suggest that the choice of words made
by the authors, either consciously or subconsciously,
reflects much of their political perspectives. Statis-
tical models can capture word usage well and can
identify the perspective of documents with high ac-
curacy.

Given the performance gap between Editors and
Guests, one may argue that there exist distinct edit-
ing artifacts or writing styles of the editors and
guests, and that the statistical models are capturing
these things rather than “perspectives.” To test if the
statistical models truly are learning perspectives, we
conduct experiments in which the training and test-
ing data are mismatched, i.e., from different subsets
of the corpus. If what the SVM and naı̈ve Bayes
models learn are writing styles or editing artifacts,
the classification performance under the mismatched
conditions will be considerably degraded.

Model Training Testing Accuracy

Baseline 0.5
SVM Guests Editors 0.8822
NB-M Guests Editors 0.9327 43%
NB-B Guests Editors 0.9346 44%
SVM Editors Guests 0.8148
NB-M Editors Guests 0.8485 18%
NB-B Editors Guests 0.8585 24%

Table 3: Identifying Document-Level Perspectives
with Different Training and Testing Sets

The results on the mismatched training and test-
ing experiments are shown in Table 3. Both SVM
and the two variants of naı̈ve Bayes perform well
on the different combinations of training and testing
data. As in Table 2, the naı̈ve Bayes models per-
form better than SVM with larger error reductions,
and NB-B slightly outperforms NB-M. The high ac-
curacy on the mismatched experiments suggests that
statistical models are not learning writing styles or
editing artifacts. This reaffirms that document per-
spective is reflected in the words that are chosen by
the writers.

We list the most frequent words (excluding stop-
words) learned by the the NB-M model in Ta-
ble 4. The frequent words overlap greatly be-
tween the Palestinian and Israeli perspectives, in-

cluding “state,” “peace,” “process,” “secure” (“se-
curity”), and “govern” (“government”). This is in
contrast to what we expect from topical text classi-
fication (e.g., “Sports” vs. “Politics”), in which fre-
quent words seldom overlap. Authors from differ-
ent perspectives often choose words from a simi-
lar vocabulary but emphasize them differently. For
example, in documents that are written from the
Palestinian perspective, the word “palestinian” is
mentioned more frequently than the word “israel.”
It is, however, the reverse for documents that are
written from the Israeli perspective. Perspectives
are also expressed in how frequently certain people
(“sharon” v.s. “arafat”), countries (“international”
v.s. “america”), and actions (“occupation” v.s. “set-
tle”) are mentioned. While one might solicit these
contrasting word pairs from domain experts, our re-
sults show that statistical models such as SVM and
naı̈ve Bayes can automatically acquire them.

5.2 Identifying Perspectives at the Sentence
Level

In addition to identifying the perspective of a docu-
ment, we are interested in knowing which sentences
of the document strongly conveys perspective in-
formation. Sentence-level perspective annotations
do not exist in thebitterlemons corpus, which
makes estimating parameters for the proposed La-
tent Sentence Perspective Model (LSPM) difficult.
The posterior probability that a sentence strongly
covey a perspective (Example (6)) is of the most in-
terest, but we can not directly evaluate this model
without gold standard annotations. As an alterna-
tive, we evaluate how accurately LSPM predicts the
perspective of a document, again using 10-fold cross
validation. Although LSPM predicts the perspec-
tive of both documents and sentences, we will doubt
the quality of the sentence-level predictions if the
document-level predictions are incorrect.

The experimental results are shown in Table 5.
We include the results for the naı̈ve Bayes models
from Table 3 for easy comparison. The accuracy of
LSPM is comparable or even slightly better than that
of the naı̈ve Bayes models. This is very encouraging
and suggests that the proposed LSPM closely cap-
tures how perspectives are reflected at both the doc-
ument and sentence levels. Examples 1 and 2 from
the introduction were predicted by LSPM as likely to
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Palestinian palestinian, israel, state, politics, peace, international, people, settle, occupation, sharon,
right, govern, two, secure, end, conflict, process, side, negotiate

Israeli israel, palestinian, state, settle, sharon, peace, arafat, arab, politics, two, process, secure,
conflict, lead, america, agree, right, gaza, govern

Table 4: The top twenty most frequent stems learned by the NB-M model, sorted byP (w|d)

Model Training Testing Accuracy
Baseline 0.5
NB-M Guests Editors 0.9327
NB-B Guests Editors 0.9346
LSPM Guests Editors 0.9493
NB-M Editors Guests 0.8485
NB-B Editors Guests 0.8585
LSPM Editors Guests 0.8699

Table 5: Results for Perspective Identification at the
Document and Sentence Levels

contain strong perspectives, i.e., largePr(S̃ = s1).
Examples 3 and 4 from the introduction were pre-
dicted by LSPM as likely to contain little or no per-
spective information, i.e., highPr(S̃ = s0).

The comparable performance between the naı̈ve
Bayes models and LSPM is in fact surprising. We
can train a naı̈ve Bayes model directly on the sen-
tences and attempt to classify a sentence as reflect-
ing either a Palestinian or Israeli perspective. A sen-
tence is correctly classified if the predicted perspec-
tive for the sentence is the same as the perspective
of the document from which it was extracted. Us-
ing this model, we obtain a classification accuracy of
only 0.7529, which is much lower than the accuracy
previously achieved at the document level. Identify-
ing perspectives at the sentence level is thus more
difficult than identifying perspectives at the docu-
ment level. The high accuracy at the document level
shows that LSPM is very effective in pooling evi-
dence from sentences that individually contain little
perspective information.

6 Conclusions

In this paper we study a new problem of learning to
identify the perspective from which a text is written

at the document and sentence levels. We show that
much of a document’s perspective is expressed in
word usage, and statistical learning algorithms such
as SVM and naı̈ve Bayes models can successfully
uncover the word patterns that reflect author per-
spective with high accuracy. In addition, we develop
a novel statistical model to estimate how strongly
a sentence conveys perspective, in the absence of
sentence-level annotations. By introducing latent
variables and sharing parameters, the Latent Sen-
tence Perspective Model is shown to capture well
how perspectives are reflected at the document and
sentence levels. The small but positive improvement
due to sentence-level modeling in LSPM is encour-
aging. In the future, we plan to investigate how con-
sistently LSPM sentence-level predictions are with
human annotations.
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A Gibbs Samplers

Based the model specification described in Sec-
tion 4.2 we derive the Gibbs samplers (Chen et al.,
2000) for the Latent Sentence Perspective Model as
follows,

π(t+1) ∼ Beta(απ +
N∑

n=1

dn + d̃(t+1),

βπ + N −

N∑
n=1

dn + 1− d̃(t+1))

τ (t+1) ∼ Beta(ατ +
N∑

n=1

Mn∑
m=1

sm,n +
M̃∑

m=1

s̃m,

βτ +

N∑
n=1

Mn −

N∑
n=1

Mn∑
m=1

sm,n + M̃ −

M̃∑
m=1

s̃m)
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θ(t+1) ∼ Dirichlet(αθ +
N∑

n=1

Mn∑
m=1

wm,n)

Pr(S(t+1)
n,m = s1) ∝ P (Wm,n|Sm,n = 1, θ(t))

Pr(S(t+1)
m,n = 1|τ,Dn)

Pr(D̃(t+1) = d1) ∝
M̃∏

m=1

dbinom(τ
(t+1)
d

)

M̃∏
m=1

dmultinom(θd,m̃(t))dbinom(π(t))

where dbinom and dmultinom are the density func-
tions of binomial and multinomial distributions, re-
spectively. The superscriptt indicates that a sample
is from thet-th iteration. We run three chains and
collect 5000 samples. The first half of burn-in sam-
ples are discarded.
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Abstract

Distributional approaches to grammar in-
duction are typically inefficient, enumer-
ating large numbers of candidate con-
stituents. In this paper, we describe a
simplified model of distributional analy-
sis which uses heuristics to reduce the
number of candidate constituents under
consideration. We apply this model to
a large corpus of over 400000 words of
written English, and evaluate the results
using EVALB. We show that the perfor-
mance of this approach is limited, provid-
ing a detailed analysis of learned structure
and a comparison with actual constituent-
context distributions. This motivates a
more structured approach, using a process
of attachment to form constituents from
their distributional components. Our find-
ings suggest that distributional methods
do not generalize enough to learn syntax
effectively from raw text, but that attach-
ment methods are more successful.

1 Introduction

Distributional approaches to grammar induction ex-
ploit the principle of substitutability: constituents of
the same type may be exchanged with one another
without affecting the syntax of the surrounding con-
text. Reversing this notion, if we can identify “sur-
rounding context” by observation, we can hypothe-
size that word sequences occurring in that context

will be constituents of the same type. Thus, distri-
butional methods can be used to segment text into
constituents and classify the results. This work fo-
cuses on distributional learning from raw text.

Various models of distributional analysis have
been used to induce syntactic structure, but most
use probabilistic metrics to decide between candi-
date constituents. We show that the efficiency of
these systems can be improved by exploiting some
properties of probable constituents, but also that this
reliance on probability is problematic for learning
from text. As a consequence, we propose an exten-
sion to strict distributional learning that incorporates
more information about constituent boundaries.

The remainder of this paper describes our expe-
riences with a heuristic system for grammar induc-
tion. We begin with a discussion of previous dis-
tributional approaches to grammar induction in Sec-
tion 2 and describe their implications in Section 3.
We then introduce a heuristic distributional system
in Section 4, which we analyze empirically against
a treebank. Poor system performance leads us to ex-
amine actual constituent-context distributions (Sec-
tion 5), the implications of which motivate a more
structured extension to our learning system, which
we describe and analyze in Section 6.

2 Previous approaches

Distributional methods analyze text byalignment,
aiming to find equivalence classes covering substi-
tutable units. We align common portions of texts
termedcontexts, leaving distinct contiguous word-
sequences, termedexpressions. An expression and
its context form analignment pattern, which is de-
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fined as:

Cleft | Expression | Cright (AP1)

From this alignment pattern, we can extract context-
free grammar rules:

NT → Expression1 ∨ ... ∨ Expressionn (1)

While the definition of expression is straightfor-
ward, the definition of context is problematic. We
would like as much context as possible, but word-
sequence contexts become less probable as their
length increases, making learning harder. Therefore,
simple models of context are preferred, although the
precise definition varies between systems.

Distributional approaches to grammar induction
fall into two categories, depending on their treat-
ment of nested structure. The first category cov-
ers Expectation-Maximization (EM) systems. These
systems propose constituents based on analysis of
text, then select anon-contradictory combination
of constituents for each sentence that maximizes a
given metric, usually parsing probability. EM has
the advantage that constituent probabilities are only
compared when constituents compete, which re-
moves the inherent bias towards shorter constituents,
which tend to have higher probability. However, EM
methods are more susceptible to data sparsity issues
associated with raw text, because there is no gener-
alization during constituent proposal.

Examples of EM learning systems are Context
Distribution Clustering (CDC) (Clark, 2001) and
Constituent-Context Model (CCM) (Klein, 2005,
Chapter 5), which avoid the aforementioned data-
sparsity issues by using a part-of-speech (POS)
tagged corpus, rather than raw text. Alignment
Based Learning (ABL) (van Zaanen, 2000) is the
only EM system applied directly to raw text. ABL
uses minimal String-Edit Distance between sen-
tences to propose constituents, from which the most
probable combination is chosen. However, ABL is
relatively inefficient and has only been applied to
small corpora.

The second category is that of incremental learn-
ing systems. An incremental system analyzes a cor-
pus in a bottom-up fashion: each time a new con-
stituent type is found, it is inserted into the corpus

to provide data for later learning. This has the ad-
vantage of easing the data-sparsity issues described
above because infrequent sequences are clustered
into more frequent non-terminal symbols. However,
in incremental systems, constituents are compared
directly, which can lead to a bias towards shorter
constituents.

The EMILE system (Adriaans, 1999) learnsshal-
low languages in an incremental manner, and has
been applied to natural language under the assump-
tion that such languages are shallow. Shallowness
is the property whereby, for any constituent type in
a language, there exist well-supported minimal units
of that type. EMILE aligns complete sentences only,
attempting to isolate minimal units, which are then
used to process longer sequences. This method is
efficient because alignment is non-recursive. How-
ever, as a consequence, EMILE offers only a limited
treatment of nested and recursive structures.

A more comprehensive approach to learning
nested structure is found in the ADIOS sys-
tem (Solan et al., 2003). ADIOS enumerates all pat-
terns of a given length, under the condition that each
sequence must have non-empty contexts and expres-
sions. These patterns are ranked using an informa-
tion gain metric, and the best pattern at each iteration
is rewritten into the graph, before pattern scanning
begins again. ADIOS learns context-sensitive equiv-
alence classes, but does not induce grammars, and
has not been formally evaluated against treebanks.

Grammar induction systems are evaluated using
standard metrics for parser evaluation, and in par-
ticular, the EVALB algorithm1. The above sys-
tems have been evaluated with respect to the ATIS
treebank. Compared with supervised parsers, these
systems perform relatively poorly, with the strictly
unsupervised EMILE and ABL systems recovering
16.8% and 35.6% of constituent structure respec-
tively. The partially-supervised systems of CDC and
CCM perform better, with the latter retrieving 47.6%
of the constituent structure in ATIS. However, the
strictly unsupervised systems of ABL, EMILE and
ADIOS have not been evaluated on larger corpora,
in part due to efficiency constraints.

1There are known issues with parser evaluation, although a
discussion of these issues is outside the scope of this paper, and
the reader is referred to (Klein, 2005, Chapter 2). We assume
the standard evaluation for comparison with previous work.
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3 Issues for distributional learning

There are many issues with distributional learning,
especially when learning from raw text. First, previ-
ous systems hypothesize and select constituents ac-
cording to the probability of their contexts: ABL,
EMILE and CCM use the probability of proposed
equivalence classes, or the equivalent context prob-
ability; ADIOS uses an information gain metric,
again favouring probable contexts. However, when
learning from raw text, this preference for hypothe-
ses with more probable contexts means that open-
class words will seldom be considered as contexts.
In POS-based learners, it is possible to align open-
class POS contexts. These contexts are demonstra-
bly important despite low word probabilities, which
suggests that selecting contexts on the basis of prob-
ability will be limited in success.

The second problem relates to word-senses.
Alignment proceeds by matching orthographic
types, but these types can have numerous associated
syntactic senses. For example, ‘to’ plays two distinct
roles: infinitive marker or preposition. If we align
using the orthographic type, we will often misalign
words, as seen in the following alignment:

I gave it to the man in the grey jacket
John agreed to see me in 20 minutes

Here, we are (mis)aligning a prepositional ‘to’, with
an infinitive marker. The result would be a correctly
identified noun-phrase, ‘the man’, and an incorrect
structure, contradicting both the verb-group ‘to see’
and the noun-phrase ‘me’. This problem does not
affect POS-based learning systems, as POS tags are
unambiguously assigned.

Finally, grammar induction systems are typically
inefficient, which prohibits training over large cor-
pora. Distributional analysis is an expensive proce-
dure, and must be performed for large numbers of
word sequences. Previous approaches have tended
to enumerate all alignment patterns, of which the
best are selected using probabilistic metrics. How-
ever, given the preference for probable alignments,
there is considerable wasted computation here, and
it is on this issue that we shall focus.

4 A heuristic approach to alignment

Rather than enumerating all word sequences in a
corpus, we propose a heuristic for guiding distribu-

tional systems towards more favourable alignment
patterns, in a system calledDirected Alignment. In
this system, we define context as the ordered pair
of left- and right-context for a given constituent,
〈Cleft − Cright〉, whereCleft andCright are single-
units. The atomic units of this system are words, but
learned constituents may also act as context-units.

The probability of a pattern depends primarily on
its contexts, since they are common to all matching
sequences. We can reduce the task of finding proba-
ble alignments to simply finding probable context-
pairs. However, we can reduce this further: for
a context-pair to be probable, its components must
also be probable. Therefore, rather than enumerat-
ing all patterns in the corpus, we direct the alignment
procedure towards patterns whereCleft andCright

are probable.
The first stage of direction creates an index for the

corpus, compiling a list of unit types, where units
are initially words. From this list of types, the most
probable 1% are selected ascontext-units. These
context-units are the only types allowed to fill the
rolesCleft andCright in alignment patterns.

Alignments are created directly from the context-
unit index. For each context-unit tokencu in the
index, we locatecu in the corpus and create an
alignment pattern, such thatcu is the left context
(Cleft). Next, we scan the sequence of words fol-
lowing cu, extending the alignment pattern until an-
other context-unitcu′ is found, or a fixed length
threshold is exceeded. Ifcu′ is found, it fills the role
of right context (Cright), and the completed align-
ment pattern is cached; otherwise, the pattern is dis-
regarded.

Direction permits two forms of valid expressions
in the context〈cu − cu′〉:

1. nc1 . . . ncn, where eachnci is a non-context

2. c1 . . . cn, where eachci is a context-unit

The first of these forms allows us to examine non-
nested alignments. The second allows us to analyze
nested alignments only after inner constituents have
been learned. These constraints reduce the number
of constituents under consideration at any time to
a manageable level. As a result, we can scan very
large numbers of alignment patterns with relatively
little overhead.

119



As an example, consider the following sequence,
with context units underlined:

put thewhole egg ,all the seasonings andvegeta-
bles intothebowl andprocess for10 seconds until
smoothly pured .

This would be broken into non-recursive expres-
sions2:

(put) the (whole egg) , all the (seasonings) and (veg-
etables) into the (bowl) and (process) for (10 sec-
onds) until (smoothly pureed) .

These expressions will be replaced by non-terminal
unit representing the class of expressions, such that
each class contains all units across the corpus that
occur in the same context:

NT0 the NT1 , all the NT2 and NT3 into the NT2
and NT4 for NT5 until NT6 .

Following this generalization nested structures can
be discovered using the same process.

This approach has some interesting parallels with
chunking techniques, most notably that of function-
word phrase identification (Smith and Witten, 1993).
This similarity is enforced by disallowing nested
structures. Unlike chunking systems, however, this
work will also attempt to recover nested structures
by means of incremental learning.

4.1 Selecting alignment patterns

The direction process extracts a set of candidate
alignments, and from this set we select the best
alignment to rewrite as an equivalence class. Previ-
ous approaches offer a number of metrics for rank-
ing constituents, based around constituent or context
probability (ABL and CCM), Mutual Information
(CDC), and information gain (ADIOS). We have im-
plemented several of these metrics, but our expe-
riences suggest that context probability is the most
successful.

The probability of an alignment is effectively the
sum of all path probabilities through the alignment:

P (Cleft, Cright) = ΣP (pathleft,right) (2)

where eachpathleft,right is a unique word sequence
starting withleft and ending withright, under the

2For clarity, we have shown all alignments for the given sen-
tence simultaneously. However, the learning process is incre-
mental, so each alignment would be proposed during a distinct
learning iteration.

constraints on expressions described above. There is
an important practical issue here: probability sums
such as that in Equation 2 do not decrease when ex-
pressions are replaced with equivalence classes. To
alleviate this problem, we rewrite the units when up-
dating the distribution, but discard paths that match
the current alignment. This prevents looping while
allowing the rewritten paths to contribute to nested
structures.

4.2 Generalizing expression classes

The model outlined above is capable of learning
strictly context-sensitive constituents. While this
does allow for nested constituents, it is problematic
for generalization. Consider the following equiva-
lence classes, which are proposed relatively early in
Directed Alignment:

the NT1 of
the NT2 in

Here, the non-terminals have been assigned on the
basis of context-pairs: NT1 is defined by〈the− of〉
and NT2 is defined by〈the − in〉. These types are
distinct, although intuitively they account for simple
noun-phrases. If we then propose an alignment pat-
tern with NT1 asCleft, it must be followed by ‘of’,
which removes any possibility of generalizing ‘of’
and ‘in’.

We alleviate this problem by generalizing equiv-
alence classes, using a simple clustering algorithm.
For each new alignment, we compare the set of ex-
pressions with all existing expression classes, rank-
ing the comparisons by the degree of overlap with
the current alignment. If this degree of overlap ex-
ceeds a fixed threshold, the type of the existing class
is assumed; otherwise, a new class is created.

4.3 Experiments, results and analysis

To evaluate our algorithm, we follow the standard
approach of comparing the output of our system
with that of a treebank. We use the EVALB algo-
rithm, originally designed for evaluating supervised
parsing systems, with identical configuration to that
of (van Zaanen, 2000). However, we apply our algo-
rithms to a different corpus: the written sub-corpus
of the International Corpus of English, Great Britain
Component (henceforth ICE-GB), with punctuation
removed. This consists of 438342 words, in 22815
sentences. We also include a baseline instantiation
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System UP UR F1 CB
FWB 30.0 11.0 16.0 0.36
DA 23.3 8.0 11.9 0.30
DAcluster 23.6 8.1 12.0 0.30

Table 1: EVALB results after 500 iterations of Di-
rected Alignment applied to ICE-GB, showing both
context-sensitive (DA) and clustered (DAcluster)
alignment. The columns represent Unlabeled Preci-
sion, Unlabeled Recall, Unlabeled F-Score and the
proportion of sentence with crossing brackets re-
spectively.

of our algorithm, which chunks text into expres-
sions between function words, which we refer to as
Function-Word Bracketing (FWB).

Table 1 summarizes the EVALB scores for two
500-iteration runs of Directed Alignment over ICE-
GB: DA is the standard context-sensitive version of
the algorithm;DAcluster is the version with context
clustering. FWB precision is relatively low, with
only 30% of proposed structures appearing in the
treebank. Recall is even lower, with only 11% of
structure retrieved. This is unsurprising, as no nested
constructions are considered.

In comparison, both versions of Directed Align-
ment perform significantly worse, withDAcluster

being only fractionally better than standardDA. Ex-
periments over more learning iterations suggest that
the performance ofDA converges onFWB, with
few nested constituents discovered. Both variants
of the system produce very poor performance, with
very little nested structure recovered. While these
results seem discouraging, it is worth investigating
system performance further.

Table 2, summarizes the success of the algorithm
at discovering different types of constituent. Note
that these results are unlabeled, so we are examining
the proportion of each type of constituent in ICE-
GB that has been identified. Here, Directed Align-
ment exhibits the most success at identifying non-
clauses, of which the primary source of success is
short sentence fragments. Around 10% of noun-
phrases (NP), verb-phrases (VP) and subordinate-
phrases (SUBP) were recovered, this limited suc-
cess reflects the nature of the constituents: all three
have relatively simple constructions, whereby a sin-
gle word represents the constituent. In contrast, con-

Recall (%)
Category Frequency FWB DA DAcluster

NP 117776 11.81 10.83 10.79
CL 28641 0.50 1.21 1.14
VP 50280 20.88 9.58 9.89
PP 42134 0.10 0.67 0.73

SUBP 7474 1.10 11.05 11.15
NONCL 1919 4.27 22.98 22.98

Table 2: Constituent retrieval results for Function-
Word Bracketing (FWB) and Directed Alignment
(DA andDAcluster), categorized by gold-type

(a) DA, top 5 noun-matches of
271

Learned Recall Precision
NT0 4.61 84.53
NT5 1.58 93.44
NT7 1.36 87.14
NT4 1.09 75.10
NT10 0.82 84.54

(b) DAcluster, top 5 noun-
matches of 135

Learned Recall Precision
NT0 6.93 87.09
NT4 6.48 89.91
NT8 2.62 40.48
NT11 0.86 68.60
NT10 0.58 16.95

Table 3: The top five expression classes to match N
(noun) in ICE-GB, ranked by recall.

stituent types that comprise multiple units, such as
prepositional-phrases (PP), are seldom recovered.

4.3.1 Class generalization

During learning inDAcluster, we induce gener-
alized classes using the expression clustering algo-
rithm. This generalization can be evaluated, com-
paring induced classes with those in the treebank us-
ing precision and recall. Table 2(a) shows the top
five proposed classes matching the type noun (N)
in ICE-GB during 500 iterations of context-sensitive
Directed Alignment. There are 271 types matching
noun, and as can be seen, the top five account for
a very small proportion of all nouns, some 9.46%
(recall).

Table 2(b) shows the same analysis for Directed
Alignment with class generalization. For noun
matches, we can see that there are far fewer pro-
posed classes (135), and that those classes are much
more probable, the top five accounting for 17.47%
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(a) Noun Phrases (frequency=123870)
LEFT START END RIGHT

SYMB REC SYMB REC SYMB REC SYMB REC
PREP 0.36 ART 0.29 N 0.53 PUNC 0.36
V 0.19 PRON 0.29 PRON 0.19 V 0.18
#STA# 0.12 N 0.2 N 2 0.11 AUX 0.13
CONJ 0.11 N 1 0.06 PUNC 0.06 CONJ 0.09
PUNC 0.09 ADJ 0.06 NUM 0.04 PREP 0.07

(b) Verb Phrases (frequency=50693)
Left Start End Right

SYMB REC SYMB REC SYMB REC SYMB REC
PRON 0.32 V 0.68 V 0.98 PREP 0.20
N 0.26 AUX 0.29 PUNC 0.01 ART 0.16
PTCL 0.11 AUX 1 0.02 AUX 0.00 PRON 0.14
PUNC 0.06 V 1 0.00 V 2 0.00 ADV 0.13
CONJ 0.05 ADV 0.00 ADV 0.00 ADJ 0.09

(c) Prepositional Phrases (frequency=45777)
Left Start End Right

SYMB REC SYMB REC SYMB REC SYMB REC
N 0.46 PREP 0.96 N 0.63 PUNC 0.56
V 0.23 PREP1 0.02 N 2 0.12 CONJ 0.09
ADV 0.05 ADV 0.01 PUNC 0.08 PREP 0.09
PUNC 0.05 NUM 0.00 PRON 0.05 V 0.07
ADJ 0.04 ADV 1 0.00 NUM 0.03 AUX 0.05

Table 4: The five most frequent left/start/end/right
POS contexts for NP, VP and PP constituents.

of nouns in ICE-GB. The algorithm seems to be
achieving some worthwhile generalization, which
is reflected in a slight increase in EVALB scores
for DAcluster. However, this increase is not a sig-
nificant one, suggesting that this generalization is
not sufficient to support distributional learning. We
might expect this: attempting to cluster based on
the low-frequency and polysemous words in expres-
sions seems likely to produce unreliable clusters.

5 A closer look at distributional contexts

The results discussed so far seem discouraging for
the approach. However, there are good reasons why
these results are so poor, and why we can expect
little improvement in the current formulation. We
can show some of these reasons by examining ac-
tual constituent-context distributions.

Table 4 shows an analysis of the constituent
types NP, VP and PP in ICE-GB, against the five
most frequent POS tags3 occurring as left-context,
constituent-start, constituent-end, and right-context.
We distinguish the following POS categories as be-
ing primarily functional, as they account for the ma-
jority of context-units considered by Directed Align-
ment: prepositions (PREP), articles (ART), aux-

3The same trends can be shown for words, but a POS analy-
sis is preferred for clarity and brevity.

iliaries (AUX), sentence-starts (#STA#), pronouns
(PRON), conjunctions (CONJ), particles (PTCL)
and punctuation (PUNC).

From Table 4, we can see that noun-phrases and
verb-phrases are relatively well-suited to our ap-
proach. First, both types have strong functional
left- and right-contexts: 58% of NP left-contexts and
50% of NP right-contexts are members of our func-
tional POS; similarly, 43% of VP left-contexts and
49% of VP right-contexts are functional. This means
that a probability-based model of context, such as
ours, will find relatively strong support for these
types. Second, both NP and VP have minimal unit
types: nouns and pronouns for NP; verbs for VP. As
a consequence, these types tend to carry more proba-
bility mass, since shorter sequences tend to be more
frequent. We should expect our system to perform
reasonably on NP and VP as a result.

In contrast, prepositional-phrases are much less
amenable to distributional analysis. First, PP tend
to be longer, since they contain NP, and this has
obvious repercussions for alignment probabilities.
More damagingly, PP contexts are dominated by
open-class words - the top 74% of PP left-contexts
are nouns, verbs and adverbs. Therefore, a purely
probabilistic distributional approach cannot account
for prepositional-phrases, since learning data is too
sparse. Previous approaches have relied upon open-
class generalization to reduce this problem, but these
methods suffer from the same problems of data spar-
sity, and as such are not reliable enough to resolve
the issue.

6 Attachment

We have seen that strictly probabilistic distribu-
tional analysis is not sufficient to learn constituents
from raw text. If we are to improve upon this, we
must find a way to identify constituents from their
component parts, as well as by contextual analy-
sis. The constituent-context distributions in Table 4
give us some clues as to where to start: both noun-
phrases and prepositional-phrases show very signif-
icant constituent-starts, with articles and pronouns
starting 58% of NP, and prepositions starting 94%
of all PP. These functional types would be identified
as contexts in Directed Alignment, but the strong re-
lation to their containing constituents would be ig-
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nored.
One method for achieving such an internal rela-

tionship might be to attach contexts to the expres-
sions with which they co-occur, and we propose us-
ing such a method here. However, this requires that
we have some criterion for deciding when and how
expressions should be attached to their contexts. We
use a measure based on STOP arguments (Collins,
1999), which allows us to condition the decision to
insert a constituent boundary on the evidence we see
for doing so. For raw text, the only boundaries that
are explicitly marked are at the start and end of sen-
tences, and it is this information we use to decide
when to attach contexts to expressions4. In other
words, if a context is likely to start a sentence, we
assume it is also likely to start a constituent at other
positions within a sentence.

In order to calculate the likelihood of a particu-
lar context wordw occurring at the start or end of a
sentence, we simply use the bigram probabilities be-
tweenw and the special symbols START and END,
which denote the start and end of a sentence respec-
tively. From these probabilities, we calculate Mutual
Information MI(START,w) andMI(w,END).
We prefer MI because it describes the strength of
the relation betweenw and these special symbols
without bias towards more probable words. From
these MI values, we calculate aDirectional Prefer-
ence (DP) for the context word:

dp(w) = MI(w,END) −MI(START,w) (3)

This yields a number representing whetherw is
more likely to start or end a sentence. This num-
ber will be zero if we are equally likely to seew at
the start or end of a sentence, negative ifw is more
likely to start a sentence, and positive ifw is is more
likely to end a sentence.

Using DP, we can decide how to attach an expres-
sion to its contexts. For a given alignment, we con-
sider the possibility of attaching the expression to
neither context, the left-context, or the right-context,
by comparing the DP for the left- and right-contexts.
If the left-context shows a strong tendency to start
sentences, and the right-context does not show a

4For this method to work, we assume that our corpus is seg-
mented into sentences. This is not the case for speech, but for
learning from text it seems a reasonable assumption.

System UP UR F1 CB
DASTOP 33.6 14.1 19.8 0.42

Table 5: EVALB results after 500 iterations of Di-
rected Alignment with STOP attachment applied to
ICE-GB (DASTOP ).

Category Frequency Recall (%)
NP 117776 18.11
VP 50280 9.78
PP 42134 18.19
CL 28641 2.97

SUBP 7474 12.82
NONCL 1919 22.62

Table 6: Constituent retrieval results forDASTOP ,
categorized by gold-type

strong tendency to end sentences (i.e. there is an
overall DP is negative), we attach the expression to
its left-context; if the reverse situation is true, we at-
tach the expression to its right context. Should the
difference between these DP fall below a threshold,
neither context is preferred, and the expression re-
mains unattached.

Let us consider a specific example of attachment.
The first alignment considered by the system (when
applied to ICE-GB) is:

the NT1 of

Here, we need to compare the likelihood of seeing a
constituent start with ‘the’ with with the likelihood
of seeing a constituent end with ‘of’. Intuitively,
‘the’ occurs frequently at the start of a sentence, and
never at the end. Consequently, it has a high neg-
ative DP. Meanwhile ‘of’ has a small negative DP.
In combination, there is a high negative DP, so we
attach the expression to the left-context, ‘the’.

6.1 Experimental Analysis

We applied Directed Alignment with attachment
based on STOP arguments (DASTOP ) to ICE-GB
as before, running for 500 iterations. These results
are shown in Table 5. The results are encouraging.
Unlabeled precision increased by almost 50%, from
23.6% forDAcluster to 33.6%. Likewise, system re-
call increased dramatically, from 8.1% to 14.1%, up
some 75%. Crossing-brackets increased slightly, but
remained relatively low at 0.42.

Table 6 shows the breakdown of EVALB scores
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for the major non-terminal types, as before. The
improvement in EVALB scores is attributable
to a marked increase in success at identifying
prepositional-phrases, with a lesser increase in
noun-phrase identification.

6.2 Discussion

The attachment procedure described above is more
successful at discovering nested constituents than
distributional methods. There are good reasons why
this should be the case. First, attachment compresses
the corpus, removing the bias towards shorter se-
quences. Indeed, the algorithm seems capable of
retrieving complex constituents of up to ten words
in length during the first 500 iterations.

Second, the STOP-conditioning criterion, while
somewhatad hoc in relation to distributional meth-
ods, allows us to assess where constituent bound-
aries are likely to occur. As such, this can be seen
as a rudimentary method for establishing argument
relations, such as those observed in (Klein, 2005,
Chapter 6).

Despite these improvements, the attachment pro-
cess also makes some systematic mistakes. Some of
these may be attributed to discrepancies between the
syntactic theory used to annotate the treebank and
the attachment process. For example, verbs are rou-
tinely attached to their subjects before objects, con-
tradicting the more traditional interpretation present
in treebanks. Some of the remaining mistakes can
be attributed to the misalignment, due to the ortho-
graphic match problem described in Section 3.

7 Future Work

The major problem when applying distributional
methods to raw text is that of orthographic match-
ing, which causes misalignments between alterna-
tive senses of a particular word-form. To reduce this
problem, context-units must be classified in some
way to disambiguate these different senses. Such
classification could be used as a precursor to align-
ment in the system we have described.

In addition, to better evaluate the quality of at-
tachment, dependency representations and treebanks
could be used, which do not have an explicit order on
attachment. This would give a more accurate evalu-
ation where subject-verb attachment is concerned.

8 Conclusions

We have presented an incremental grammar induc-
tion system that uses heuristics to improve the effi-
ciency of distributional learning. However, in tests
over a large corpus, we have shown that it is capable
of learning only a small subset of constituent struc-
ture. We have analyzed actual constituent-context
distributions to explain these limitations. This anal-
ysis provides the motivation for a more structured
learning method, which incorporates knowledge of
verifiable constituent boundaries - the starts and
ends of sentences. This improved system performs
significantly better, with a 75% increase in recall
over distributional methods, and a significant im-
provement at retrieving structures that are problem-
atic for distributional methods alone.
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Abstract

We present a simple context-free gram-
matical inference algorithm, and prove
that it is capable of learning an inter-
esting subclass of context-free languages.
We also demonstrate that an implementa-
tion of this algorithm is capable of learn-
ing auxiliary fronting in polar interroga-
tives (AFIPI) in English. This has been
one of the most important test cases in
language acquisition over the last few
decades. We demonstrate that learning
can proceed even in the complete absence
of examples of particular constructions,
and thus that debates about the frequency
of occurrence of such constructions are ir-
relevant. We discuss the implications of
this on the type of innate learning biases
that must be hypothesized to explain first
language acquisition.

1 Introduction

For some years, a particular set of examples has
been used to provide support for nativist theories
of first language acquisition (FLA). These exam-
ples, which hinge around auxiliary inversion in the
formation of questions in English, have been con-
sidered to provide a strong argument in favour of
the nativist claim: that FLA proceeds primarily
through innately specified domain specific mecha-
nisms or knowledge, rather than through the oper-
ation of general-purpose cognitive mechanisms. A

key point of empirical debate is the frequency of oc-
currence of the forms in question. If these are van-
ishingly rare, or non-existent in the primary linguis-
tic data, and yet children acquire the construction in
question, then the hypothesis that they have innate
knowledge would be supported. But this rests on the
assumption that examples of that specific construc-
tion are necessary for learning to proceed. In this
paper we show that this assumption is false: that this
particular construction can be learned without the
learner being exposed to any examples of that par-
ticular type. Our demonstration is primarily mathe-
matical/computational: we present a simple experi-
ment that demonstrates the applicability of this ap-
proach to this particular problem neatly, but the data
we use is not intended to be a realistic representation
of the primary linguistic data, nor is the particular
algorithm we use suitable for large scale grammar
induction.

We present a general purpose context-free gram-
matical algorithm that is provably correct under a
certain learning criterion. This algorithm incorpo-
rates no domain specific knowledge: it has no spe-
cific information about language; no knowledge of
X-bar schemas, no hidden sources of information to
reveal the structure. It operates purely on unanno-
tated strings of raw text. Obviously, as all learn-
ing algorithms do, it has an implicit learning bias.
This very simple algorithm has a particularly clear
bias, with a simple mathematical description, that al-
lows a remarkably simple characterisation of the set
of languages that it can learn. This algorithm does
not use a statistical learning paradigm that has to be
tested on large quantities of data. Rather it uses a
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symbolic learning paradigm, that works efficiently
with very small quantities of data, while being very
sensitive to noise. We discuss this choice in some
depth below.

For reasons that were first pointed out by Chom-
sky (Chomsky, 1975, pages 129–137), algorithms
of this type are not capable of learning all of nat-
ural language. It turns out, however, that algorithms
based on this approach are sufficiently strong to
learn some key properties of language, such as the
correct rule for forming polar questions.

In the next section we shall describe the dispute
briefly; in the subsequent sections we will describe
the algorithm we use, and the experiments we have
performed.

2 The Dispute

We will present the dispute in traditional terms,
though later we shall analyse some of the assump-
tions implicit in this description. In English, po-
lar interrogatives (yes/no questions) are formed by
fronting an auxiliary, and adding a dummy auxiliary
“do” if the main verb is not an auxiliary. For exam-
ple,

Example 1a The man is hungry.

Example 1b Is the man hungry?
When the subject NP has a relative clause that also

contains an auxiliary, the auxiliary that is moved is
not the auxiliary in the relative clause, but the one in
the main (matrix) clause.

Example 2a The man who is eating is hungry.

Example 2b Is the man who is eating hungry?
An alternative rule would be to move the first oc-

curring auxiliary, i.e. the one in the relative clause,
which would produce the form

Example 2c Is the man who eating is hungry?
In some sense, there is no reason that children

should favour the correct rule, rather than the in-
correct one, since they are both of similar com-
plexity and so on. Yet children do in fact, when
provided with the appropriate context, produce sen-
tences of the form of Example 2b, and rarely if ever
produce errors of the form Example 2c (Crain and
Nakayama, 1987). The problem is how to account
for this phenomenon.

Chomsky claimed first, that sentences of the type
in Example 2b are vanishingly rare in the linguis-
tic environment that children are exposed to, yet
when tested they unfailingly produce the correct
form rather than the incorrect Example 2c. This is
put forward as strong evidence in favour of innately
specified language specific knowledge: we shall re-
fer to this view as linguistic nativism.

In a special volume of the Linguistic Review, Pul-
lum and Scholz (Pullum and Scholz, 2002), showed
that in fact sentences of this type are not rare at all.
Much discussion ensued on this empirical question
and the consequences of this in the context of ar-
guments for linguistic nativism. These debates re-
volved around both the methodology employed in
the study, and also the consequences of such claims
for nativist theories. It is fair to say that in spite
of the strength of Pullum and Scholz’s arguments,
nativists remained completely unconvinced by the
overall argument.

(Reali and Christiansen, 2004) present a possible
solution to this problem. They claim that local statis-
tics, effectively n-grams, can be sufficient to indi-
cate to the learner which alternative should be pre-
ferred. However this argument has been carefully re-
butted by (Kam et al., 2005), who show that this ar-
gument relies purely on a phonological coincidence
in English. This is unsurprising since it is implausi-
ble that a flat, finite-state model should be powerful
enough to model a phenomenon that is clearly struc-
ture dependent in this way.

In this paper we argue that the discussion about
the rarity of sentences that exhibit this particular
structure is irrelevant: we show that simple gram-
matical inference algorithms can learn this property
even in the complete absence of sentences of this
particular type. Thus the issue as to how frequently
an infant child will see them is a moot point.

3 Algorithm

Context-free grammatical inference algorithms are
explored in two different communities: in gram-
matical inference and in NLP. The task in NLP is
normally taken to be one of recovering appropri-
ate annotations (Smith and Eisner, 2005) that nor-
mally represent constituent structure (strong learn-
ing), while in grammatical inference, researchers
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are more interested in merely identifying the lan-
guage (weak learning). In both communities, the
best performing algorithms that learn from raw posi-
tive data only 1, generally rely on some combination
of three heuristics: frequency, information theoretic
measures of constituency, and finally substitutabil-
ity. 2 The first rests on the observation that strings
of words generated by constituents are likely to oc-
cur more frequently than by chance. The second
heuristic looks for information theoretic measures
that may predict boundaries, such as drops in condi-
tional entropy. The third method which is the foun-
dation of the algorithm we use, is based on the distri-
butional analysis of Harris (Harris, 1954). This prin-
ciple has been appealed to by many researchers in
the field of grammatical inference, but these appeals
have normally been informal and heuristic (van Za-
anen, 2000).

In its crudest form we can define it as follows:
given two sentences “I saw a cat over there”, and “I
saw a dog over there” the learner will hypothesize
that “cat” and “dog” are similar, since they appear
in the same context “I saw a __ there”. Pairs of
sentences of this form can be taken as evidence that
two words, or strings of words are substitutable.

3.1 Preliminaries

We briefly define some notation.
An alphabet Σ is a finite nonempty set of sym-

bols called letters. A string w over Σ is a finite se-
quence w = a1a2 . . . an of letters. Let |w| denote
the length of w. In the following, letters will be in-
dicated by a, b, c, . . ., strings by u, v, . . . , z, and the
empty string by λ. Let Σ∗ be the set of all strings,
the free monoid generated by Σ. By a language we
mean any subset L ⊆ Σ∗. The set of all substrings
of a language L is denoted Sub(L) = {u ∈ Σ+ :
∃l, r, lur ∈ L} (notice that the empty word does not
belong to Sub(L)). We shall assume an order ≺ or
� on Σ which we shall extend to Σ∗ in the normal
way by saying that u ≺ v if |u| < |v| or |u| = |v|
and u is lexicographically before v.

A grammar is a quadruple G = 〈V, Σ, P, S〉
where Σ is a finite alphabet of terminal symbols, V

1We do not consider in this paper the complex and con-
tentious issues around negative data.

2For completeness we should include lexical dependencies
or attraction.

is a finite alphabet of variables or non-terminals, P
is a finite set of production rules, and S ∈ V is a
start symbol.

If P ⊆ V × (Σ∪V )+ then the grammar is said to
be context-free (CF), and we will write the produc-
tions as T → w.

We will write uTv ⇒ uwv when T → w ∈ P .
∗

⇒ is the reflexive and transitive closure of ⇒.
In general, the definition of a class L relies on

a class R of abstract machines, here called rep-
resentations, together with a function L from rep-
resentations to languages, that characterize all and
only the languages of L: (1) ∀R ∈ R,L(R) ∈ L
and (2) ∀L ∈ L, ∃R ∈ R such that L(R) = L.
Two representations R1 and R2 are equivalent iff
L(R1) = L(R2).

3.2 Learning

We now define our learning criterion. This is identi-
fication in the limit from positive text (Gold, 1967),
with polynomial bounds on data and computation,
but not on errors of prediction (de la Higuera, 1997).

A learning algorithm A for a class of represen-
tations R, is an algorithm that computes a function
from a finite sequence of strings s1, . . . , sn toR. We
define a presentation of a language L to be an infinite
sequence of elements of L such that every element
of L occurs at least once. Given a presentation, we
can consider the sequence of hypotheses that the al-
gorithm produces, writing Rn = A(s1, . . . sn) for
the nth such hypothesis.

The algorithm A is said to identify the class R in
the limit if for every R ∈ R, for every presentation
of L(R), there is an N such that for all n > N ,
Rn = RN and L(R) = L(RN ).

We further require that the algorithm needs only
polynomially bounded amounts of data and compu-
tation. We use the slightly weaker notion defined by
de la Higuera (de la Higuera, 1997).

Definition A representation class R is identifiable
in the limit from positive data with polynomial time
and data iff there exist two polynomials p(), q() and
an algorithm A such that S ⊆ L(R)

1. Given a positive sample S of size m A returns
a representation R ∈ R in time p(m), such that

2. For each representation R of size n there exists
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a characteristic set CS of size less than q(n)
such that if CS ⊆ S, A returns a representation
R′ such that L(R) = L(R′).

3.3 Distributional learning

The key to the Harris approach for learning a lan-
guage L, is to look at pairs of strings u and v and to
see whether they occur in the same contexts; that is
to say, to look for pairs of strings of the form lur and
lvr that are both in L. This can be taken as evidence
that there is a non-terminal symbol that generates
both strings. In the informal descriptions of this that
appear in Harris’s work, there is an ambiguity be-
tween two ideas. The first is that they should appear
in all the same contexts; and the second is that they
should appear in some of the same contexts. We can
write the first criterion as follows:

∀l, r lur ∈ L if and only if lvr ∈ L (1)

This has also been known in language theory by the
name syntactic congruence, and can be written u ≡L

v.
The second, weaker, criterion is

∃l, r lur ∈ L and lvr ∈ L (2)

We call this weak substitutability and write it as
u

.
=L v. Clearly u ≡L v implies u

.
=L v when u is

a substring of the language. Any two strings that do
not occur as substrings of the language are obviously
syntactically congruent but not weakly substitutable.

First of all, observe that syntactic congruence is a
purely language theoretic notion that makes no ref-
erence to the grammatical representation of the lan-
guage, but only to the set of strings that occur in
it. However there is an obvious problem: syntac-
tic congruence tells us something very useful about
the language, but all we can observe is weak substi-
tutability.

When working within a Gold-style identification
in the limit (IIL) paradigm, we cannot rely on statis-
tical properties of the input sample, since they will
in general not be generated by random draws from a
fixed distribution. This, as is well known, severely
limits the class of languages that can be learned un-
der this paradigm. However, the comparative sim-
plicity of the IIL paradigm in the form when there
are polynomial constraints on size of characteristic

sets and computation(de la Higuera, 1997) makes it
a suitable starting point for analysis.

Given these restrictions, one solution to this prob-
lem is simply to define a class of languages where
substitutability implies congruence. We call these
the substitutable languages: A language L is substi-
tutable if and only if for every pair of strings u, v,
u

.
=L v implies u ≡L v. This rather radical so-

lution clearly rules out the syntax of natural lan-
guages, at least if we consider them as strings of
raw words, rather than as strings of lexical or syn-
tactic categories. Lexical ambiguity alone violates
this requirement: consider the sentences “The rose
died”, “The cat died” and “The cat rose from its bas-
ket”. A more serious problem is pairs of sentences
like “John is hungry” and “John is running”, where
it is not ambiguity in the syntactic category of the
word that causes the problem, but rather ambigu-
ity in the context. Using this assumption, whether
it is true or false, we can then construct a simple
algorithm for grammatical inference, based purely
on the idea that whenever we find a pair of strings
that are weakly substitutable, we can generalise the
hypothesized language so that they are syntactically
congruent.

The algorithm proceeds by constructing a graph
where every substring in the sample defines a node.
An arc is drawn between two nodes if and only if
the two nodes are weakly substitutable with respect
to the sample, i.e. there is an arc between u and v if
and only if we have observed in the sample strings
of the form lur and lvr. Clearly all of the strings in
the sample will form a clique in this graph (consider
when l and r are both empty strings). The connected
components of this graph can be computed in time
polynomial in the total size of the sample. If the
language is substitutable then each of these compo-
nents will correspond to a congruence class of the
language.

There are two ways of doing this: one way, which
is perhaps the purest involves defining a reduction
system or semi-Thue system which directly captures
this generalisation process. The second way, which
we present here, will be more familiar to computa-
tional linguists, and involves constructing a gram-
mar.
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3.4 Grammar construction

Simply knowing the syntactic congruence might not
appear to be enough to learn a context-free gram-
mar, but in fact it is. In fact given the syntactic con-
gruence, and a sample of the language, we can sim-
ply write down a grammar in Chomsky normal form,
and under quite weak assumptions this grammar will
converge to a correct grammar for the language.

This construction relies on a simple property of
the syntactic congruence, namely that is in fact a
congruence: i.e.,

u ≡L v implies ∀l, r lur ≡L lvr

We define the syntactic monoid to be the quo-
tient of the monoid Σ∗/ ≡L. The monoid operation
[u][v] = [uv] is well defined since if u ≡L u′ and
v ≡L v′ then uv ≡L u′v′.

We can construct a grammar in the following triv-
ial way, from a sample of strings where we are given
the syntactic congruence.

• The non-terminals of the grammar are iden-
tified with the congruence classes of the lan-
guage.

• For any string w = uv , we add a production
[w] → [u][v].

• For all strings a of length one (i.e. letters of Σ),
we add productions of the form [a] → a.

• The start symbol is the congruence class which
contains all the strings of the language.

This defines a grammar in CNF. At first sight, this
construction might appear to be completely vacu-
ous, and not to define any strings beyond those in
the sample. The situation where it generalises is
when two different strings are congruent: if uv =
w ≡ w′ = u′v′ then we will have two different rules
[w] → [u][v] and [w] → [u′][v′], since [w] is the
same non-terminal as [w′].

A striking feature of this algorithm is that it makes
no attempt to identify which of these congruence
classes correspond to non-terminals in the target
grammar. Indeed that is to some extent an ill-posed
question. There are many different ways of assign-
ing constituent structure to sentences, and indeed

some reputable theories of syntax, such as depen-
dency grammars, dispense with the notion of con-
stituent structure all together. De facto standards,
such as the Penn treebank annotations are a some-
what arbitrary compromise among many different
possible analyses. This algorithm instead relies on
the syntactic monoid, which expresses the combina-
torial structure of the language in its purest form.

3.5 Proof

We will now present our main result, with an outline
proof. For a full proof the reader is referred to (Clark
and Eyraud, 2005).

Theorem 1 This algorithm polynomially identi-
fies in the limit the class of substitutable context-free
languages.

Proof (Sketch) We can assume without loss of
generality that the target grammar is in Chomsky
normal form. We first define a characteristic set, that
is to say a set of strings such that whenever the sam-
ple includes the characteristic set, the algorithm will
output a correct grammar.

We define w(α) ∈ Σ∗ to be the smallest word,
according to ≺, generated by α ∈ (Σ ∪ V )+. For
each non-terminal N ∈ V define c(N) to be the
smallest pair of terminal strings (l, r) (extending ≺
from Σ∗ to Σ∗ × Σ∗, in some way), such that S

∗

⇒
lNr.

We can now define the characteristic set CS =
{lwr|(N → α) ∈ P, (l, r) = c(N), w = w(α)}.
The cardinality of this set is at most |P | which
is clearly polynomially bounded. We observe that
the computations involved can all be polynomially
bounded in the total size of the sample.

We next show that whenever the algorithm en-
counters a sample that includes this characteristic
set, it outputs the right grammar. We write Ĝ for
the learned grammar. Suppose [u]

∗

⇒
Ĝ

v. Then
we can see that u ≡L v by induction on the max-
imum length of the derivation of v. At each step
we must use some rule [u′] ⇒ [v′][w′]. It is easy
to see that every rule of this type preserves the syn-
tactic congruence of the left and right sides of the
rules. Intuitively, the algorithm will never generate
too large a language, since the languages are sub-
stitutable. Conversely, if we have a derivation of a
string u with respect to the target grammar G, by
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construction of the characteristic set, we will have,
for every production L → MN in the target gram-
mar, a production in the hypothesized grammar of
the form [w(L)] → [w(M)][w(N)], and for every
production of the form L → a we have a produc-
tion [w(L)] → a. A simple recursive argument
shows that the hypothesized grammar will generate
all the strings in the target language. Thus the gram-
mar will generate all and only the strings required
(QED).

3.6 Related work

This is the first provably correct and efficient gram-
matical inference algorithm for a linguistically in-
teresting class of context-free grammars (but see for
example (Yokomori, 2003) on the class of very sim-
ple grammars). It can also be compared to An-
gluin’s famous work on reversible grammars (An-
gluin, 1982) which inspired a similar paper(Pilato
and Berwick, 1985).

4 Experiments

We decided to see whether this algorithm without
modification could shed some light on the debate
discussed above. The experiments we present here
are not intended to be an exhaustive test of the learn-
ability of natural language. The focus is on deter-
mining whether learning can proceed in the absence
of positive samples, and given only a very weak gen-
eral purpose bias.

4.1 Implementation

We have implemented the algorithm described
above. There are a number of algorithmic issues
that were addressed. First, in order to find which
pairs of strings are substitutable, the naive approach
would be to compare strings pairwise which would
be quadratic in the number of sentences. A more
efficient approach maintains a hashtable mapping
from contexts to congruence classes. Caching hash-
codes, and using a union-find algorithm for merging
classes allows an algorithm that is effectively linear
in the number of sentences.

In order to handle large data sets with thousands
of sentences, it was necessary to modify the al-
gorithm in various ways which slightly altered its
formal properties. However for the experiments
reported here we used a version which performs

the man who is hungry died .
the man ordered dinner .
the man died .
the man is hungry .
is the man hungry ?
the man is ordering dinner .
is the man who is hungry ordering dinner ?
∗is the man who hungry is ordering dinner ?

Table 1: Auxiliary fronting data set. Examples
above the line were presented to the algorithm dur-
ing the training phase, and it was tested on examples
below the line.

exactly in line with the mathematical description
above.

4.2 Data

For clarity of exposition, we have used extremely
small artificial data-sets, consisting only of sen-
tences of types that would indubitably occur in the
linguistic experience of a child.

Our first experiments were intended to determine
whether the algorithm could determine the correct
form of a polar question when the noun phrase had a
relative clause, even when the algorithm was not ex-
posed to any examples of that sort of sentence. We
accordingly prepared a small data set shown in Ta-
ble 1. Above the line is the training data that the
algorithm was trained on. It was then tested on all of
the sentences, including the ones below the line. By
construction the algorithm would generate all sen-
tences it has already seen, so it scores correctly on
those. The learned grammar also correctly generated
the correct form and did not generate the final form.

We can see how this happens quite easily since the
simple nature of the algorithm allows a straightfor-
ward analysis. We can see that in the learned gram-
mar “the man” will be congruent to “the man who
is hungry”, since there is a pair of sentences which
differ only by this. Similarly, “hungry” will be con-
gruent to “ordering dinner”. Thus the sentence “is
the man hungry ?” which is in the language, will be
congruent to the correct sentence.

One of the derivations for this sentence would be:
[is the man hungry ?] → [is the man hungry] [?] →
[is the man] [hungry] [?] → [is] [the man] [hungry]
[?] → [is] [the man][who is hungry] [hungry] [?] →
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it rains
it may rain
it may have rained
it may be raining
it has rained
it has been raining
it is raining
it may have been raining
∗it may have been rained
∗it may been have rain
∗it may have been rain

Table 2: English auxiliary data. Training data above
the line, and testing data below.

[is] [the man][who is hungry] [ordering dinner] [?].
Our second data set is shown in Table 2, and is a

fragment of the English auxiliary system. This has
also been claimed to be evidence in favour of na-
tivism. This was discussed in some detail by (Pilato
and Berwick, 1985). Again the algorithm correctly
learns.

5 Discussion

Chomsky was among the first to point out the limi-
tations of Harris’s approach, and it is certainly true
that the grammars produced from these toy exam-
ples overgenerate radically. On more realistic lan-
guage samples this algorithm would eventually start
to generate even the incorrect forms of polar ques-
tions.

Given the solution we propose it is worth look-
ing again and examining why nativists have felt that
AFIPI was such an important issue. It appears that
there are several different areas. First, the debate
has always focussed on how to construct the inter-
rogative from the declarative form. The problem
has been cast as finding which auxilary should be
“moved”. Implicit in this is the assumption that the
interrogative structure must be defined with refer-
ence to the declarative, one of the central assump-
tions of traditional transformational grammar. Now,
of course, given our knowledge of many differ-
ent formalisms which can correctly generate these
forms without movement we can see that this as-
sumption is false. There is of course a relation be-
tween these two sentences, a semantic one, but this

does not imply that there need be any particular syn-
tactic relation, and certainly not a “generative” rela-
tion.

Secondly, the view of learning algorithms is very
narrow. It is considered that only sentences of that
exact type could be relevant. We have demonstrated,
if nothing else, that that view is false. The distinction
can be learnt from a set of data that does not include
any example of the exact piece of data required: as
long as the various parts can be learned separately,
the combination will function in the natural way.

A more interesting question is the extent to which
the biases implicit in the learning algorithm are do-
main specific. Clearly the algorithm has a strong
bias. It overgeneralises massively. One of the advan-
tages of the algorithm for the purposes of this paper
is that its triviality allows a remarkably clear and ex-
plicit statement of its bias. But is this bias specific to
the domain of language? It in no way refers to any-
thing specific to the field of language, still less spe-
cific to human language – no references to parts of
speech, or phrases, or even hierarchical phrase struc-
ture. It is now widely recognised that this sort of re-
cursive structure is domain-general (Jackendoff and
Pinker, 2005).

We have selected for this demonstration an algo-
rithm from grammatical inference. A number of sta-
tistical models have been proposed over the last few
years by researchers such as (Klein and Manning,
2002; Klein and Manning, 2004) and (Solan et al.,
2005). These models impressively manage to ex-
tract significant structure from raw data. However,
for our purposes, neither of these models is suitable.
Klein and Manning’s model uses a variety of differ-
ent cues, which combine with some specific initial-
isation and smoothing, and an explicit constraint to
produce binary branching trees. Though very im-
pressive, the model is replete with domain-specific
biases and assumptions. Moreover, it does not learn
a language in the strict sense (a subset of the set of
all strings), though it would be a simple modification
to make it perform such a task. The model by Solan
et al. would be more suitable for this task, but again
the complexity of the algorithm, which has numer-
ous components and heuristics, and the lack of a the-
oretical justification for these heuristics again makes
the task of identifying exactly what these biases are,
and more importantly how domain specific they are,

131



a very significant problem.
In this model, the bias of the algorithm is com-

pletely encapsulated in the assumption u
.
= v im-

plies u ≡ v. It is worth pointing out that this does
not even need hierarchical structure – the model
could be implemented purely as a reduction system
or semi-Thue system. The disadvantage of using
that approach is that it is possible to construct some
bizarre examples where the number of reductions
can be exponential.

Using statistical properties of the set of strings,
it is possible to extend these learnability results to
a more substantial class of context free languages,
though it is unlikely that these methods could be ex-
tended to a class that properly contains all natural
languages.

6 Conclusion

We have presented an analysis of the argument that
the acquisition of auxiliary fronting in polar inter-
rogatives supports linguistic nativism. Using a very
simple algorithm based on the ideas of Zellig Har-
ris, with a simple domain-general heuristic, we show
that the empirical question as to the frequency of oc-
currence of polar questions of a certain type in child-
directed speech is a moot point, since the distinction
in question can be learned even when no such sen-
tences occur.
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Abstract

Much work on information extraction has
successfully used gazetteers to recognise
uncommon entities that cannot be reliably
identified from local context alone. Ap-
proaches to such tasks often involve the
use of maximum entropy-style models,
where gazetteers usually appear as highly
informative features in the model. Al-
though such features can improve model
accuracy, they can also introduce hidden
negative effects. In this paper we de-
scribe and analyse these effects and sug-
gest ways in which they may be overcome.
In particular, we show that by quarantin-
ing gazetteer features and training them
in a separate model, then decoding using
a logarithmic opinion pool (Smith et al.,
2005), we may achieve much higher accu-
racy. Finally, we suggest ways in which
other features with gazetteer feature-like
behaviour may be identified.

1 Introduction

In recent years discriminative probabilistic models
have been successfully applied to a number of infor-
mation extraction tasks in natural language process-
ing (NLP), such as named entity recognition (NER)
(McCallum and Li, 2003), noun phrase chunking
(Sha and Pereira, 2003) and information extraction
from research papers (Peng and McCallum, 2004).
Discriminative models offer a significant advantage

over their generative counterparts by allowing the
specification of powerful, possibly non-independent
features which would be difficult to tractably encode
in a generative model.

In a task such as NER, one sometimes encoun-
ters an entity which is difficult to identify using lo-
cal contextual cues alone because the entity has not
be seen before. In these cases, a gazetteer or dic-
tionary of possible entity identifiers is often useful.
Such identifiers could be names of people, places,
companies or other organisations. Using gazetteers
one may define additional features in the model that
represent the dependencies between a word’s NER
label and its presence in a particular gazetteer. Such
gazetteer features are often highly informative, and
their inclusion in the model should in principle re-
sult in higher model accuracy. However, these fea-
tures can also introduce hidden negative effects tak-
ing the form of labelling errors that the model makes
at places where a model without the gazetteer fea-
tures would have labelled correctly. Consequently,
ensuring optimal usage of gazetteers can be difficult.

In this paper we describe and analyse the labelling
errors made by a model, and show that they gen-
erally result from the model’s over-dependence on
the gazetteer features for making labelling decisions.
By including gazetteer features in the model we
may, in some cases, transfer too much explanatory
dependency to the gazetteer features from the non-
gazetteer features. In order to avoid this problem, a
more careful treatment of these features is required
during training. We demonstrate that a traditional
regularisation approach, where different features are
regularised to different degrees, does not offer a sat-
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isfactory solution. Instead, we show that by training
gazetteer features in a separate model to the other
features, and decoding using a logarithmic opinion
pool (LOP) (Smith et al., 2005), much greater ac-
curacy can be obtained. Finally, we identify other
features with gazetteer feature-like properties and
show that similar results may be obtained using our
method with these features.

We take as our model a linear chain conditional
random field (CRF), and apply it to NER in English.

2 Conditional Random Fields

A linear chain conditional random field (CRF) (Laf-
ferty et al., 2001) defines the conditional probability
of a label sequence s given an observed sequence o
via:

p
�
s � o ��� 1

Z
�
o � exp

�
T � 1

∑
t � 1

∑
k

λk fk
�
st � 1 	 st 	 o 	 t ��
 (1)

where T is the length of both sequences, λk are pa-
rameters of the model and Z

�
o � is a partition func-

tion that ensures that (1) represents a probability dis-
tribution. The functions fk are feature functions rep-
resenting the occurrence of different events in the
sequences s and o.

The parameters λk can be estimated by maximis-
ing the conditional log-likelihood of a set of labelled
training sequences. At the maximum likelihood so-
lution the model satisfies a set of feature constraints,
whereby the expected count of each feature under
the model is equal to its empirical count on the train-
ing data:

E p̃ � o  s ��� fk ��� Ep � s � o ��� fk � � 0 	�� k

In general this cannot be solved for the λk in closed
form, so numerical optimisation must be used. For
our experiments we use the limited memory variable
metric (LMVM) (Sha and Pereira, 2003) routine,
which has become the standard algorithm for CRF
training with a likelihood-based objective function.

To avoid overfitting, a prior distribution over the
model parameters is typically used. A common ex-
ample of this is the Gaussian prior. Use of a prior
involves adding extra terms to the objective and its
derivative. In the case of a Gaussian prior, these ad-
ditional terms involve the mean and variance of the
distribution.

3 Previous Use of Gazetteers

Gazetteers have been widely used in a variety of in-
formation extraction systems, including both rule-
based systems and statistical models. In addition to
lists of people names, locations, etc., recent work
in the biomedical domain has utilised gazetteers of
biological and genetic entities such as gene names
(Finkel et al., 2005; McDonald and Pereira, 2005).
In general gazetteers are thought to provide a useful
source of external knowledge that is helpful when
an entity cannot be identified from knowledge con-
tained solely within the data set used for training.
However, some research has questioned the useful-
ness of gazetteers (Krupka and Hausman, 1998).
Other work has supported the use of gazetteers in
general but has found that lists of only moderate
size are sufficient to provide most of the benefit
(Mikheev et al., 1999). Therefore, to date the ef-
fective use of gazetteers for information extraction
has in general been regarded as a “black art”. In this
paper we explain some of the likely reasons for these
findings, and propose ways to more effectively han-
dle gazetteers when they are used by maxent-style
models.

In work developed independently and in parallel
to the work presented here, Sutton et al. (2006) iden-
tify general problems with gazetteer features and
propose a solution similar to ours. They present re-
sults on NP-chunking in addition to NER, and pro-
vide a slightly more general approach. By contrast,
we motivate the problem more thoroughly through
analysis of the actual errors observed and through
consideration of the success of other candidate solu-
tions, such as traditional regularisation over feature
subsets.

4 Our Experiments

In this section we describe our experimental setup,
and provide results for the baseline models.

4.1 Task and Dataset

Named entity recognition (NER) involves the iden-
tification of the location and type of pre-defined en-
tities within a sentence. The CRF is presented with
a set of sentences and must label each word so as
to indicate whether the word appears outside an en-
tity, at the beginning of an entity of a certain type or
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within the continuation of an entity of a certain type.
Our results are reported on the CoNLL-2003

shared task English dataset (Sang and Meulder,
2003). For this dataset the entity types are: per-
sons (PER), locations (LOC), organisations (ORG)
and miscellaneous (MISC). The training set consists
of 14 	 987 sentences and 204 	 567 tokens, the devel-
opment set consists of 3 	 466 sentences and 51 	 578
tokens and the test set consists of 3 	 684 sentences
and 46 	 666 tokens.

4.2 Gazetteers

We employ a total of seven gazetteers for our ex-
periments. These cover names of people, places
and organisations. Specifically, we have gazetteers
containing surnames (88 	 799 entries), female first
names (4 	 275 entries), male first names (1 	 219 en-
tries), names of places (27 	 635 entries), names of
companies (20 	 638 and 279 	 195 entries) and names
of other organisations (425 entries).

4.3 Feature set

Our experiments are centred around two CRF mod-
els, one with and one without gazetteer features.
The model without gazetteer features, which we call
standard, comprises features defined in a window
of five words around the current word. These in-
clude features encoding n-grams of words and POS
tags, and features encoding orthographic properties
of the current word. The orthographic features are
based on those found in (Curran and Clark, 2003).
Examples include whether the current word is capi-
talised, is an initial, contains a digit, contains punc-
tuation, etc. In total there are 450 	 345 features in the
standard model.

We call the second model, with gazetteer features,
standard+g. This includes all the features contained
in the standard model as well as 8 	 329 gazetteer
features. Our gazetteer features are a typical way
to represent gazetteer information in maxent-style
models. They are divided into two categories: un-
lexicalised and lexicalised. The unlexicalised fea-
tures model the dependency between a word’s pres-
ence in a gazetteer and its NER label, irrespective
of the word’s identity. The lexicalised features, on
the other hand, include the word’s identity and so
provide more refined word-specific modelling of the

Model Development Test
Unreg. Reg. Unreg. Reg.

standard 88.21 89.86 81.60 83.97
standard+g 89.19 90.40 83.10 84.70

Table 1: Model F scores

standard+g�
✗

sta
nd

ar
d �

44,945 160
✗ 228 1,333

Table 2: Test set errors

gazetteer-NER label dependency.1 There are 35 un-
lexicalised gazetteer features and 8 	 294 lexicalised
gazetteer features, giving a total of 458 	 675 features
in the standard+g model.

4.4 Baseline Results

Table 1 gives F scores for the standard and stan-
dard+g models. Development set scores are in-
cluded for completeness, and are referred to later in
the paper. We show results for both unregularised
and regularised models. The regularised models are
trained with a zero-mean Gaussian prior, with the
variance set using the development data.

We see that, as expected, the presence of the
gazetteer features allows standard+g to outperform
standard, for both the unregularised and regularised
models. To test significance, we use McNemar’s
matched-pairs test (Gillick and Cox, 1989) on point-
wise labelling errors. In each case, the standard+g
model outperforms the standard model at a signif-
icance level of p � 0 � 02. However, these results
camouflage the fact that the gazetteer features intro-
duce some negative effects, which we explore in the
next section. As such, the real benefit of including
the gazetteer features in standard+g is not fully re-
alised.

5 Problems with Gazetteer Features

We identify problems with the use of gazetteer fea-
tures by considering test set labelling errors for
both standard and standard+g. We use regularised
models here as an illustration. Table 2 shows the

1Many gazetteer entries involve strings of words where the
individual words in the string do not appear in the gazetteer in
isolation. For this reason the lexicalised gazetteer features are
not simply determined by the word identity features.
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number of sites (a site being a particular word at a
particular position in a sentence) where labellings
have improved, worsened or remained unchanged
with respect to the gold-standard labelling with the
addition of the gazetteer features. For example, the
value in the top-left cell is the number of sites where
both the standard and standard+g label words cor-
rectly.

The most interesting cell in the table is the top-
right one, which represents sites where standard is
correctly labelling words but, with the addition of
the gazetteer features, standard+g mislabels them.
At these sites, the addition of the gazetteer features
actually worsens things. How well, then, could
the standard+g model do if it could somehow re-
duce the number of errors in the top-right cell? In
fact, if it had correctly labelled those sites, a signifi-
cantly higher test set F score of 90 � 36% would have
been obtained. This potential upside suggests much
could be gained from investigating ways of correct-
ing the errors in the top-right cell. It is not clear
whether there exists any approach that could correct
all the errors in the top-right cell while simultane-
ously maintaining the state in the other cells, but ap-
proaches that are able to correct at least some of the
errors should prove worthwhile.

On inspection of the sites where errors in the top-
right cell occur, we observe that some of the er-
rors occur in sequences where no words are in any
gazetteer, so no gazetteer features are active for any
possible labelling of these sequences. In other cases,
the errors occur at sites where some of the gazetteer
features appear to have dictated the label, but have
made an incorrect decision. As a result of these ob-
servations, we classify the errors from the top-right
cell of Table 2 into two types: type A and type B.

5.1 Type A Errors

We call type A errors those errors that occur at sites
where gazetteer features seem to have been directly
responsible for the mislabelling. In these cases the
gazetteer features effectively “over-rule” the other
features in the model causing a mislabelling where
the standard model, without the gazetteer features,
correctly labels the word.

An example of a type A error is given in the sen-
tence extract below:

about/O Healy/I-LOC

This is the labelling given by standard+g. The cor-
rect label for Healy here is I-PER. The standard
model is able to decode this correctly as Healy
appears in the training data with the I-PER label.
The reason for the mislabelling by the standard+g
model is that Healy appears in both the gazetteer of
place names and the gazetteer of person surnames.
The feature encoding the gazetteer of place names
with the I-LOC label has a λ value of 4 � 20, while
the feature encoding the gazetteer of surnames with
the I-PER label has a λ value of 1 � 96, and the fea-
ture encoding the word Healy with the I-PER la-
bel has a λ value of 0 � 25. Although other features
both at the word Healy and at other sites in the sen-
tence contribute to the labelling of Healy, the influ-
ence of the first feature above dominates. So in this
case the addition of the gazetteer features has con-
fused things.

5.2 Type B Errors

We call type B errors those errors that occur at
sites where the gazetteer features seem to have been
only indirectly responsible for the mislabelling. In
these cases the mislabelling appears to be more at-
tributable to the non-gazetteer features, which are in
some sense less expressive after being trained with
the gazetteer features. Consequently, they are less
able to decode words that they could previously la-
bel correctly.

An example of a type B error is given in the sen-
tence extract below:

Chanderpaul/O was/O

This is the labelling given by standard+g. The
correct labelling, given by standard, is I-PER for
Chanderpaul. In this case no words in the sen-
tence (including the part not shown) are present in
any of the gazetteers so no gazetteer features are ac-
tive for any labelling of the sentence. Consequently,
the gazetteer features do not contribute at all to the
labelling decision. Non-gazetteer features in stan-
dard+g are, however, unable to find the correct la-
belling for Chanderpaul when they previously
could in the standard model.

For both type A and type B errors it is clear that
the gazetteer features in standard+g are in some
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sense too “powerful” while the non-gazetteers fea-
tures have become too “weak”. The question, then,
is: can we train all the features in the model in a
more sophisticated way so as to correct for these ef-
fects?

6 Feature Dependent Regularisation

One interpretation of the findings of our error analy-
sis above is that the addition of the gazetteer features
to the model is having an implicit over-regularising
effect on the other features. Therefore, is it possible
to adjust for this effect through more careful explicit
regularisation using a prior? Can we directly reg-
ularise the gazetteer features more heavily and the
non-gazetteer features less? We investigate this pos-
sibility in this section.

The standard+g model is regularised by fitting
a single Gaussian variance hyperparameter across
all features. The optimal value for this single hy-
perparameter is 45. We now relax this single con-
straint by allocating a separate variance hyperparam-
eter to different feature subsets, one for the gazetteer
features (σgaz) and one for the non-gazetteer fea-
tures (σnon-gaz). The hope is that the differing sub-
sets of features are best regularised using different
prior hyperparameters. This is a natural approach
within most standardly formulated priors for log-
linear models. Clearly, by doing this we increase
the search space significantly. In order to make the
search manageable, we constrain ourselves to three
scenarios: (1) Hold σnon-gaz at 45, and regularise the
gazetteer features a little more by reducing σgaz. (2)
Hold σgaz at 45, and regularise the non-gazetteer fea-
tures a little less by increasing σnon-gaz. (3) Simulta-
neously regularise the gazetteer features a little more
than at the single variance optimum, and regularise
the non-gazetteer features a little less.

Table 3 gives representative development set F
scores for each of these three scenarios, with each
scenario separated by a horizontal dividing line. We
see that in general the results do not differ signifi-
cantly from that of the single variance optimum. We
conjecture that the reason for this is that the regu-
larising effect of the gazetteer features on the non-
gazetteer features is due to relatively subtle inter-
actions during training that relate to the dependen-
cies the features encode and how these dependen-

σgaz σnon � gaz F score
42 45 90.40
40 45 90.30
45 46 90.39
45 50 90.38

44.8 45.2 90.41
43 47 90.35

Table 3: FDR development set F scores

cies overlap. Regularising different feature subsets
by different amounts with a Gaussian prior does not
directly address these interactions but instead just
rather crudely penalises the magnitude of the pa-
rameter values of different feature sets to different
degrees. Indeed this is true for any standardly for-
mulated prior. It seems therefore that any solution to
the regularising problem should come through more
explicit restricting or removing of the interactions
between gazetteer and non-gazetteer features during
training.

7 Combining Separately Trained Models

We may remove interactions between gazetteer and
non-gazetteer features entirely by quarantining the
gazetteer features and training them in a separate
model. This allows the non-gazetteer features to
be protected from the over-regularising effect of the
gazetteer features. In order to decode taking advan-
tage of the information contained in both models, we
must combine the models in some way. To do this
we use a logarithmic opinion pool (LOP) (Smith
et al., 2005). This is similar to a mixture model,
but uses a weighted multiplicative combination of
models rather than a weighted additive combination.
Given models pα and per-model weights wα , the
LOP distribution is defined by:

pLOP
�
s � o ��� 1

ZLOP
�
o � ∏

α
� pα

�
s � o � � wα (2)

with wα
� 0 and ∑α wα � 1, and where ZLOP

�
o � is

a normalising function. The weight wα encodes the
dependence of the LOP on model α . In the case of a
CRF, the LOP itself is a CRF and so decoding is no
more complex than for standard CRF decoding.

In order to use a LOP for decoding we must set
the weights wα in the weighted product. In (Smith et
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Feature Subset Feature Type
s1 simple structural features
s2 advanced structural features
n n-grams of words and POS tags
o simple orthographic features
a advanced orthographic features
g gazetteer features

Table 4: standard+g feature subsets

al., 2005) a procedure is described whereby the (nor-
malised) weights are explicitly trained. In this paper,
however, we only construct LOPs consisting of two
models in each case, one model with gazetteer fea-
tures and one without. We therefore do not require
the weight training procedure as we can easily fit the
two weights (only one of which is free) using the de-
velopment set.

To construct models for the gazetteer and non-
gazetteer features we first partition the feature set of
the standard+g model into the subsets outlined in
Table 4. The simple structural features model label-
label and label-word dependencies, while the ad-
vanced structural features include these features as
well as those modelling label-label-word conjunc-
tions. The simple orthographic features measure
properties of a word such as capitalisation, presence
of a digit, etc., while the advanced orthographic
properties model the occurrence of prefixes and suf-
fixes of varying length.

We create and train different models for the
gazetteer features by adding different feature sub-
sets to the gazetteer features. We regularise these
models in the usual way using a Gaussian prior. In
each case we then combine these models with the
standard model and decode under a LOP.

Table 5 gives results for LOP decoding for the
different model pairs. Results for the standard+g
model are included in the first row for comparison.
For each LOP the hyphen separates the two models
comprising the LOP. So, for example, in the second
row of the table we combine the gazetteer features
with simple structural features in a model, train and
decode with the standard model using a LOP. The
simple structural features are included so as to pro-
vide some basic support to the gazetteer features.

We see from Table 5 that the first two LOPs sig-
nificantly outperform the regularised standard+g

LOP Dev Set Test Set
standard+g 90.40 84.70

s1g-standard 91.34 85.98
s2g-standard 91.32 85.59
s2ng-standard 90.66 84.59

s2nog-standard 90.47 84.92
s2noag-standard 90.56 84.78

Table 5: Reg. LOP F scores

LOP LOP Weights
s1g-standard [0.39, 0.61]
s2g-standard [0.29, 0.71]

s2ng-standard [0.43, 0.57]
s2nog-standard [0.33, 0.67]
s2noag-standard [0.39, 0.61]

Table 6: Reg. LOP weights

model (at a significance level of p � 0 � 01, on both
the test and development sets). By training the
gazetteer features separately we have avoided their
over-regularising effect on the non-gazetteer fea-
tures. This relies on training the gazetteer features
with a relatively small set of other features. This is
illustrated as we read down the table, below the top
two rows. As more features are added to the model
containing the gazetteer features we obtain decreas-
ing test set F scores because the advantage created
from separate training of the features is increasingly
lost.

Table 6 gives the corresponding weights for the
LOPs in Table 5, which are set using the develop-
ment data. We see that in every case the LOP al-
locates a smaller weight to the gazetteer features
model than the non-gazetteer features model and in
doing so restricts the influence that the gazetteer fea-
tures have in the LOP’s labelling decisions.

Table 7, similar to Table 2 earlier, shows test set
labelling errors for the standard model and one of
the LOPs. We take the s2g-standard LOP here for
illustration. We see from the table that the number
of errors in the top-right cell shows a reduction of
29% over the corresponding value in Table 2. We
have therefore reduced the number errors of the type
we were targeting with our approach. The approach
has also had the effect of reducing the number of er-
rors in the bottom-right cell, which further improves
model accuracy.

All the LOPs in Table 5 contain regularised mod-
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s2g-standard LOP�
✗

sta
nd

ar
d �

44,991 114
✗ 305 1,256

Table 7: Test set errors

LOP Dev Set Test Set
s1g-standard 90.58 84.87
s2g-standard 90.70 84.28
s2ng-standard 89.70 84.01

s2nog-standard 89.48 83.99
s2noag-standard 89.40 83.70

Table 8: Unreg. LOP F scores

els. Table 8 gives test set F scores for the cor-
responding LOPs constructed from unregularised
models. As we would expect, the scores are lower
than those in Table 5. However, it is interesting to
note that the s1g-standard LOP still outperforms
the regularised standard+g model.

In summary, by training the gazetteer features
and non-gazetteer features in separate models and
decoding using a LOP, we are able to overcome
the problems described in earlier sections and can
achieve much higher accuracy. This shows that
successfully deploying gazetteer features within
maxent-style models should involve careful consid-
eration of restrictions on how features interact with
each other, rather than simply considering the abso-
lute values of feature parameters.

8 Gazetteer-Like Features

So far our discussion has focused on gazetteer fea-
tures. However, we would expect that the problems
we have described and dealt with in the last sec-
tion also occur with other types of features that have
similar properties to gazetteer features. By applying
similar treatment to these features during training we
may be able harness their usefulness to a greater de-
gree than is currently the case when training in a sin-
gle model. So how can we identify these features?

The task of identifying the optimal partitioning
for creation of models in the previous section is in
general a hard problem as it relies on clustering the
features based on their explanatory power relative to
all other clusters. It may be possible, however, to de-
vise some heuristics that approximately correspond

to the salient properties of gazetteer features (with
respect to the clustering) and which can then be used
to identify other features that have these properties.
In this section we consider three such heuristics. All
of these heuristics are motivated by the observation
that gazetteer features are both highly discriminative
and generally very sparse.

Family Singleton Features We define a feature
family as a set of features that have the same con-
junction of predicates defined on the observations.
Hence they differ from each other only in the NER
label that they encode. Family singleton features
are features that have a count of 1 in the training
data when all other members of that feature family
have zero counts. These features have a flavour of
gazetteer features in that they represent the fact that
the conjunction of observation predicates they en-
code is highly predictive of the corresponding NER
label, and that they are also very sparse.

Family n-ton Features These are features that
have a count of n (greater than 1) in the training
data when all other members of that feature family
have zero counts. They are similar to family sin-
gleton features, but exhibit gazetteer-like properties
less and less as the value of n is increased because a
larger value of n represents less sparsity.

Loner Features These are features which occur
with a low mean number of other features in the
training data. They are similar to gazetteer features
in that, at the points where they occur, they are in
some sense being relied upon more than most fea-
tures to explain the data. To create loner feature sets
we rank all features in the standard+g model based
on the mean number of other features they are ob-
served with in the training data, then we take subsets
of increasing size. We present results for subsets of
size 500, 1000, 5000 and 10000.

For each of these categories of features we add
simple structural features (the s1 set from earlier),
to provide basic structural support, and then train a
regularised model. We also train a regularised model
consisting of all features in standard+g except the
features from the category in question. We decode
these model pairs under a LOP as described earlier.

Table 9 gives test set F scores for LOPs cre-
ated from each of the categories of features above
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LOP Test Set
FSF 85.79
FnF 84.78

LF 500 85.80
LF 1000 85.70
LF 5000 85.77

LF 10000 85.62

Table 9: Reg. LOP F scores

(with abbreviated names derived from the category
names). The results show that for the family single-
ton features and each of the loner feature sets we
obtain LOPs that significantly outperform the reg-
ularised standard+g model (p � 0 � 0002 in every
case). The family n-ton features’ LOP does not do
as well, but that is probably due to the fact that some
of the features in this set have a large value of n and
so behave much less like gazetteer features.

In summary, we obtain the same pattern of results
using our quarantined training and LOP decoding
method with these categories of features that we do
with the gazetteer features. We conclude that the
problems with gazetteer features that we have iden-
tified in this paper are exhibited by general discrim-
inative features with gazetteer feature-like proper-
ties, and our method is also successful with these
more general features. Clearly, the heuristics that
we have devised in this section are very simple, and
it is likely that with more careful engineering better
feature partitions can be found.

9 Conclusion and future work

In this paper we have identified and analysed nega-
tive effects that can be introduced to maxent-style
models by the inclusion of highly discriminative
gazetteer features. We have shown that such ef-
fects manifest themselves through errors that gen-
erally result from the model’s over-dependence on
the gazetteer features for decision making. To over-
come this problem a more careful treatment of these
features is required during training. We have pro-
posed a solution that involves quarantining the fea-
tures and training them separately to the other fea-
tures in the model, then decoding the separate mod-
els with a logarithmic opinion pool. In fact, the LOP
provides a natural way to handle the problem, with
different constituent models for the different fea-

ture types. The method leads to much greater ac-
curacy, and allows the power of gazetteer features
to be more effectively harnessed. Finally, we have
identified other feature sets with gazetteer feature-
like properties and shown that similar results may be
obtained using our method with these feature sets.

In this paper we defined intuitively-motivated fea-
ture partitions (gazetteer feature-based or otherwise)
using heuristics. In future work we will focus on au-
tomatically determining such partitions.
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Abstract

We present a novel context pattern in-
duction method for information extrac-
tion, specifically named entity extraction.
Using this method, we extended several
classes of seed entity lists into much larger
high-precision lists. Using token member-
ship in these extended lists as additional
features, we improved the accuracy of a
conditional random field-based named en-
tity tagger. In contrast, features derived
from the seed lists decreased extractor ac-
curacy.

1 Introduction

Partial entity lists and massive amounts of unla-
beled data are becoming available with the growth
of the Web as well as the increased availability of
specialized corpora and entity lists. For example,
the primary public resource for biomedical research,
MEDLINE, contains over 13 million entries and is
growing at an accelerating rate. Combined with
these large corpora, the recent availability of entity
lists in those domains has opened up interesting op-
portunities and challenges. Such lists are never com-
plete and suffer from sampling biases, but we would
like to exploit them, in combination with large un-
labeled corpora, to speed up the creation of infor-
mation extraction systems for different domains and
languages. In this paper, we concentrate on explor-
ing utility of such resources for named entity extrac-
tion.

Currently available entity lists contain a small
fraction of named entities, but there are orders of
magnitude more present in the unlabeled data1. In
this paper, we test the following hypotheses:

i. Starting with a few seed entities, it is possible
to induce high-precision context patterns by ex-
ploiting entity context redundancy.

ii. New entity instances of the same category can
be extracted from unlabeled data with the in-
duced patterns to create high-precision exten-
sions of the seed lists.

iii. Features derived from token membership in the
extended lists improve the accuracy of learned
named-entity taggers.

Previous approaches to context pattern induc-
tion were described by Riloff and Jones (1999),
Agichtein and Gravano (2000), Thelen and Riloff
(2002), Lin et al. (2003), and Etzioni et al. (2005),
among others. The main advance in the present
method is the combination of grammatical induction
and statistical techniques to create high-precision
patterns.

The paper is organized as follows. Section 2 de-
scribes our pattern induction algorithm. Section 3
shows how to extend seed sets with entities extracted
by the patterns from unlabeled data. Section 4 gives
experimental results, and Section 5 compares our
method with previous work.

1For example, based on approximate matching, there is an
overlap of only 22 organizations between the 2403 organiza-
tions present in CoNLL-2003 shared task training data and the
Fortune-500 list.
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2 Context Pattern Induction

The overall method for inducing entity context pat-
terns and extending entity lists is as follows:

1. LetE = seed set,T = text corpus.

2. Find the contextsC of entities inE in the cor-
pusT (Section 2.1).

3. Selecttrigger wordsfrom C (Section 2.2).

4. For each trigger word, induce a pattern automa-
ton (Section 2.3).

5. Use induced patternsP to extract more entities
E′ (Section 3).

6. RankP andE′ (Section 3.1).

7. If needed, add high scoring entities inE′ to E

and return to step 2. Otherwise, terminate with
patternsP and extended entity listE ∪ E′ as
results.

2.1 Extracting Context

Starting with the seed list, we first find occurrences
of seed entities in the unlabeled data. For each such
occurrence, we extract a fixed numberW (context
window size) of tokens immediately preceding and
immediately following the matched entity. As we
are only interested in modeling the context here, we
replace all entity tokens by the single token-ENT-.
This token now represents aslot in which an entity
can occur. Examples of extracted entity contexts are
shown in Table 1. In the work presented in this pa-
pers, seeds are entity instances (e.g.Googleis a seed
for organization category).

increased expression of-ENT- in vad mice
the expression of-ENT- mrna was greater

expression of the-ENT- gene in mouse

Table 1: Extracted contexts of known genes with
W = 3.

The set of extracted contexts is denoted byC. The
next step is to automatically induce high-precision
patterns containing the token-ENT- from such ex-
tracted contexts.

2.2 Trigger Word Selection

To induce patterns, we need to determine their starts.
It is reasonable to assume that some tokens are more
specific to particular entity classes than others. For
example, in the examples shown above,expression
can be one such word for gene names. Whenever
one comes across such a token in text, the proba-
bility of finding an entity (of the corresponding en-
tity class) in its vicinity is high. We call such start-
ing tokenstrigger words. Trigger words mark the
beginning of a pattern. It is important to note that
simply selecting the first token of extracted contexts
may not be a good way to select trigger words. In
such a scheme, we would have to varyW to search
for useful pattern starts. Instead of that brute-force
technique, we propose an automatic way of select-
ing trigger words. A good set of trigger words is
very important for the quality of induced patterns.
Ideally, we want a trigger word to satisfy the follow-
ing:

• It is frequent in the setC of extracted contexts.

• It is specific to entities of interest and thereby
to extracted contexts.

We use a term-weighting method to rank candi-
date trigger words from entity contexts. IDF (In-
verse Document Frequency) was used in our experi-
ments but any other suitable term-weighting scheme
may work comparably. The IDF weightfw for a
wordw occurring in a corpus is given by:

fw = log

(

N

nw

)

whereN is the total number of documents in the
corpus andnw is the total number of documents con-
tainingw. Now, for each context segmentc ∈ C, we
select adominating worddc given by

dc = arg max
w∈c

fw

There is exactly one dominating word for each
c ∈ C. All dominating words for contexts inC form
multisetM . Let mw be the multiplicity of the dom-
inating wordw in M . We sortM by decreasingmw

and select the topn tokens from this list as potential
trigger words.
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Selection criteria based on dominating word fre-
quency work better than criteria based on simple
term weight because high term weight words may
be rare in the extracted contexts, but would still be
misleadingly selected for pattern induction. This can
be avoided by using instead the frequency of domi-
nating words within contexts, as we did here.

2.3 Automata Induction

Rather than using individual contexts directly, we
summarize them into automata that contain the most
significant regularities of the contexts sharing a
given trigger word. This construction allows us to
determine the relative importance of different con-
text features using a variant of the forward-backward
algorithm from HMMs.

2.3.1 Initial Induction

For each trigger word, we list the contexts start-
ing with the word. For example, with“expression”
as the trigger word, the contexts in Table 1 are re-
duced to those in Table 2. Since“expression” is a
left-context trigger word, only one token to the right
of -ENT- is retained. Here, the predictive context
lies to the left of the slot-ENT- and a single to-
ken is retained on the right to mark the slot’s right
boundary. To model predictive right contexts, the to-
ken string can be reversed and the same techniques
as here applied on the reversed string.2

expression of-ENT- in
expression of-ENT- mrna

expression of the-ENT- gene

Table 2: Context segments corresponding to trigger
word “expression”.

Similar contexts are prepared for each trigger
word. The context set for each trigger word is then
summarized by a pattern automaton with transitions
that match the trigger word and also the wildcard
-ENT- . We expect such automata to model the po-
sition in context of the entity slot and help us extract
more entities of the same class with high precision.

2Experiments reported in this paper use predictive left con-
text only.
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Figure 1: Fragment of a 1-reversible automaton

We use a simple form of grammar induction to
learn the pattern automata. Grammar induction tech-
niques have been previously explored for informa-
tion extraction (IE) and related tasks. For instance,
Freitag (1997) used grammatical inference to im-
prove precision in IE tasks.

Context segments are short and typically do not
involve recursive structures. Therefore, we chose to
use 1-reversible automata to represent sets of con-
texts. An automatonA is k-reversibleiff (1) A is
deterministic and (2)Ar is deterministic withk to-
kens of lookahead, whereAr is the automaton ob-
tained by reversing the transitions ofA. Wrapper in-
duction usingk-reversiblegrammar is discussed by
Chidlovskii (2000).

In the 1-reversible automaton induced for each
trigger word, all transitions labeled by a given token
go to the same state, which is identified with that
token. Figure 1 shows a fragment of a 1-reversible
automaton. Solan et al. (2005) describe a similar au-
tomaton construction, but they allow multiple transi-
tions between states to distinguish among sentences.

Each transitione = (v,w) in a 1-reversible au-
tomatonA corresponds to a bigramvw in the con-
texts used to createA. We thus assign each transition
the probability

P (w|v) =
C(v,w)

Σw′C(v,w′)

whereC(v,w) is the number of occurrences of the
bigramvw in contexts forW . With this construc-
tion, we ensure words will be credited in proportion
to their frequency in contexts. The automaton may
overgenerate, but that potentially helps generaliza-
tion.
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2.3.2 Pruning

The initially induced automata need to be pruned
to remove transitions with weak evidence so as to
increase match precision.

The simplest pruning method is to set a count
thresholdc below which transitions are removed.
However, this is a poor method. Consider state 10 in
the automaton of Figure 2, withc = 20. Transitions
(10, 11) and(10, 12) will be pruned.C(10, 12) � c

but C(10, 11) just falls short ofc. However, from
the transition counts, it looks like the sequence“the
-ENT-” is very common. In such a case, it is not
desirable to prune(10, 11). Using a local threshold
may lead to overpruning.

We would like instead to keep transitions that are
used in relatively many probable paths through the
automaton. The probability of pathp is P (p) =
∏

(v,w)∈p P (w|v). Then the posterior probability of
edge(v,w) is

P (v,w) =

∑

(v,w)∈p P (p)
∑

p P (p)
,

which can be efficiently computed by the forward-
backward algorithm (Rabiner, 1989). We can now
remove transitions leaving statev whose posterior
probability is lower thanpv = k(maxw P (v,w)),
where0 < k ≤ 1 controls the degree of pruning,
with higherk forcing more pruning. All induced and
pruned automata are trimmed to remove unreachable
states.
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Figure 2: Automaton to be pruned at state10. Tran-
sition counts are shown in parenthesis.

3 Automata as Extractor

Each automaton induced using the method described
in Sections 2.3-2.3.2 represents high-precision pat-
terns that start with a given trigger word. By scan-

ning unlabeled data using these patterns, we can ex-
tract text segments which can be substituted for the
slot token-ENT-. For example, assume that the in-
duced pattern is“analyst at -ENT- and” and that
the scanned text is“He is an analyst at the Univer-
sity of California and ...”. By scanning this text us-
ing the pattern mentioned above, we can figure out
that the text“the University of California” can sub-
stitute for “-ENT-”. This extracted segment is a
candidate extracted entity. We now need to decide
whether we should retain all tokens inside a candi-
date extraction or purge some tokens, such as“the”
in the example.

One way to handle this problem is to build a
language model of content tokens and retain only
the maximum likelihood token sequence. However,
in the current work, the following heuristic which
worked well in practice is used. Each token in the
extracted text segment is labeled eitherkeep(K) or
droppable(D). By default, a token is labeledK. A
token is labeledD if it satisfies one of the droppable
criteria. In the experiments reported in this paper,
droppable criteria were whether the token is present
in a stopword list, whether it is non-capitalized, or
whether it is a number.

Once tokens in a candidate extraction are labeled
using the above heuristic, the longest token sequence
corresponding to the regular expressionK[D K]∗K is
retained and is considered a final extraction. If there
is only oneK token, that token is retained as the fi-
nal extraction. In the example above, the tokens are
labeled“the/D University/K of/D California/K” , and
the extracted entity will be“University of Califor-
nia” .

To handle run-away extractions, we can set a
domain-dependent hard limit on the number of to-
kens which can be matched with “-ENT-”. This
stems from the intuition that useful extractions are
not very long. For example, it is rare that a person
name longer than five tokens.

3.1 Ranking Patterns and Entities

Using the method described above, patterns and
the entities extracted by them from unlabeled data
are paired. But both patterns and extractions vary
in quality, so we need a method for ranking both.
Hence, we need to rank both patterns and entities.
This is difficult given that there we have no nega-
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tive labeled data. Seed entities are the only positive
instances that are available.

Related previous work tried to address this prob-
lem. Agichtein and Gravano (2000) seek to extract
relations, so their pattern evaluation strategy consid-
ers one of the attributes of an extracted tuple as a
key. They judge the tuple as a positive or a negative
match for the pattern depending on whether there are
other extracted values associated with the same key.
Unfortunately, this method is not applicable to entity
extraction.

The pattern evaluation mechanism used here is
similar in spirit to those of Etzioni et al. (2005) and
Lin et al. (2003). With seeds for multiple classes
available, we consider seed instances of one class
as negative instances for the other classes. A pat-
tern is penalized if it extracts entities which belong
to the seed lists of the other classes. Letpos(p) and
neg(p) be respectively the number of distinct pos-
itive and negative seeds extracted by patternp. In
contrast to previous work mentioned above, we do
not combinepos(p) andneg(p) to calculate a single
accuracy value. Instead, we discard all patternsp

with positiveneg(p) value, as well as patterns whose
total positive seed (distinct) extraction count is less
than certain thresholdηpattern. This scoring is very
conservative. There are several motivations for such
a conservative scoring. First, we are more interested
in precision than recall. We believe that with mas-
sive corpora, large number of entity instances can
be extracted anyway. High accuracy extractions al-
low us to reliably (without any human evaluation)
use extracted entities in subsequent tasks success-
fully (see Section 4.3). Second, in the absence of
sophisticated pattern evaluation schemes (which we
are investigating — Section 6), we feel it is best to
heavily penalize any pattern that extracts even a sin-
gle negative instance.

Let G be the set of patterns which are retained
by the filtering scheme described above. Also, let
I(e, p) be an indicator function which takes value 1
when entitye is extracted by patternp and 0 other-
wise. The score ofe, S(e), is given by

S(e) = Σp∈GI(e, p)

This whole process can be iterated by includ-
ing extracted entities whose score is greater than or
equal to a certain thresholdηentity to the seed list.

4 Experimental Results

For the experiments described below, we used 18
billion tokens (31 million documents) of news data
as the source of unlabeled data. We experimented
with 500 and 1000 trigger words. The results pre-
sented were obtained after a single iteration of the
Context Pattern Induction algorithm (Section 2).

4.1 English LOC, ORG and PER

For this experiment, we used as seed sets subsets of
the entity lists provided with CoNLL-2003 shared
task data.3 Only multi-token entries were included
in the seed lists of respective categories (location
(LOC), person (PER) & organization (ORG) in this
case). This was done to partially avoid incorrect
context extraction. For example, if the seed entity is
“California” , then the same string present in“Uni-
versity of California” can be incorrectly considered
as an instance of LOC. A stoplist was used for drop-
ping tokens from candidate extractions, as described
in Section 3. Examples of top ranking induced pat-
terns and extracted entities are shown in Table 9.
Seed list sizes and experimental results are shown
in Table 3. The precision numbers shown in Table 3
were obtained by manually evaluating 100 randomly
selected instances from each of the extended lists.

Category Seed
Size

Patterns
Used

Extended
Size

Precision

LOC 379 29 3001 70%
ORG 1597 276 33369 85%
PER 3616 265 86265 88%

Table 3: Results of LOC, ORG & PER entity list ex-
tension experiment withηpattern = 10 set manually.

The overlap4 between the induced ORG list and
the Fortune-500 list has 357 organization names,
which is significantly higher than the seed list over-
lap of 22 (see Section 1). This shows that we have
been able to improve coverage considerably.

4.2 Watch Brand Name

A total of 17 watch brand names were used as
seeds. In addition to the pattern scoring scheme

3A few locally available entities in each category were also
added. These seeds are available upon request from the authors.

4Using same matching criteria as in Section 1.
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of Section 3.1, only patterns containing sequence
“watch” were finally retained. Entities extracted
with ηentity = 2 are shown in Table 5. Extraction
precision is 85.7%.

Corum, Longines, Lorus, Movado, Accutron, Au-
demars Piguet, Cartier, Chopard, Franck Muller,
IWC, Jaeger-LeCoultre, A. Lange & Sohne, Patek
Philippe, Rolex, Ulysse, Nardin, Vacheron Con-
stantin

Table 4: Watch brand name seeds.

Rolex Fossil Swatch
Cartier Tag Heuer Super Bowl
Swiss Chanel SPOT

Movado Tiffany Sekonda
Seiko TechnoMarine Rolexes
Gucci Franck Muller Harry Winston

Patek Philippe Versace Hampton Spirit
Piaget Raymond Weil Girard Perregaux
Omega Guess Frank Mueller
Citizen Croton David Yurman
Armani Audemars Piguet Chopard
DVD DVDs Chinese

Breitling Montres Rolex Armitron
Tourneau CD NFL

Table 5: Extended list of watch brand names after
single iteration of pattern induction algorithm.

This experiment is interesting for several reasons.
First, it shows that the method presented in this pa-
per is effective even with small number of seed in-
stances. From this we conclude that the unambigu-
ous nature of seed instances is much more important
than the size of the seed list. Second, no negative
information was used during pattern ranking in this
experiment. This suggests that for relatively unam-
biguous categories, it is possible to successfully rank
patterns using positive instances only.

4.3 Extended Lists as Features in a Tagger

Supervised models normally outperform unsuper-
vised models in extraction tasks. The downside of
supervised learning is expensive training data. On
the other hand, massive amounts of unlabeled data
are readily available. The goal of semi-supervised
learning to combine the best of both worlds. Recent
research have shown that improvements in super-
vised taggers are possible by including features de-
rived from unlabeled data (Miller et al., 2004; Liang,
2005; Ando and Zhang, 2005). Similarly, automati-
cally generated entity lists can be used as additional

features in a supervised tagger.

System F1 (Precision, Recall)
Florian et al. (2003),
best single, no list

89.94 (91.37, 88.56)

Zhang and Johnson
(2003), no list

90.26 (91.00, 89.53)

CRF baseline, no list 89.52 (90.39, 88.66)

Table 6: Baseline comparison on 4 categories (LOC,
ORG, PER, MISC) on Test-a dataset.

For this experiment, we started with a conditional
random field (CRF) (Lafferty et al., 2001) tagger
with a competitive baseline (Table 6). The base-
line tagger was trained5 on the full CoNLL-2003
shared task data. We experimented with the LOC,
ORG and PER lists that were automatically gener-
ated in Section 4.1. In Table 7, we show the accuracy
of the tagger for the entity types for which we had
induced lists. The test conditions are just baseline
features with no list membership, baseline plus seed
list membership features, and baseline plus induced
list membership features. For completeness, we also
show in Table 8 accuracy on the full CoNLL task
(four entity types) without lists, with seed list only,
and with the three induced lists. The seed lists (Sec-
tion 4.1) were prepared from training data itself and
hence with increasing training data size, the model
overfitted as it became completely reliant on these
seed lists. From Tables 7 & 8 we see that incor-
poration of token membership in the extended lists
as additional membership features led to improve-
ments across categories and at all sizes of training
data. This also shows that the extended lists are of
good quality, since the tagger is able to extract useful
evidence from them.

Relatively small sizes of training data pose inter-
esting learning situation and is the case with practi-
cal applications. It is encouraging to observe that the
list features lead to significant improvements in such
cases. Also, as can be seen from Table 7 & 8, these
lists are effective even with mature taggers trained
on large amounts of labeled data.

5Standard orthographic information, such as character n-
grams, capitalization, tokens in immediate context, chunktags,
and POS were used as features.
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Training Data Test-a Test-b
(Tokens) No List Seed List Unsup. List No List Seed List Unsup. List

9268 68.16 70.91 72.82 60.30 63.83 65.56
23385 78.36 79.21 81.36 71.44 72.16 75.32
46816 82.08 80.79 83.84 76.44 75.36 79.64
92921 85.34 83.03 87.18 81.32 78.56 83.05
203621 89.71 84.50 91.01 84.03 78.07 85.70

Table 7: CRF tagger F-measure on LOC, ORG, PER extraction.

Training Data Test-a Test-b
(Tokens) No List Seed List Unsup. List No List Seed List Unsup. List

9229 68.27 70.93 72.26 61.03 64.52 65.60
204657 89.52 84.30 90.48 83.17 77.20 84.52

Table 8: CRF tagger F-measure on LOC, ORG, PER and MISC extraction.

5 Related Work

The method presented in this paper is similar in
many respects to some of the previous work on
context pattern induction (Riloff and Jones, 1999;
Agichtein and Gravano, 2000; Lin et al., 2003; Et-
zioni et al., 2005), but there are important differ-
ences. Agichtein and Gravano (2000) focus on rela-
tion extraction while we are interested in entity ex-
traction. Moreover, Agichtein and Gravano (2000)
depend on an entity tagger to initially tag unlabeled
data whereas we do not have such requirement. The
pattern learning methods of Riloff and Jones (1999)
and the generic extraction patterns of Etzioni et al.
(2005) use language-specific information (for exam-
ple, chunks). In contrast, the method presented here
is language independent. For instance, the English
pattern induction system presented here was applied
on German data without any change. Also, in the
current method, induced automata compactly repre-
sent all induced patterns. The patterns induced by
Riloff and Jones (1999) extract NPs and that deter-
mines the number of tokens to include in a single
extraction. We avoid using such language dependent
chunk information as the patterns in our case include
right6 boundary tokens thus explicitly specifying the
slot in which an entity can occur. Another interest-
ing deviation here from previous work on context
pattern induction is the fact that on top of extending

6In case of predictive left context.

seed lists at high precision, we have successfully in-
cluded membership in these automatically generated
lexicons as features in a high quality named entity
tagger improving its performance.

6 Conclusion

We have presented a novel language-independent
context pattern induction method. Starting with a
few seed examples, the method induces in an unsu-
pervised way context patterns and extends the seed
list by extracting more instances of the same cat-
egory at fairly high precision from unlabeled data.
We were able to improve a CRF-based high quality
named entity tagger by using membership in these
automatically generated lists as additional features.

Pattern and entity ranking methods need further
investigation. Thorough comparison with previ-
ously proposed methods also needs to be carried out.
Also, it will be interesting to see whether the fea-
tures generated in this paper complement some of
the other methods (Miller et al., 2004; Liang, 2005;
Ando and Zhang, 2005) that also generate features
from unlabeled data.
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Induced LOC Patterns
troops in-ENT-to
Cup qualifier against-ENT-in
southern-ENT-town
war - torn-ENT-.
countries including-ENT-.
Bangladesh and-ENT-,
England in-ENT-in
west of-ENT-and
plane crashed in-ENT-.
Cup qualifier against-ENT-,

Extracted LOC Entities
US
United States
Japan
South Africa
China
Pakistan
France
Mexico
Israel
Pacific

Induced PER Patterns
compatriot-ENT-.
compatriot-ENT-in
Rep.-ENT-,
Actor -ENT-is
Sir-ENT-,
Actor -ENT-,
Tiger Woods ,-ENT-and
movie starring-ENT-.
compatriot-ENT-and
movie starring-ENT-and

Extracted PER Entities
Tiger Woods
Andre Agassi
Lleyton Hewitt
Ernie Els
Serena Williams
Andy Roddick
Retief Goosen
Vijay Singh
Jennifer Capriati
Roger Federer

Induced ORG Patterns
analyst at-ENT-.
companies such as-ENT-.
analyst with-ENT-in
series against the-ENT-tonight
Today ’s Schaeffer ’s Option Activity Watch features-ENT-(
Cardinals and-ENT-,
sweep of the-ENT-with
joint venture with-ENT-(
rivals-ENT-Inc.
Friday night ’s game against-ENT-.

Extracted ORG Entities
Boston Red Sox
St. Louis Cardinals
Chicago Cubs
Florida Marlins
Montreal Expos
San Francisco Giants
Red Sox
Cleveland Indians
Chicago White Sox
Atlanta Braves

Table 9: Top ranking LOC, PER, ORG induced pattern and extracted entity examples.
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Abstract

Each year the Conference on Com-
putational Natural Language Learning
(CoNLL)1 features a shared task, in which
participants train and test their systems on
exactly the same data sets, in order to bet-
ter compare systems. The tenth CoNLL
(CoNLL-X) saw a shared task on Multi-
lingual Dependency Parsing. In this pa-
per, we describe how treebanks for 13 lan-
guages were converted into the same de-
pendency format and how parsing perfor-
mance was measured. We also give an
overview of the parsing approaches that
participants took and the results that they
achieved. Finally, we try to draw gen-
eral conclusions about multi-lingual pars-
ing: What makes a particular language,
treebank or annotation scheme easier or
harder to parse and which phenomena are
challenging for any dependency parser?
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software and helping with the papers.2

1see http://ilps.science.uva.nl/˜erikt/signll/conll/
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poration’s Sponsored Research Program.

1 Introduction

Previous CoNLL shared tasks focused on NP chunk-
ing (1999), general chunking (2000), clause iden-
tification (2001), named entity recognition (2002,
2003), and semantic role labeling (2004, 2005). This
shared task on full (dependency) parsing is the log-
ical next step. Parsing is an important preprocess-
ing step for many NLP applications and therefore
of considerable practical interest. It is a complex
task and as it is not straightforwardly mappable to a
“classical” segmentation, classification or sequence
prediction problem, it also poses theoretical chal-
lenges to machine learning researchers.

During the last decade, much research has been
done on data-driven parsing and performance has in-
creased steadily. For training these parsers, syntac-
tically annotated corpora (treebanks) of thousands
to tens of thousands of sentences are necessary; so
initially, research has focused on English. Dur-
ing the last few years, however, treebanks for other
languages have become available and some parsers
have been applied to several different languages.
See Section 2 for a more detailed overview of re-
lated previous research.

So far, there has not been much comparison be-
tween different dependency parsers on exactly the
same data sets (other than for English). One of the
reasons is the lack of a de-facto standard for an eval-
uation metric (labeled or unlabeled, separate root ac-
curacy?), for splitting the data into training and test-
ing portions and, in the case of constituency tree-
banks converted to dependency format, for this con-
version. Another reason are the various annotation
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schemes and logical data formats used by different
treebanks, which make it tedious to apply a parser to
many treebanks. We hope that this shared task will
improve the situation by introducing a uniform ap-
proach to dependency parsing. See Section 3 for the
detailed task definition and Section 4 for information
about the conversion of all 13 treebanks.

In this shared task, participants had two to three
months3 to implement a parsing system that could be
trained for all these languages and four days to parse
unseen test data for each. 19 participant groups sub-
mitted parsed test data. Of these, all but one parsed
all 12 required languages and 13 also parsed the op-
tional Bulgarian data. A wide variety of parsing
approaches were used: some are extensions of pre-
viously published approaches, others are new. See
Section 5 for an overview.

Systems were scored by computing thelabeled
attachment score (LAS), i.e. the percentage of
“scoring” tokens for which the system had predicted
the correct head and dependency label. Punctuation
tokens were excluded from scoring. Results across
languages and systems varied widely from 37.8%
(worst score on Turkish) to 91.7% (best score on
Japanese). See Section 6 for detailed results.

However, variations are consistent enough to al-
low us to draw some general conclusions. Section 7
discusses the implications of the results and analyzes
the remaining problems. Finally, Section 8 describes
possible directions for future research.

2 Previous research

Tesnière (1959) introduced the idea of a dependency
tree (a “stemma” in his terminology), in which
words stand in direct head-dependent relations, for
representing the syntactic structure of a sentence.
Hays (1964) and Gaifman (1965) studied the for-
mal properties ofprojective dependency grammars,
i.e. those where dependency links are not allowed to
cross. Mel’čuk (1988) describes a multistratal de-
pendency grammar, i.e. one that distinguishes be-
tween several types of dependency relations (mor-
phological, syntactic and semantic). Other theories
related to dependency grammar are word grammar

3Some though had significantly less time: One participant
registered as late as six days before the test data release (reg-
istration was a prerequisite to obtain most of the data sets)and
still went on to submit parsed test data in time.

(Hudson, 1984) and link grammar (Sleator and Tem-
perley, 1993).

Some relatively recent rule-based full depen-
dency parsers are Kurohashi and Nagao (1994) for
Japanese, Oflazer (1999) for Turkish, Tapanainen
and Järvinen (1997) for English and Elworthy
(2000) for English and Japanese.

While phrase structure parsers are usually evalu-
ated with the GEIG/PARSEVAL measures of preci-
sion and recall over constituents (Black et al., 1991),
Lin (1995) and others have argued for an alterna-
tive, dependency-based evaluation. That approach is
based on a conversion from constituent structure to
dependency structure by recursively defining a head
for each constituent.

The same idea was used by Magerman (1995),
who developed the first “head table” for the Penn
Treebank (Marcus et al., 1994), and Collins (1996),
whose constituent parser is internally based on prob-
abilities of bilexical dependencies, i.e. dependencies
between two words. Collins (1997)’s parser and
its reimplementation and extension by Bikel (2002)
have by now been applied to a variety of languages:
English (Collins, 1999), Czech (Collins et al., 1999),
German (Dubey and Keller, 2003), Spanish (Cowan
and Collins, 2005), French (Arun and Keller, 2005),
Chinese (Bikel, 2002) and, according to Dan Bikel’s
web page, Arabic.

Eisner (1996) introduced a data-driven depen-
dency parser and compared several probability mod-
els on (English) Penn Treebank data. Kudo and
Matsumoto (2000) describe a dependency parser for
Japanese and Yamada and Matsumoto (2003) an ex-
tension for English. Nivre’s parser has been tested
for Swedish (Nivre et al., 2004), English (Nivre and
Scholz, 2004), Czech (Nivre and Nilsson, 2005),
Bulgarian (Marinov and Nivre, 2005) and Chinese
Cheng et al. (2005), while McDonald’s parser has
been applied to English (McDonald et al., 2005a),
Czech (McDonald et al., 2005b) and, very recently,
Danish (McDonald and Pereira, 2006).

3 Data format, task definition

The training data derived from the original treebanks
(see Section 4) and given to the shared task partic-
ipants was in a simple column-based format that is
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an extension of Joakim Nivre’s Malt-TAB format4

for the shared task and was chosen for its processing
simplicity. All the sentences are in one text file and
they are separated by a blank line after each sen-
tence. A sentence consists of one or more tokens.
Each token is represented on one line, consisting of
10 fields. Fields are separated from each other by a
TAB.5 The 10 fields are:

1) ID: Token counter, starting at 1 for each new
sentence.

2) FORM: Word form or punctuation symbol.
For the Arabic data only, FORM is a concatenation
of the word in Arabic script and its transliteration in
Latin script, separated by an underscore. This rep-
resentation is meant to suit both those that do and
those that do not read Arabic.

3) LEMMA : Lemma or stem (depending on the
particular treebank) of word form, or an underscore
if not available. Like for the FORM, the values for
Arabic are concatenations of two scripts.

4) CPOSTAG: Coarse-grained part-of-speech
tag, where the tagset depends on the treebank.

5) POSTAG: Fine-grained part-of-speech tag,
where the tagset depends on the treebank. It is iden-
tical to the CPOSTAG value if no POSTAG is avail-
able from the original treebank.

6) FEATS: Unordered set of syntactic and/or
morphological features (depending on the particu-
lar treebank), or an underscore if not available. Set
members are separated by a vertical bar (|).

7) HEAD: Head of the current token, which is
either a value of ID, or zero (’0’) if the token links
to the virtual root node of the sentence. Note that
depending on the original treebank annotation, there
may be multiple tokens with a HEAD value of zero.

8) DEPREL: Dependency relation to the HEAD.
The set of dependency relations depends on the par-
ticular treebank. The dependency relation of a to-
ken with HEAD=0 may be meaningful or simply
’ROOT’ (also depending on the treebank).

9) PHEAD: Projective head of current token,
which is either a value of ID or zero (’0’), or an un-
derscore if not available. The dependency structure

4http://w3.msi.vxu.se/ nivre/research/MaltXML.html
5Consequently, field values cannot contain TABs. In the

shared task data, field values are also not supposed to con-
tain any other whitespace (although unfortunately some spaces
slipped through in the Spanish data).

resulting from the PHEAD column is guaranteed to
be projective (but is not available for all data sets),
whereas the structure resulting from the HEAD col-
umn will be non-projective for some sentences of
some languages (but is always available).

10) PDEPREL: Dependency relation to the
PHEAD, or an underscore if not available.

As should be obvious from the description above,
our format assumes that each token has exactly one
head. Some dependency grammars, and also some
treebanks, allow tokens to have more than one head,
although often there is a distinction between primary
and optional secondary relations, e.g. in the Danish
Dependency Treebank (Kromann, 2003), the Dutch
Alpino Treebank (van der Beek et al., 2002b) and
the German TIGER treebank (Brants et al., 2002).
For this shared task we decided to ignore any ad-
ditional relations. However the data format could
easily be extended with additional optional columns
in the future. Cycles do not occur in the shared task
data but are scored as normal if predicted by parsers.
The character encoding of all data files is Unicode
(specifically UTF-8), which is the only encoding to
cover all languages and therefore ideally suited for
multilingual parsing.

While the training data contained all 10 columns
(although sometimes only with dummy values, i.e.
underscores), the test data given to participants con-
tained only the first 6. Participants’ parsers then
predicted the HEAD and DEPREL columns (any
predicted PHEAD and PDEPREL columns were ig-
nored). The predicted values were compared to the
gold standard HEAD and DEPREL.6 The official
evaluation metric is thelabeled attachment score
(LAS), i.e. the percentage of “scoring” tokens for
which the system has predicted the correct HEAD
and DEPREL. The evaluation script defines a non-
scoring token as a token where all characters of the
FORM value have the Unicode category property
“Punctuation”.7

6The official scoring scripteval.pl, data sets for some
languages and instructions on how to get the rest, the software
used for the treebank conversions, much documentation, full
results and other related information will be available from the
permanent URLhttp://depparse.uvt.nl (also linked
from the CoNLL web page).

7Seeman perlunicode for the technical details and the
shared task website for our reasons for this decision. Note
that an underscore and a percentage sign also have the Unicode
“Punctuation” property.
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We tried to take a test set that was representative
of the genres in a treebank and did not cut through
text samples. We also tried to document how we
selected this set.8 We aimed at having roughly the
same size for the test sets of all languages: 5,000
scoring tokens. This is not an exact requirement as
we do not want to cut sentences in half. The rel-
atively small size of the test set means that even
for the smallest treebanks the majority of tokens is
available for training, and the equal size means that
for the overall ranking of participants, we can sim-
ply compute the score on the concatenation of all
test sets.

4 Treebanks and their conversion

In selecting the treebanks, practical considerations
were the major factor. Treebanks had to be actually
available, large enough, have a license that allowed
free use for research or kind treebank providers who
temporarily waived the fee for the shared task, and
be suitable for conversion into the common format
within the limited time. In addition, we aimed at a
broad coverage of different language families.9 As
a general rule, we did not manually correct errors in
treebanks if we discovered some during the conver-
sion, see also Buchholz and Green (2006), although
we did report them to the treebank providers and
several got corrected by them.

4.1 Dependency treebanks

We used the following six dependency treebanks:
Czech: Prague Dependency Treebank10 (PDT)
(Böhmová et al., 2003);Arabic : Prague Arabic De-
pendency Treebank11 (PADT) (Hajič et al., 2004;
Smrž et al., 2002);Slovene: Slovene Dependency
Treebank12 (SDT) (Džeroski et al., 2006);Danish:

8See the shared task website for a more detailed discussion.
9That was also the reason why we decided not to include

a fifth Germanic language (English) although the freely avail-
able SUSANNE treebank (Sampson, 1995) or possibly the Penn
Treebank would have qualified otherwise.

10Many thanks to Jan Hajič for granting the temporary li-
cense for CoNLL-X and talking to LDC about it, to Christo-
pher Cieri for arranging distribution through LDC and to Tony
Castelletto for handling the distribution.

11Many thanks to Yuval Krymolowski for converting the tree-
bank, Otakar Smrž for valuable help during the conversion and
thanks again to Jan Hajič, Christopher Cieri and Tony Castel-
letto.

12Many thanks to the SDT people for granting the special
license for CoNLL-X and to Tomaž Erjavec for converting the

Danish Dependency Treebank13 (Kromann, 2003);
Swedish: Talbanken0514 (Teleman, 1974; Einars-
son, 1976; Nilsson et al., 2005);Turkish : Metu-
Sabancı treebank15 (Oflazer et al., 2003; Atalay et
al., 2003).

The conversion of these treebanks was the easi-
est task as the linguistic representation was already
what we needed, so the information only had to be
converted from SGML or XML to the shared task
format. Also, the relevant information had to be dis-
tributed appropriately over the CPOSTAG, POSTAG
and FEATS columns.

For the Swedish data, no predefined distinction
into coarse and fine-grained PoS was available, so
the two columns contain identical values in our for-
mat. For the Czech data, we sampled both our train-
ing and test data from the official “training” partition
because only that one contains gold standard PoS
tags, which is also what is used in most other data
sets. The Czech DEPREL values include the suf-
fixes to mark coordination, apposition and parenthe-
sis, while these have been ignored during the con-
version of the much smaller Slovene data. For the
Arabic data, sentences with missing annotation were
filtered out during the conversion.

The Turkish treebank posed a special problem
because it analyzes each word as a sequence of
one or more inflectional groups (IGs). Each IG
consists of either a stem or a derivational suffix
plus all the inflectional suffixes belonging to that
stem/derivational suffix. The head of a whole word
is not just another word but a specific IG of another
word.16 One can easily map this representation to
one in which the head of a word is a word but that

treebank for us.
13Many thanks to Matthias Trautner Kromann and assistants

for creating the DDT and releasing it under the GNU General
Public License and to Joakim Nivre, Johan Hall and Jens Nils-
son for the conversion of DDT to Malt-XML.

14Many thanks to Jens Nilsson, Johan Hall and Joakim Nivre
for the conversion of the original Talbanken to Talbanken05
and for making it freely available for research purposes andto
Joakim Nivre again for prompt and proper respons to all our
questions.

15Many thanks to Bilge Say and Kemal Oflazer for grant-
ing the license for CoNLL-X and answering questions and to
Gülşen Eryiǧit for making many corrections to the treebank and
discussing some aspects of the conversion.

16This is a bit like saying that in “the usefulness of X for
Y”, “for Y” links to “use-” and not to “usefulness”. Only that
in Turkish, “use”, “full” and “ness” each could have their own
inflectional suffixes attached to them.
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mapping would lose information and it is not clear
whether the result is linguistically meaningful, prac-
tically useful, or even easier to parse because in the
original representation, each IG has its own PoS and
morphological features, so it is not clear how that in-
formation should be represented if all IGs of a word
are conflated. We therefore chose to represent each
IG as a separate token in our format. To make the
result a connected dependency structure, we defined
the HEAD of each non-word-final IG to be the fol-
lowing IG and the DEPREL to be “DERIV”. We as-
signed the stem of the word to the first IG’s LEMMA
column, with all non-first IGs having LEMMA ‘’,
and the actual word form to the last IG, with all non-
last IGs having FORM ‘’. As already mentioned in
Section 3, the underscore has the punctuation char-
acter property, therefore non-last IGs (whose HEAD
and DEPREL were introduced by us) are not scoring
tokens. We also attached or reattached punctuation
(see the README available at the shared task web-
site for details.)

4.2 Phrase structure with functions for all
constituents

We used the following five treebanks of this type:
German: TIGER treebank17 (Brants et al., 2002);
Japanese: Japanese Verbmobil treebank18 (Kawata
and Bartels, 2000);Portuguese: The Bosque part
of the Floresta sintá(c)tica19 (Afonso et al., 2002);
Dutch: Alpino treebank20 (van der Beek et al.,
2002b; van der Beek et al., 2002a);Chinese: Sinica

17Many thanks to the TIGER team for allowing us to use the
treebank for the shared task and to Amit Dubey for converting
the treebank.

18Many thanks to Yasuhiro Kawata, Julia Bartels and col-
leagues from Tübingen University for the construction of the
original Verbmobil treebank for Japanese and to Sandra Kübler
for providing the data and granting the special license for
CoNLL-X.

19Many thanks to Diana Santos, Eckhard Bick and other
Floresta sint(c)tica project members for creating the treebank
and making it publicly available, for answering many questions
about the treebank (Diana and Eckhard), for correcting prob-
lems and making new releases (Diana), and for sharing scripts
and explaining the head rules implemented in them (Eckhard).
Thanks also to Jason Baldridge for useful discussions and to
Ben Wing for independently reporting problems which Diana
then fixed.

20Many thanks to Gertjan van Noord and the other people at
the University of Groningen for creating the Alpino Treebank
and releasing it for free, to Gertjan van Noord for answeringall
our questions and for providing extra test material and to Antal
van den Bosch for help with the memory-based tagger.

treebank21 (Chen et al., 2003).
Their conversion to dependency format required

the definition of a head table. Fortunately, in con-
trast to the Penn Treebank for which the head ta-
ble is based on POS22 we could use the gram-
matical functions annotated in these treebanks.
Therefore, head rules are often of the form: the
head child of a VP/clause is the child with the
HD/predicator/hd/Head function. The DEPREL
value for a token is the function of the biggest con-
stituent of which this token is the lexical head. If the
constituent comprising the complete sentence did
not have a function, we gave its lexical head token
the DEPREL “ROOT”.

For the Chinese treebank, most functions are not
grammatical functions (such as “subject”, “object”)
but semantic roles (such as “agent”, “theme”). For
the Portuguese treebank, the conversion was compli-
cated by the fact that a detailed specification existed
which tokens should be the head of which other to-
kens, e.g. the finite verb must be the head of the
subject and the complementzier but the main verb
must be the head of the complements and adjuncts.23

Given that the Floresta sintá(c)tica does not use tra-
ditional VP constituents but rather verbal chunks
(consisting mainly of verbs), a simple Magerman-
Collins-style head table was not sufficient to derive
the required dependency structure. Instead we used
a head table that defined several types of heads (syn-
tactic, semantic) and a link table that specified what
linked to which type of head.24

Another problem existed with the Dutch tree-
bank. Its original PoS tag set is very coarse and
the PoS and the word stem information is not very
reliable.25 We therefore decided to retag the tree-
bank automatically using the Memory-Based Tag-
ger (MBT) (Daelemans et al., 1996) which uses a
very fine-grained tag set. However, this created a
problem with multiwords. MBT does not have the
concept of multiwords and therefore tags all of their

21Many thanks to Academia Sinica for granting the tempo-
rary license for CoNLL-X, to Keh-Jiann Chen for answering
our questions and to Amit Dubey for converting the treebank.

22containing rules such as: the head child of a VP is the left-
most “to”, or else the leftmost past tense verb, or else etc.

23Eckhard Bick, p.c.
24See the conversion scriptbosque2MALT.py and the

README file at the shared task website for details.
25http://www.let.rug.nl/vannoord/trees/Papers/diffs.pdf
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components individually. As Alpino does not pro-
vide an internal structure for multiwords, we had
to treat multiwords as one token. However, we
then lack a proper PoS for the multiword. After
much discussion, we decided to assign each multi-
word the CPOSTAG “MWU” (multiword unit) and
a POSTAG which is the concatenation of the PoS
of all the components as predicted by MBT (sepa-
rated by an underscore). Likewise, the FEATS are
a concatenation of the morphological features of all
components. This approach resulted in many dif-
ferent POSTAG values for the training set and even
in unseen values in the test set. It remains to be
tested whether our approach resulted in data sets bet-
ter suited for parsing than the original.

4.3 Phrase structure with some functions

We used two treebanks of this type:Spanish:
Cast3LB26 (Civit Torruella and Martı́ Antonı́n,
2002; Navarro et al., 2003; Civit et al., 2003);Bul-
garian: BulTreeBank27 (Simov et al., 2002; Simov
and Osenova, 2003; Simov et al., 2004; Osenova and
Simov, 2004; Simov et al., 2005).

Converting a phrase structure treebank with only
a few functions to a dependency format usually re-
quires linguistic competence in the treebank’s lan-
guage in order to create the head table and miss-
ing function labels. We are grateful to Chanev et
al. (2006) for converting the BulTreeBank to the
shared task format and to Montserrat Civit for pro-
viding us with a head table and a function mapping
for Cast3LB.28

4.4 Data set characteristics

Table 1 shows details of all data sets. Following
Nivre and Nilsson (2005) we use the following def-
inition: “an arc (i, j) is projective iff all nodes oc-
curring between i and j are dominated by i (where
dominates is the transitive closure of the arc rela-

26Many thanks to Montserrat Civit and Toni Martı́ for allow-
ing us to use Cast3LB for CoNLL-X and to Amit Dubey for
converting the treebank.

27Many thanks to Kiril Simov and Petya Osenova for allow-
ing us to use the BulTreeBank for CoNLL-X.

28Although unfortunately, due to a bug, the function list was
not used and the Spanish data in the shared task ended up with
many DEPREL values being simply ‘’. By the time we dis-
covered this, the test data release date was very close and we
decided not to release new bug-fixed training material that late.

tion)”.29

5 Approaches

Table 2 tries to give an overview of the wide variety
of parsing approaches used by participants. We refer
to the individual papers for details. There are several
dimensions along which to classify approaches.

5.1 Top-down, bottom-up

Phrase structure parsers are often classified in terms
of the parsing order: top-down, bottom-up or var-
ious combinations. For dependency parsing, there
seem to be two different interpretations of the term
“bottom-up”. Nivre and Scholz (2004) uses this
term with reference to Yamada and Matsumoto
(2003), whose parser has to find all children of a
token before it can attach that token to its head.
We will refer to this as “bottom-up-trees”. An-
other use of “bottom-up” is due to Eisner (1996),
who introduced the notion of a “span”. A span
consists of a potential dependency arcr between
two tokensi and j and all those dependency arcs
that would be spanned byr, i.e. all arcs between
tokensk and l with i ≤ k, l ≤ j. Parsing in
this order means that the parser has to find all chil-
dren and siblings on one side of a token before it
can attach that token to a head on the same side.
This approach assumes projective dependency struc-
tures. Eisner called this approach simply “bottom-
up”, while Nivre, whose parser implicitly also fol-
lows this order, called it “top-down/bottom-up” to
distinguish it from the pure “bottom-up(-trees)” or-
der of Yamada and Matsumoto (2003). To avoid
confusion, we will refer to this order as “bottom-up-
spans”.

5.2 Unlabeled parsing versus labeling

Given that the parser needs to predict the HEAD as
well as the DEPREL value, different approaches are
possible: predict the (probabilities of the) HEADs
of all tokens first, or predict the (probabilities of
the) DEPRELs of all tokens first, or predict the
HEAD and DEPREL of one token before predict-
ing these values for the next token. Within the
first approach, each dependency can be labeled in-
dependently (Corston-Oliver and Aue, 2006) or a

29Thanks to Joakim Nivre for explaining this.
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Ar Ch Cz Da Du Ge Ja Po Sl Sp Sw Tu Bu

lang. fam. Sem. Sin. Sla. Ger. Ger. Ger. Jap. Rom. Sla. Rom. Ger. Ura. Sla.
genres 1: ne 6 3 8+ 5+ 1: ne 1: di 1: ne 1: no 9 4+ 8 12
annotation d c+f d d dc+f dc+f c+f dc+f d c(+f) dc+f/d d c+t

training data
tokens (k) 54 337 1249 94 195 700 151 207 29 89 191 58 190
%non-scor. 8.8 a0.8 14.9 13.9 11.3 11.5 11.6 14.2 17.3 12.6 11.0 b33.1 14.4
units (k) 1.5 57.0 72.7 5.2 13.3 39.2 17.0 9.1 1.5 3.3 11.0 5.0 12.8
tokens/unit c37.2 d5.9 17.2 18.2 14.6 17.8 e8.9 22.8 18.7 27.0 17.3 11.5 14.8
LEMMA f(+) − + − + − − + + + − + −

CPOSTAGs 14 13+9 12 10 13 g52 20 15 11 15 37 14 11
POSTAGs 19 h294+9 63 24 i302 52 77 21 28 38 37 30 53
FEATS 19 − 61 47 81 − 4 146 51 33 − 82 50
DEPRELs 27 82 78 52 26 46 7 55 25 21 56 25 18
D.s H.=0 15 1 14 1 1 1 1 6 6 1 1 1 1
%HEAD=0 5.5 16.9 6.7 6.4 8.9 6.3 18.6 5.1 5.9 4.2 6.5 13.4 7.9
%H. preced. 82.9 24.8 50.9 75.0 46.5 50.9 8.9 60.3 47.2 60.8 52.8 6.2 62.9
%H. follow. 11.6 58.2 42.4 18.6 44.6 42.7 72.5 34.6 46.9 35.1 40.7 80.4 29.2
H.=0/unit 1.9 1.0 1.0 1.0 1.2 1.0 1.5 1.0 j0.9 1.0 1.0 1.0 1.0
%n.p. arcs 0.4 0.0 1.9 1.0 5.4 2.3 k1.1 1.3 1.9 l0.1 1.0 1.5 0.4
%n.p. units 11.2 0.0 23.2 15.6 36.4 27.8 5.3 18.9 22.2 1.7 9.8 11.6 5.4

test data
scor. tokens 4990 4970 5000 5010 4998 5008 5003 5009 5004 4991 5021 5021 5013
%new form 17.3 9.3 5.2 18.1 20.7 6.5 0.96 11.6 22.0 14.7 18.0 41.4 14.5
%new lem. 4.3 n/a 1.8 n/a 15.9 n/a n/a 7.8 9.9 9.7 n/a 13.2 n/a

Table 1: Characteristics of the data sets for the 13 languages (abbreviated by their first two letters): language family (Semitic,
Sino-Tibetan, Slavic, Germanic, Japonic (or language isolate), Romance, Ural-Altaic); number of genres, and genre ifonly one
(news, dialogue, novel); type of annotation (d=dependency, c=constituents, dc=discontinuous constituents, +f=with functions,
+t=with types). For the training data: number of tokens (times 1000); percentage of non-scoring tokens; number of parsetree units
(usually sentences, times 1000); average number of (scoring and non-scoring) tokens per parse tree unit; whether a lemma or stem
is available; how many different CPOSTAG values, POSTAG values, FEATS components and DEPREL values occur for scoring
tokens; how many different values for DEPREL scoring tokenswith HEAD=0 can have (if that number is 1, there is one designated
label (e.g. “ROOT”) for tokens with HEAD=0); percentage of scoring tokens with HEAD=0, a head that precedes or a head that
follows the token (this nicely shows which languages are predominantly head-initial or head-final); the average numberof scoring
tokens with HEAD=0 per parse tree unit; the percentage of (scoring and non-scoring) non-projective relations and of parse tree
units with at least one non-projective relation. For the test data: number of scoring tokens; percentage of scoring tokens with a
FORM or a LEMMA that does not occur in the training data.

afinal punctuation was deliberately left out during the conversion (as it is explicitly excluded from the tree structure)
bthe non-last IGs of a word are non-scoring, see Section 4.1
cin many cases the parse tree unit in PADT is not a sentence but aparagraph
din many cases the unit in Sinica is not a sentence but a comma-separated clause or phrase
ethe treebank consists of transcribed dialogues, in which some sentences are very short, e.g. just “Hai.” (“Yes.”)
fonly part of the Arabic data has non-underscore values for the LEMMA column
gno mapping from fine-grained to coarse-grained tags was available; same for Swedish
h9 values are typos; POSTAGs also encode subcategorization information for verbs and some semantic information for con-

junctions and nouns; some values also include parts in square brackets which in hindsight should maybe have gone to FEATS
idue to treatment of multiwords
jprobably due to some sentences consisting only of non-scoring tokens, i.e. punctuation
kthese are all disfluencies, which are attached to the virtualroot node
l from co-indexed items in the original treebank; same for Bulgarian
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algorithm ver. hor. search lab. non-proj learner pre post opt

all pairs
McD MST/Eisner b-s irr. opt/approx. 2nd + a MIRA − − −

Cor MST/Eisner b-s irr. optimal 2nd − BPMb+ME [SVM] + c − −

Shi MST/CLE irr. irr. optimal 1st +, CLE MIRA − − −

Can own algorithm irr. irr. approx.(?) int. + d TiMBL − − +
Rie ILP irr. irr. increment. int. + e MIRA − − +
Bic CG-inspired mpf mpf backtrack(?)int. + f MLE(?) + g + h −

stepwise
Dre hagi /Eisner/rerankb-s irr. best 1st exh 2nd − MLE − − + j

Liu own algorithm b-t mpf det./local int. − MLE − − −

Car Eisner b-s irr. approx. int. − perceptron − − −

stepwise: classifier-based
Att Y&M b-t for. determin. int. + k ME [MBL,SVM,...] stem − −

Cha Y&M b-t for. local 2nd − l perceptron (SNoW) proj − −

Yur own algorithm b-s irr. determin. int. − decision list (GPA)m − − −

Che chunker+Nivre b-s for. determin. int.n − SVM + ME [CRF] − − −

Niv Nivre b-s for. determin. int. +, ps-pr SVM proj deproj +
Joh Nivre+MST/CLE b-s f+bo N-best int.p +, CLE SVM (LIBSVM) − −

Wu Nivre+root parser b-s f/bq det.[+exh.] int. − [+] SVM (SVMLight) − [+] r −

other
Sch PCFG/CKY b-t irr. opt. int. +, traces MLE [ME] d2c c2d −

Table 2: Overview of parsing approaches taken by participating groups (identified by the first three letters
of the first author): algorithm (Y&M: Yamada and Matsumoto (2003), ILP: Integer Linear Programming),
vertical direction (irrelevant, mpf: most probable first, bottom-up-spans, bottom-up-trees), horizontal direc-
tion (irrelevant, mpf: most probable first, forward, backward), search (optimal, approximate, incremental,
best-first exhaustive, deterministic), labeling (interleaved, separate and 1st step, separate and 2nd step),
non-projective (ps-pr: through pseudo-projective approach), learner (ME: Maximum Entropy; learners in
brackets were explored but not used in the official submission), preprocessing (projectivize, d2c: dependen-
cies to constituents), postprocessing (deprojectivize, c2d: constituents to dependencies), learner parameter
optimization per language

anon-projectivity through approximate search, used for some languages
b20 averaged perceptrons combined into a Bayes Point Machine
cintroduced a single POS tag “aux” for all Swedish auxiliary and model verbs
dby having no projectivity constraint
eselective projectivity constraint for Japanese
fseveral approaches to non-projectivity
gusing some FEATS components to create some finer-grained POSTAG values
hreattachment rules for some types of non-projectivity
ihead automaton grammar
jdetermined the maximally allowed distance for relations
kthrough special parser actions
lpseudo-projectivizing training data only

mGreedy Prepend Algorithm
nbut two separate learners used for unlabeled parsing versuslabeling
oboth foward and backward, then combined into a single tree with CLE
pbut two separate SVMs used for unlabeled parsing versus labeling
qforward parsing for Japanese and Turkish, backward for the rest
rattaching remaining unattached tokens through exhaustivesearch (not for submitted runs)
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sequence classifier can label all children of a token
together (McDonald et al., 2006). Within the third
approach, HEAD and DEPREL can be predicted si-
multaneously, or in two separate steps (potentially
using two different learners).

5.3 All pairs

At the highest level of abstraction, there are two fun-
damental approaches, which we will call “all pairs”
and “stepwise”. In an “all pairs” approach, every
possible pair of two tokens in a sentence is consid-
ered and some score is assigned to the possibility
of this pair having a (directed) dependency relation.
Using that information as building blocks, the parser
then searches for the best parse for the sentence.
This approach is one of those described in Eisner
(1996). The definition of “best” parse depends on
the precise model used. That model can be one that
defines the score of a complete dependency tree as
the sum of the scores of all dependency arcs in it.
The search for the best parse can then be formalized
as the search for the maximum spanning tree (MST)
(McDonald et al., 2005b). If the parse has to be pro-
jective, Eisner’s bottom-up-span algorithm (Eisner,
1996) can be used for the search. For non-projective
parses, McDonald et al. (2005b) propose using the
Chu-Liu-Edmonds (CLE) algorithm (Chu and Liu,
1965; Edmonds, 1967) and McDonald and Pereira
(2006) describe an approximate extension of Eis-
ner’s algorithm. There are also alternatives to MST
which allow imposing additional constraints on the
dependency structure, e.g. that at most one depen-
dent of a token can have a certain label, such as “sub-
ject”, see Riedel et al. (2006) and Bick (2006). By
contrast, Canisius et al. (2006) do not even enforce
the tree constraint, i.e. they allow cycles. In a vari-
ant of the “all pairs” approach, only those pairs of
tokens are considered that are not too distant (Cani-
sius et al., 2006).

5.4 Stepwise

In a stepwise approach, not all pairs are considered.
Instead, the dependency tree is built stepwise and
the decision about what step to take next (e.g. which
dependency to insert) can be based on information
about, in theory all, previous steps and their results
(in the context of generative probabilistic parsing,
Black et al. (1993) call this the history). Stepwise

approaches can use an explicit probability model
over next steps, e.g. a generative one (Eisner, 1996;
Dreyer et al., 2006), or train a machine learner to
predict those. The approach can be deterministic (at
each point, one step is chosen) or employ various
types of search. In addition, parsing can be done in
a bottom-up-constituent or a bottom-up-spans fash-
ion (or in another way, although this was not done in
this shared task). Finally, parsing can start at the first
or the last token of a sentence. When talking about
languages that are written from left to right, this dis-
tinction is normally referred to as left-to-right ver-
sus right-to-left. However, for multilingual parsing
which includes languages that are written from right
to left (Arabic) or sometimes top to bottom (Chi-
nese, Japanese) this terminology is confusing be-
cause it is not always clear whether a left-to-right
parser for Arabic would really start with the left-
most (i.e. last) token of a sentence or, like for other
languages, with the first (i.e. rightmost). In general,
starting with the first token (“forward”) makes more
sense from a psycholinguistic point of view but start-
ing with the last (“backward”) might be beneficial
for some languages (possibly related to them being
head-initial versus head-final languages). The pars-
ing order directly determines what information will
be available from the history when the next decision
needs to be made. Stepwise parsers tend to inter-
leave the prediction of HEAD and DEPREL.

5.5 Non-projectivity

All data sets except the Chinese one contain some
non-projective dependency arcs, although their pro-
portion varies from 0.1% to 5.4%. Participants took
the following approaches to non-projectivity:

• Ignore, i.e. predict only projective parses. De-
pending on the way the parser is trained, it
might be necessary to at least projectivize the
training data (Chang et al., 2006).

• Always allow non-projective arcs, by not im-
posing any projectivity constraint (Shimizu,
2006; Canisius et al., 2006).

• Allow during parsing under certain conditions,
e.g. for tokens with certain properties (Riedel
et al., 2006; Bick, 2006) or if no alternative
projective arc has a score above the threshold
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(Bick, 2006) or if the classifier chooses a spe-
cial action (Attardi, 2006) or the parser predicts
a trace (Schiehlen and Spranger, 2006).

• Introduce through post-processing, e.g.
through reattachment rules (Bick, 2006) or
if the change increases overall parse tree
probability (McDonald et al., 2006).

• The pseudo-projective approach (Nivre and
Nilsson, 2005): Transform non-projective
training trees to projective ones but encode
the information necessary to make the inverse
transformation in the DEPREL, so that this in-
verse transformation can also be carried out on
the test trees (Nivre et al., 2006).

5.6 Data columns used

Table 3 shows which column values have
been used by participants. Nobody used the
PHEAD/PDEPREL column in any way. It is likely
that those who did not use any of the other columns
did so mainly for practical reasons, such as the
limited time and/or the difficulty to integrate it into
an existing parser.

5.6.1 FORM versus LEMMA

Lemma or stem information has often been ig-
nored in previous dependency parsers. In the shared
task data, it was available in just over half the data
sets. Both LEMMA and FORM encode lexical in-
formation. There is therefore a certain redundancy.
Participants have used these two columns in differ-
ent ways:

• Use only one (see Table 3).

• Use both, in different features. Typically, a fea-
ture selection routine and/or the learner itself
(through weights) will decide about the impor-
tance of the resulting features.

• Use a variant of the FORM as a substitute for
a missing LEMMA. Bick (2006) used the low-
ercased FORM if the LEMMA is not available,
Corston-Oliver and Aue (2006) a prefix and At-
tardi (2006) a stem derived by a rule-based sys-
tem for Danish, German and Swedish.

form lem. cpos pos feats

McD ++ a + b −? + +, co+cr.pr.
Cor + + + c ++ +, co+cr.pr.d

Shi + − + − −

Can + − − + −

Rie + e + + + f + cr.pr.
Bic (+) + + g + (+)

Dre ++ h + rer. rer. −

Liu (+) + ++ + −

Car ++ + ++ + + comp.

Att (+) + + − (+)
Cha − + − + + atomic
Yur + + + + + comp.
Che + + + + + atomic?
Niv + + + + + comp.
Joh + − + + + comp.
Wu + − + + −

Sch ? (+)i ? (+) (+)

Table 3: Overview of data columns used by partici-
pating groups. ‘−’: a column value was not used at
all. ‘+’: used in at least some features. ‘(+)’: Vari-
ant of FORM used only if LEMMA is missing, or
only parts of FEATS used. ‘++’: used more exten-
sively than another column containing related infor-
mation (where FORM and LEMMA are related, as
are CPOSTAG and POSTAG), e.g. also in combina-
tion features or features for context tokens in addi-
tion to features for the focus token(s). “rer.”: used
in the reranker only. For the last column: atomic,
comp. = components, cr.pr. = cross-product.

aalso prefix and suffix for labeler
binstead of form for Arabic and Spanish
cinstead of POSTAG for Dutch and Turkish
dfor labeler; unlab. parsing: only some for global features
ealso prefix
falso 1st character of POSTAG
gonly as backoff
hreranker: also suffix; if no lemma, use prefix of FORM
iLEMMA, POSTAG, FEATS only for back-off smoothing

5.6.2 CPOSTAG versus POSTAG

All data sets except German and Swedish had dif-
ferent values for CPOSTAG and POSTAG, although
the granularity varied widely. Again, there are dif-
ferent approaches to dealing with the redundancy:

• Use only one for all languages.
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• Use both, in different features. Typically, a fea-
ture selection routine and/or the learner itself
(through weights) will decide about the impor-
tance of the resulting features.

• Use one or the other for each language.

5.6.3 Using FEATS

By design, a FEATS column value has internal
structure. Splitting it at the ‘|’30 results in a set of
components. The following approaches have been
used:

• Ignore the FEATS.

• Treat the complete FEATS value as atomic, i.e.
do not split it into components.

• Use only some components, e.g. Bick (2006)
uses only case, mood and pronoun subclass and
Attardi (2006) uses only gender, number, per-
son and case.

• Use one binary feature for each component.
This is likely to be useful if grammatical func-
tion is indicated by case.

• Use one binary feature for each cross-product
of the FEATS components ofi and the FEATS
components ofj. This is likely to be useful for
agreement phenomena.

• Use one binary feature for each FEATS com-
ponent ofi that also exists forj. This is a more
explicit way to model agreement.

5.7 Types of features

When deciding whether there should be a depen-
dency relation between tokensi and j, all parsers
use at least information about these two tokens. In
addition, the following sources of information can
be used (see Table 4): token context (tc): a limited
number (determined by the window size) of tokens
directly preceding or followingi or j; children: in-
formation about the already found children ofi and
j; siblings: in a set-up where the decision is not “is
there a relation betweeni andj” but “is i the head of
j” or in a separate labeling step, the siblings ofi are
the already found children ofj; structural context

30or for Dutch, also at the ‘’

tc ch si sc di in gl co ac la op

McD + l + l ? l l + − l (+)a

Cor + l b l + p − + + − − (+)c

Shi + − − − + − − + − + −

Can + − − − + − − − − − −

Rie + − + d − ? ? − + − + e +
Bic + + f + g − + + h − + − ++ (+)i

Dre r r + r + r − + − r r
Liu − + − + + − − + − − −

Car + − + − + + − + − + −

Att − + + + − − − − + + (+)j

Cha + + − l − − − + + − −

Yur + + − ? − − − − − − +
Che − + + + + − − − − − −

Niv + + − + − − − − − + +
Joh + + − + − − − − − + −

Wu + + − + − − − + − + −

Sch − + − − − − − − − + −

Table 4: Overview of features used by participating
groups. See the text for the meaning of the column
abbreviations. For separate HEAD and DEPREL as-
signment: p: only for unlabeled parsing, l: only for
labeling, r: only for reranking.

aFORM versus LEMMA
bnumber of tokens governed by child
cPOSTAG versus CPOSTAG
dfor arity constraint
efor arity constraint
ffor “full” head constraint
gfor uniqueness constraint
hfor barrier constraint
iof constraints
jPOS window size

(sc) other than children/siblings: neighboring sub-
trees/spans, or ancestors ofi andj; distance fromi

to j; information derived from all the tokensin be-
tweeni andj (e.g. whether there is an intervening
verb or how many intervening commas there are);
global features (e.g. does the sentence contain a fi-
nite verb); explicit featurecombinations (depending
on the learner, these might not be necessary, e.g. a
polynomial kernel routinely combines features); for
classifier-based parsers: the previousactions, i.e.
classifications; whether information aboutlabels is
used as input for other decisions. Finally, the pre-
cise set of features can beoptimized per language.

159



6 Results

Table 5 shows the official results for submitted
parser outputs.31 The two participant groups with
the highest total score are McDonald et al. (2006)
and Nivre et al. (2006). As both groups had much
prior experience in multilingual dependency pars-
ing (see Section 2), it is not too surprising that they
both achieved good results. It is surprising, how-
ever, how similar their total scores are, given that
their approaches are quite different (see Table 2).
The results show that experiments on just one or two
languages certainly give an indication of the useful-
ness of a parsing approach but should not be taken
as proof that one algorithm is better for “parsing” (in
general) than another that performs slightly worse.
The Bulgarian scores suggest that rankings would
not have been very different had it been the 13th
obligatory languages.

Table 6 shows that the same holds had we used an-
other evaluation metric. Note that a negative number
in both the third and fifth column indicates that er-
rors on HEAD and DEPREL occur together on the
same token more often than for other parsers. Fi-
nally, we checked that, had we also scored on punc-
tuation tokens, total scores as well as rankings would
only have shown very minor differences.

7 Result analysis

7.1 Across data sets

The average LAS over all data sets varies between
56.0 for Turkish and 85.9 for Japanese. Top scores
vary between 65.7 for Turkish and 91.7 for Japanese.
In general, there is a high correlation between the
best scores and the average scores. This means that
data sets are inherently easy or difficult, no mat-
ter what the parsing approach. The “easiest” one is
clearly the Japanese data set. However, it would be
wrong to conclude from this that Japanese in general
is easy to parse. It is more likely that the effect stems
from the characteristics of the data. The Japanese
Verbmobil treebank contains dialogue within a re-
stricted domain (making business appointments). As

31Unfortunately, urgent other obligations prevented two par-
ticipants (John O’Neil and Kenji Sagae) from submitting a pa-
per about their shared task work. Their results are indicated by
a smaller font. Sagae used a best-first probabilistic version of
Y&M (p.c.).

LAS unlabeled label acc.

McD 80.3 = 86.6 −1 86.7
Niv 80.2 = 85.5 +1 86.8
O’N 78.4 = 85.3 −1 85.0

Rie 77.9 = 85.0 −1 84.9
Sag 77.8 −2 83.7 +2 85.6

Che 77.7 +1 84.6 = 84.2
Cor 76.9 +1 84.4 −1 84.0
Cha 76.8 = 83.5 +1 84.1
Joh 74.9 −1 80.4 = 83.7
Car 74.7 +1 81.2 = 83.5
Wu 71.7 −1 78.4 −1 79.1
Can 70.8 +1 78.4 −1 78.6
Bic 70.0 = 77.5 a+2 80.3
Dre 65.2 −1 74.5 −1 75.2
Yur 65.0 −1 73.5 −2 70.9
Liu 63.3 −2 70.7 = 73.6
Sch 62.8 = 72.1 b+3 75.7
Att 61.2 c+4 76.2 = 70.7
Shi 34.2 = 38.7 = 39.7

Table 6: Differences in ranking depending on the
evaluation metric. The second column repeats the
official metric (LAS). The third column shows how
the ranking for each participant changes (or not: ‘=’)
if the unlabeled attachment scores, as shown in the
fourth column, are used. The fifth column shows
how the ranking changes (in comparison to LAS) if
the label accuracies, as shown in the sixth column,
are used.

aIn Bick’s method, preference is given to the assignment of
dependency labels.

bSchiehlen derived the constituent labels for his PCFG ap-
proach from the DEPREL values.

cDue to the bug (see footnote with Table 5).

can be seen in Table 1, there are very few new
FORM values in the test data, which is an indica-
tion of many dialogues in the treebank being sim-
ilar. In addition, parsing units are short on aver-
age. Finally, the set of DEPREL values is very small
and consequently the ratio between (C)POSTAG and
DEPREL values is extremely favorable. It would
be interesting to apply the shared task parsers to
the Kyoto University Corpus (Kurohashi and Nagao,
1997), which is the standard treebank for Japanese
and has also been used by Kudo and Matsumoto

160



Ar Ch Cz Da Du Ge Ja Po Sl Sp Sw Tu Tot SD Bu
McD 66.9 85.9 80.2 84.8 79.2 87.390.7 86.8 73.4 82.3 82.6 63.2 80.3 8.4 87.6
Niv 66.7 86.9 78.4 84.8 78.6 85.8 91.7 87.6 70.3 81.3 84.6 65.7 80.2 8.5 87.4
O’N 66.7 86.7 76.6 82.8 77.5 85.4 90.6 84.7 71.1 79.8 81.8 57.578.4 9.4 85.2

Rie 66.7 90.0 67.4 83.6 78.6 86.2 90.5 84.4 71.2 77.4 80.7 58.677.9 10.1 0.0
Sag 62.7 84.7 75.2 81.6 76.6 84.9 90.486.0 69.1 77.7 82.0 63.2 77.8 9.0 0.0

Che 65.2 84.3 76.2 81.7 71.8 84.1 89.9 85.1 71.4 80.5 81.1 61.277.7 8.7 86.3
Cor 63.5 79.9 74.5 81.7 71.4 83.5 90.0 84.672.4 80.4 79.7 61.7 76.9 8.5 83.4
Cha 60.9 85.1 72.9 80.6 72.9 84.2 89.1 84.0 69.5 79.7 82.3 60.576.8 9.4 0.0
Joh 64.3 72.5 71.5 81.5 72.7 80.4 85.6 84.6 66.4 78.2 78.1 63.474.9 7.7 0.0
Car 60.9 83.7 68.8 79.7 67.3 82.4 88.1 83.4 68.4 77.2 78.7 58.174.7 9.7 83.3
Wu 63.8 74.8 59.4 78.4 68.5 76.5 90.1 81.5 67.8 73.0 71.7 55.171.7 9.7 79.7
Can 57.6 78.4 60.9 77.9 74.6 77.6 87.4 77.4 59.2 68.3 79.2 51.170.8 11.1 78.7
Bic 55.4 76.2 63.0 74.6 69.5 74.7 84.8 78.2 64.3 71.4 74.1 53.970.0 9.3 79.2
Dre 53.4 71.6 60.5 66.6 61.6 71.0 82.9 75.3 58.7 67.6 67.6 46.165.2 9.9 74.8
Yur 52.4 72.7 51.9 71.6 62.8 63.8 84.4 70.4 55.1 69.6 65.2 60.365.0 9.5 73.5
Liu 50.7 75.3 58.5 77.7 59.4 68.1 70.8 71.1 57.2 65.1 63.8 41.763.3 10.4 67.6
Sch 44.4 66.2 53.3 76.1 72.1 68.7 83.4 71.0 50.7 47.0 71.1 49.862.8 13.0 0.0
Att 53.8 54.9 59.8 66.4 58.2 69.8 65.4 75.4 57.2 67.4 68.8 37.8a61.2 9.9 72.9
Shi 62.8 0.0 0.0 75.8 0.0 0.0 0.0 0.0 64.6 73.2 79.5 54.234.2 36.3 0.0
Av 59.9 78.3 67.2 78.3 70.7 78.6 85.9 80.6 65.2 73.5 76.4 56.0 80.0
SD 6.5 8.8 8.9 5.5 6.7 7.5 7.1 5.8 6.8 8.4 6.5 7.7 6.3

Table 5: Labeled attachment scores of parsers on the 13 test sets. The total score (Tot) and standard devia-
tions (SD) from the average per participant are calculated over the 12 obligatory languages (i.e. excluding
Bulgarian). Note that due to the equal sizes of the test sets for all languages, the total scores, i.e. the LAS
over the concatenation of the 12 obligatory test sets, are identical (up to the first decimal digit) to the average
LAS over the 12 test sets. Averages and standard deviations per data set are calculated ignoring zero scores
(i.e. results not submitted). The highest score for each column and those not significantly worse (p < 0.05)
are shown in bold face. Significance was computed using the official scoring scripteval.pl and Dan
Bikel’s Randomized Parsing Evaluation Comparator, which implements stratified shuffling.

aAttardi’s submitted results contained an unfortunate bug which caused the DEPREL values of all tokens with HEAD=0 to
be an underscore (which is scored as incorrect). Using the simple heuristic of assigning the DEPREL value that most frequently
occured with HEAD=0 in training would have resulted in a total LAS of 67.5.

(2000), or to the domain-restricted Japanese dia-
logues of the ATR corpus (Lepage et al., 1998).32

Other relatively “easy” data sets are Portuguese
(2nd highest average score but, interestingly, the
third-longest parsing units), Bulgarian (3rd), Ger-
man (4th) and Chinese (5th). Chinese also has the
second highest top score33 and Chinese parsing units

32Unfortunately, both these treebanks need to be bought, so
they could not be used for the shared task. Note also that
Japanese dependency parsers often operate on “bunsetsus” in-
stead of words. Bunsetsus are related to chunks and consist of
a content word and following particles (if any).

33Although this seems to be somewhat of a mystery com-
pared to the ranking according to the average scores. Riedelet

are the shortest. and Chinese parsing units are the
shortest. We note that all “easier” data sets offer
large to middle-sized training sets.

The most difficult data set is clearly the Turkish
one. It is rather small, and in contrast to Arabic
and Slovene, which are equally small or smaller, it
covers 8 genres, which results in a high percentage
of new FORM and LEMMA values in the test set.
It is also possible that parsers get confused by the
high proportion (one third!) of non-scoring tokens

al. (2006)’s top score is more than 3% absolute above the sec-
ond highest score and they offer no clear explanation for their
success.
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and the many tokens with ‘’ as either the FORM or
LEMMA. There is a clear need for further research
to check whether other representations result in bet-
ter performance.

The second-most difficult data set is Arabic. It is
quite small and has by far the longest parsing units.
The third-most difficult data set is Slovene. It has
the smallest training set. However, its average as
well as top score far exceed those for Arabic and
Turkish, which are larger. Interestingly, although the
treebank text comes from a single source (a transla-
tion of Orwell’s novel “1984”), there is quite a high
proportion of new FORM and LEMMA values in the
test set. The fourth-most difficult data set is Czech
in terms of the average score and Dutch in terms of
the top score. The diffence in ranking for Czech is
probably due to the fact that it has by far the largest
training set and ironically, several participants could
not train on all data within the limited time, or else
had to partition the data and train one model for each
partition. Likely problems with the Dutch data set
are: noisy (C)POSTAG and LEMMA, (C)POSTAG
for multiwords, and the highest proportion of non-
projectivity.

Factors that have been discussed so far are: the
size of the training data, the proportion of new
FORM and LEMMA values in the test set, the ra-
tio of (C)POSTAG to DEPREL values, the average
length of the parsing unit the proportion of non-
projective arcs/parsing units. It would be interest-
ing to derive a formula based on those factors that
fits the shared task data and see how well it pre-
dicts results on new data sets. One factor that seems
to be irrelevant is the head-final versus head-initial
distinction, as both the “easiest” and the most dif-
ficult data sets are for head-final languages. There
is also no clear proof that some language families
are easier (with current parsing methods) than oth-
ers. It would be interesting to test parsers on the
Hebrew treebank (Sima’an et al., 2001), to compare
performance to Arabic, the other Semitic language
in the shared task, or on the Hungarian Szeged Cor-
pus (Csendes et al., 2004), for another agglutinative
language.

7.2 Across participants

For most parsers, their ranking for a specific lan-
guage differs at most a few places from their over-

all ranking. There are some outliers though. For
example, Johansson and Nugues (2006) and Yuret
(2006) are seven ranks higher for Turkish than over-
all, while Riedel et al. (2006) are five ranks lower.
Canisius et al. (2006) are six and Schiehlen and
Spranger (2006) even eight ranks higher for Dutch
than overall, while Riedel et al. (2006) are six ranks
lower for Czech and Johansson and Nugues (2006)
also six for Chinese. Some of the higher rankings
could be related to native speaker competence and
resulting better parameter tuning but other outliers
remain a mystery. Even though McDonald et al.
(2006) and Nivre et al. (2006) obtained very simi-
lar overall scores, a more detailed look at their per-
formance shows clear differences. Taken over all 12
obligatory languages, both obtain a recall of more
than 89% on root tokens (i.e. those with HEAD=0)
but Nivre’s precision on them is much lower than
McDonald’s (80.91 versus 91.07). This is likely to
be an effect of the different parsing approaches.

7.3 Across part-of-speech tags

When breaking down by part-of-speech the results
of all participants on all data sets, one can observe
some patterns of “easy” and “difficult” parts-of-
speech, at least in so far as tag sets are compara-
ble across treebanks. The one PoS that everybody
got 100% correct are the German infinitival mark-
ers (tag PTKZU; like “to” in English). Accuracy on
the Swedish equivalent (IM) is not far off at 98%.
Other easy PoS are articles, with accuracies in the
nineties for German, Dutch, Swedish, Portuguese
and Spanish. As several participants have remarked
in their papers, prepositions are much more difficult,
with typical accuracies in the fifties or sixties. Simi-
larly, conjunctions typically score low, with accura-
cies even in the forties for Arabic and Dutch.

8 Future research

There are many directions for interesting research
building on the work done in this shared task. One
is the question which factors make data sets “easy”
or difficult. Another is finding out how much of
parsing performance depends on annotations such
as the lemma and morphological features, which
are not yet routinely part of treebanking efforts. In
this respect, it would be interesting to repeat ex-
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periments with the recently released new version of
the TIGER treebank which now contains this in-
formation. One line of research that does not re-
quire additional annotation effort is defining or im-
proving the mapping from coarse-grained to fine-
grained PoS tags.34 Another is harvesting and using
large-scale distributional data from the internet. We
also hope that by combining parsers we can achieve
even better performance, which in turn would facili-
tate the semi-automatic enlargement of existing tree-
banks and possibly the detection of remaining er-
rors. This would create a positive feedback loop.
Finally one must not forget that almost all of the
LEMMA, (C)POSTAG and FEATS values and even
part of the FORM column (the multiword tokens
used in many data sets and basically all tokeniza-
tion for Chinese and Japanese, where words are nor-
mally not delimited by spaces) have been manually
created or corrected and that the general parsing task
has to integrate automatic tokenization, morphologi-
cal analysis and tagging. We hope that the resources
created and lessons learned during this shared task
will be valuable for many years to come but also
that they will be extended and improved by others
in the future, and that the shared task website will
grow into an informational hub on multilingual de-
pendency parsing.

References
A. Arun and F. Keller. 2005. Lexicalization in crosslinguistic

probabilistic parsing: The case of French. InProc. of the
43rd Annual Meeting of the ACL.

D. Bikel. 2002. Design of a multi-lingual, parallel-processing
statistical parsing engine. InProc. of the Human Language
Technology Conf. (HLT).

E. Black, S. Abney, D. Flickenger, et al. 1991. A procedure for
quantitatively comparing the syntactic coverage of English
grammars. InSpeech and Natural Language: Proceedings
of a Workshop Held at Pacific Grove, California.

E. Black, F. Jelinek, J. Lafferty, D. Magerman, R. Mercer, and
S. Roukos. 1993. Towards history-based grammars: Using
richer models for probabilistic parsing. InProc. of the 31rd
Annual Meeting of the ACL.

S. Buchholz and D. Green. 2006. Quality control of treebanks:
documenting, converting, patching. InLREC 2006 work-
shop on Quality assurance and quality measurement for lan-
guage and speech resources.

34For the Swedish Talbanken05 corpus, that work has been
done after the shared task (see the treebank’s web site).

A. Chanev, K. Simov, P. Osenova, and S. Marinov. 2006. De-
pendency conversion and parsing of the BulTreeBank. In
Proc. of the LREC-Workshop Merging and Layering Lin-
guistic Information.

Y. Cheng, M. Asahara, and Y. Matsumoto. 2005. Chinese
deterministic dependency analyzer: Examining effects of
global features and root node finder. InProc. of SIGHAN-
2005.

Y.J. Chu and T.H. Liu. 1965. On the shortest arborescence of a
directed graph.Science Sinica, 14:1396–1400.

M. Collins, J. Hajic, L. Ramshaw, and C. Tillmann. 1999.
A statistical parser for Czech. InProc. of the 37th Annual
Meeting of the ACL.

M. Collins. 1996. A new statistical parser based on bigram
lexical dependencies. InProc. of the 34th Annual Meeting
of the ACL.

M. Collins. 1997. Three generative, lexicalised models forsta-
tistical parsing. InProc. of the 35th Annual Meeting of the
ACL.

M. Collins. 1999.Head-Driven Statistical Models for Natural
Language Parsing. Ph.D. thesis, University of Pennsylvania.

B. Cowan and M. Collins. 2005. Morphology and reranking for
the statistical parsing of Spanish. InProc. of the Joint Conf.
on Human Language Technology and Empirical Methods in
Natural Language Processing (HLT/EMNLP).

D. Csendes, J. Csirik, and T. Gyimóthy. 2004. The Szeged cor-
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1 Introduction 

Parsing natural language is an essential step in 

several applications that involve document 

analysis, e.g. knowledge extraction, question 

answering, summarization, filtering. The best 

performing systems at the TREC Question 

Answering track employ parsing for analyzing 

sentences in order to identify the query focus, to 

extract relations and to disambiguate meanings of 

words. 

These are often demanding applications, which 

need to handle large collections and to provide 

results in a fraction of a second. Dependency 

parsers are promising for these applications since a 

dependency tree provides predicate-argument 

relations which are convenient for use in the later 

stages. Recently statistical dependency parsing 

techniques have been proposed which are 

deterministic and/or linear (Yamada and 

Matsumoto, 2003; Nivre and Scholz, 2004). These 

parsers are based on learning the correct sequence 

of Shift/Reduce actions used to construct the 

dependency tree. Learning is based on techniques 

like SVM (Vapnik 1998) or Memory Based 

Learning (Daelemans 2003), which provide high 

accuracy but are often computationally expensive. 

Kudo and Matsumoto (2002) report a two week 

learning time on a Japanese corpus of about 8000 

sentences with SVM. Using Maximum Entropy 

(Berger, et al. 1996) classifiers I built a parser that 

achieves a throughput of over 200 sentences per 

second, with a small loss in accuracy of about 2-

3 %. 

The efficiency of Maximum Entropy classifiers 

seems to leave a large margin that can be exploited 

to regain accuracy by other means. I performed a 

series of experiments to determine whether 

increasing the number of features or combining 

several classifiers could allow regaining the best 

accuracy. An experiment cycle in our setting 

requires less than 15 minutes for a treebank of 

moderate size like the Portuguese treebank 

(Afonso et al., 2002) and this allows evaluating the 

effectiveness of adding/removing features that 

hopefully might apply also when using other 

learning techniques. 

I extended the Yamada-Matsumoto parser to 

handle labeled dependencies: I tried two 

approaches: using a single classifier to predict 

pairs of actions and labels and using two separate 

classifiers, one for actions and one for labels. 

Finally, I extended the repertoire of actions used 

by the parser, in order to handle non-projective 

relations. Tests on the PDT (Böhmovà et al., 2003) 

show that the added actions are sufficient to handle 

all cases of non-projectivity. However, since the 

cases of non-projectivity are quite rare in the 

corpus, the general learner is not supplied enough 

of them to learn how to classify them accurately, 

hence it may be worthwhile to exploit a second 

classifier trained specifically in handling non-

projective situations. 

1. Summary of the approach 

The overall parsing algorithm is an inductive 

statistical parser, which extends the approach by 

Yamada and Matsumoto (2003), by adding six new 

reduce actions for handling non-projective 

relations and also performs dependency labeling. 

Parsing is deterministic and proceeds bottom-up. 

Labeling is integrated within a single processing 

step. 
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The parser is modular: it can use several 

learning algorithms: Maximum Entropy, SVM, 

Winnow, Voted Perceptron, Memory Based 

Learning, as well as combinations thereof. The 

submitted runs used Maximum Entropy and I 

present accuracy and performance comparisons 

with other learning algorithms. 

No additional resources are used. 

No pre-processing or post-processing is used, 

except stemming for Danish, German and Swedish. 

2 Features 

Columns from input data were used as follows. 

LEMMA was used in features whenever 

available, otherwise the FORM was used. For 

Danish, German and Swedish the Snowball 

stemmer (Porter 2001) was used to generate a 

value for LEMMA. This use of stemming slightly 

improved both accuracy and performance. 

Only CPOSTAG were used. PHEAD/PDEPREL 

were not used. 

FEATS were used to extract a single token 

combining gender, number, person and case, 

through a language specific algorithm. 

The selection of features to be used in the parser 

is controlled by a number of parameters. For ex-

ample, the parameter PosFeatures determines 

for which tokens the POS tag will be included in 

the context, PosLeftChildren determines how 

many left outermost children of a token to con-

sider, PastActions tells how many previous ac-

tions to include as features. 

The settings used in the submitted runs are listed 

below and configure the parser for not using any 

word forms. Positive numbers refer to input to-

kens, negative ones to token on the stack. 

LemmaFeatures         -2 -1 0 1 2 3 
PosFeatures           -2 -1 0 1 2 3 
MorphoFeatures        -1 0 1 2 
DepFeatures           -1 0 
PosLeftChildren       2 
PosLeftChild          -1 0 
DepLeftChild          -1 0 
PosRightChildren      2 
PosRightChild         -1 0 
DepRightChild         -1 
PastActions           1 

The context for POS tags consisted of 1 token left 

and 3 tokens to the right of the focus words, except 

for Czech and Chinese were 2 tokens to the left 

and 4 tokens to the right were used. These values 

were chosen by performing experiments on the 

training data, using 10% of the sentences as held-

out data for development. 

3 Inductive Deterministic Parsing 

The parser constructs dependency trees employing 

a deterministic bottom-up algorithm which per-

forms Shift/Reduce actions while analyzing input 

sentences in left-to-right order. 

Using a notation similar to (Nivre and Scholz, 

2003), the state of the parser is represented by a 

quadruple 〈S, I, T, A〉, where S is the stack, I is the 

list of (remaining) input tokens, T is a stack of 

temporary tokens and A is the arc relation for the 

dependency graph. 

Given an input string W, the parser is initialized 

to 〈(), W, (), ()〉, and terminates when it reaches a 

configuration 〈S, (), (), A〉. 

The parser by Yamada and Matsumoto (2003) 

used the following actions: 

Shift in a configuration 〈S, n|I, T, A〉, pushes 

n to the stack, producing the configura-

tion 〈n|S, I, T, A〉. 

Right1 in a configuration 〈s1|S, n|I, T, A〉, adds 

an arc from s1 to n and pops s1 from the 

stack, producing the configuration 〈S, 

n|I, T, A∪{(s1, r, n)}〉. 

Left in a configuration 〈s1|S, n|I, T, A〉, adds 

an arc from n to s1, pops n from input, 

pops s1 from the stack and moves it 

back to I, producing the configuration 

〈S, s1|I, T, A∪{(n, r, s1)}〉. 

At each step the parser uses classifiers trained on 

treebank data in order to predict which action to 

perform and which dependency label to assign 

given the current configuration. 

4 Non-Projective Relations 

For handling non-projective relations, Nivre and 

Nilsson (2005) suggested applying a pre-

processing step to a dependency parser, which con-

sists in lifting non-projective arcs to their head re-

peatedly, until the tree becomes pseudo-projective. 

A post-processing step is then required to restore 

the arcs to the proper heads. 

                                                           
1 Nivre and Scholz reverse the direction, while I follow here 

the terminology in Yamada and Matsumoto (2003). 
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I adopted a novel approach, which consists in 

adding six new parsing actions: 

Right2 in a configuration 〈s1|s2|S, n|I, T, A〉, 

adds an arc from s2 to n and removes s2 

from the stack, producing the configu-

ration 〈s1|S, n|I, T, A∪{(s2, r, n)}〉. 

Left2 in a configuration 〈s1|s2|S, n|I, T, A〉, 

adds an arc from n to s2, pops n from 

input, pops s1 from the stack and moves 

it back to I, producing the configuration 

〈s2|S, s1|I, T, A∪{(n, r, s2)}〉. 

Right3 in a configuration 〈s1|s2|s3|S, n|I, T, A〉, 

adds an arc from s3 to n and removes s3 

from the stack, producing the configu-

ration 〈s1|s2|S, n|I, T, A∪{(s3, r, n)}〉. 

Left3 in a configuration 〈s1|s2|s3|S, n|I, T, A〉, 

adds an arc from n to s3, pops n from 

input, pops s1 from the stack and moves 

it back to I, producing the configuration 

〈s2|s3|S, s1|I, T, A∪{(n, r, s3)}〉. 

Extract in a configuration 〈s1|s2|S, n|I, T, A〉, 

move s2 from the stack to the temporary 

stack, then Shift, producing the con-

figuration 〈n|s1|S, I, s2|T, A〉. 

Insert in a configuration 〈S, I, s1|T, A〉, pops s1 

from T and pushes it to the stack, pro-

ducing the configuration 〈s1|S, I, T, A〉. 

The actions Right2 and Left2 are sufficient to 

handle almost all cases of non-projectivity: for in-

stance the training data for Czech contain 28081 

non-projective relations, of which 26346 can be 

handled by Left2/Right2, 1683 by 

Left3/Right3 and just 52 require Ex-

tract/Insert. 

Here is an example of non-projectivity that can 

be handled with Right2 (nejen → ale) and Left3 

(fax → Většinu): 

Většinu těchto přístrojů lze take používat nejen jako fax, 

ale současně … 

 

The remaining cases are handled with the last two 

actions: Extract is used to postpone the creation 

of a link, by saving the token in a temporary stack; 

Insert restores the token from the temporary 

stack and resumes normal processing. 

 
This fragment in Dutch is dealt by performing an 

Extract in configuration 〈moeten|gemaakt|zou, 

worden|in, A〉 followed immediately by an In-

sert, leading to the following configuration, 

which can be handled by normal Shift/Reduce 

actions: 

 
Another linguistic phenomenon is the anticipation 

of pronouns, like in this Portuguese fragment: 

Tudo é possivel encontrar em o IX 
Salão de Antiguidades, desde objectos 

de ouro e prata, moedas, … 

The problem here is due to the pronoun Tudo 

(Anything), which is the object of encontrar 

(find), but which is also the head of desde (from) 

and its preceding comma. In order to be able to 

properly link desde to Tudo, it is necessary to 

postpone its processing; hence it is saved with Ex-

tract to the temporary stack and put back later in 

front of the comma with Insert. In fact the pair 

Extract/Insert behaves like a generalized 

Rightn/Leftn, when n is not known. As in the 

example, except for the case where n=2, it is diffi-

cult to predict the value of n, since there can be an 

arbitrary long sequence of tokens before reaching 

the position where the link can be inserted. 

5 Performance 

I used my own C++ implementation of Maximum 

Entropy, which is very fast both in learning and 

classification. On a 2.8 MHz Pentium Xeon PC, 

the learning time is about 15 minutes for Portu-

guese and 4 hours for Czech. Parsing is also very 

fast, with an average throughput of 200 sentences 

per second: Table 1 reports parse time for parsing 

each whole test set. Using Memory Based Learn-

ing increases considerably the parsing time, while 

as expected learning time is quite shorter. On the 

other hand MBL achieves an improvement up to 

5% in accuracy, as shown in detail in Table 1. 

zou moeten worden gemaakt in 

zou gemaakt moeten worden in 

Většinu těchto přístrojů lze take používat nejen jako fax  ,  ale 
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Language 
Maximum Entropy MBL 

LAS 

% 

Cor-

rected 

LAS 

UAS 

% 

LA 

% 

Train 

time 

sec 

Parse 

time 

sec 

LAS 

% 

UAS 

% 

LA 

% 

Train 

time 

sec 

Parse 

time 

sec 

Arabic 53.81 54.15 69.50 72.97 181 2.6 59.70 74.69 75.49 24 950 

Bulgarian 72.89 72.90 85.24 77.68 452 1.5 79.17 85.92 83.22 88 353 

Chinese 54.89 70.00 81.33 58.75 1156 1.8 72.17 83.08 75.55 540 478 

Czech 59.76 62.10 73.44 69.84 13800 12.8 69.20 80.22 77.72 496 13500 

Danish 66.35 71.72 78.84 74.65 386 3.2 76.13 83.65 82.06 52 627 

Dutch 58.24 63.71 68.93 66.47 679 3.3 68.97 74.73 75.93 132 923 

German 69.77 75.88 80.25 78.39 9315 4.3 79.79 84.31 86.88 1399 3756 

Japanese 65.38 78.01 82.05 73.68 129 0.8 83.39 86.73 89.95 44 97 

Portuguese 75.36 79.40 85.03 80.79 1044 4.9 80.97 86.78 85.27 160 670 

Slovene 57.19 60.63 72.14 69.36 98 3.0 62.67 76.60 72.72 16 547 

Spanish 67.44 70.33 74.25 82.19 204 2.4 74.37 79.70 85.23 54 769 

Swedish 68.77 75.20 83.03 72.42 1424 2.9 74.85 83.73 77.81 96 1177 

Turkish 37.80 48.83 65.25 49.81 177 2.3 47.58 65.25 59.65 43 727 

Table 1. Results for the CoNLL-X Shared task (official values in italics). 

For details on the CoNLL-X shared task and the 

measurements see (Buchholz, et al. 2006). 

6 Experiments 

I performed several experiments to tune the parser. 

I also tried alternative machine learning algo-

rithms, including SVM, Winnow, Voted Percep-

tron. 

The use of SVM turned out quite impractical 

since the technique does not scale to the size of 

training data involved: training an SVM with such 

a large number of features was impossible for any 

of the larger corpora. For smaller ones, e.g. Portu-

guese, training required over 4 days but produced a 

bad model which could not be used (I tried both 

the TinySVM (Kudo 2002) and the LIBSVM 

(Chang and Lin 2001) implementations). 

Given the speed of the Maximum Entropy clas-

sifier, I explored whether increasing the number of 

features could improve accuracy. I experimented 

adding various features controlled by the parame-

ters above: none appeared to be effective, except 

the addition of the previous action. 

The classifier returns both the action and the la-

bel to be assigned. Some experiments were carried 

out splitting the task among several specialized 

classifiers. I experimented with: 

1. three classifiers: one to decide between 

Shift/Reduce, one to decide which Reduce 

action and a third one to choose the depend-

ency in case of Left/Right action 

2. two classifiers: one to decide which action to 

perform and a second one to choose the de-
pendency in case of Left/Right action 

None of these variants produced improvements in 

precision. Only a small improvement in labeled 

attachment score was noticed using the full, non-

specialized classifier to decide the action but dis-

carding its suggestion for label and using a special-

ized classifier for labeling. However this was 

combined with a slight decrease in unlabeled at-

tachment score, hence it was not considered worth 

the effort. 

7 Error Analysis 

The parser does not attempt to assign a dependency 

relation to the root. A simple correction of assign-

ing a default value for each language gave an im-

provement in the LAS as shown in Table 1. 

7.1 Portuguese 

Out of the 45 dependency relations that the parser 

had to assign to a sentence, the largest number of 
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errors occurred assigning N<PRED (62), ACC (46), 

PIV (43), CJT (40), N< (34), P< (30). 

The highest number of head error occurred at 

the CPOS tags PRP with 193 and V with 176. In 

particular just four prepositions (em, de, a, para) 

accounted for 120 head errors. 

Most of the errors occur near punctuations. Of-

ten this is due to the fact that commas introduce 

relative phrases or parenthetical phrases (e.g. “o 

suspeito, de 38 anos, que trabalha”), 

that produce diversions in the flow. Since the 

parser makes decisions analyzing only a window 

of tokens of a limited size, it gets confused in cre-

ating attachments. I tried to add some global con-

text features, to be able to distinguish these cases, 

in particular, a count of the number of punctuation 

marks seen so far, whether punctuation is present 

between the focus words. None of them helped 

improving precision and were not used in the sub-

mitted runs. 

7.2 Czech 

Most current parsers for Czech do not perform well 

on Apos (apposition), Coord (coordination) and 

ExD (ellipses), but they are not very frequent. The 

largest number of errors occur on Obj (166), Adv 

(155), Sb (113), Atr (98). There is also often con-

fusion among these: 33 times Obj instead of Adv, 

32 Sb instead of Obj, 28 Atr instead of Adv. 

The high error rate of J (adjective) is expected, 

mainly due to coordination problems. The error of 

R (preposition) is also relatively high. Prepositions 

are problematic, but their error rate is higher than 

expected since they are, in terms of surface order, 

rather regular and close to the noun. It could be 

that the decision by the PDT to hang them as heads 

instead of children, causes a problem in attaching 

them. It seems that a post-processing may correct a 

significant portion of these errors. 

The labels ending with _Co, _Ap or _Pa are 

nodes who are members of the Coordination, Ap-

position or the Parenthetical relation, so it may be 

worth while omitting these suffixes in learning and 

restore them by post-processing. 

An experiment using as training corpus a subset 

consisting of just sentences which include non-

projective relations achieved a LAS of 65.28 % 

and UAS of 76.20 %, using MBL. 

Acknowledgments. Kiril Ribarov provided in-

sightful comments on the results for Czech.  

The following treebanks were used for training the 

parser: (Afonso et al., 2002; Atalay et al., 2003; 

Böhmovà et al., 2003; Brants et al., 2002; Chen et 

al., 2003; Civit Torruella and Martì Antonìn, 2002; 

Džeroski et al., 2006; Hajiç et al., 2004; Kawata 

and Bartels, 2000; Kromann, 2003; Nilsson et al., 

2005; Oflazer et al., 2003; Simov et al., 2005; van 

der Beek et al., 2002). 
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Abstract

This paper presents a Constraint Grammar-
inspired machine learner and parser,  Ling
Pars, that assigns dependencies to morpho
logically annotated treebanks in a function-
centred way. The system not only bases at
tachment probabilities for PoS, case, mood, 
lemma on those features' function probabili
ties, but also uses topological features like 
function/PoS  n-grams,  barrier  tags  and 
daughter-sequences.  In  the  CoNLL shared 
task, performance was below average on at
tachment  scores,  but  a  relatively  higher 
score for  function tags/deprels  in  isolation 
suggests that the system's strengths were not 
fully exploited in the current architecture.

1 Introduction

This paper describes LingPars, a Constraint Gram
mar-inspired language-independent treebank-learn
er developed from scratch between January 9th and 
March  9th 2006  in  the  context  of  the  CoNLL-X 
2006 shared task (http://nextens.uvt.nl/~conll/), or
ganized by Sabine Buchholz,  Erwin Marsi,  Yval 
Krymolowski and Amit Dubey. Training treebanks 
and test data were provided for  13 different  lan
guages: Arabic (Smrž et al. 2002), Chinese (Chen 
et  al.  2003),  Czech  (Hajič  et  al.  2001), Danish 
(Kromann 2003), Dutch (van der Beek et al. 2002), 
German (Brants et.al 2002), Japanese (Kawata and 
Bartels), Portuguese (Afonso et al. 2002), Slovene 
(Džerosky  et  al.  2006),  Spanish  (Palomar  et  al. 
2004),  Swedish  (Nilsson  et  al.  2005),  Turkish 

(Oflazer et al. 2003 and Nart et.al 2003), Bulgarian 
(Simov et al. 2005). A number of these treebanks 
were not originally annotated in dependency style, 
but transformed from constituent tree style for the 
task, and all differ widely in terms of tag granulari
ty (21-302  part-of-speech tags, 7-82 function la
bels). Also, not all treebanks included morphologi
cal  information,  and  only  half  offered  a  lemma 
field.  Such  descriptive  variation  proved  to  be  a 
considerable  constraint  for  our  parser  design,  as 
will  be  explained  in  chapter  2.  No  external  re
sources and no structural preprocessing were used1.

2 Language  independence  versus  theory 
independence

While  manual  annotation  and/or  linguistic,  rule-
based parsers are necessary for the creation of its 
training data, only a machine learning based parser 
(as targeted in the CoNNL shared task) can hope to 
be  truly language independent  in  its  design.  The 
question is, however, if this necessarily implies in
dependence of linguistic/descriptive theory.

In our own approach, LingPars, we thus depart
ed from the Constraint Grammar descriptive model 
(Karlsson  et  al.  2005),  where  syntactic  function 
tags (called DEPREL or dependency relations  in 
the shared task) rank higher than dependency/con
stituency and are  established  before head attach
ments, rather than vice versa (as would be the case 
for many probabilistic, chunker based systems, or 

1The only exception is what we consider a problem in the dependency-version 
of the German TIGER treebank, where postnominal attributes of nouns appear 
as dependents of that noun's head if the latter is a preposition, but not otherwise 
(e.g. if the head's head is a preposition). LingPars  failed to learn this somewhat 
idiosyncratic distinction, but performance improved when  the analysis was pre
processed with an additional np-layer (to be re-flattened after parsing.).
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the classical PENN treebank descriptive model). In 
our hand-written,  rule based parsers,  dependency 
treebanks are  constructed by using sequential  at
tachment rules, generally attaching functions (e.g. 
subject, object, postnominal) to forms (finite verb, 
noun) or lexical tags (tense, auxiliary, transitive), 
with  a  direction  condition  and  the  possibility  of 
added target,  context  or  barrier  conditions  (Bick 
2005).

In LingPars, we tried to mimic this methodology 
by trying to learn probabilities for both CG style 
syntactic-function  contexts  and  function-to-form 
attachment rules.  We could not,  however, imple
ment the straightforward idea of learning probabili
ties and optimal ordering for an existing body of 
(manual) seeding rules,  because the 13 treebanks 
were not harmonized in their tag sets and descrip
tive conventions2.

As  an  example,  imagine  a  linguistic  rule  that 
triggers  "subclause-hood"  for  a  verb-headed  de
pendency-node as soon as a subordinator attaches 
to  it,  and  then,  implementing  "subclause-hood", 
tries to attach the verb not to the root, but to anoth
er verb left of the subordinator, or right to a root-
attaching verb. For the given set of treebanks prob
abilities and ordering priorities for this rule cannot 
be learned by one and the same parser, simply be
cause some treebanks attach the verb to the subor
dinator rather than vice versa, and for verb chains, 
there is no descriptive consensus as to whether the 
auxiliary/construction  verb  (e.g.  Spanish)  or  the 
main verb (e.g. Swedish) is regarded as head.

3 System architecture

The point of departure for pattern learning in Ling
Pars  were  the  fine-grained  part  of  speech  (PoS) 
tags (POSTAG) and the LEMMA tag.  For  those 
languages that did not provide a lemma tag, lower-
cased  word  form was  used  instead.  Also,  where 
available from the FEATS field and not already in
tegrated into the PoS tag, the following informa
tion was integrated into the PoS tag:

a) case, which was regarded as a good predictor 
for function, as well as a good dependency-indica
tor for e.g. preposition- and adnominal attachment

b) mood/finiteness, in order to predict subordina
tion and verb chaining, especially in the absence of 

2 Neither was there time (and for some languages: reading knowledge) to write 
the necessary converters to and from a normalized standard formalism for each 
treebank.

auxiliary class information in the FEATS field
c) pronoun subclass, in order to predict adnomi

nal vs. independent function as well as subordinat
ing function (relatives and interrogatives)

A few treebanks did not classify subordinating 
words  as  conjunctions,  relatives,  interrogatives 
etc., but lumped them into the general adverb and 
pronoun classes. Danish is a case in point - here, 
the treebank classified all non-inflecting words as 
PoS 'U'3. Our solution, implemented only for Dan
ish and Swedish, was to introduce a list of struc
ture-words, that would get their PoS appended with 
an '-S', enabling the  learner to distinguish between 
e.g. "ordinary" ADV, and "structural" ADV-S.

3.1 The parser

In a first round, our parser calculates a preference 
list of functions and dependencies for each word, 
examining all possible mother-daughter pairs and 
n-grams in the sentence (or paragraph). Next, de
pendencies  are  adjusted  for  function,  basically 
summing up the  frequency-,  distance- and direc
tion-calibrated function→PoS attachment probabil
ities  for  all  contextually  allowed  functions  for  a 
given word. Finally, dependency probabilities are 
weighted  using  linked  probabilities  for  possible 
mother-, daughter- and sister-tags in a second pass.

The result are 2 arrays, one for possible daugh
ter→mother  pairs,  one  for  word:function  pairs. 
Values in both arrays are normalized to the 0..1 in
terval, meaning that for instance even an originally 
low probability, long distance attachment will get 
high values after normalization if there are few or 
no competing alternatives for the word in question.

LingPars  then  attempts  to  "effectuate"  the  de
pendency (daughter→mother) array, starting with 
the - in normalized terms - highest value4.  If  the 
daughter candidate is as yet unattached, and the de
pendency does not produce circularities or crossing 
branches, the corresponding part of the (ordered) 
word:function array is calibrated for the suggested 
dependency, and the top-ranking function chosen.

In principle,  one pass through the  dependency 
array would suffice to parse a sentence. However, 
3For the treebank as such, no information is lost, since it will be recoverable 
from the function tag. In a training situation, however, there is much less to train 
on than in a treebank with a more syntactic definition of PoS.
4 Though we prefer to think of attachments as bottom-up choices, the value-or
dered approach is essentially neither bottom-up nor top-down, depending on the 
language and the  salience of relations in a sentence, all runs had a great varia
tion in the order of attachments. A middle-level attachment like case-based 
preposition-attachment, for instance, can easily outperform (low) article- or 
(high) top-node-attachment.
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due to linguistic constraints like uniqueness princi
ple, barrier tags and "full" heads5, some words may 
be  left  unattached  or  create  conflicts  for  their 
heads. In these cases, weights are reduced for the 
conflicting functions, and increased for all daugh
ter→mother  values  of  the  unattached  word.  The 
value arrays are then recomputed and rerun. In the 
case of unattached words, a complete rerun is per
formed, allowing problematic words to attach be
fore  those  words  that  would  otherwise  have 
blocked them. In the case of a function (e.g subject 
uniqueness)  conflict,  only  the  words  involved  in 
the conflict are rerun. If no conflict-free solution is 
found after 19 runs, barrier-, uniqueness- and pro
jectivity-constraints are relaxed for a last run6.

Finally,  the  daughter-sequence  for  each  head 
(with the head itself  inserted) is  checked against 
the  probability  of  its  function  sequence  (learned 
not  from n-grams  proper,  but  from  daughter-se
quences in the training corpus). For instance, the 
constituents of a clause would make up such a se
quence and allow to correct a sequence like SUBJ 
VFIN  ARG2  ARG1  into  SUBJ  VFIN  ARG1 
ARG2, where ARG1 and ARG2 are object func
tions  with  a  preferred  order  (for  the  language 
learned) of ARG1 ARG2.

3.2 Learning functions (deprels)

LingPars  computes  function  probabilities  (Vf, 
function value) at three levels: First, each lemma 
and PoS is assigned local (context-free) probabili
ties for all possible functions. Second, the proba
bility of  a  given function occurring at  a  specific 
place  in  a  function  n-gram (func-gram,  example 
(a))  is  calculated (with n between 2 and 6).  The 
learner only used endocentric func-grams, marking 
which  of  the  function  positions  had  their  head 
within the func-gram. If no funcgram supported a 
given function, its probability for the word in ques
tion was set to zero. At the third level, for each en
docentric n-gram of word classes (PoS), the proba
bility for a given function occurring at a given po
sition  in  the  n-gram (position  2  in  example  (b)) 
was computed. Here, only the longest possible n-
grams were used by the parser, and first and last 
positions of the n-gram were used only to provide 
context, not to assign function probabilities.

5Head types with a limited maximum number of dependents (usually, one)
6In the rare case of still missing heads or functions, these are computed using 
probabilities for a simplified set of word classes (mostly the CPOSTAG), or - as 
a last resort - set to ROOT-attachment.

(a)>N→2 SUBJ→4 <N→2 AUX MV→4 ACC→5
(b) art→2 n:SUBJ→4 adj→2 v-fin v-inf→4 n→5

3.3 Learning dependencies

In a rule based Constraint Grammar system, depen
dency would be expressed as attachment of func
tions to forms (i.e. subject to verb, or modifier to 
adjective).  However,  with  empty  deprel  fields, 
LingPars cannot use functions directly, only their 
probabilities. Therefore, in a first pass, it computes 
the probability for the whole possible attachment 
matrix for a sentence, using learned mother- and 
daughter-normalized  frequencies  for  attachments 
of  type  (a)  PoS→PoS,  (b)  PoS→Lex,  (c) 
Lex→PoS and (d) Lex→Lex, taking into account 
also  the  learned  directional  and  distance  prefer
ences. Each matrix cell is then filled with a value 
Vfa ("function attachment value") - the sum of the 
individual normalized probabilities of all possible 
functions  for  that  particular  daughter  given  that 
particular  mother  multiplied  with  the  preestab
lished,  attachment-independent  Vf  value  for  that 
token-function combination.

Inspired by the BARRIER conditions in CG rule 
contexts, our learner also records the frequency of 
those PoS and those functions (deprels) that may 
appear between a dependent of PoS A and a head 
of PoS B. The parser then regards all  other,  non-
registered interfering PoS or functions as blocking 
tokens for a given attachment pair, reducing its at
tachment value by a factor of 1/100.

In a second pass, the attachment matrix is cali
brated  using  the  relative  probabilities  for  depen
dent daughters, dependent sisters and head mother 
given. This way, probabilities of object and object 
complement  sisters  will  enhance  each  other,  and 
given the fact that treebanks differ as to which ele
ment of a verb chain arguments attach to, a verbal 
head  can  be  treated  differently  depending  on 
whether it has a high probability for another verb 
(with auxiliary,  modal  or  main verb function) as 
mother or daughter or not.

Finally, like for functions, n-grams are used to 
calculate attachment probabilities. For each endo
centric PoS n-gram (of length 6 or less), the proba
bilities  of  all  treebank-supported  PoS:function 
chains and their dependency arcs are learned, and 
the value for an attachment word pair occurring in 
the chain will be corrected using both the chain/n-
gram probability and the Vf value for the function 
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associated  with  the  dependent  in  that  particular 
chain. For contextual reasons, arcs central to the n-
gram are weighted higher than peripheral arcs.7

3.4 Non-projectivity and other language-spe
cific problems

As a general rule, non-projective arcs were only al
lowed if no other, projective head could be found 
for a given word. However, linguistic knowledge 
suggests that non-projective arcs should be particu
larly likely in  connection with verb-chain-depen
dencies,  where subjects  attach to  the  finite  verb, 
but objects to the non-finite verb, which can create 
crossing arcs in the case of object fronting, chain 
inversion  etc.  Since  we  also  noted  an  error-risk 
from arguments getting attached to the closest verb 
in  a  chain  rather  than  the  linguistically  correct 
one8, we chose to introduce systematic, after-parse 
raising of certain pre-defined arguments from the 
auxiliary to the main verb. This feature needs lan
guage-dependent parameters, and time constraints 
only allowed the implementation for Danish, Span
ish, Portuguese and Czech. For Dutch, we also dis
covered word-class-related projectivity-errors, that 
could be  remedied by exempting certain  FEATS 
classes from the parser's general projectivity con
straint altogether (prep-voor and V-hulp)9.

In  order  to  improve  root  accuracy,  topnode 
probability was set to zero for verbs with a safe 
subordinator dependent. However, even those tree
banks descriptively supporting this did not all PoS-
mark  subordinators.  Therefore,  FEATS-informa
tion was used, or as a last resort - for Danish and 
Swedish  - word forms.

A  third  language-specific  error-source  was 
punctuation, because some treebanks (cz, sl, es) al
lowed punctuation as heads. Also, experiments for 
the Germanic and Romance languages showed that 
performance decreased when punctuation was al
lowed as BARRIER, but increased, when a fine-
grained punctuation PoS10 was included in function 
and dependency n-grams.
7Due to BARRIER constraints, or simply because of insufficient training data in 
the face of a very detailed tag set, it may be impossible to assign all words n-
gram supported functions or dependencies. In the former case, local function 
probabilities are used, in the latter attachment is computed as function → PoS 
probability only, using the most likely function.
8 Single verbs being more frequent than verb chains, the learner tended to gener
alize close attachment, and even (grand)daughter and (grand)mother conditions 
could not entirely remedy this problem.
9Though desirable, there was no time to implement this for other languages.
10 Only for Spanish and Swedish was there a subdivision of punctuation PoS, so 
we had to supply  this information in all other cases by adding token-informa
tion to the POSTAG field.

4 Evaluation

Because of LingPars' strong focus on function tags, 
a separate analysis of attachment versus label per
formance was thought to be of interest. Ill. 1 plots 
the latter (Y-axis) against the former (X-axis), with 
dot size symbolizing treebank size. In this evalua
tion, a fixed training chunk size of 50,000 tokens11 
was used, and tested on a different sample of 5,000 
tokens (see also 5/50 evaluation in ill. 2). For most 
languages,  function  performance  was  better  than 
attachment performance (3.2 percentage points on 
average,  as opposed to 0.44 for  the CoNLL sys
tems overall), with dots above the hyphenated "di
agonal of balance". Interestingly, the graphics also 
makes  it  clear  that  performance  was  lower  for 
small treebanks, despite the fact that training cor
pus size had been limited in the experiment, possi
bly indicating correlated differences in the balance 
between tag set size and treebank size.

Illustration 1: Attachment accuracy 
(x-axis) vs. label accuracy (y-axis)

Ill.  2 keeps the information from ill. 1 (5/50-dep 
and 5/50-func), represented in the two lower lines, 
but adds performance for maximal training corpus 
size12 with  (a)  a  randomly  chosen  test  chunk  of 
5,000 tokens  not included in  the  training corpus 
(5/all-5)  and (b)  a  20,000 token chunk  from the 
training corpus (20/all). Languages were sorted ac

11Smaller for Slovene and Arabic (for these languages: largest possible)
12Due to deadline time constraints, an upper limit of 400,000 lines was forced on 
the biggest treebanks, when training for unknown test data,  meaning that only ½ 
of the German data and 1/3 of the Czech data could be used.

174



cording  to  20/all-func  accuracy.  As  can  be  seen 
from  the  dips  in  the  remaining  (lower)  curves, 
small training corpora (asterisk-marked languages) 
made it difficult for the parser (1) to match 20/all 
attachment performance on unknown data, and (2) 
to  learn  labels/functions  in  general  (dips  in  all 
function curves, even 20/all).  For the larger tree
banks, the parser performed better (1-3 percentage 
points) for the full training set than for the 50,000 
token training set.

Illustration 2: Performance with different training cor
pus sizes (upper 2 curves: Test data included)

5 Outlook

We have  shown that  a  probabilistic  dependency 
parser can be built on CG-inspired linguistic prin
ciples with a strong focus on function and tag se
quences. Given the time constraint and the fact that 
the learner had to be built from scratch, its perfor
mance would encourage further research. In partic
ular, a systematic parameter/performance analysis13 
should be performed for the individual languages. 
In the long term, a notational harmonization of the 
treebanks  should  allow  the  learner  to  be  seeded 
with existing hand-written dependency rules.
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1 Introduction

As more and more syntactically-annotated corpora
become available for a wide variety of languages,
machine learning approaches to parsing gain inter-
est as a means of developing parsers without having
to repeat some of the labor-intensive and language-
specific activities required for traditional parser de-
velopment, such as manual grammar engineering,
for each new language. The CoNLL-X shared task
on multi-lingual dependency parsing (Buchholz et
al., 2006) aims to evaluate and advance the state-of-
the-art in machine learning-based dependency pars-
ing by providing a standard benchmark set compris-
ing thirteen languages1. In this paper, we describe
two different machine learning approaches to the
CoNLL-X shared task.

Before introducing the two learning-based ap-
proaches, we first describe a number of baselines,
which provide simple reference scores giving some
sense of the difficulty of each language. Next, we
present two machine learning systems: 1) an ap-
proach that directly predicts all dependency relations
in a single run over the input sentence, and 2) a cas-
cade of phrase recognizers. The first approach has
been found to perform best and was selected for sub-
mission to the competition. We conclude this paper
with a detailed error analysis of its output for two of
the thirteen languages, Dutch and Spanish.

1The data sets were extracted from various existing tree-
banks (Hajič et al., 2004; Simov et al., 2005; Simov and Osen-
ova, 2003; Chen et al., 2003; Böhmová et al., 2003; Kromann,
2003; van der Beek et al., 2002; Brants et al., 2002; Kawata and
Bartels, 2000; Afonso et al., 2002; Džeroski et al., 2006; Civit
Torruella and Martı́ Antonı́n, 2002; Nilsson et al., 2005; Oflazer
et al., 2003; Atalay et al., 2003)

2 Baseline approaches

Given the diverse range of languages involved in
the shared task, each having different characteristics
probably requiring different parsing strategies, we
developed four different baseline approaches for as-
signing labeled dependency structures to sentences.
All of the baselines produce strictly projective struc-
tures. While the simple rules implementing these
baselines are insufficient for achieving state-of-the-
art performance, they do serve a useful role in giving
a sense of the difficulty of each of the thirteen lan-
guages. The heuristics for constructing the trees and
labeling the relations used by each of the four base-
lines are described below.

Binary right-branching trees The first baseline
produces right-branching binary trees. The first to-
ken in the sentence is marked as the top node with
HEAD 0 and DEPREL ROOT. For the rest of the
tree, token n − 1 serves as the HEAD of token n.
Figure 1 shows an example of the kind of tree this
baseline produces.

Binary left-branching trees The binary left-
branching baseline mirrors the previous baseline.
The penultimate token in the sentence is marked as
the top node with HEAD 0 and DEPREL ROOT
since punctuation tokens can never serve as ROOT2.
For the rest of the tree, the HEAD of token n is token
n+1. Figure 2 shows an example of a tree produced
by this baseline.

2We simply assume the final token in the sentence to be
punctuation.
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Inward-branching trees In this approach, the
first identified verb3 is marked as the ROOT node.
The part of the sentence to the left of the ROOT is
left-branching, the part to the right of the ROOT is
right-branching. Figure 3 shows an example of a
tree produced by this third baseline.

Nearest neighbor-branching trees In our most
complex baseline, the first verb is marked as the
ROOT node and the other verbs (with DEPREL vc)
point to the closest preceding verb. The other to-
kens point in the direction of their nearest neighbor-
ing verb, i.e. the two tokens at a distance of 1 from
a verb have that verb as their HEAD, the two tokens
at a distance of 2 have the tokens at a distance of 1
as their head, and so on until another verb is a closer
neighbor. In the case of ties, i.e. tokens that are
equally distant from two different verbs, the token is
linked to the preceding token. Figure 4 clarifies this
kind of dependency structure in an example tree.

verb verb punct

ROOT

Figure 1: Binary right-branching tree for an example
sentence with two verbs.

verb verb punct

ROOT

Figure 2: Binary left-branching tree for the example
sentence.

verb verb punct

ROOT

Figure 3: Binary inward-branching tree for the ex-
ample sentence.

3We consider a token a verb if its CPOSTAG starts with a
‘V’. This is an obviously imperfect, but language-independent
heuristic choice.

ROOT

verb verb punct

Figure 4: Nearest neighbor-branching tree for the
example sentence.

Labeling of identified relations is done using a
three-fold back-off strategy. From the training set,
we collect the most frequent DEPREL tag for each
head-dependent FORM pair, the most frequent DE-
PREL tag for each FORM, and the most frequent
DEPREL tag in the entire training set. The rela-
tions are labeled in this order: first, we look up if the
FORM pair of a token and its head was present in
the training data. If not, then we assign it the most
frequent DEPREL tag in the training data for that
specific token FORM. If all else fails we label the
token with the most frequent DEPREL tag in the en-
tire training set (excluding punct4 and ROOT).

language baseline unlabeled labeled
Arabic left 58.82 39.72
Bulgarian inward 41.29 29.50
Chinese NN 37.18 25.35
Czech NN 34.70 22.28
Danish inward 50.22 36.83
Dutch NN 34.07 26.87
German NN 33.71 26.42
Japanese right 67.18 64.22
Portuguese right 25.67 22.32
Slovene right 24.12 19.42
Spanish inward 32.98 27.47
Swedish NN 34.30 21.47
Turkish right 49.03 31.85

Table 1: The labeled and unlabeled scores for the
best performing baseline for each language (NN =
nearest neighbor-branching).

The best baseline performance (labeled and un-
labeled scores) for each language is listed in Table
1. There was no single baseline that outperformed
the others on all languages. The nearest neighbor
baseline outperformed the other baselines on five
of the thirteen languages. The right-branching and

4Since the evaluation did not score on punctuation.
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inward-branching baselines were optimal on four
and three languages respectively. The only language
where the left-branching trees provide the best per-
formance is Arabic.

3 Parsing by inference over high-recall
dependency predictions

In our approach to dependency parsing, a machine
learning classifier is trained to predict (directed) la-
beled dependency relations between a head and a de-
pendent. For each token in a sentence, instances are
generated where this token is a potential dependent
of each of the other tokens in the sentence5. The
label that is predicted for each classification case
serves two different purposes at once: 1) it signals
whether the token is a dependent of the designated
head token, and 2) if the instance does in fact corre-
spond to a dependency relation in the resulting parse
of the input sentence, it specifies the type of this re-
lation, as well.

The features we used for encoding instances for
this classification task correspond to a rather simple
description of the head-dependent pair to be clas-
sified. For both the potential head and dependent,
there are features encoding a 2-1-2 window of words
and part-of-speech tags6; in addition, there are two
spatial features: a relative position feature, encoding
whether the dependent is located to the left or to the
right of its potential head, and a distance feature that
expresses the number of tokens between the depen-
dent and its head.

One issue that may arise when considering each
potential dependency relation as a separate classifi-
cation case is that inconsistent trees are produced.
For example, a token may be predicted to be a de-
pendent of more than one head. To recover a valid
dependency tree from the separate dependency pre-
dictions, a simple inference procedure is performed.
Consider a token for which the dependency relation
is to be predicted. For this token, a number of clas-
sification cases have been processed, each of them

5To prevent explosion of the number of classification cases
to be considered for a sentence, we restrict the maximum dis-
tance between a token and its potential head. For each language,
we selected this distance so that, on the training data, 95% of the
dependency relations is covered.

6More specifically, we used the part-of-speech tags from the
POSTAG column of the shared task data files.

indicating whether and if so how the token is related
to one of the other tokens in the sentence. Some of
these predictions may be negative, i.e. the token is
not a dependent of a certain other token in the sen-
tence, others may be positive, suggesting the token
is a dependent of some other token.

If all classifications are negative, the token is as-
sumed to have no head, and consequently no depen-
dency relation is added to the tree for this token; the
node in the dependency tree corresponding to this
token will then be an isolated one. If one of the clas-
sifications is non-negative, suggesting a dependency
relation between this token as a dependent and some
other token as a head, this dependency relation is
added to the tree. Finally, there is the case in which
more than one prediction is non-negative. By defi-
nition, at most one of these predictions can be cor-
rect; therefore, only one dependency relation should
be added to the tree. To select the most-likely can-
didate from the predicted dependency relations, the
candidates are ranked according to the classification
confidence of the base classifier that predicted them,
and the highest-ranked candidate is selected for in-
sertion into the tree.

For our base classifier we used a memory-based
learner as implemented by TiMBL (Daelemans et
al., 2004). In memory-based learning, a machine
learning method based on the nearest-neighbor rule,
the class for a given test instance is predicted by per-
forming weighted voting over the class labels of a
certain number of most-similar training instances.
As a simple measure of confidence for such a pre-
diction, we divide the weight assigned to the major-
ity class by the total weight assigned to all classes.
Though this confidence measure is a rather ad-hoc
one, which should certainly not be confused with
any kind of probability, it tends to work quite well
in practice, and arguably did so in the context of
this study. The parameters of the memory-based
learner have been optimized for accuracy separately
for each language on training and development data
sampled internally from the training set.

The base classifier in our parser is faced with a
classification task with a highly skewed class dis-
tribution, i.e. instances that correspond to a depen-
dency relation are largely outnumbered by those that
do not. In practice, such a huge number of nega-
tive instances usually results in classifiers that tend
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to predict fairly conservatively, resulting in high pre-
cision, but low recall. In the approach introduced
above, however, it is better to have high recall, even
at the cost of precision, than to have high precision at
the cost of recall. A missed relation by the base clas-
sifier can never be recovered by the inference proce-
dure; however, due to the constraint that each token
can only be a dependent of one head, excessive pre-
diction of dependency relations can still be corrected
by the inference procedure. An effective method for
increasing the recall of a classifier is down-sampling
of the training data. In down-sampling, instances
belonging to the majority class (in this case the neg-
ative class) are removed from the training data, so
as to obtain a more balanced distribution of negative
and non-negative instances.

Figure 5 shows the effect of systematically re-
moving an increasingly larger part of the negative in-
stances from the training data. First of all, the figure
confirms that down-sampling helps to improve re-
call, though it does so at the cost of precision. More
importantly however, it also illustrates that this im-
proved recall is beneficial for the performance of the
dependency parser. The shape of the performance
curve of the dependency parser closely follows that
of the recall. Remarkably, parsing performance con-
tinues to improve with increasingly stronger down-
sampling, even though precision drops considerably
as a result of this. This shows that the confidence
of the classifier for a certain prediction is a suffi-
ciently reliable indication of the quality of that pre-
diction for fixing the over-prediction of dependency
relations. Only when the number of negative train-
ing instances is reduced to equal the number of pos-
itive instances, the performance of the parser is neg-
atively affected. Based on a quick evaluation of var-
ious down-sampling ratios on a 90%-10% train-test
split of the Dutch training data, we decided to down-
sample the training data for all languages with a ratio
of two negative instances for each positive one.

Table 2 lists the unlabeled and labeled attachment
scores of the resulting system for all thirteen lan-
guages.

4 Cascaded dependency parsing

One of the alternative strategies explored by us was
modeling the parsing process as a cascaded pair of

 0
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Figure 5: The effect of down-sampling on precision
and recall of the base classifier, and on labeled ac-
curacy of the dependency parser. The x-axis refers
to the number of negative instances for each posi-
tive instance in the training data. Training and test-
ing was performed on a 90%-10% split of the Dutch
training data.

basic learners. This approach is similar to Yamada
and Matsumoto (2003) but we only use their Left
and Right reduction operators, not Shift. In the first
phase, each learner predicted dependencies between
neighboring words. Dependent words were removed
and the remaining words were sent to the learners for
further rounds of processing until all words but one
had been assigned a head. Whenever crossing links
prevented further assignments of heads to words, the
learner removed the remaining word requiring the
longest dependency link. When the first phase was
finished another learner assigned labels to pairs of
words present in dependency links.

Unlike in related earlier work (Tjong Kim Sang,
2002), we were unable to compare many different
learner configurations. We used two different train-
ing files for the first phase: one for predicting the
dependency links between adjacent words and one
for predicting all other links. As a learner, we used
TiMBL with its default parameters. We evaluated
different feature sets and ended up with using words,
lemmas, POS tags and an extra pair of features with
the POS tags of the children of the focus word. With
this configuration, this cascaded approach achieved
a labeled score of 62.99 on the Dutch test data com-
pared to 74.59 achieved by our main approach.
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language unlabeled labeled
Arabic 74.59 57.64
Bulgarian 82.51 78.74
Chinese 82.86 78.37
Czech 72.88 60.92
Danish 82.93 77.90
Dutch 77.79 74.59
German 80.01 77.56
Japanese 89.67 87.41
Portuguese 85.61 77.42
Slovene 74.02 59.19
Spanish 71.33 68.32
Swedish 85.08 79.15
Turkish 64.19 51.07

Table 2: The labeled and unlabeled scores for the
submitted system for each of the thirteen languages.

5 Error analysis

We examined the system output for two languages
in more detail: Dutch and Spanish.

5.1 Dutch
With a labeled attachment score of 74.59 and an
unlabeled attachment score of 77.79, our submitted
Dutch system performs somewhat above the average
over all submitted systems (labeled 70.73, unlabeled
75.07). We review the most notable errors made by
our system.

From a part-of-speech (CPOSTAG) perspective,
a remarkable relative amount of head and depen-
dency errors are made on conjunctions. A likely
explanation is that the tag “Conj” applies to both co-
ordinating and subordinating conjunctions; we did
not use the FEATS information that made this dis-
tinction, which would have likely solved some of
these errors.

Left- and right-directed attachment to heads is
roughly equally successful. Many errors are made
on relations attaching to ROOT; the system appears
to be overgenerating attachments to ROOT, mostly
in cases when it should have generated rightward
attachments. Unsurprisingly, the more distant the
head is, the less accurate the attachment; especially
recall suffers at distances of three and more tokens.

The most frequent attachment error is generat-
ing a ROOT attachment instead of a “mod” (mod-
ifier) relation, often occurring at the start of a sen-

tence. Many errors relate to ambiguous adverbs such
as bovendien (moreover), tenslotte (after all), and
zo (thus), which tend to occur rather frequently at
the beginning of sentences in the test set, but less
so in the training set. The test set appears to con-
sist largely of formal journalistic texts which typi-
cally tend to use these marked rhetorical words in
sentence-initial position, while the training set is a
more mixed set of texts from different genres plus
a significant set of individual sentences, often man-
ually constructed to provide particular examples of
syntactic constructions.

5.2 Spanish
The Spanish test data set was the only data set on
which the alternative cascaded approach (72.15) out-
performed our main approach (68.32). A detailed
comparison of the output files of the two systems
has revealed two differences. First, the amount of
circular links, a pair of words which have each other
as head, was larger in the analysis of the submitted
system (7%) than in the cascaded analysis (3%) and
the gold data (also 3%). Second, the number of root
words per sentence (always 1 in the gold data) was
more likely to be correct in the cascaded analysis
(70% correct; other sentences had no root) than in
the submitted approach (40% with 20% of the sen-
tences being assigned no roots and 40% more than
one root). Some of these problems might be solvable
with post-processing
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Abstract

We describe an online learning depen-
dency parser for the CoNLL-X Shared
Task, based on the bottom-up projective
algorithm of Eisner (2000). We experi-
ment with a large feature set that mod-
els: the tokens involved in dependencies
and their immediate context, the surface-
text distance between tokens, and the syn-
tactic context dominated by each depen-
dency. In experiments, the treatment of
multilingual information was totally blind.

1 Introduction
We describe a learning system for the CoNLL-X
Shared Task on multilingual dependency parsing
(Buchholz et al., 2006), for 13 different languages.

Our system is a bottom-up projective dependency
parser, based on the cubic-time algorithm by Eisner
(1996; 2000). The parser uses a learning function
that scores all possible labeled dependencies. This
function is trained globally with online Perceptron,
by parsing training sentences and correcting its pa-
rameters based on the parsing mistakes. The features
used to score, while based on the previous work in
dependency parsing (McDonald et al., 2005), intro-
duce some novel concepts such as better codification
of context and surface distances, and runtime infor-
mation from dependencies previously parsed.

Regarding experimentation, the treatment of mul-
tilingual data has been totally blind, with no spe-
cial processing or features that depend on the lan-
guage. Considering its simplicity, our system

achieves moderate but encouraging results, with an
overall labeled attachment accuracy of 74.72% on
the CoNLL-X test set.

2 Parsing and Learning Algorithms
This section describes the three main components of
the dependency parsing: the parsing model, the pars-
ing algorithm, and the learning algorithm.

2.1 Model

Let 1, . . . , L be the dependency labels, defined be-
forehand. Letx be a sentence ofn words,x1 . . . xn.
Finally, letY(x) be the space of well-formed depen-
dency trees forx. A dependency treey ∈ Y(x) is a
set ofn dependencies of the form[h,m, l], where
h is the index of the head word (0 ≤ h ≤ n,
where 0 means root),m is the index of the modi-
fier word (1 ≤ m ≤ n), and l is the dependency
label (1 ≤ l ≤ L). Each word ofx participates as a
modifier in exactly one dependency ofy.

Our dependency parser,dp, returns the maximum
scored dependency tree for a sentencex:

dp(x,w) = arg max
y∈Y(x)

∑

[h,m,l]∈y
sco([h,m, l], x, y,w)

In the formula, w is the weight vector of the
parser, that is, the set of parameters used to score de-
pendencies during the parsing process. It is formed
by a concatenation of L weight vectors, one for each
dependency label,w = (w1, . . . ,wl, . . . ,wL). We
assume a feature extraction function,φ, that repre-
sents an unlabeled dependency[h,m] in a vector of
D features. Each of thewl hasD parameters or
dimensions, one for each feature. Thus, the global
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weight vectorw maintainsL × D parameters. The
scoring function is defined as follows:

sco([h,m, l], x, y,w) = φ(h,m, x, y) · wl

Note that the scoring of a dependency makes use
of y, the tree that contains the dependency. As de-
scribed next, at scoring timey just contains the de-
pendencies found betweenh andm.

2.2 Parsing Algorithm

We use the cubic-time algorithm for dependency
parsing proposed by Eisner (1996; 2000). This pars-
ing algorithm assumes that trees are projective, that
is, dependencies never cross in a tree. While this as-
sumption clearly does not hold in the CoNLL-X data
(only Chinese trees are actually 100% projective),
we chose this algorithm for simplicity. As it will be
shown, the percentage of non-projective dependen-
cies is not very high, and clearly the error rates we
obtain are caused by other major factors.

The parser is a bottom-up dynamic programming
algorithm that visits sentence spans of increasing
length. In a given span, from words to word e, it
completes two partial dependency trees that cover
all words within the span: one rooted ats and the
other rooted ate. This is done in two steps. First, the
optimal dependency structure internal to the span is
chosen, by combining partial solutions from inter-
nal spans. This structure is completed with a depen-
dency covering the whole span, in two ways: from
s to e, and frome to s. In each case, the scoring
function is used to select the dependency label that
maximizes the score.

We take advantage of this two-step processing to
introduce features for the scoring function that rep-
resentsomeof the internal dependencies of the span
(see Section 3 for details). It has to be noted that
the parsing algorithm we use does not score depen-
dencies on top of every possible internal structure.
Thus, by conditioning on features extracted fromy
we are making the search approximative.

2.3 Perceptron Learning

As learning algorithm, we use Perceptron tailored
for structured scenarios, proposed by Collins (2002).
In recent years, Perceptron has been used in a num-
ber of Natural Language Learning works, such as in

w = 0
for t = 1 to T

foreachtraining example(x, y) do
ŷ = dp(x,w)
foreach [h,m, l] ∈ y\ŷ do

wl = wl + φ(h,m, x, ŷ)
foreach [h,m, l] ∈ ŷ\y do

wl = wl − φ(h,m, x, ŷ)
returnw

Figure 1: Pseudocode of the Perceptron Algorithm.T is a
parameter that indicates the number of epochs that the algorithm
cycles the training set.

partial parsing (Carreras et al., 2005) or even depen-
dency parsing (McDonald et al., 2005).

Perceptron is an online learning algorithm that
learns by correcting mistakes made by the parser
when visiting training sentences. The algorithm is
extremely simple, and its cost in time and memory
is independent from the size of the training corpora.
In terms of efficiency, though, the parsing algorithm
must be run at every training sentence.

Our system uses the regular Perceptron working
in primal form. Figure 1 sketches the code. Given
the number of languages and dependency types in
the CoNLL-X exercise, we found prohibitive to
work with a dual version of Perceptron, that would
allow the use of a kernel function to expand features.

3 Features

The feature extraction function,φ(h,m, x, y), rep-
resents in a feature vector a dependency from word
positionsm toh, in the context of a sentencex and a
dependency treey. As usual in discriminative learn-
ing, we work with binary indicator features: if a cer-
tain feature is observed in an instance, the value of
that feature is 1; otherwise, the value is 0. For con-
venience, we describeφ as a composition of several
base feature extraction functions. Each extracts a
number of disjoint features. The feature extraction
functionφ(h,m, x, y) is calculated as:

φtoken(x, h, “head”) + φtctx(x, h, “head”) +
φtoken(x,m, “mod”) + φtctx(x,m, “mod”) +
φdep(x,mmdh,m) + φdctx(x,mmdh,m) +
φdist(x,mmdh,m) + φruntime(x, y, h,m, dh,m)

where φtoken extracts context-independent token
features,φtctx computes context-based token fea-
tures, φdep computes context-independent depen-
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φtoken(x, i, type)
type · w(xi)
type · l(xi)
type · cp(xi)
type · fp(xi)

foreach(ms): type ·ms(xi)
type · w(xi) · cp(xi)

foreach(ms): type · w(xi) ·ms(xi)
φtctx(x, i, type)

φtoken(x, i− 1, type · string(i− 1))
φtoken(x, i− 2, type · string(i− 2))
φtoken(x, i+ 1, type · string(i+ 1))
φtoken(x, i+ 2, type · string(i+ 2))

type · cp(xi) · cp(xi−1)
type · cp(xi) · cp(xi−1) · cp(xi−2)

type · cp(xi) · cp(xi+1)
type · cp(xi) · cp(xi+1) · cp(xi+2)

Table 1: Token features, both context-independent (φtoken)
and context-based (φtctx). type - token type, i.e. “head” or
“mod”, w - token word,l - token lemma,cp - token coarse part-
of-speech (POS) tag,fp - token fine-grained POS tag,ms -
token morpho-syntactic feature. The· operator stands for string
concatenation.

φdep(x, i, j,dir)
dir · w(xi) · cp(xi) · w(xj) · cp(xj)

dir · cp(xi) · w(xj) · cp(xj)
dir · w(xi) · w(xj) · cp(xj)
dir · w(xi) · cp(xi) · cp(xj)
dir · w(xi) · cp(xi) · w(xj)

dir · w(xi) · w(xj)
dir · cp(xi) · cp(xj)
φdctx(x, i, j,dir)

dir · cp(xi) · cp(xi+1) · cp(xj−1) · cp(xj)
dir · cp(xi−1) · cp(xi) · cp(xj−1) · cp(xj)
dir · cp(xi) · cp(xi+1) · cp(xj) · cp(xj+1)
dir · cp(xi−1) · cp(xi) · cp(xj) · cp(xj+1)

Table 2: Dependency features, both context-independent
(φdep) and context-based (φdctx), between two pointsi andj,
i < j. dir - dependency direction: left to right or right to left.

dency features,φdctx extracts contextual depen-
dency features,φdist calculates surface-distance fea-
tures between the two tokens, and finally,φruntime
computes dynamic features at runtime based on the
dependencies previously built for the given interval
during the bottom-up parsing.mmdh,m is a short-
hand for a triple of numbers:min(h,m), max(h,m)
anddh,m (a sign indicating the direction, i.e.,+1 if
m < h, and−1 otherwise).

We detail the token features in Table 1, the depen-
dency features in Table 2, and the surface-distance
features in Table 3. Most of these features are in-
spired by previous work in dependency parsing (Mc-
Donald et al., 2005; Collins, 1999). What is impor-

φdist(x, i, j,dir)
foreach(k∈ (i, j)): dir · cp(xi) · cp(xk) · cp(xj)

number of tokens betweeni andj
number of verbs betweeni andj

number of coordinations betweeni andj
number of punctuations signs betweeni andj

Table 3:Surface distance features between pointsi andj. Nu-
meric features are discretized using “binning” to a small number
of intervals.

φruntime(x,y,h,m,dir)
let l1, . . . , lS be the labels of dependencies
in y that attach toh and are found fromm to h.
foreachi, 1≤ i≤S : dir · cp(xh) · cp(xm) · li
if S≥1 , dir · cp(xh) · cp(xm) · l1
if S≥2 , dir · cp(xh) · cp(xm) · l1 · l2
if S≥3 , dir · cp(xh) · cp(xm) · l1 · l2 · l3
if S≥4 , dir · cp(xh) · cp(xm) · l1 · l2 · l3 · l4
if S=0 , dir · cp(xh) · cp(xm) · null
if 0<S≤4 , dir · cp(xh) · cp(xm) · regular
if S>4 , dir · cp(xh) · cp(xm) · big

Table 4:Runtime features ofy betweenm andh.

tant for the work presented here is that we construct
explicit feature combinations (see above tables) be-
cause we configured our linear predictors in primal
form, in order to keep training times reasonable.

While the features presented in Tables 1, 2, and 3
are straightforward exploitations of the training data,
the runtime features (φruntime) take a different, and
to our knowledge novel in the proposed framework,
approach: for a dependency fromm to h, they rep-
resent the dependencies found betweenm and h
that attach also toh. They are described in detail
in Table 4. As we have noted above, these fea-
tures are possible because of the parsing scheme,
which scores a dependency only after all dependen-
cies spanned by it are scored.

4 Experiments and Results
We experimented on the 13 languages proposed
in the CoNLL-X Shared Task (Hajič et al., 2004;
Simov et al., 2005; Simov and Osenova, 2003; Chen
et al., 2003; B̈ohmov́a et al., 2003; Kromann, 2003;
van der Beek et al., 2002; Brants et al., 2002;
Kawata and Bartels, 2000; Afonso et al., 2002;
Džeroski et al., 2006; Civit and Martı́, 2002; Nilsson
et al., 2005; Oflazer et al., 2003; Atalay et al., 2003).
Our approach to deal with many different languages
was totally blind: we did not inspect the data to mo-
tivate language-specific features or processes.
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We did feature filtering based on frequency
counts. Our feature extraction patterns, that ex-
ploit both lexicalization and combination, gener-
ate millions of feature dimensions, even with small
datasets. Our criterion was to use at most 500,000
different dimensions in each label weight vector. For
each language, we generated all possible features,
and then filtered out most of them according to the
counts. Depending on the number of training sen-
tences, our counts cut-offs vary from 3 to 15.

For each language, we held out from training data
a portion of sentences (300, 500 or 1000 depend-
ing on the total number of sentences) and trained a
model for up to 20 epochs in the rest of the data. We
evaluated each model on the held out data for differ-
ent number of training epochs, and selected the op-
timum point. Then, we retrained each model on the
whole training set for the selected number of epochs.

Table 5 shows the attachment scores obtained
by our system, both unlabeled (UAS) and labeled
(LAS). The first column (GOLD) presents the LAS
obtained with a perfect scoring function: the loss in
accuracy is related to the projectivity assumption of
our parsing algorithm. Dutch turns out to be the
most non-projective language, with a loss in accu-
racy of 5.44%. In our opinion, the loss in other lan-
guages is relatively small, and is not a major limita-
tion to achieve a high performance in the task. Our
system achieves an overall LAS of 74.72%, with
substantial variation from one language to another.
Turkish, Arabic, Dutch, Slovene and Czech turn out
to be the most difficult languages for our system,
with accuracies below 70%. The easiest language
is clearly Japanese, with a LAS of 88.13%, followed
by Chinese, Portuguese, Bulgarian and German, all
with LAS above 80%.

Table 6 shows the contribution of base feature ex-
traction functions. For four languages, we trained
models that increasingly incorporate base functions.
It can be shown that all functions contribute to a bet-
ter score. Contextual features (φ3) bring the system
to the final order of performance, while distance (φ4)
and runtime (φ) features still yield substantial im-
provements.

5 Analysis and Conclusions
It is difficult to explain the difference in performance
across languages. Nevertheless, we have identified

GOLD UAS LAS
Bulgarian 99.56 88.81 83.30
Arabic 99.76 72.65 60.94
Chinese 100.0 88.65 83.68
Czech 97.78 77.44 68.82
Danish 99.18 85.67 79.74
Dutch 94.56 71.39 67.25
German 98.84 85.90 82.41
Japanese 99.16 90.7988.13
Portuguese 98.54 87.76 83.37
Slovene 98.38 77.72 68.43
Spanish 99.96 80.77 77.16
Swedish 99.64 85.54 78.65
Turkish 98.41 70.05 58.06
Overall 98.68 81.19 74.72

Table 5: Results of the system on test data. GOLD: labeled
attachment score using gold scoring functions; the loss in ac-
curacy is caused by the projectivity assumption made by the
parser. UAS : unlabeled attachment score. LAS : labeled at-
tachment score, the measure to compare systems in CoNLL-X.
Bulgarian is excluded from overall scores.

φ1 φ2 φ3 φ4 φ
Turkish 33.02 48.00 55.33 57.16 58.06
Spanish 12.80 53.80 68.18 74.27 77.16
Portuguese 47.10 64.74 80.89 82.89 83.37
Japanese 38.78 78.13 86.87 88.27 88.13

Table 6:Labeled attachment scores at increasing feature con-
figurations.φ1 uses onlyφtoken at the head and modifier.φ2

extendsφ1 with φdep. φ3 incorporates context features, namely
φtctx at the head and modifier, andφdctx. φ4 extendsφ3 with
φdist. Finally, the final feature extraction functionφ increases
φ4 with φruntime.

four generic factors that we believe caused the most
errors across all languages:

Size of training sets: the relation between the
amount of training data and performance is strongly
supported in learning theory. We saw the same re-
lation in this evaluation: for Turkish, Arabic, and
Slovene, languages with limited number of train-
ing sentences, our system obtains accuracies below
70%. However, one can not argue that the training
size is the only cause of errors: Czech has the largest
training set, and our accuracy is also below 70%.

Modeling large distance dependencies: even
though we include features to model the distance
between two dependency words (φdist), our analy-
sis indicates that these features fail to capture all the
intricacies that exist in large-distance dependencies.
Table 7 shows that, for the two languages analyzed,
the system performance decreases sharply as the dis-
tance between dependency tokens increases.
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to root 1 2 3− 6 >= 7
Spanish 83.04 93.44 86.46 69.97 61.48
Portuguese 90.81 96.49 90.79 74.76 69.01

Table 7:Fβ=1 score related to dependency token distance.

Modeling context: many attachment decisions, e.g.
prepositional attachment, depend on additional con-
text outside of the two dependency tokens. To ad-
dress this issue, we have included in our model fea-
tures to capture context, both static (φdctx andφtctx)
and dynamic (φruntime). Nevertheless, our error
analysis indicates that our model is not rich enough
to capture the context required to address complex
dependencies. All the top 5 focus words with the
majority of errors for Spanish and Portuguese – “y”,
“de”, “a”, “en”, and “que” for Spanish, and “em”,
“de”, “a”, “e”, and “para” for Portuguese – indicate
complex dependencies such as prepositional attach-
ments or coordinations.

Projectivity assumption: Dutch is the language
with most crossing dependencies in this evaluation,
and the accuracy we obtain is below 70%.

On the Degree of Lexicalization We conclude the
error analysis of our model with a look at the de-
gree of lexicalization in our model. A quick analy-
sis of our model on the test data indicates that only
34.80% of the dependencies for Spanish and 42.94%
of the dependencies for Portuguese are fully lexical-
ized, i.e. both the head and modifier words appear
in the model feature set (see Table 8). There are
two reasons that cause our model to be largely un-
lexicalized: (a) in order to keep training times rea-
sonable we performed heavy filtering of all features
based on their frequency, which eliminates many
lexicalized features from the final model, and (b)
due to the small size of most of the training cor-
pora, most lexicalized features simply do not ap-
pear in the testing section. Considering these re-
sults, a reasonable question to ask is: how much
are we losing because of this lack of lexical infor-
mation? We give an approximate answer by ana-
lyzing the percentage of fully-lexicalized dependen-
cies that are correctly parsed by our model. As-
suming that our model scales well, the accuracy on
fully-lexicalized dependencies is an indication for
the gain (or loss) to be had from lexicalization. Our
model parses fully-lexicalized dependencies with an

Fully One token Fully
lexicalized unlexicalized unlexicalized

Spanish 34.80% 54.77% 10.43%
Portuguese 42.94% 49.26% 7.80%

Table 8:Degree of dependency lexicalization.

accuracy of 74.81% LAS for Spanish (2.35%lower
than the overall score) and of 83.77% LAS for Por-
tuguese (0.40% higher than the overall score). This
analysis indicates that our model has limited gains
(if any) from lexicalization.

In order to improve the quality of our dependency
parser we will focus on previously reported issues
that can be addressed by a parsing model: large-
distance dependencies, better modeling of context,
and non-projective parsing algorithms.
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Abstract

We present a new machine learning frame-
work for multi-lingual dependency pars-
ing. The framework uses a linear, pipeline
based, bottom-up parsing algorithm, with
a look ahead local search that serves to
make the local predictions more robust.
As shown, the performance of the first
generation of this algorithm is promising.

1 System Description

1.1 Parsing as a Pipeline
Pipeline computation is a common computational
strategy in natural language processing, where a task
is decomposed into several stages that are solved se-
quentially. For example, a semantic role labeling
program may start by using a part-of-speech tagger,
than apply a shallow parser to chunk the sentence
into phrases, and continue by identifying predicates
and arguments and then classifying them.

(Yamada and Matsumoto, 2003) proposed a
bottom-up dependency parsing algorithm, where the
local actions, chosen from among Shift, Left, Right,
are used to generate a dependency tree using a
shift-reduce parsing approach. Moreover, they used
SVMs to learn the parsing decisions between pairs
of consecutive words in the sentences 1. This is
a true pipeline approach in that the classifiers are
trained on individual decisions rather than on the
overall quality of the parser, and chained to yield the

1A pair of words may become consecutive after the words
between them become the children of these two words

global structure. It suffers from the limitations of
pipeline processing, such as accumulation of errors,
but nevertheless, yields very competitive parsing re-
sults.

We devise two natural principles for enhancing
pipeline models. First, inference procedures should
be incorporated to make robust prediction for each
stage. Second, the number of predictions should
be minimized to prevent error accumulation. Ac-
cording to these two principles, we propose an im-
proved pipeline framework for multi-lingual depen-
dency parsing that aims at addressing the limitations
of the pipeline processing. Specifically, (1) we use
local search, a look ahead policy, to improve the ac-
curacy of the predicted actions, and (2) we argue that
the parsing algorithm we used minimizes the num-
ber of actions (Chang et al., 2006).

We use the set of actions: Shift, Left, Right, Wait-
Left, WaitRight for the parsing algorithm. The pure
Wait action was suggested in (Yamada and Mat-
sumoto, 2003). However, here we come up with
these five actions by separating actions Left into
(real) Left and WaitLeft, and Right into (real) Right
and WaitRight. Predicting these turns out to be eas-
ier due to finer granularity. We then use local search
over consecutive actions and better exploit the de-
pendencies among them.

The parsing algorithm is a modified shift-reduce
parser (Aho et al., 1986) that makes use of the ac-
tions described above and applies them in a left
to right manner on consecutive word pairs (a, b)
(a < b) in the word list T . T is initialized as the full
sentence. Latter, the actions will change the contents
of T . The actions are used as follows:
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Shift: there is no relation between a and b.
Right: b is the parent of a,
Left: a is the parent of b

WaitLeft: a is the parent of b, but it’s possible that
b is a parent of other nodes. Action is deferred.

The actions control the procedure of building
trees. When Left or Right is performed, the algo-
rithm has found a parent and a child. Then, the func-
tion deleteWord will be called to eliminate the child
word, and the procedure will be repeated until the
tree is built. In projective languages, we discovered
that action WaitRight is not needed. Therefore, for
projective languages, we just need 4 actions.

In order to complete the description of the algo-
rithm we need to describe which pair of consecu-
tive words to consider once an action is taken. We
describe it via the notion of the focus point, which
represents the index of the current word in T . In
fact, determining the focus point does not affect the
correctness of the algorithm. It is easy to show that
any pair of consecutive words in the sentence can
be considered next. If the correct action is chosen
for the corresponding pair, this will eventually yield
the correct tree (but may necessitate multiple cycles
through the sentence).

In practice, however, the actions chosen will be
noisy, and a wasteful focus point policy will result
in a large number of actions, and thus in error accu-
mulation. To minimize the number of actions taken,
we want to find a good focus point placement policy.

There are many natural placement policies that we
can consider (Chang et al., 2006). In this paper, ac-
cording to the policy we used, after S and WL, the
focus point moves one word to the right. After L or
R, we adopt the policy Step Back: the focus moves
back one word to the left. Although the focus place-
ment policy here is similar to (Yamada and Mat-
sumoto, 2003), they did not explain why they made
this choice. In (Chang et al., 2006), we show that
the policy movement used here minimized the num-
ber of actions during the parsing procedure. We can
also show that the algorithm can parse a sentence
with projective relationships in only one round.

Once the parsing algorithm, along with the focus
point policy, is determined, we can train the action
classifiers. Given an annotated corpus, the parsing
algorithm is used to determine the action taken for
each consecutive pair; this is used to train a classifier

Algorithm 1 Pseudo Code of the dependency pars-
ing algorithm. getFeatures extracts the features
describing the currently considered pair of words;
getAction determines the appropriate action for the
pair; assignParent assigns the parent for the child
word based on the action; and deleteWord deletes the
word which become child once the action is taken.

Let t represents for a word and its part of speech
For sentence T = {t1, t2, . . . , tn}
focus= 1
while focus< |T | do

~v = getFeatures(tfocus, tfocus+1)
α = getAction(tfocus, tfocus+1, ~v)
if α = L or α = R then

assignParent(tfocus, tfocus+1, α)
deleteWord(T, focus, α)
// performing Step Back here
focus = focus− 1

else
focus = focus + 1

end if
end while

to predict one of the four actions. The details of the
classifier and the features are given in Section 3.

When we apply the trained model on new data,
the sentence is processed from left to right to pro-
duce the predicted dependency tree. The evaluation
process is somewhat more involved, since the action
classifier is not used as it is, but rather via a local
search inference step. This is described in Section 2.
Algorithm 1 depicts the pseudo code of our parsing
algorithm.

Our algorithm is designed for projective lan-
guages. For non-projective relationships in some
languages, we convert them into near projective
ones. Then, we directly apply the algorithm on mod-
ified data in training stage. Because the sentences in
some language, such as Czech, etc. , may have multi
roots, in our experiment, we ran multiple rounds of
Algorithm 1 to build the tree.

1.2 Labeling the Type of Dependencies

In our work, labeling the type of dependencies is
a post-task after the phase of predicting the head
for the tokens in the sentences. This is a multi-
class classification task. The number of the de-
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pendency types for each language can be found in
the organizer’s introduction paper of the shared task
of CoNLL-X. In the phase of learning dependency
types, the parent of the tokens, which was labeled
in the first phase, will be used as features. The pre-
dicted actions can help us to make accurate predic-
tions for dependency types.

1.3 Dealing with Crossing Edges

The algorithm described in previous section is pri-
marily designed for projective languages. To deal
with non-projective languages, we use a similar ap-
proach of (Nivre and Nilsson, 2005) to map non-
projective trees to projective trees. Any single
rooted projective dependency tree can be mapped
into a projective tree by the Lift operation. The
definition of Lift is as follows: Lift(wj → wk) =
parent(wj) → wk, where a → b means that a is the
parent of b, and parent is a function which returns
the parent word of the given word. The procedure is
as follows. First, the mapping algorithm examines if
there is a crossing edge in the current tree. If there is
a crossing edge, it will perform Lift and replace the
edge until the tree becomes projective.

2 Local Search

The advantage of a pipeline model is that it can use
more information that is taken from the outcomes
of previous prediction. However, this may result in
accumulating error. Therefore, it is essential for our
algorithm to use a reliable action predictor. This mo-
tivates the following approach for making the local
prediction in a pipeline model more reliable. Infor-
mally, we devise a local search algorithm and use it
as a look ahead policy, when determining the pre-
dicted action.

In order to improve the accuracy, we might want
to examine all the combinations of actions proposed
and choose the one that maximizes the score. It is
clearly intractable to find the global optimal predic-
tion sequence in a pipeline model of the depth we
consider. The size of the possible action sequence
increases exponentially so that we can not examine
every possibility. Therefore, a local search frame-
work which uses additional information, however, is
suitable and tractable.

The local search algorithm is presented in Al-

Algorithm 2 Pseudo code for the local search al-
gorithm. In the algorithm, y represents the a action
sequence. The function search considers all possible
action sequences with |depth| actions and returns
the sequence with highest score.

Algo predictAction(model, depth, State)
x = getNextFeature(State)
y = search(x, depth, model, State)
lab = y[1]
State = update(State, lab)
return lab

Algo search(x, depth, model, State)
maxScore = −∞
F = {y | ‖y‖ = depth}
for y in F do

s = 0, TmpState = State
for i = 1 . . . depth do

x = getNextFeature(TmpState)
s = s + log(score(y[i], x))
TmpState = update(TmpState, y[i])

end for
if s > maxScore then

ŷ = y

maxScore = s

end if
end for
return ŷ

gorithm 2. The algorithm accepts two parameters,
model and depth. We assume a classifier that can
give a confidence in its prediction. This is repre-
sented here by model. depth is the parameter de-
termining the depth of the local search. State en-
codes the configuration of the environment (in the
context of the dependency parsing this includes the
sentence, the focus point and the current parent and
children for each node). Note that the features ex-
tracted for the action classifier depends on State, and
State changes by the update function when a predic-
tion is made. In this paper, the update function cares
about the child word elimination, relationship addi-
tion and focus point movement.

The search algorithm will perform a search of
length depth. Additive scoring is used to score the
sequence, and the first action in this sequence is per-
formed. Then, the State is updated, determining the
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next features for the action classifiers and search is
called again.

One interesting property of this framework is that
we use future information in addition to past infor-
mation. The pipeline model naturally allows access
to all the past information. But, since our algorithm
uses the search as a look ahead policy, it can produce
more robust results.

3 Experiments and Results

In this work we used as our learning algorithm a
regularized variation of the perceptron update rule
as incorporated in SNoW (Roth, 1998; Carlson et
al., 1999), a multi-class classifier that is specifically
tailored for large scale learning tasks. SNoW uses
softmax over the raw activation values as its confi-
dence measure, which can be shown to be a reliable
approximation of the labels’ probabilities. This is
used both for labeling the actions and types of de-
pendencies. There is no special language enhance-
ment required for each language. The resources pro-
vided for 12 languages are described in: (Hajič et
al., 2004; Chen et al., 2003; Böhmová et al., 2003;
Kromann, 2003; van der Beek et al., 2002; Brants
et al., 2002; Kawata and Bartels, 2000; Afonso et
al., 2002; Džeroski et al., 2006; Civit Torruella and
Martı́ Antonı́n, 2002; Nilsson et al., 2005; Oflazer et
al., 2003; Atalay et al., 2003).

3.1 Experimental Setting

The feature set plays an important role in the qual-
ity of the classifier. Basically, we used the same
feature set for the action selection classifiers and
for the label classifiers. In our work, each exam-
ple has average fifty active features. For each word
pair (w1, w2), we used their LEMMA, the POSTAG
and also the POSTAG of the children of w1 and
w2. We also included the LEMMA and POSTAG
of surrounding words in a window of size (2, 4).
We considered 2 words before w1 and 4 words af-
ter w2 (we agree with the window size in (Yamada
and Matsumoto, 2003)). The major difference of
our feature set compared with the one in (Yamada
and Matsumoto, 2003) is that we included the pre-
vious predicted action. We also added some con-
junctions of the above features to ensure expressive-
ness of the model. (Yamada and Matsumoto, 2003)

made use of the polynomial kernel of degree 2 so
they in fact use more conjunctive features. Beside
these features, we incorporated the information of
FEATS for the languages when it is available. The
columns in the data files we used for our work are
the LEMMA, POSTAG, and the FEATS, which is
treated as atomic. Due to time limitation, we did not
apply the local search algorithm for the languages
having the FEATS features.

3.2 Results
Table 1 shows our results on Unlabeled Attachment
Scores (UAS), Labeled Attachment Scores (LAS),
and Label Accuracy score (LAC) for 12 languages.
Our results are compared with the average scores
(AV) and the standard deviations (SD), of all the sys-
tems participating in the shared task of CoNLL-X.

Our average UAS for 12 languages is 83.54%
with the standard deviation 6.01; and 76.80% with
the standard deviation 9.43 for average LAS.

4 Analysis and Discussion

We observed that our UAS for Arabic is generally
lower than for other languages. The reason for the
low accuracy of Arabic is that the sentence is very
long. In the training data for Arabic, there are 25%
sentences which have more than 50 words. Since
we use a pipeline model in our algorithm, it required
more predictions to complete a long sentence. More
predictions in pipeline models may result in more
mistakes. We think that this explains our relatively
low Arabic result. Moreover, in our current system,
we use the same window size (2,4) for feature ex-
traction in all languages. Changing the windows size
seems to be a reasonable step when the sentences are
longer.

For Czech, one reason for our relatively low result
is that we did not use the whole training corpus due
to time limitation 2 . Actually, in our experiment
on the development set, when we increase the size
of training data in the training phase we got signif-
icantly higher result than the system trained on the
smaller data. The other problem for Czech is that
Czech is one of the languages with many types of
part of speech and dependency types, and also the

2Training our system for most languages takes 30 minutes
or 1 hour for both phases of labeling HEAD and DEPREL. It
takes 6-7 hours for Czech with 50% training data.

189



Language UAS LAS LAC
Ours AV SD Ours AV SD Ours AV SD

Arabic 76.09 73.48 4.94 60.92 59.94 6.53 75.69 75.12 5.49
Chinese 89.60 84.85 5.99 85.05 78.32 8.82 87.28 81.66 7.92
Czech 81.78 77.01 6.70 72.88 67.17 8.93 80.42 76.59 7.69
Danish 86.85 84.52 8.97 80.60 78.31 11.34 86.51 84.50 4.35
Dutch 76.25 75.07 5.78 72.91 70.73 6.66 80.15 77.57 5.92
German 86.90 82.60 6.73 84.17 78.58 7.51 91.03 86.26 6.01
Japanese 90.77 89.05 5.20 89.07 85.86 7.09 92.18 89.90 5.36
Portuguese 88.60 86.46 4.17 83.99 80.63 5.83 88.84 85.35 5.45
Slovene 80.32 76.53 4.67 69.52 65.16 6.78 79.26 76.31 6.40
Spanish 83.09 77.76 7.81 79.72 73.52 8.41 89.26 85.71 4.56
Swedish 89.05 84.21 5.45 82.31 76.44 6.46 84.82 80.00 6.24
Turkish 73.15 69.35 5.51 60.51 55.95 7.71 73.75 69.59 7.94

Table 1: Our results are compared with the average scores. UAS=Unlabeled Attachment Score,
LAS=Labeled Attachment Score, LAC=Label Accuracy, AV=Average score, and SD=standard deviation.

length of the sentences in Czech is relatively long.
These facts make recognizing the HEAD and the
types of dependencies more difficult.

Another interesting aspect is that we have not
used the information about the syntactic and/or mor-
phological features (FEATS) properly. For the lan-
guages for which FEATS is available, we have a
larger gap, compared with the top system.

5 Further Work and Conclusion

In the shared task of CoNLL-X, we have shown that
our dependency parsing system can do well on mul-
tiple languages without requiring special knowledge
for each of the languages.

From a technical perspective, we have addressed
the problem of using learned classifiers in a pipeline
fashion, where a task is decomposed into several
stages and classifiers are used sequentially to solve
each stage. This is a common computational strat-
egy in natural language processing and is known to
suffer from error accumulation and an inability to
correct mistakes in previous stages. We abstracted
two natural principles, one which calls for making
the local classifiers used in the computation more
reliable and a second, which suggests to devise the
pipeline algorithm in such a way that it minimizes
the number of actions taken.

However, since we tried to build a single approach
for all languages, we have not fully utilized the capa-

bilities of our algorithms. In future work we will try
to specify both features and local search parameters
to the target language.
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Abstract 

In this paper, we present a framework for 
multi-lingual dependency parsing. Our 
bottom-up deterministic parser adopts 
Nivre’s algorithm (Nivre, 2004) with a 
preprocessor. Support Vector Machines 
(SVMs) are utilized to determine the word 
dependency attachments. Then, a maxi-
mum entropy method (MaxEnt) is used 
for determining the label of the depend-
ency relation. To improve the perform-
ance of the parser, we construct a tagger 
based on SVMs to find neighboring at-
tachment as a preprocessor. Experimental 
evaluation shows that the proposed exten-
sion improves the parsing accuracy of our 
base parser in 9 languages. (Hajič et al., 
2004; Simov et al., 2005; Simov and 
Osenova, 2003; Chen   et al., 2003; Böh-
mová et al., 2003; Kromann, 2003;    van 
der Beek et al., 2002; Brants et al., 
2002;   Kawata and Bartels, 2000; Afonso 
et al., 2002;   Džeroski et al., 2006; Civit 
and Martí, 2002; Nilsson   et al., 2005; 
Oflazer et al., 2003; Atalay et al., 2003). 

1 Introduction 

The presented dependency parser is based on our 
preceding work (Cheng, 2005a) for Chinese. The 
parser is a bottom-up deterministic dependency 
parser based on the algorithm proposed by (Nivre, 
2004). A dependency attachment matrix is con-
structed, in which each element corresponds to a 
pair of tokens. Each dependency attachment is in-
crementally constructed, with no crossing con-
straint. In the parser, SVMs (Vapnik, 1998) 
deterministically estimate whether a pair of words 
has either of four relations: right, left, shift and 
reduce. While dependency attachment is estimated 
by SVMs, we use a MaxEnt (Ratnaparkhi, 1999) 
based tagger with the output of the parser to esti-

mate the label of dependency relations. This tagger 
uses the same features as for the word dependency 
analysis. 

In our preceding work (Cheng, 2005a), we not 
only adopted the Nivre algorithm with SVMs, but 
also tried some preprocessing methods. We inves-
tigated several preprocessing methods on a Chi-
nese Treebank. In this shared task (Buchholz et. al, 
2006), we also investigate which preprocessing 
method is effective on other languages. We found 
that only the method that uses a tagger to extract 
the word dependency attachment between two 
neighboring words works effectively in most of the 
languages. 

2 System Description 

The main part of our dependency parser is based 
on Nivre’s algorithm (Nivre, 2004), in which the 
dependency relations are constructed by a bottom-
up deterministic schema. While Nivre’s method 
uses memory-based learning to estimate the de-
pendency attachment and the label, we use SVMs 
to estimate the attachment and MaxEnt to estimate 

Fig. 1 The architecture of our parser 

(i)Preprocessor (neighboring 
relation tagger)

(ii)Get contextual features

(iii)Estimate dependency
attachment by SVM

(iv)Tag label by MaxEnt
Construct Subtree

No more construction
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None

Input sentence (word tokens)
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Fig. 2. The features for dependency analysis 
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the label. The architecture of the parser consists of 
four major procedures and as in Fig.1:  
(i) Decide the neighboring dependency at-

tachment between all adjacent words in the 
input sentence by SVM-based tagger (as a 
preprocessing) 

(ii) Extract the surrounding features for the 
focused pair of nodes. 

(iii) Estimate the dependency attachment op-
eration of the focused pair of nodes by 
SVMs. 

(iv) If there is a left or right attachment, esti-
mate the label of dependency relation by 
MaxEnt. 

We will explain the main procedures (steps (ii)-
(iv)) in sections 2.1 and 2.2, and the preprocessing 
in section 2.3. 

2.1   Word dependency analysis 

In the algorithm, the state of the parser is repre-
sented by a triple AIS ,, . S and I are stacks, S 
keeps the words being in consideration, and I 
keeps the words to be processed. A is a list of de-
pendency attachments decided in the algorithm. 
Given an input word sequence W, the parser is ini-
tialized by the triple φ,,Wnil . The parser esti-
mates the dependency attachment between two 
words (the top elements of stacks S and I). The 
algorithm iterates until the list I becomes empty. 
There are four possible operations (Right, Left, 
Shift and Reduce) for the configuration at hand.  
Right or Left: If there is a dependency relation 
that the word t or n attaches to word n or t, add the 
new dependency relation ( )nt →  or ( )tn → into A, 
remove t or n from S or I. 

If there is no dependency relation between n and 
t, check the following conditions. 
Reduce: If there is no word 'n  ( In ∈' ) which may 
depend on t, and t has a parent on its left side, the 
parser removes t from the stack S. 

Shift: If there is no dependency between n and t, 
and the triple does not satisfy the conditions for 
Reduce, then push n onto the stack S. 

In this work, we adopt SVMs for estimating the 
word dependency attachments. SVMs are binary 
classifiers based on the maximal margin strategy.  
We use the polynomial kernel: dK )1()( zxzx, ⋅+=  
with d =2. The performance of SVMs is better than 
that of the maximum entropy method in our pre-
ceding work for Chinese dependency analysis 
(Cheng, 2005b). This is because that SVMs can 
combine features automatically (using the polyno-
mial kernel), whereas the maximum entropy 
method cannot. To extend binary classifiers to 
multi-class classifiers, we use the pair-wise method, 
in which we make 2Cn

1  binary classifiers between 
all pairs of the classes (Kreβel, 1998). We use 
Libsvm (Lin et al., 2001) in our experiments. 

In our method, the parser considers the depend-
ency attachment of two nodes (n,t). The features of 
a node are the word itself, the POS-tag and the in-
formation of its child node(s). The context features 
are 2 preceding nodes of node t (and t itself), 2 suc-
ceeding nodes of node n (and n itself), and their 
child nodes. The distance between nodes n and t is 
also used as a feature. The features are shown in 
Fig.2. 

2.2   Label tagging 

We adopt MaxEnt to estimate the label of depend-
ency relations. We have tried to use linear-chain 
conditional random fields (CRFs) for estimating 
the labels after the dependency relation analysis. 
This means that the parser first analyzes the word 
dependency (head-modifier relation) of the input 
sentence, then the CRFs model analyzes the most 
suitable label set with the basic information of in-
put sentence (FORM, LEMMA, POSTAG……etc) 
and the head information (FORM and POSTAG) 
of each word. However, as the number of possible 
labels in some languages is large, training a CRF 
model with these corpora (we use CRF++ (Kudo, 
2005)) cost huge memory and time. 

Instead, we combine the maximum entropy 
method in the word dependency analysis to tag the 
label of dependency relation. As shown in Fig. 1, 
the parser first gets the contextual features to esti-
mate the word dependency. If the parsing operation 
                                                           
1  To estimate the current operation (Left, Right, Shift and 
Reduce) by SVMs, we need to build 6 classifiers(Left-Right, 
Left-Shift, Left-Reduce, Right-Shift, Right-Reduce and Shift-
Reduce).  
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is “Left” or “Right”, the parser then use MaxEnt 
with the same features to tag the label of relation. 
This strategy can tag the label according to the cur-
rent states of the focused word pair. We divide the 
training instances according to the CPOSTAG of 
the focused word n, so that a classifier is con-
structed for each of distinct POS-tag of the word n. 

2.3 Preprocessing 

2.3.1   Preceding work 
In our preceding work (Cheng, 2005a), we dis-
cussed three problems of our basic methods (adopt 
Nivre’s algorithm with SVMs) and proposed three 
preprocessing methods to resolve these problems. 
The methods include: (1) using global features and 
a two-steps process to resolve the ambiguity be-
tween the parsing operations “Shift” and “Reduce”. 
(2) using a root node finder and dividing the sen-
tence at the root node to make use of the top-down 
information. (3) extracting the prepositional phrase 
(PP) to resolve the problem of identifying the 
boundary of PP. 

We incorporated Nivre’s method with these 
preprocessing methods for Chinese dependency 
analysis with Penn Chinese Treebank and Sinica 
Treebank (Chen   et al., 2003). This was effective 
because of the properties of Chinese: First, there is 
no multi-root in Chinese Treebank. Second, the 
boundary of prepositional phrases is ambiguous. 
We found that these methods do not always im-
prove the accuracy of all the languages in the 
shared task.  

We have tried the method (1) in some lan-
guages to see if there is any improvement in the 
parser. We attempted to use global features and 
two-step analysis to resolve the ambiguity of the 
operations. In Chinese (Chen   et al., 2003) and 
Danish (Kromann, 2003), this method can improve 
the parser performance. However, in other lan-
guages, such as Arabic (Hajič et al., 2004), this 
method decreased the performance. The reason is 
that the sentence in some languages is too long to 
use global features. In our preceding work, the 
global features include the information of all the 
un-analyzed words. However, for analyzing long 
sentences, the global features usually include some 
useless information and will confuse the two-step 
process. Therefore, we do not use this method in 
this shared task. 

In the method (2), we construct an SVM-based 
root node finder to identify the root node and di-
vided the sentence at the root node in the Chinese 

Treebank. This method is based on the properties 
of dependency structures “One and only one ele-
ment is independent” and “An element cannot have 
modifiers lying on the other side of its own head”. 
However, there are some languages that include 
multi-root sentences, such as Arabic, Czech, and 
Spanish (Civit and Martí, 2002), and it is difficult 
to divide the sentence at the roots. In multi-root 
sentences, deciding the head of the words between 
roots is difficult. Therefore, we do not use the 
method (2) in the share task.  

The method (3) –namely PP chunker– can iden-
tify the boundary of PP in Chinese and resolve the 
ambiguity of PP boundary, but we cannot guaran-
tee that to identify the boundary of PP can improve 
the parser in other languages. Even we do not un-
derstand construction of PP in all languages. 
Therefore, for the robustness in analyzing different 
languages, we do not use this method. 

2.3.2   Neighboring dependency attachment 
tagger 
In the bottom-up dependency parsing approach, the 
features and the strategies for parsing in early stage 
(the dependency between adjacent2 words) is dif-
ferent from parsing in upper stage (the dependency 
between phrases). Parsing in upper stage needs the 
information at the phrases not at the words alone. 
The features and the strategies for parsing in early 
and upper stages should be separated into distinct. 
Therefore, we divide the neighboring dependency 
attachment (for early stage) and normal depend-
ency attachment (for upper stage), and set the 
neighboring dependency attachment tagger as a  
preprocessor. 

When the parser analyzes an input sentence, it 
extracts the neighboring dependency attachments 
first, then analyzes the sentence as described be-
fore. The results show that tagging the neighboring 
dependency word-pairs can improve 9 languages 
out of 12 scoring languages, although in some lan-
guages it degrades the performance a little. Poten-
tially, there may be a number of ways for 
decomposing the parsing process, and the current 
method is just the simplest decomposition of the 
process. The best method of decomposition or dy-
namic changing of parsing models should be inves-
tigated as the future research. 

                                                           
2 We extract all words that depend on the adjacent word (right 
or left). 
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3 Experiment 

3.1 Experimental setting 
Our system consists of three parts; first, the SVM-
based tagger extracts the neighboring attachment 
relations of the input sentence. Second, the parser 
analyzes further dependency attachments. If a new 
dependency attachment is generated, the MaxEnt 
based tagger estimates the label of the relation. The 
three parts of our parser are trained on the avail-
able data of the languages. 

In our experiment, we used the full information 
of each token (FORM, LEMMA, CPOSTAG, 
POSTAG, FEATS) when we train and test the 
model. Fig. 2 describes the features of each token. 
Some languages do not include all columns; such 
that the Chinese data does not include LEMMA 
and FEATURES, these empty columns are shown 
by the symbol “-” in Fig. 2. The features for the 
neighboring dependency tagging are the informa-
tion of the focused word, two preceding words and 
two succeeding words. Fig. 2 shows the window 
size of our features for estimating the word de-
pendency in the main procedures. These features 
include the focused words (n, t), two preceding 
words and two succeeding words and their children. 
The features for estimating the relation label are 
the same as the features used for word dependency 
analysis. For example, if the machine learner esti-
mates the operation of this situation as “Left” or 
“Right” by using the features in Fig. 2, the parser 
uses the same features in Fig. 2 and the depend-
ency relation to estimate the label of this relation.  

For training the models efficiently, we divided 
the training instances of all languages at the 
CPOSTAG of the focused word n in Fig .2. In our 
preceding work, we found this procedure can get 
better performance than training with all the in-
stances at once. However, only the instances in 
Czech are divided at the CPOSTAG of the focused 
word-pair t-n3. The performance of this procedure 
is worse than using the CPOSTAG of the focused 
word n, because the training instances of each 
CPOSTAG-pair will become scarce. However, the 
data size of Czech is much larger than other lan-
guages; we couldn’t finish the training of Czech 
using the CPOSTAG of the focused word n, before 
the deadline for submitting. Therefore we used this 
procedure only for the experiment of Czech. 
                                                           
3 For example, we have 15 SVM-models for Arabic according 
to the CPOSTAG of Arabic (A, C, D, F, G…etc.). However, 
we have 139 SVM-models for Czech according the 
CPOSTAG pair of focused words (A-A, A-C, A-D…etc.) 

All our experiments were run on a Linux ma-
chine with XEON 2.4GHz and 4.0GB memory. 
The program is implemented in JAVA. 

3.2   Results 

Table 1 shows the results of our parser. We do not 
take into consideration the problem of cross rela-
tion. Although these cross relations are few in 
training data, they would make our performance 
worse in some languages. We expect that this is 
one reason that the result of Dutch is not good. The 
average length of sentences and the size of training 
data may have affected the performance of our 
parser. Sentences of Arabic are longer and training 
data size of Arabic is smaller than other languages; 
therefore our parser is worse in Arabic. Similarly, 
our result in Turkish is also not good because the 
data size is small. 
     We compare the result of Chinese with our pre-
ceding work. The score of this shared task is better 
than our preceding work. It is expected that we 
selected the FORM and CPOSTAG of each nodes 
as features in the preceding work. However, the 
POSTAG is also a useful feature for Chinese, and 
we grouped the original POS tags of Sinica Tree-
bank from 303 to 54 in our preceding work. The 
number of CPOSTAG(54) in our preceding work 
is more than the number of CPOSTAG(22) in this 
shared task, the training data of each CPOSTAG in 
our preceding work is smaller than in this work.  
Therefore the performance of our preceding work 
in Sinica Treebank is worse than this task. 
     The last column of the Table 1 shows the unla-
beled scores of our parser without the preprocess-
ing. Because our parser estimates the label after the 
dependency relation is generated. We only con-
sider whether the preprocessing can improve the 
unlabeled scores. Although the preprocessing can 
not improve some languages (such as Chinese, 
Spanish and Swedish), the average score shows 
that using preprocessing is better than parsing 
without preprocessing. 
     Comparing the gold standard data and the sys-
tem output of Chinese, we find the CPOSTAG 
with lowest accuracy is “P (preposition)”, the accu-
racy that both dependency and head are correct is 
71%. As we described in our preceding work and 
Section 2.3, we found that boundaries of preposi-
tional phrases are ambiguous for Chinese. The bot-
tom-up algorithm usually wrongly parses the 
prepositional phrase short. The parser does not  
capture the correct information of the children of 
the preposition. According to the results, this prob-
lem does not cause the accuracy of head of  

194



CPOSTAG “P” decrease. Actually, the head accu-
racy of “P” is better than the CPOSTAG “C” or 
“V”. However, the dep. accuracy of “P” is worse. 
We should consider the properties of prepositions 
in Chinese to resolve this question. In Chinese, 
prepositions are derived from verbs; therefore 
some prepositions can be used as a verb. Naturally, 
the dependency relation of a preposition is differ-
ent from that of a verb. Important information for 
distinguishing whether the preposition is a verb or 
a preposition is the information of the children of 
the preposition. The real POS tag of a preposition 
which includes few children is usually a verb; on 
the other hand, the real POS tag of a preposition is 
usually a preposition.  

If our parser considers the preposition which 
leads a short phrase, the parser will estimate the 
relation of the preposition as a verb. At the same 
time, if the boundary of prepositional phrase is 
analyzed incorrectly, other succeeding words will 
be wrongly analyzed, too.  

Error analysis of Japanese data (Kawata and  
Bartels, 2000) shows that CNJ (Conjunction) is a 
difficult POS tag. The parser does not have any 
module to detect coordinate structures. (Kurohashi, 
1995) proposed a method in which coordinate 
structure with punctuation is detected by a coeffi-

cient of similarity. Similar framework is necessary 
for solving the problem. 

 Another characteristic error in Japanese is seen 
at adnominal dependency attachment for a com-
pound noun. In such dependency relations, adjec-
tives and nouns with "no" (genitive marker) can be 
a dependent and compound nouns which consist of 
more than one consecutive nouns can be a head. 
The constituent of compound nouns have same 
POSTAG, CPOSTAG and FEATS. So, the ma-
chine learner has to disambiguate the dependency 
attachment with sparce feature LEMMA and 
FORM. Compound noun analysis by semantic fea-
ture is necessary for addressing the issue. 

4 Conclusion 
This paper reported on multi-lingual dependency 
parsing on combining SVMs and MaxEnt. The 
system uses SVMs for word dependency attach-
ment analysis and MaxEnt for the label tagging 
when the new dependency attachment is generated. 
We discussed some preprocessing methods that are 
useful in our preceding work for Chinese depend-
ency analysis, but these methods, except one, can-
not be used in multi-lingual dependency parsing. 
Only using the SVM-based tagger to extract the 
neighbor relation could improve many languages 
in our experiment, therefore we use the tagger in 
the parser as its preprocessing. 
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Language: LAS: UAS: LAcc. UAS with out 
preprocessing:

Arabic 65.19 77.74 79.02 76.74 
Chinese 84.27 89.46 86.42 90.03 
Czech 76.24 83.4 83.52 82.88 
Danish 81.72 88.64 86.11 88.45 
Dutch 71.77 75.49 75.83 74.97 

German 84.11 87.66 90.67 87.53 
Japanese 89.91 93.12 92.40 92.99 
Portugese 85.07 90.3 88.00 90.21 
Slovene 71.42 81.14 80.96 80.43 
Spanish 80.46 85.15 88.90 85.19 
Swedish 81.08 88.57 83.99 88.83 
Turkish 61.22 74.49 73.91 74.3 

AV: 77.7 84.6 84.1 84.38 
SD: 8.67 6.15 5.78 6.42 

Bulgarian 86.34 91.3 89.27 91.44 

Table 1: Results 
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Abstract

We describe a parser used in the CoNLL
2006 Shared Task, “Multingual Depen-
dency Parsing.” The parser first identi-
fies syntactic dependencies and then labels
those dependencies using a maximum en-
tropy classifier. We consider the impact of
feature engineering and the choice of ma-
chine learning algorithm, with particular
focus on Slovene, Spanish and Swedish.

1 Introduction

The system that we submitted for the CoNLL 2006
Shared Task, “Multingual Dependency Parsing,”
(Buchholz et al., 2006) is a two stage pipeline. The
first stage identifies unlabeled directed dependen-
cies using an extension of the parser described in
(Corston-Oliver et al., 2006). The second stage is a
maximum entropy classifier that labels the directed
dependencies. The system was trained on the twelve
obligatory languages, as well as the optional lan-
guage, Bulgarian (Hajič et al., 2004; Simov et al.,
2005; Simov and Osenova, 2003; Chen et al., 2003;
Böhmová et al., 2003; Kromann, 2003; van der Beek
et al., 2002; Brants et al., 2002; Kawata and Bar-
tels, 2000; Afonso et al., 2002; Džeroski et al., 2006;
Civit Torruella and Martı́ Antonı́n, 2002; Nilsson et
al., 2005; Oflazer et al., 2003; Atalay et al., 2003).

Table 1 presents the results of the system de-
scribed in the current paper on the CoNLL shared
task, including the optional evaluation on Bulgar-
ian. For Slovene, we ranked second with a labeled

Language Unlabeled Labeled
Attachment Attachment

Arabic 78.40 63.53
Bulgarian 90.09 83.36
Chinese 90.00 79.92
Czech 83.02 74.48
Danish 87.94 81.74
Dutch 74.83 71.43
German 87.20 83.47
Japanese 92.84 89.95
Portugese 88.96 84.59
Slovene 81.77 72.42
Spanish 84.87 80.36
Swedish 89.54 79.69
Turkish 73.11 61.74

Table 1: Results on CoNLL 2006 shared task.

dependency accuracy of 72.42%. This was not sta-
tistically significantly different from the top-ranked
score of 73.44%. For Spanish, our labeled depen-
dency accuracy of 80.36% is within 0.1% of the
third-ranked score of 80.46%. Our unlabeled de-
pendency accuracy for Swedish was the best of all
the systems at 89.54%. Our labeled accuracy for
Swedish, however, at 79.69%, fell far short of the
third-best score of 82.31%. We therefore focus on
Swedish when considering the impact of our choice
of learning algorithm on our label accuracy.

2 Data

We divided the shared data into training and devel-
opment test sets, using larger development test sets
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for the languages supplied with more data. The de-
velopment test set consisted of 250 sentences for
Arabic, Slovene, Spanish and Turkish, 500 sen-
tences for Danish and Portuguese, and 1,000 sen-
tences for the other languages.

3 The Parser

The baseline parser predicts unlabeled directed de-
pendencies. As described in (Corston-Oliver et al.,
2006), we reimplemented the parser described in
(McDonald et al., 2005) and validated their results
for Czech and English.

The parser finds the highest-scoring parse ŷ
among all possible parses y ∈ Y for a given sen-
tence:

ŷ = arg max
y∈Y

s(y) (1)

The score s of a given parse y is the sum of the
scores of all the dependency links (i,j) ∈ y:

s(y) =
∑

(i,j)∈y

d(i, j) =
∑

(i,j)∈y

w · f(i, j) (2)

where the link (i,j) indicates a parent-child depen-
dency between the token at position i and the token
at position j. The score d(i, j) of each dependency
link (i,j) is further decomposed as the weighted sum
of its features f(i, j).

To set w, we trained twenty averaged perceptrons
on different shuffles of the training data, using the
development test set to determine when the percep-
trons had converged. The averaged perceptrons were
then combined to make a Bayes Point Machine (Har-
rington et al., 2003). At both training and run time,
edges are scored independently, and Eisner’s O(N3)
decoder (Eisner, 1996) is used to find the optimal
parse. This decoder produces only projective analy-
ses, although it does allow for analyses with multiple
roots.

The features used for scoring the edges prior to
applying Eisner’s algorithm are extracted from each
possible parent-child dependency. The features in-
clude the case-normalized original form and lemma1

of each token , the part of speech (POS) tag of each
token, the POS tag of each intervening token and

1If no lemma was specified, we truncated the original form
by taking the first two characters for Chinese words consisting
of two characters or more and the first five characters for words
consisting of five characters or more in the other languages.

of each token to the left and right of the parent and
child. Additional features are created by combining
these atomic features, as described in (McDonald et
al., 2005). All features are in turn combined with
the direction of attachment and the distance between
tokens. Distance was discretized, with individual
buckets for distances 0-4, a single bucket for 5-9,
and a single bucket for 10+. In sections 3.1 and 3.2
we discuss the feature engineering we performed.

3.1 Part of Speech Features

We experimented with using the coarse POS tag and
the fine POS tag. In our official submission, we
used fine POS tags for all languages except Dutch
and Turkish. For Dutch and Turkish, using the fine
POS tag resulted in a reduction in unlabeled depen-
dency accuracy of 0.12% and 0.43% respectively
on the development test sets, apparently because of
the sparsity of the fine POS tags. For German and
Swedish, the fine and coarse POS tags are the same
so using the fine POS tag had no effect. For other
languages, using the fine POS tag showed modest
improvements in unlabeled dependency accuracy.

For Swedish, we performed an additional manipu-
lation on the POS tags, normalizing the distinct POS
tags assigned to each verbal auxiliary and modal to
a single tag “aux”. For example, in the Swedish
data all inflected forms of the verb “vara” (“be”) are
tagged as AV, and all inflected forms of the modal
“måste” (“must”) are tagged as MV. This normaliza-
tion caused unlabeled dependency accuracy on the
Swedish development set to improve from 89.23%
to 89.45%.

3.2 Features for Root Identification

Analysis of the baseline parser’s errors suggested
the need for additional feature types to improve the
identification of the root of the sentence. In particu-
lar, the parser was frequently making errors in iden-
tifying the root of periphrastic constructions involv-
ing an auxiliary verb or modal and a participle. In
Germanic languages, for example, the auxiliary or
modal typically occurs in second position in declar-
ative main clauses or in initial position in cases of
subject-aux inversion. We added a collection of fea-
tures intended to improve the identification of the
root. The hope was that improved root identifica-
tion would have a positive cascading effect in the
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identification of other dependencies, since a failure
to correctly identify the root of the sentence usually
means that the parse will have many other errors.

We extracted four feature types, the original form
of the first and last tokens in the sentence and the
POS of the first and last tokens in the sentence.
These features were intended to identify declarative
vs. interrogative sentences.

For each child and parent token being scored, we
also noted the following four features: “child/parent
is first non-punctuation token in sentence”,
“child/parent is second non-punctuation token in
sentence”. The features that identify the second
token in the sentence were intended to improve
the identification of verb-second phenomena. Of
course, this is a linguistic oversimplification. Verb-
second phenomena are actually sensitive to the order
of constituents, not words. We therefore added four
feature types that considered the sequence of POS
tags to the left of the child or parent if they occurred
within ten tokens of the beginning of the sentence
and the sequence of POS tags to the right of the
child or parent if they occurred within ten tokens of
the end of the sentence.

We also added features intended to improve the
identification of the root in sentences without a fi-
nite verb. For example, the Dutch training data
contained many simple responses to a question-
answering task, consisting of a single noun phrase.
Four simple features were used “Child/Parent is the
leftmost noun in the sentence”, “Child/Parent is a
noun but not the leftmost noun in the sentence”.
These features were combined with an indicator
“Sentence contains/does not contain a finite verb”.

Child or parent tokens that were finite verbs were
flagged as likely candidates for being the root of
the sentence if they were the leftmost finite verb in
the sentence and not preceded by a subordinating
conjunction or relative pronoun. Finite verbs were
identified by POS tags and morphological features,
e.g. in Spanish, verbs without the morphological
feature “mod=n” were identified as finite, while in
Portuguese the fine POS tag “v-fin” was used.

Similarly, various sets of POS tags were used to
identify subordinating conjunctions or relative pro-
nouns for different languages. For example, in Bul-
garian the fine POS tag “pr” (relative pronoun) and
“cs” (subordinating conjunction) were used. For

Dutch, the morphological features “onder”, “betr”
and “voorinf” were used to identify subordinating
conjunctions and relative pronouns.

These features wreaked havoc with Turkish, a
verb-final language. For certain other languages,
dependency accuracy measured on the develop-
ment test set improved by a modest amount, with
more dramatic improvements in root accuracy (F1
measure combining precision and recall for non-
punctuation root tokens).

Since the addition of these features had been mo-
tivated by verb-second phenomena in Germanic lan-
guages, we were surprised to discover that the only
Germanic language to demonstrate a marked im-
provement in unlabeled dependency accuracy was
Danish, whose accuracy on the development set rose
from 87.51% to 87.72%, while root accuracy F1
rose from 94.12% to 94.72%. Spanish showed a
modest improvement in unlabeled dependency accu-
racy, from 85.08% to 85.13%, but root F1 rose from
80.08% to 83.57%.

The features described above for identifying the
leftmost finite verb not preceded by a subordinat-
ing conjunction or relative pronoun did not im-
prove Slovene unlabeled dependency accuracy, and
so were not included in the set of root-identifying
features in our Slovene CoNLL submission. Closer
examination of the Slovene corpus revealed that pe-
riphrastic constructions consisting of one or more
auxiliaries followed by a participle were annotated
with the participle as the head, whereas for other
languages in the shared task the consensus view ap-
pears to be that the auxiliary should be annotated
as the head. Singling out the leftmost finite verb in
Slovene when a participle ought to be selected as the
root of the sentence is therefore counter-productive.
The other root identification features did improve
root F1 in Slovene. Root F1 on the development test
set rose from 45.82% to 46.43%, although overall
unlabeled dependency accuracy on the development
test set fell slightly from 80.24% to 79.94%.

3.3 Morphological Features
As the preceding discussion shows, morphological
information was occasionally used to assist in mak-
ing finer-grained POS distinctions than were made
in the POS tags, e.g., for distinguishing subordi-
nating vs. coordinating conjunctions. Aside from
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these surgical uses of the morphological information
present in the CoNLL data, morphology was not ex-
plicitly used by the baseline parser. For example,
there were no features that considered subject-verb
agreement nor agreement of an adjective with the
number or lexical gender of the noun it modified.
However, it is possible that morphological informa-
tion influenced the training of edge weights if the
information was implicit in the POS tags.

4 The Dependency Labeler

4.1 Classifier

We used a maximum entropy classifier (Berger et al.,
1996) to assign labels to the unlabeled dependen-
cies produced by the Bayes Point Machine. We used
the same training and development test split that was
used to train the dependency parser. We chose to use
maximum entropy classifiers because they can be
trained relatively quickly while still offering reason-
able classification accuracy and are robust in the face
of large numbers of superfluous features, a desirable
property given the requirement that the same parser
handle multiple languages. Furthermore, maximum
entropy classifiers provide good probability distribu-
tions over class labels. This was important to us be-
cause we had initially hoped to find the optimal set
of dependency labels for the children of a given node
by modeling the probability of each set of labels
conditioned on the lemma and POS of the parent.
For example, labeling each dependant of a parent
node independently might result in three OBJECT
relations dependent on a single verb; modeling sets
of relations ought to prevent this. Unfortunately, this
approach did not outperform labeling each node in-
dependently.

Therefore, the system we submitted labeled each
dependency independently, using the most probable
label from the maximum entropy classifier. We have
noted in previous experiments that our SVM imple-
mentation often gives better one-best classification
accuracy than our maximum entropy implementa-
tion, but did not have time to train SVM classifiers.

To see how much the choice of classification al-
gorithm affected our official results, we trained a lin-
ear SVM classifier for Swedish after the competition
had ended, tuning parameters on the development
test set. As noted in section 1, our system scored

highest for Swedish in unlabeled dependency accu-
racy at 89.54% but fell well short of the third-ranked
system when measuring labeled dependency accu-
racy. Using an SVM classifier instead of a maxi-
mum entropy classifier, Swedish label accuracy rose
from 82.33% to 86.06%, and labeled attachment ac-
curacy rose from 79.69% to 82.95%, which falls
between the first-ranked score of 84.58% and the
second-ranked score of 82.55%. Similarly, Japanese
label accuracy rose from 93.20% to 93.96%, and
labeled attachment accuracy rose from 89.95% to
90.77% when we replaced a maximum entropy clas-
sifier with an SVM. This labeled attachment result
of 90.77% is comparable to the official second place
result of 90.71% for Japanese. We conclude that a
two stage pipeline such as ours, in which the sec-
ond stage labels dependencies in isolation, is greatly
impacted by the choice of classifier.

4.2 Features Used for Labeling
We extracted features from individual nodes in the
dependency tree, parent-child features and features
that took nodes other than the parent and child into
account.

The features extracted from each individual par-
ent and child node were the original surface form,
the lemma (see footnote 1 above), the coarse and fine
POS tags and each morphological feature.

The parent-child features are the direction of
modification, the combination of the parent and
child lemmata, all combinations of parent and child
lemma and coarse POS tag (e.g. child lemma com-
bined with coarse POS tag of the parent) and all pair-
wise combinations of parent and child morphology
features (e.g. parent is feminine and child is plural).

Additional features were verb position (whether
the parent or child is the first or last verb in the sen-
tence), coarse POS and lemma of the left and right
neighbors of the parent and child, coarse POS and
lemma of the grandparent, number and coarse POS
tag sequence of siblings to the left and to the right of
the child, total number of siblings of the child, num-
ber of tokens governed by child, whether the par-
ent has a verbal ancestor, lemma and morphological
features of the verb governing the child (if any), and
coarse POS tag combined with relative offset of each
sibling (e.g., the sibling two to the left of the child is
a determiner).
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For Slovene, the label accuracy using all of the
features above was 81.91%. We retrained our max-
imum entropy classifier by removing certain classes
of features in order to determine their contribu-
tion. Removing the weight features caused a notable
drop, with label accuracy on the development test set
falling 0.52% to 81.39%. Removing the grandpar-
ent features (but including weight features) caused
an even greater drop of 1.03% to 80.88%. One place
where the grandparent features were important was
in distinguishing between Adv and Atr relations. It
appears that the relation between a noun and its gov-
erning preposition or between a verb and its govern-
ing conjunction is sensitive to the part of speech of
the grandparent. For example, we observed a num-
ber of cases where the relation between a noun and
its governing preposition had been incorrectly la-
beled as Adv when it should have been Atr. The
addition of grandparent features allowed the classi-
fier to make the distinction by looking at the POS of
the grandparent; when the POS was noun, the clas-
sifier tended to correctly choose the Atr label.

5 Conclusion

We have described a two stage pipeline that first pre-
dicts directed unlabeled dependencies and then la-
bels them. The system performed well on Slovene,
Spanish and Swedish. Feature engineering played
an important role both in predicting dependencies
and in labeling them. Finally, replacing the maxi-
mum entropy classifier used to label dependencies
with an SVM improves upon our official results.
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Abstract

We describe our entry in the CoNLL-X shared task.
The system consists of three phases: a probabilistic
vine parser (Eisner and N. Smith, 2005) that pro-
duces unlabeled dependency trees, a probabilistic
relation-labeling model, and a discriminative mini-
mum risk reranker (D. Smith and Eisner, 2006). The
system is designed for fast training and decoding and
for high precision. We describe sources of cross-
lingual error and ways to ameliorate them. We then
provide a detailed error analysis of parses produced
for sentences in German (much training data) and
Arabic (little training data).

1 Introduction

Standard state-of-the-art parsing systems (e.g.,
Charniak and Johnson, 2005) typically involve two
passes. First, aparser produces a list of the most
likely n parse trees under a generative, probabilistic
model (usually some flavor of PCFG). A discrim-
inative reranker then chooses among trees in this
list by using an extended feature set (Collins, 2000).
This paradigm has many advantages: PCFGs are
fast to train, can be very robust, and perform bet-
ter as more data is made available; and rerankers
train quickly (compared to discriminative models),
require few parameters, and permit arbitrary fea-
tures.

We describe such a system fordependencypars-
ing. Our shared task entry is a preliminary system
developed in only 3 person-weeks, and its accuracy
is typically one s.d. below the average across sys-
tems and 10–20 points below the best system. On

∗This work was supported by NSF ITR grant IIS-0313193,
an NSF fellowship to the second author, and a Fannie and John
Hertz Foundation fellowship to the third author. The views ex-
pressed are not necessarily endorsed by the sponsors. We thank
Charles Schafer, Keith Hall, Jason Eisner, and Sanjeev Khudan-
pur for helpful conversations.

the positive side, its decoding algorithms have guar-
anteedO(n) runtime, and training takes only a cou-
ple of hours. Having designed primarily forspeed
androbustness, we sacrifice accuracy. Betteresti-
mation, reranking on larger datasets, and more fine-
grained parsing constraints are expected to boost ac-
curacy while maintaining speed.

2 Notation

Let a sentencex = 〈x1, x2, ..., xn〉, where eachxi is
a tuple containing a part-of-speech tagti and a word
wi, and possibly more information.1 x0 is a special
wall symbol, $, on the left. A dependency treey
is defined by three functions:yleft andyright (both
{0, 1, 2, ..., n} → 2{1,2,...,n}) that map each word to
its sets of left and right dependents, respectively, and
ylabel : {1, 2, ..., n} → D, which labels the relation-
ship between wordi and its parent from label setD.

In this work, the graph is constrained to be apro-
jectivetree rooted at $: each word except $ has a sin-
gle parent, and there are no cycles or crossing depen-
dencies. Using a simple dynamic program to find the
minimum-error projective parse, we find that assum-
ing projectivity need not harm accuracy very much
(Tab. 1, col. 3).

3 Unlabeled Parsing

The first component of our system is an unlabeled
parser that, given a sentence, finds theU best un-
labeled trees under a probabilistic model using a
bottom-up dynamic programming algorithm.2 The
model is a probabilistic head automaton grammar
(Alshawi, 1996) that assumes conditional indepen-

1We used words and fine tags in our parser and labeler, with
coarse tags in one backoff model. Other features are used in
reranking; we never used the given morphological features or
the “projective” annotations offered in the training data.

2The execution model we use is best-first, exhaustive search,
as described in Eisner et al. (2004). All of our dynamic pro-
gramming algorithms are implemented concisely in the Dyna
language.
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B` Br

projective oracle

(B
` , B

r )-vine oracle

20-best unlabeled oracle

1-best unlabeled

unlabeled, reranked

20×50-best labeled oracle

1×1-best labeled

reranked (labeled)

(unlabeled)

(non-$ unl. recall)

(non-$ unl. precision)
Arabic 10 4 99.8 90.7 71.5 68.1 68.7 59.7 52.0 53.4 68.5 63.4 76.0
Bulgarian 5 4 99.6 90.7 86.4 80.1 80.5 85.1 73.0 74.8 82.0 74.3 86.3
Chinese 4 4 100.0 93.1 89.9 79.4 77.7 88.6 72.6 71.6 77.6 61.4 80.8
Czech 6 4 97.8 90.5 79.2 70.3 71.5 72.8 58.1 60.5 70.7 64.8 75.7
Danish 5 4 99.2 91.4 84.6 77.7 78.6 79.3 65.5 66.6 77.5 71.4 83.4
Dutch 6 5 94.6 88.3 77.5 67.9 68.8 73.6 59.4 61.6 68.3 60.4 73.0
German 8 7 98.8 90.9 83.4 75.5 76.2 82.3 70.1 71.0 77.0 70.2 82.9
Japanese 4 1 99.2 92.2 90.7 86.3 85.1 89.4 81.6 82.9 86.0 68.5 91.5
Portuguese 5 5 98.8 91.5 85.9 81.4 82.5 83.7 73.4 75.3 82.4 76.2 87.0
Slovene 6 4 98.5 91.7 80.5 72.0 73.3 72.8 57.5 58.7 72.9 66.3 78.5
Spanish 5 6 100.0 91.2 77.3 71.5 72.6 74.9 66.2 67.6 72.9 69.3 80.7
Swedish 4 5 99.7 94.0 87.5 79.3 79.6 81.0 65.5 67.6 79.5 72.6 83.3
Turkish 6 1 98.6 89.5 73.0 61.0 61.8 64.4 44.9 46.1 60.5 48.5 61.6

parser reranker labeler reranker

1 2 3 4 5 6 7 8 9 10 11 12 13

Table 1: Parameters and performance on test data.B` andBr were chosen to retain 90% of dependencies
in training data. We show oracle, 1-best, and reranked performance on the test set at different stages of the
system. Boldface marks oracle performance that, given perfect downstream modules, would supercede the
best system. Italics mark the few cases where the reranker increased error rate. Columns 8–10 show labeled
accuracy; column 10 gives the final shared task evaluation scores.

dence between the left yield and the right yield of
a given head, given the head (Eisner, 1997).3 The
best known parsing algorithm for such a model is
O(n3) (Eisner and Satta, 1999). TheU -best list is
generated using Algorithm 3 of Huang and Chiang
(2005).

3.1 Vine parsing (dependency length bounds)

Following Eisner and N. Smith (2005), we also im-
pose a bound on the string distance between every

3To empirically test this assumption across languages, we
measured the mutual information between different features of
yleft(j) andyright(j), givenxj . (Mutual information is a statis-
tic that equals zero iff conditional independence holds.) A de-
tailed discussion, while interesting, is omitted for space, but we
highlight some of our findings. First, unsurprisingly, the split-
head assumption appears to be less valid for languages with
freer word order (Czech, Slovene, German) and more valid for
more fixed-order languages (Chinese, Turkish, Arabic) or cor-
pora (Japanese). The children of verbs and conjunctions are the
most frequent violators. The mutual information between the
sequence of dependency labels on the left and on the right, given
the head’s (coarse) tag, only once exceeded 1 bit (Slovene).

child and its parent, with the exception of nodes at-
taching to $. Bounds of this kind are intended to im-
prove precision of non-$ attachments, perhaps sac-
rificing recall. Fixing boundB`, no left dependency
may exist between childxi and parentxj such that
j−i > B` (similarly for right dependencies andBr).
As a result, edge-factored parsing runtime is reduced
from O(n3) to O(n(B2

` + B2
r )). For each language,

we chooseB` (Br) to be the minimum value that
will allow recovery of 90% of the left (right) depen-
dencies in the training corpus (Tab. 1, cols. 1, 2, and
4). In order to match the training data to the parsing
model, we re-attach disallowed long dependencies
to $ during training.

3.2 Estimation

The probability model predicts, for each parent word
xj , {xi}i∈yleft (j) and{xi}i∈yright (j). An advantage
of head automaton grammars is that, for a given par-
ent nodexj , the children on the same side,yleft(j),
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for example, can depend on each other (cf. McDon-
ald et al., 2005). Child nodes in our model are gener-
ated outward, conditional on the parent and the most
recent same-side sibling (MRSSS). This increases
our parser’s theoretical runtime toO(n(B3

` + B3
r )),

which we found was quite manageable.
Let pary : {1, 2, ..., n} → {0, 1, ..., n} map each

node to its parent iny. Let predy : {1, 2, ..., n} →
{∅, 1, 2, ..., n} map each node to the MRSSS iny if
it exists and∅ otherwise. Let∆i = |i − j| if j is i’s
parent. Our (probability-deficient) model defines

p(y) =

n∏
j=1

 ∏
i∈yleft (j)

p(xi, ∆i | xj , xpredy(i), left)


×p(STOP | xj , xminyleft (j) j , left)

×

 ∏
i∈yright (j)

p(xi, ∆i | xj , predy(i), right)


×p(STOP | xj , xmaxyright (j) j , right) (1)

Due to the familiar sparse data problem, a maxi-
mum likelihood estimate for theps in Eq. 1 performs
very badly (2–23% unlabeled accuracy). Good sta-
tistical parsers smooth those distributions by mak-
ing conditional independence assumptionsamong
variables, including backoff and factorization. Ar-
guably the choice of assumptions made (or interpo-
lated among) is central to the success of many exist-
ing parsers.

Noting that (a) there are exponentially many such
options, and (b) the best-performing independence
assumptions will almost certainly vary by language,
we use a mixture among 8 such models. The same
mixture is used for all languages. The models were
not chosen with particular care,4 and the mixture is
not trained—the coefficients are fixed at uniform,
with a unigram coarse-tag model for backoff. In
principle, this mixture should be trained (e.g., to
maximize likelihood or minimize error on a devel-
opment dataset).

The performance of our unlabeled model’s top
choice and the top-20 oracle are shown in Tab. 1,
cols. 5–6. In 5 languages (boldface), perfect label-
ing and reranking at this stage would have resulted in
performance superior to the language’s best labeled

4Our infrastructure provides a concise, interpreted language
for expressing the models to be mixed, so large-scale combina-
tion and comparison are possible.

system, although the oracle is never on par with the
bestunlabeledperformance.

4 Labeling

The second component of our system is a labeling
model thatindependentlyselects a label fromD for
each parent/child pair in a tree. Given theU best
unlabeled trees for a sentence, the labeler produces
the L best labeled trees for each unlabeled one.
The computation involves anO(|D|n) dynamic pro-
gramming algorithm, the output of which is passed
to Huang and Chiang’s (2005) algorithm to generate
theL-best list.

We separate the labeler from the parser for two
reasons: speed and candidate diversity. In prin-
ciple the vine parser could jointly predict depen-
dency labels along with structures, but parsing run-
time would increase by at least a factor of|D|. The
two stage process also forces diversity in the candi-
date list (20 structures with 50 labelings each); the
1,000-best list ofjointly-decoded parses often con-
tained many (bad) relabelings of the same tree.

In retrospect, assuming independence among de-
pendency labels damages performance substantially
for some languages (Turkish, Czech, Swedish, Dan-
ish, Slovene, and Arabic); note the often large drop
in oracle performance between Tab. 1, cols. 5 and
8. This assumption is necessary in our framework,
because theO(|D|M+1n) runtime of decoding with
anM th-order Markov model of labels5 is in general
prohibitive—in some cases|D| > 80. Pruning and
search heuristics might ameliorate runtime.

If xi is a child ofxj in directionD, andxpred is
the MRSSS (possibly∅), where∆i = |i− j|, we es-
timatep(`, xi, xj , xpred ,∆i | D) by a mixture (un-
trained, as in the parser) of four backed-off, factored
estimates.

After parsing and labeling, we have for each sen-
tence a list ofU × L candidates. Both the oracle
performance of the best candidate in the(20 × 50)-
best list and the performance of the top candidate are
shown in Tab. 1, cols. 8–9. It should be clear from
the drop in both oracle and 1-best accuracy that our
labeling model is a major source of error.

5We tested first-order Markov models that conditioned on
parent or MRSSS dependency labels.
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5 Reranking

We train a log-linear model combining many feature
scores (see below), including the log-probabilities
from the parser and labeler. Training minimizes
the expected error under the model; we use deter-
ministic annealing to smooth the error surface and
avoid local minima (Rose, 1998; D. Smith and Eis-
ner, 2006).

We reserved 200 sentences in each language for
training the reranker, plus 200 for choosing among
rerankers trained on different feature sets and differ-
ent(U × L)-best lists.6

Features Our reranking features predict tags, la-
bels, lemmata, suffixes and other information given
all or some of the following non-local conditioning
context: bigrams and trigrams of tags or dependency
labels; parent and grandparent dependency labels;
subcategorization frames (in terms of tags or depen-
dency labels); the occurrence of certain tags between
head and child; surface features like the lemma7 and
the 3-character suffix. In some cases the children of
a node are considered all together, and in other cases
left and right are separated.

The highest-ranked features during training, for
all languages, are the parser and labeler probabil-
ities, followed byp(∆i | tparent), p(direction |
tparent), p(label | labelpred , label succ , subcat), and
p(coarse(t) | D, coarse(tparent),Betw), where
Betw is TRUE iff an instance of the coarse tag type
with the highest mutual information between its left
and right children (usually verb) is between the child
and its head.

Feature and Model Selection For training speed
and to avoid overfitting, only a subset of the above
features are used in reranking. Subsets of differ-
ent sizes (10, 20, and 40, plus “all”) are identified
for each language using two naı̈ve feature-selection
heuristics based on independent performance of fea-
tures. The feature subset with the highest accuracy
on the 200 heldout sentences is selected.

6In training our system, we made a serious mistake in train-
ing the reranker on only 200 sentences. As a result, our pre-
testing estimates of performance (on data reserved for model
selection) were very bad. The reranker, depending on condition,
had only 2–20 times as many examples as it had parameters to
estimate, with overfitting as the result.

7The first 4 characters of a word are used where the lemma
is not available.

Performance Accuracy of the top parses after
reranking is shown in Tab. 1, cols. 10–11. Reranking
almost always gave some improvement over 1-best
parsing.8 Because of the vine assumption and the
preprocessing step that re-attaches all distant chil-
dren to $, our parser learns to over-attach to $, treat-
ing $-attachment as a default/agnostic choice. For
many applications a local, incomplete parse may be
sufficiently useful, so we also measured non-$ unla-
beled precision and recall (Tab. 1, cols. 12–13); our
parser has> 80% precision on 8 of the languages.
We also applied reranking (with unlabeled features)
to the 20-best unlabeled parse lists (col. 7).

6 Error Analysis: German

The plurality of errors (38%) in German were er-
roneous $ attachments. For ROOT dependency la-
bels, we have a high recall (92.7%), but low pre-
cision (72.4%), due most likely to the dependency
length bounds. Among the most frequent tags, our
system has most trouble finding the correct heads of
prepositions (APPR), adverbs (ADV), finite auxil-
iary verbs (VAFIN), and conjunctions (KON), and
finding the correct dependency labels for preposi-
tions, nouns, and finite auxiliary verbs.

The German conjunctionund is the single word
with the most frequent head attachment errors. In
many of these cases, our system does not learn
the subtle difference between enumerations that are
headed byA in A und B, with two childrenundand
B on the right, and those headed byB, with undand
A as children on its left.

Unlike in some languages, our labeled oracle ac-
curacy is nearly as good as our unlabeled oracle ac-
curacy (Tab. 1, cols. 8, 5). Among the ten most fre-
quent dependency labels, our system has the most
difficulty with accusative objects (OA), genitive at-
tributes (AG), and postnominal modifiers (MNR).
Accusative objects are often mistagged as subject
(SB), noun kernel modifiers (NK), or AG. About
32% of the postnominal modifier relations (ein Platz
in der Geschichte, ‘a place in history’) are labeled
as modifiers (in die Stadt fliegen, ‘fly into the city’).
Genitive attributes are often tagged as NK since both
are frequently realized as nouns.

8The exception is Chinese, where the training set for rerank-
ing is especially small (see fn. 6).
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7 Error Analysis: Arabic

As with German, the greatest portion of Arabic er-
rors (40%) involved attachments to $. Prepositions
are consistently attached too low and accounted for
26% of errors. For example, if a form in construct
(idafa) governed both a following noun phrase and
a prepositional phrase, the preposition usually at-
taches to the lower noun phrase. Similarly, prepo-
sitions usually attach to nearby noun phrases when
they should attach to verbs farther to the left.

We see a more serious casualty of the dependency
length bounds with conjunctions. In ground truth
test data, 23 conjunctions are attached to $ and 141
to non-$ to using the COORD relation, whereas 100
conjunctions are attached to $ and 67 to non-$ us-
ing the AUXY relation. Our system overgeneralizes
and attaches 84% of COORD and 71% of AUXY
relations to $. Overall, conjunctions account for
15% of our errors. The AUXY relation is defined
as “auxiliary (in compound expressions of various
kinds)”; in the data, it seems to be often used for
waw-consecutive or paratactic chaining of narrative
clauses. If the conjunctionwa (‘and’) begins a sen-
tence, then that conjunction is tagged in ground truth
as attaching to $; if the conjunction appears in the
middle of the sentence, it may or may not be at-
tached to $.

Noun attachments exhibit a more subtle problem.
The direction of system attachments is biased more
strongly to the left than is the case for the true data.
In canonical order, Arabic nouns do generally attach
on the right: subjects and objects follow the verb; in
construct, the governed noun follows its governor.
When the data deviate from this canonical order—
when, e.g, a subject precedes its verb—the system
prefers to find some other attachment point to the
left. Similarly, a noun to the left of a conjunction
often erroneously attaches to its left. Such ATR re-
lations account for 35% of noun-attachment errors.

8 Conclusion

The tradeoff between speed and accuracy is famil-
iar to any parsing researcher. Rather than starting
with an accurate system and then applying corpus-
specific speedups, we start by imposing carefully-
chosen constraints (projectivity and length bounds)
for speed, leaving accuracy to the parsing and

reranking models. As it stands, our system performs
poorly, largely because the estimation is not state-
of-the-art, but also in part due to dependency length
bounds, which are rather coarse at present. Better re-
sults are achievable by picking different bounds for
different head tags (Eisner and N. Smith, 2005). Ac-
curacy should not be difficult to improve using bet-
ter learning methods, especially given our models’
linear-time inference and decoding.
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Abstract

In this paper, we describe a system for
the CoNLL-X shared task of multilin-
gual dependency parsing. It uses a base-
line Nivre’s parser (Nivre, 2003) that first
identifies the parse actions and then la-
bels the dependency arcs. These two steps
are implemented as SVM classifiers using
LIBSVM. Features take into account the
static context as well as relations dynami-
cally built during parsing.

We experimented two main additions to
our implementation of Nivre’s parser: N -
best search and bidirectional parsing. We
trained the parser in both left-right and
right-left directions and we combined the
results. To construct a single-head, rooted,
and cycle-free tree, we applied the Chu-
Liu/Edmonds optimization algorithm. We
ran the same algorithm with the same pa-
rameters on all the languages.

1 Nivre’s Parser

Nivre (2003) proposed a dependency parser that cre-
ates a projective and acyclic graph. The parser is an
extension to the shift–reduce algorithm. As with the
regular shift–reduce, it uses a stack S and a list of
input words W . However, instead of finding con-
stituents, it builds a set of arcs G representing the
graph of dependencies.
Nivre’s parser uses two operations in addition to

shift and reduce: left-arc and right-arc. Given a se-
quence of words, possibly annotated with their part

of speech, parsing simply consists in applying a se-
quence of operations: left-arc (la), right-arc (ra),
reduce (re), and shift (sh) to the input sequence.

2 Parsing an Annotated Corpus

The algorithm to parse an annotated corpus is
straightforward from Nivre’s parser and enables us
to obtain, for any projective sentence, a sequence of
actions taken in the set {la,ra,re,sh} that parses
it. At a given step of the parsing process, let TOP

be the top of the stack and FIRST , the first token of
the input list, and arc, the relation holding between
a head and a dependent.

1. if arc(TOP,FIRST ) ∈ G, then ra;

2. else if arc(FIRST, TOP ) ∈ G, then la;

3. else if ∃k ∈ Stack, arc(FIRST, k) ∈ G or
arc(k, FIRST ) ∈ G, then re;

4. else sh.

Using the first sentence of the Swedish corpus
as input (Table 1), this algorithm produces the se-
quence of 24 actions: sh, sh, la, ra, re, la, sh,
sh, sh, la, la, ra, ra, sh, la, re, ra, ra, ra,
re, re, re, re, and ra (Table 2).

3 Adapting Nivre’s Algorithm to

Machine–Learning

3.1 Overview

We used support vector machines to predict the
parse action sequence and a two step procedure to
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Table 1: Dependency graph of the sentence Äkten-
skapet och familjen är en gammal institution, som
funnits sedan 1800-talet ‘Marriage and family are
an old institution that has been around from the 19th
century’.

ID Form POS Head Rel.

1 Äktenskapet NN 4 SS
2 och ++ 3 ++
3 familjen NN 1 CC
4 är AV 0 ROOT
5 en EN 7 DT
6 gammal AJ 7 AT
7 institution NN 4 SP
8 , IK 7 IK
9 som PO 10 SS
10 funnits VV 7 ET
11 sedan PR 10 TA
12 1800-talet NN 11 PA
13 . IP 4 IP

produce the graph. We first ran the classifier to se-
lect unlabeled actions, la, ra, sh, re. We then ran
a second classifier to assign a function to ra and la
parse actions.
We used the LIBSVM implementation of the

SVM learning algorithm (Chang and Lin, 2001). We
used the Gaussian kernel throughout. Optimal val-
ues for the parameters (C and γ) were found using a
grid search. The first predicted action is not always
possible, given the parser’s constraints. We trained
the model using probability estimates to select the
next possible action.

3.2 Feature Set

We used the following set of features for the classi-
fiers:

• Word and POS of TOP and FIRST

• Word and POS of the second node on the stack

• Word and POS of the second node in the input
list

• POS of the third and fourth nodes in the input
list

• The dependency type of TOP to its head, if any

• The word, POS, and dependency type of the
leftmost child of TOP to TOP, if any

• The word, POS, and dependency type of the
rightmost child of TOP to TOP, if any

• The word, POS, and dependency type of the
leftmost child of FIRST to FIRST, if any

For the POS, we used the Coarse POS, the Fine
POS, and all the features (encoded as boolean flags).
We did not use the lemma.

Table 2: Actions to parse the sentence Äktenskapet
och familjen är en gammal institution, som funnits
sedan 1800-talet.

Ac. Top word First word Rel.

sh nil Äktenskapet
sh Äktenskapet och
la och familjen ++
ra Äktenskapet familjen CC
re familjen är
la Äktenskapet är SS
sh nil är
sh är en
sh en gammal
la gammal institution AT
la en institution DT
ra är institution SP
ra institution , IK
sh , som
la som funnits SS
re , funnits
ra institution funnits ET
ra funnits sedan TA
ra sedan 1800-talet PA
re 1800-talet .
re sedan .
re funnits .
re institution .
ra är . IP

4 Extensions to Nivre’s Algorithm

4.1 N -best Search

We extended Nivre’s original algorithm with a beam
search strategy. For each action, la, ra, sh and re,
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we computed a probability score using LIBSVM.
These scores can then be used to carry out an N -
best search through the set of possible sequences of
actions.
We measured the improvement over a best-first

strategy incrementing values ofN . We observed the
largest difference between N = 1 and N = 2, then
leveling off and we used the latter value.

4.2 Bidirectionality and Voting

Tesnière (1966) classified languages as centrifuge
(head to the left) and centripetal (head to the right)
in a table (page 33 of his book) that nearly exactly
fits corpus evidence from the CONLL data. Nivre’s
parser is inherently left-right. This may not fit all
the languages. Some dependencies may be easier
to capture when proceeding from the reverse direc-
tion. Jin et al. (2005) is an example of it for Chinese,
where the authors describe an adaptation of Nivre’s
parser to bidirectionality.
We trained the model and ran the algorithm in

both directions (left to right and right to left). We
used a voting strategy based on probability scores.
Each link was assigned a probability score (simply
by using the probability of the la or ra actions for
each link). We then summed the probability scores
of the links from all four trees. To construct a single-
head, rooted, and cycle-free tree, we finally applied
the Chu-Liu/Edmonds optimization algorithm (Chu
and Liu, 1965; Edmonds, 1967).

5 Analysis

5.1 Experimental Settings

We trained the models on “projectivized” graphs fol-
lowing Nivre and Nilsson (2005) method. We used
the complete annotated data for nine langagues. Due
to time limitations, we could not complete the train-
ing for three languages, Chinese, Czech, and Ger-
man.

5.2 Overview of the Results

We parsed the 12 languages using exactly the same
algorithms and parameters. We obtained an average
score of 74.93 for the labeled arcs and of 80.39 for
the unlabeled ones (resp. 74.98 and 80.80 for the
languages where we could train the model using the
complete annotated data sets). Table 3 shows the

results per language. As a possible explanation of
the differences between languages, the three lowest
figures correspond to the three smallest corpora. It
is reasonable to assume that if corpora would have
been of equal sizes, results would have been more
similar. Czech is an exception to this rule that ap-
plies to all the participants. We have no explanation
for this. This language, or its annotation, seems to
be more complex than the others.
The percentage of nonprojective arcs also seems

to play a role. Due to time limitations, we trained
the Dutch and German models with approximately
the same quantity of data. While both languages
are closely related, the Dutch corpus shows twice
as much nonprojective arcs. The score for Dutch is
significantly lower than for German.
Our results across the languages are consistent

with the other participants’ mean scores, where we
are above the average by a margin of 2 to 3% ex-
cept for Japanese and even more for Chinese where
we obtain results that are nearly 7% less than the av-
erage for labeled relations. Results are similar for
unlabeled data. We retrained the data with the com-
plete Chinese corpus and you obtained 74.41 for the
labeled arcs, still far from the average. We have no
explanation for this dip with Chinese.

5.3 Analysis of Swedish and Portuguese

Results

5.3.1 Swedish

We obtained a score of 78.13% for the labeled at-
tachments in Swedish. The error breakdown shows
significant differences between the parts of speech.
While we reach 89% of correct head and dependents
for the adjectives, we obtain 55% for the preposi-
tions. The same applies to dependency types, 84%
precision for subjects, and 46% for the OA type of
prepositional attachment.
There is no significant score differences for the

left and right dependencies, which could attributed
to the bidirectional parsing (Table 4). Distance plays
a dramatic role in the error score (Table 5). Preposi-
tions are the main source of errors (Table 6).

5.3.2 Portuguese

We obtained a score 84.57% for the labeled at-
tachments in Portuguese. As for Swedish, error
distribution shows significant variations across the
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Table 3: Summary of results. We retrained the Chi-
nese* model after the deadline.

Languages Unlabeled Labeled

Completed training
Arabic 75.53 64.29
Chinese* 79.13 74.41
Danish 86.59 81.54
Dutch 76.01 72.67
Japanese 87.11 85.63
Portuguese 88.4 84.57
Slovene 74.36 66.43
Spanish 81.43 78.16
Swedish 84.17 78.13
Turkish 73.59 63.39
x 80.80 74.98
σ 5.99 8.63
Noncompleted training
Chinese 77.04 72.49
Czech 77.4 71.46
German 83.09 80.43
x all languages 80.39 74.93
σ all languages 5.36 7.65

parts of speech, with a score of 94% for adjectives
and only 67% for prepositions.

As for Swedish, there is no significant score dif-
ferences for the left and right dependencies (Ta-
ble 7). Distance also degrades results but the slope is
not as steep as with Swedish (Table 8). Prepositions
are also the main source of errors (Table 9).

5.4 Acknowledgments

This work was made possible because of the anno-
tated corpora that were kindly provided to us: Ara-
bic (Hajič et al., 2004), Bulgarian (Simov et al.,
2005; Simov and Osenova, 2003), Chinese (Chen
et al., 2003), Czech (Böhmová et al., 2003), Danish
(Kromann, 2003), Dutch (van der Beek et al., 2002),
German (Brants et al., 2002), Japanese (Kawata and
Bartels, 2000), Portuguese (Afonso et al., 2002),
Slovene (Džeroski et al., 2006), Spanish (Civit Tor-
ruella and Martí Antonín, 2002), Swedish (Nilsson
et al., 2005), and Turkish (Oflazer et al., 2003; Ata-
lay et al., 2003).

Table 4: Precision and recall of binned HEAD direc-
tion. Swedish.

Dir. Gold Cor. Syst. R P

to_root 389 330 400 84.83 82.50
left 2745 2608 2759 95.01 94.53
right 1887 1739 1862 92.16 93.39

Table 5: Precision and recall of binned HEAD dis-
tance. Swedish.

Dist. Gold Cor. Syst. R P

to_root 389 330 400 84.83 82.50
1 2512 2262 2363 90.05 95.73
2 1107 989 1122 89.34 88.15
3-6 803 652 867 81.20 75.20
7-... 210 141 269 67.14 52.42

Table 6: Focus words where most of the errors occur.
Swedish.

Word POS Any Head Dep Both

till PR 48 20 45 17
i PR 42 25 34 17
på PR 39 22 32 15
med PR 28 11 25 8
för PR 27 22 25 20

Table 7: Precision and recall of binned HEAD direc-
tion. Portuguese.

Dir. Gold Cor. Syst. R P

to_root 288 269 298 93.40 90.27
left 3006 2959 3020 98.44 97.98
right 1715 1649 1691 96.15 97.52

Table 8: Precision and recall of binned HEAD dis-
tance. Portuguese.

Dist. Gold Cor. Syst. R P

to_root 288 269 298 93.40 90.27
1 2658 2545 2612 95.75 97.43
2 1117 1013 1080 90.69 93.80
3-6 623 492 647 78.97 76.04
7-... 323 260 372 80.50 69.89
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Table 9: Focus words where most of the errors occur.
Portuguese.

Word POS Any Head Dep Both

em prp 66 38 47 19
de prp 51 37 35 21
a prp 46 30 39 23
e conj 28 28 0 0
para prp 21 13 18 10
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J. Hajič, O. Smrž, P. Zemánek, J. Šnaidauf, and E. Beška.
2004. Prague Arabic dependency treebank: Develop-
ment in data and tools. In Proc. of the NEMLAR In-
tern. Conf. on Arabic Language Resources and Tools,
pages 110–117.

Meixun Jin, Mi-Young Kim, and Jong-Hyeok Lee.
2005. Two-phase shift-reduce deterministic depen-
dency parser of Chinese. In Proceedings of the Second
International Joint Conference on Natural Language
Processing.

Y. Kawata and J. Bartels. 2000. Stylebook for the
Japanese treebank in VERBMOBIL. Verbmobil-
Report 240, Seminar für Sprachwissenschaft, Univer-
sität Tübingen.

M. T. Kromann. 2003. The Danish dependency treebank
and the underlying linguistic theory. In Proc. of the
Second Workshop on Treebanks and Linguistic Theo-
ries (TLT).

J. Nilsson, J. Hall, and J. Nivre. 2005. MAMBA meets
TIGER: Reconstructing a Swedish treebank from an-
tiquity. In Proc. of the NODALIDA Special Session on
Treebanks.

Joakim Nivre and Jens Nilsson. 2005. Pseudo-projective
dependency parsing. In Proceedings of the 43rd An-
nual Meeting of the Association for Computational
Linguistics (ACL’05), pages 99–106, Ann Arbor, June.

Joakim Nivre. 2003. An efficient algorithm for projec-
tive dependency parsing. In Proceedings of the 8th In-
ternational Workshop on Parsing Technologies (IWPT
03), pages 149–160, Nancy, 23-25 April.

K. Oflazer, B. Say, D. Zeynep Hakkani-Tür, and G. Tür.
2003. Building a Turkish treebank. In Abeillé
(Abeillé, 2003), chapter 15.

K. Simov and P. Osenova. 2003. Practical annotation
scheme for an HPSG treebank of Bulgarian. In Proc.
of the 4th Intern. Workshop on Linguistically Inter-
preteted Corpora (LINC), pages 17–24.

K. Simov, P. Osenova, A. Simov, and M. Kouylekov.
2005. Design and implementation of the Bulgarian
HPSG-based treebank. In Journal of Research on Lan-
guage and Computation – Special Issue, pages 495–
522. Kluwer Academic Publishers.

Lucien Tesnière. 1966. Éléments de syntaxe structurale.
Klincksieck, Paris, 2e edition.

L. van der Beek, G. Bouma, R. Malouf, and G. van No-
ord. 2002. The Alpino dependency treebank. In Com-
putational Linguistics in the Netherlands (CLIN).

210



Proceedings of the 10th Conference on Computational Natural Language Learning (CoNLL-X),
pages 211–215, New York City, June 2006.c©2006 Association for Computational Linguistics

Dependency Parsing Based on Dynamic Local Optimization

Ting Liu Jinshan Ma Huijia Zhu Sheng Li
Information Retrieval Lab

Harbin Institute of Technology
Harbin, 150001, China

{tliu,mjs,hjzhu,ls}@ir.hit.edu.cn

Abstract

This paper presents a deterministic pars-
ing algorithm for projective dependency
grammar. In a bottom-up way the al-
gorithm finds the local optimum dynam-
ically. A constraint procedure is made
to use more structure information. The
algorithm parses sentences in linear time
and labeling is integrated with the parsing.
This parser achieves 63.29% labeled at-
tachment score on the average in CoNLL-
X Shared Task.

1 Introduction

Recently, dependency grammar has gained renewed
attention in the parsing community. Good results
have been achieved in some dependency parsers
(Yamada and Matsumoto, 2003; Nivre et al., 2004).
With the availability of many dependency treebanks
(van der Beek et al., 2002; Hajič et al., 2004;
Böhmová et al., 2003; Kromann, 2003; Džeroski et
al., 2006) and more other treebanks which can be
converted to dependency annotation (Brants et al.,
2002; Nilsson et al., 2005; Chen et al., 2003; Kawata
and Bartels, 2000), multi-lingual dependency pars-
ing is proposed in CoNLL shared task (Buchholz et
al., 2006).

Many previous works focus on unlabeled parsing,
in which exhaustive methods are often used (Eis-
ner, 1996). Their global searching performs well
in the unlabeled dependency parsing. But with the
increase of parameters, efficiency has to be consid-

ered in labeled dependency parsing. Thus determin-
istic parsing was proposed as a robust and efficient
method in recent years. Such method breaks the
construction of dependency tree into a series of ac-
tions. A classifier is often used to choose the most
probable action to assemble the dependency tree.
(Yamada and Matsumoto, 2003) defined three ac-
tions and used a SVM classifier to choose one of
them in a bottom-up way. The algorithm in (Nivre
et al., 2004) is a blend of bottom-up and top-down
processing. Its classifier is trained by memory-based
learning.

Deterministic parsing derives an analysis without
redundancy or backtracking, and linear time can be
achieved. But when searching the local optimum in
the order of left-to-right, some wrong reduce may
prevent next analysis with more possibility. (Jin et
al., 2005) used a two-phase shift-reduce to decrease
such errors, and improved the accuracy of long dis-
tance dependencies.

In this paper a deterministic parsing based on dy-
namic local optimization is proposed. According to
the probabilities of dependency arcs, the algorithm
dynamically finds the one with the highest probabil-
ities instead of dealing with the sentence in order.
A procedure of constraint which can integrate more
structure information is made to check the rational-
ity of the reduce. Finally our results and error anal-
ysis are presented.

2 Dependency Probabilities

An example of Chinese dependency tree is showed
in Figure1. The tree can be represented as a directed
graph with nodes representing word tokens and arcs
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Figure 1: A Chinese dependency tree

representing dependency relations. The assumption
that the arcs are independent on each other often is
made so that parsing can be handled easily. On the
other side the independence assumption will result
in the loss of information because dependencies are
interrelated on each other actually. Therefore, two
kinds of probabilities are used in our parser. One is
arc probabilities which are the possibility that two
nodes form an arc, and the other is structure proba-
bilities which are used to describe some specific syn-
tactic structures.

2.1 Arc Probabilities

A dependency arc Ai can be expressed as a 4-tuple
Ai = <Nodei, Nodej , D, R>. Nodei and Nodej are
nodes that constitute the directed arc. D is the direc-
tion of the arc, which can be left or right. R is rela-
tion type labeled on the arc. Under the independence
assumption that an arc depends on its two nodes we
can calculate arc probability given two nodes. In our
paper the arc probabilities are calculated as follows:

P1 = P(R,D|CTagi, CTagj , Dist)
P2 = P(R,D|FTagi, FTagj)
P3 = P(R,D|CTagi, Wordj)
P4 = P(R,D|Wordi, CTagj)
P5 = P(R,D|Wordi,CTagi, Wordj ,CTagj)
P6 = P(R,D|CTagi−1, CTagi, CTagj , CTagj+1)

Where CTag is coarse-grained part of speech tag
and FTag is fine-grained tag. As to Word we choose
its lemma if it exists. Dist is the distance between
Nodei and Nodej . It is divided into four parts:

Dist = 1 if j-i = 1
Dist = 2 if j-i = 2
Dist = 3 if 3 j-i 6
Dist = 4 if j-i > 6

All the probabilities are obtained by maximum
likelihood estimation from the training data. Then
interpolation smoothing is made to get the final arc
probabilities.

2.2 Structure Probabilities

Structure information plays the critical role in syn-
tactic analysis. Nevertheless the flexibility of syn-
tactic structures and data sparseness pose obstacles
to us. Especially some structures are related to spe-
cific language and cannot be employed in multi-
lingual parsing. We have to find those language-
independent features.

In valency theory “valence” represents the num-
ber of arguments that a verb is able to govern. In
this paper we extend the range of verbs and argu-
ments to all the words. We call the new “valence”
Governing Degree (GD), which means the ability of
one node governing other nodes. In Figure1, the GD
of node “ ” is 2 and the GDs of two other nodes
are 0. The governing degree of nodes in dependency
tree often shows directionality. For example, Chi-
nese token “ ” always governs one left node. Fur-
thermore, we subdivide the GD into Left Governing
Degree (LGD) and Right Governing Degree (RGD),
which are the ability of words governing their left
children or right children. In Figure 1 the LGD and
RGD of verb “ ” are both 1.

In the paper we use the probabilities of GD
over the fine-grained tags. The probabilities of
P(LDG|FTag) and P(RGD|FTag) are calculated
from training data. Then we only reserve the FTags
with large probability because their GDs are stable
and helpful to syntactic analysis. Other FTags with
small probabilities are unstable in GDs and cannot
provide efficient information for syntactic analysis.
If their probabilities are less than 0.65 they will be
ignored in our dependency parsing.

3 Dynamic local optimization

Many previous methods are based on history-based
models. Despite many obvious advantages, these
methods can be awkward to encode some constrains
within their framework (Collins, 2000). Classifiers
are good at encoding more features in the determin-
istic parsing (Yamada and Matsumoto, 2003; Nivre
et al., 2004). However, such algorithm often make
more probable dependencies be prevented by pre-
ceding errors. An example is showed in Figure 2.
Arc a is a frequent dependency and b is an arc with
more probability. Arc b will be prevented by a if the
reduce is carried out in order.
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Figure 2: A common error in deterministic parsing

3.1 Our algorithm

Our deterministic parsing is based on dynamic local
optimization. The algorithm calculates the arc prob-
abilities of two continuous nodes, and then reduces
the most probable arc. The construction of depen-
dency tree includes four actions: Check, Reduce,
Delete, and Insert. Before a node is reduced, the
Check procedure is made to validate its correctness.
Only if the arc passes the Check procedure it can
be reduced. Otherwise the Reduce will be delayed.
Delete and Insert are then carried out to adjust the
changed arcs. The complete algorithm is depicted
as follows:

Input Sentence: S = (w1, w2, , wn)
Initialize:
for i = 1 to n

Ri = GetArcProb(wi,wi+1);
Push(Ri) onto Stack;

Sort(Stack);
Start:
i = 0;
While Stack.empty = false

R = Stack.top+i;
if Check(R) = true

Reduce(R);
Delete(R’);
Insert(R”);
i = 0;

else
i++;

The algorithm has following advantages:

• Projectivity can be guaranteed. The node is
only reduced with its neighboring node. If a
node is reduced as a leaf it will be removed
from the sentence and doesn’t take part in next
Reduce. So no cross arc will occur.

• After n-1 pass a projective dependency tree is
complete. Algorithm is finished in linear time.

• The algorithm always reduces the node with the

Figure 3: Adjustment

highest probability if it passes the Check. No
any limitation on order thus the spread of errors
can be mitigated effectively.

• Check is an open process. Various constrains
can be encoded in this process. Structural con-
strains, partial parsed information or language-
dependent knowledge can be added.

Adjustment is illustrated in Figure 3, where “
” is reduced and arc R’ is deleted. Then the algo-

rithm computes the arc probability of R” and inserts
it to the Stack.

3.2 Checking

The information in parsing falls into two kinds:
static and dynamic. The arc probabilities in 2.1 de-
scribe the static information which is not changed in
parsing. They are obtained from the training data in
advance. The structure probabilities in 2.2 describe
the dynamic information which varies in the process
of parsing. The use of dynamic information often
depends on what current dependency tree is.

Besides the governing degree, Check procedure
also uses another dynamic information–Sequential
Dependency. Whether current arc can be reduced is
relating to previous arc. In Figure 3 the reduce of the
arc R depends on the arc R’. If R’ has been delayed
or its probability is little less than that of R, arc R
will be delayed.

If the arc doesn’t pass the Check it will be de-
layed. The delayed time ranges from 1 to Length
which is the length of sentence. If the arc is delayed
Length times it will be blocked. The Reduce will be
delayed in the following cases:

• ̂GD(Nodei) > 0 and its probability is P. If
GD(Nodei) = 0 and Nodei is made as child
in the Reduce, the Nodei will be delayed
Length*P times.

• ̂GD(Nodei) m (m > 0) and its probability
is P. If GD(Nodei) = m and Nodei is made as
parent in the Reduce, the Nodei will be delayed
Length*P times.
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Figure 4: Token score with size of training data

Figure 5: Token score with sentence length

• P(R’) > λP(R), the current arc R will be de-
layed Length*(P(R’)/P(R)) times. R’ is the pre-
ceding arc and λ = 0.60.

• If arc R’ is blocking, the arc R will be delayed.

̂GD is empirical value and GD is current value.

4 Experiments and analysis

Our parsing results and average results are listed
in the Table 1. It can be seen that the attachment
scores vary greatly with different languages. A gen-
eral analysis and a specific analysis are made respec-
tively in this section.

4.1 General analysis

We try to find the properties that make the differ-
ence to parsing results in multi-lingual parsing. The
properties of all the training data can be found in
(Buchholz et al., 2006). Intuitively the size of train-
ing data and average length of per sentence would
be influential on dependency parsing. The relation
of these properties and scores are showed in the Fig-
ure 4 and 5.

From the charts we cannot assuredly find the
properties that are proportional to score. Whether
Czech language with the largest size of training data
or Chinese with the shortest sentence length, don’t
achieve the best results. It seems that no any factor is

determining to parsing results but all the properties
exert influence on the dependency parsing together.

Another factor that maybe explain the difference
of scores in multi-lingual parsing is the characteris-
tics of language. For example, the number of tokens
with HEAD=0 in a sentence is not one for some lan-
guages. Table 1 shows the range of governing de-
gree of head. This statistics is somewhat different
with that from organizers because we don’t distin-
guish the scoring tokens and non-scoring tokens.

Another characteristic is the directionality of de-
pendency relations. As Table 1 showed, many rela-
tions in treebanks are bi-directional, which increases
the number of the relation actually. Furthermore, the
flexibility of some grammatical structures poses dif-
ficulties to language model. For instance, subject
can appear in both sides of the predicates in some
treebanks which tends to cause the confusion with
the object (Kromann, 2003; Afonso et al., 2002;
Civit Torruella and Martı́ Antonı́n, 2002; Oflazer et
al., 2003; Atalay et al., 2003).

As to our parsing results, which are lower than all
the average results except for Danish. That can be
explained from the following aspects:

(1) Our parser uses a projective parsing algorithm
and cannot deal with the non-projective tokens,
which exist in all the languages except for Chinese.

(2) The information provided by training data is not
fully employed. Only POS and lemma are used. The
morphological and syntactic features may be helpful
to parsing.

(3) We haven’t explored syntactic structures in depth
for multi-lingual parsing and more structural fea-
tures need to be used in the Check procedure.

4.2 Specific analysis

Specifically we make error analysis to Chinese and
Turkish. In Chinese result we found many errors
occurred near the auxiliary word “ ”(DE). We call
the noun phrases with “ ” DE Structure. The word
“ ” appears 355 times in the all 4970 dependencies
of the test data. In Table 2 the second row shows the
frequencies of “DE” as the parent of dependencies.
The third row shows the frequencies while it is as
child. Its error rate is 33.1% and 43.4% in our re-
sults respectively. Furthermore, each head error will
result in more than one errors, so the errors from DE
Structures are nearly 9% in our results.
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Ar Ch Cz Da Du Ge Ja Po Sl Sp Sw Tu
our 50.74 75.29 58.52 77.70 59.36 68.11 70.84 71.13 57.21 65.08 63.83 41.72
ave 59.94 78.32 67.17 76.16 70.73 78.58 85.86 80.63 65.16 73.52 76.44 55.95
NH 17 1 28 4 9 1 14 1 11 1 1 5
BD 27/24 78/55 82/72 54/24 26/17 46/40 7/2 55/40 26/23 21/19 64/54 26/23

Table 1: The second and third rows are our scores and average scores. The fourth row lists the maximal
number of tokens with HEAD=0 in a sentence. The last row lists the number of relations/the number of
bi-directional relations of them (Our statistics are slightly different from that of organizers).

gold system error headerr
parent 320 354 106 106
child 355 355 154 74

Table 2: Chinese DE Structure Errors

The high error rate is due to the flexibility of DE
Structure. The children of DE can be nouns and
verbs, thus the ambiguities will occur. For example,
the sequence “V N1 DE N2” is a common ambigu-
ious structure in Chinese. It needs to be solved with
semantic knowledge to some extent. The errors of
DE being child are mostly from noun compounds.
For example, the string “ ” results
in the error: “DE” as the child of “ ”. It will be
better that noun compounds are processed specially.

Our results and average results achieve the low-
est score on Turkish. We try to find some reasons
through the following analysis. Turkish is a typi-
cal head-final language and 81.1% of dependencies
are right-headed. The monotone of directionality in-
creases the difficulties of identification. Another dif-
ficulty is the diversity of the same pair. Taking noun
and pronoun as example, which only achieve the ac-
curacy of 25% and 28% in our results, there are 14
relations in the noun-verb pairs and 11 relations in
the pronoun-verb pairs. Table 3 illustrates the distri-
bution of some common relations in the test data.

The similarity of these dependencies makes our
parser only recognize 23.3% noun-verb structures
and 21.8% pronoun-verb structures. The syntactic
or semantic knowledge maybe helpful to distinguish
these similar structures.

5 Conclusion

This paper has applied a deterministic algorithm
based on dynamic local optimization to multi-

total obj sub mod D.A L.A
Noun-V 1300 494 319 156 102 78
Pron-V 215 91 60 9 37 3

Table 3: The distribution of some common relations

lingual dependency parsing. Through the error
analysis for some languages, we think that the dif-
ference between languages is a main obstacle posed
on multi-lingual dependency parsing. Adopting
different learners according to the type of languages
may be helpful to multi-lingual dependency parsing.
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Abstract

We present a two-stage multilingual de-
pendency parser and evaluate it on 13
diverse languages. The first stage is
based on the unlabeled dependency pars-
ing models described by McDonald and
Pereira (2006) augmented with morpho-
logical features for a subset of the lan-
guages. The second stage takes the out-
put from the first and labels all the edges
in the dependency graph with appropri-
ate syntactic categories using a globally
trained sequence classifier over compo-
nents of the graph. We report results on
the CoNLL-X shared task (Buchholz et
al., 2006) data sets and present an error
analysis.

1 Introduction

Often in language processing we require a deep syn-
tactic representation of a sentence in order to assist
further processing. With the availability of resources
such as the Penn WSJ Treebank, much of the fo-
cus in the parsing community had been on producing
syntactic representations based on phrase-structure.
However, recently their has been a revived interest
in parsing models that produce dependency graph
representations of sentences, which model words
and their arguments through directed edges (Hud-
son, 1984; Mel′čuk, 1988). This interest has gener-
ally come about due to the computationally efficient
and flexible nature of dependency graphs and their

ability to easily model non-projectivity in freer-word
order languages. Nivre (2005) gives an introduction
to dependency representations of sentences and re-
cent developments in dependency parsing strategies.

Dependency graphs also encode much of the deep
syntactic information needed for further process-
ing. This has been shown through their success-
ful use in many standard natural language process-
ing tasks, including machine translation (Ding and
Palmer, 2005), sentence compression (McDonald,
2006), and textual inference (Haghighi et al., 2005).

In this paper we describe a two-stage discrimi-
native parsing approach consisting of an unlabeled
parser and a subsequent edge labeler. We evaluate
this parser on a diverse set of 13 languages using
data provided by the CoNLL-X shared-task organiz-
ers (Buchholz et al., 2006; Hajič et al., 2004; Simov
et al., 2005; Simov and Osenova, 2003; Chen et al.,
2003; Böhmová et al., 2003; Kromann, 2003; van
der Beek et al., 2002; Brants et al., 2002; Kawata
and Bartels, 2000; Afonso et al., 2002; Džeroski et
al., 2006; Civit Torruella and Martı́ Antonı́n, 2002;
Nilsson et al., 2005; Oflazer et al., 2003; Atalay et
al., 2003). The results are promising and show the
language independence of our system under the as-
sumption of a labeled dependency corpus in the tar-
get language.

For the remainder of this paper, we denote by
x = x1, . . . xn a sentence withn words and by
y a corresponding dependency graph. A depen-
dency graph is represented by a set of ordered pairs
(i, j) ∈ y in which xj is a dependent andxi is the
corresponding head. Each edge can be assigned a la-
bel l(i,j) from a finite setL of predefined labels. We
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assume that all dependency graphs are trees but may
be non-projective, both of which are true in the data
sets we use.

2 Stage 1: Unlabeled Parsing

The first stage of our system creates an unlabeled
parsey for an input sentencex. This system is
primarily based on the parsing models described
by McDonald and Pereira (2006). That work ex-
tends the maximum spanning tree dependency pars-
ing framework (McDonald et al., 2005a; McDonald
et al., 2005b) to incorporate features over multiple
edges in the dependency graph. An exact projec-
tive and an approximate non-projective parsing al-
gorithm are presented, since it is shown that non-
projective dependency parsing becomes NP-hard
when features are extended beyond a single edge.

That system uses MIRA, an online large-margin
learning algorithm, to compute model parameters.
Its power lies in the ability to define a rich set of fea-
tures over parsing decisions, as well as surface level
features relative to these decisions. For instance, the
system of McDonald et al. (2005a) incorporates fea-
tures over the part of speech of words occurring be-
tween and around a possible head-dependent rela-
tion. These features are highly important to over-
all accuracy since they eliminate unlikely scenarios
such as a preposition modifying a noun not directly
to its left, or a noun modifying a verb with another
verb occurring between them.

We augmented this model to incorporate morpho-
logical features derived from each token. Consider a
proposed dependency of a dependentxj on the head
xi, each with morphological featuresMj andMi re-
spectively. We then add to the representation of the
edge: Mi as head features,Mj as dependent fea-
tures, and also each conjunction of a feature from
both sets. These features play the obvious role of
explicitly modeling consistencies and commonali-
ties between a head and its dependents in terms of
attributes like gender, case, or number. Not all data
sets in our experiments include morphological fea-
tures, so we use them only when available.

3 Stage 2: Label Classification

The second stage takes the output parsey for sen-
tencex and classifies each edge(i, j) ∈ y with a

particular labell(i,j). Ideally one would like to make
all parsing and labeling decisions jointly so that the
shared knowledge of both decisions will help resolve
any ambiguities. However, the parser is fundamen-
tally limited by the scope of local factorizations that
make inference tractable. In our case this means
we are forced only to consider features over single
edges or pairs of edges. However, in a two stage
system we can incorporate features over the entire
output of the unlabeled parser since that structure is
fixed as input. The simplest labeler would be to take
as input an edge(i, j) ∈ y for sentencex and find
the label with highest score,

l(i,j) = arg max
l

s(l, (i, j),y,x)

Doing this for each edge in the tree would pro-
duce the final output. Such a model could easily be
trained using the provided training data for each lan-
guage. However, it might be advantageous to know
the labels of other nearby edges. For instance, if we
consider a headxi with dependentsxj1 , . . . , xjM

, it
is often the case that many of these dependencies
will have correlated labels. To model this we treat
the labeling of the edges(i, j1), . . . , (i, jM ) as a se-
quence labeling problem,

(l(i,j1), . . . , l(i,jM )) = l̄ = arg max
l̄

s(l̄, i,y,x)

We use a first-order Markov factorization of the
score

l̄ = arg max
l̄

M∑

m=2

s(l(i,jm), l(i,jm−1), i,y,x)

in which each factor is the score of labeling the adja-
cent edges(i, jm) and(i, jm−1) in the treey. We at-
tempted higher-order Markov factorizations but they
did not improve performance uniformly across lan-
guages and training became significantly slower.

For score functions, we use simple dot products
between high dimensional feature representations
and a weight vector

s(l(i,jm), l(i,jm−1), i,y,x) =
w · f(l(i,jm), l(i,jm−1), i,y,x)

Assuming we have an appropriate feature repre-
sentation, we can find the highest scoring label se-
quence with Viterbi’s algorithm. We use the MIRA
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online learner to set the weights (Crammer and
Singer, 2003; McDonald et al., 2005a) since we
found it trained quickly and provide good perfor-
mance. Furthermore, it made the system homoge-
neous in terms of learning algorithms since that is
what is used to train our unlabeled parser (McDon-
ald and Pereira, 2006). Of course, we have to define
a set of suitable features. We used the following:

• Edge Features: Word/pre-suffix/part-of-speech
(POS)/morphological feature identity of the head and the
dependent (affix lengths 2 and 3). Does the head and its
dependent share a prefix/suffix? Attachment direction.
What morphological features do head and dependent
have the same value for? Is the dependent the first/last
word in the sentence?

• Sibling Features: Word/POS/pre-suffix/morphological
feature identity of the dependent’s nearest left/right sib-
lings in the tree (siblings are words with same parent in
the tree). Do any of the dependent’s siblings share its
POS?

• Context Features:POS tag of each intervening word be-
tween head and dependent. Do any of the words between
the head and the dependent have a parent other than the
head? Are any of the words between the head and the de-
pendent not a descendant of the head (i.e. non-projective
edge)?

• Non-local: How many children does the dependent have?
What morphological features do the grandparent and the
dependent have identical values? Is this the left/right-
most dependent for the head? Is this the first dependent
to the left/right of the head?

Various conjunctions of these were included
based on performance on held-out data. Note that
many of these features are beyond the scope of the
edge based factorizations of the unlabeled parser.
Thus a joint model of parsing and labeling could not
easily include them without some form of re-ranking
or approximate parameter estimation.

4 Results

We trained models for all 13 languages provided
by the CoNLL organizers (Buchholz et al., 2006).
Based on performance from a held-out section of the
training data, we used non-projective parsing algo-
rithms for Czech, Danish, Dutch, German, Japanese,
Portuguese and Slovene, and projective parsing al-
gorithms for Arabic, Bulgarian, Chinese, Spanish,
Swedish and Turkish. Furthermore, for Arabic and
Spanish, we used lemmas instead of inflected word

DATA SET UA LA

ARABIC 79.3 66.9
BULGARIAN 92.0 87.6
CHINESE 91.1 85.9
CZECH 87.3 80.2
DANISH 90.6 84.8
DUTCH 83.6 79.2
GERMAN 90.4 87.3
JAPANESE 92.8 90.7
PORTUGUESE 91.4 86.8
SLOVENE 83.2 73.4
SPANISH 86.1 82.3
SWEDISH 88.9 82.5
TURKISH 74.7 63.2

AVERAGE 87.0 80.8

Table 1: Dependency accuracy on 13 languages.
Unlabeled (UA) and Labeled Accuracy (LA).

forms, again based on performance on held-out
data1.

Results on the test set are given in Table 1. Per-
formance is measured through unlabeled accuracy,
which is the percentage of words that modify the
correct head in the dependency graph, and labeled
accuracy, which is the percentage of words that
modify the correct headand label the dependency
edge correctly in the graph. These results show that
the discriminative spanning tree parsing framework
(McDonald et al., 2005b; McDonald and Pereira,
2006) is easily adapted across all these languages.
Only Arabic, Turkish and Slovene have parsing ac-
curacies significantly below 80%, and these lan-
guages have relatively small training sets and/or are
highly inflected with little to no word order con-
straints. Furthermore, these results show that a two-
stage system can achieve a relatively high perfor-
mance. In fact, for every language our models per-
form significantly higher than the average perfor-
mance for all the systems reported in Buchholz et
al. (2006).

For the remainder of the paper we provide a gen-
eral error analysis across a wide set of languages
plus a detailed error analysis of Spanish and Arabic.

5 General Error Analysis

Our system has several components, including the
ability to produce non-projective edges, sequential

1Using the non-projective parser for all languages does not
effect performance significantly. Similarly, using the inflected
word form instead of the lemma for all languages does not
change performance significantly.
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SYSTEM UA LA

N+S+M 86.3 79.7
P+S+M 85.6 79.2
N+S+B 85.5 78.6
N+A+M 86.3 79.4
P+A+B 84.8 77.7

Table 2: Error analysis of parser components av-
eraged over Arabic, Bulgarian, Danish, Dutch,
Japanese, Portuguese, Slovene, Spanish, Swedish
and Turkish. N/P: Allow non-projective/Force pro-
jective, S/A: Sequential labeling/Atomic labeling,
M/B: Include morphology features/No morphology
features.

assignment of edge labels instead of individual as-
signment, and a rich feature set that incorporates
morphological properties when available. The bene-
fit of each of these is shown in Table 2. These results
report the average labeled and unlabeled precision
for the 10 languages with the smallest training sets.
This allowed us to train new models quickly.

Table 2 shows that each component of our system
does not change performance significantly (rows 2-
4 versus row 1). However, if we only allow projec-
tive parses, do not use morphological features and
label edges with a simple atomic classifier, the over-
all drop in performance becomes significant (row
5 versus row 1). Allowing non-projective parses
helped with freer word order languages like Dutch
(78.8%/74.7% to 83.6%/79.2%, unlabeled/labeled
accuracy). Including rich morphology features natu-
rally helped with highly inflected languages, in par-
ticular Spanish, Arabic, Turkish, Slovene and to a
lesser extent Dutch and Portuguese. Derived mor-
phological features improved accuracy in all these
languages by 1-3% absolute.

Sequential classification of labels had very lit-
tle effect on overall labeled accuracy (79.4% to
79.7%)2. The major contribution was in helping to
distinguish subjects, objects and other dependents
of main verbs, which is the most common label-
ing error. This is not surprising since these edge
labels typically are the most correlated (i.e., if you
already know which noun dependent is the subject,
then it should be easy to find the object). For in-
stance, sequential labeling improves the labeling of

2This difference was much larger for experiments in which
gold standard unlabeled dependencies are used.

objects from81.7%/75.6% to 84.2%/81.3% (la-
beled precision/recall) and the labeling of subjects
from 86.8%/88.2% to 90.5%/90.4% for Swedish.
Similar improvements are common across all lan-
guages, though not as dramatic. Even with this im-
provement, the labeling of verb dependents remains
the highest source of error.

6 Detailed Analysis

6.1 Spanish

Although overall unlabeled accuracy is86%, most
verbs and some conjunctions attach to their head
words with much lower accuracy:69% for main
verbs, 75% for the verb ser, and 65% for coor-
dinating conjunctions. These words form17% of
the test corpus. Other high-frequency word classes
with relatively low attachment accuracy are preposi-
tions (80%), adverbs (82%) and subordinating con-
junctions (80%), for a total of another23% of the
test corpus. These weaknesses are not surprising,
since these decisions encode the more global as-
pects of sentence structure: arrangement of clauses
and adverbial dependents in multi-clause sentences,
and prepositional phrase attachment. In a prelimi-
nary test of this hypothesis, we looked at all of the
sentences from a development set in which a main
verb is incorrectly attached. We confirmed that the
main clause is often misidentified in multi-clause
sentences, or that one of several conjoined clauses
is incorrectly taken as the main clause. To test this
further, we added features to count the number of
commas and conjunctions between a dependent verb
and its candidate head. Unlabeled accuracy for all
verbs increases from71% to 73% and for all con-
junctions from71% to 74%. Unfortunately, accu-
racy for other word types decreases somewhat, re-
sulting in no significant net accuracy change. Nev-
ertheless, this very preliminary experiment suggests
that wider-range features may be useful in improv-
ing the recognition of overall sentence structure.

Another common verb attachment error is a
switch between head and dependent verb in phrasal
verb forms likedejan intrigar or qiero decir, possi-
bly because the non-finite verb in these cases is often
a main verb in training sentences. We need to look
more carefully at verb features that may be useful
here, in particular features that distinguish finite and
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non-finite forms.
In doing this preliminary analysis, we noticed

some inconsistencies in the reference dependency
structures. For example, in the test sentenceLo
que decia Mae West de si misma podrı́amos decirlo
tambíen los hombres:..., decia’s head is given asde-
cirlo, although the main verbs of relative clauses are
normally dependent on what the relative modifies, in
this case the articleLo.

6.2 Arabic

A quick look at unlabeled attachment accuracies in-
dicate that errors in Arabic parsing are the most
common across all languages: prepositions (62%),
conjunctions (69%) and to a lesser extent verbs
(73%). Similarly, for labeled accuracy, the hard-
est edges to label are for dependents of verbs, i.e.,
subjects, objects and adverbials. Note the differ-
ence in error between the unlabeled parser and the
edge labeler: the former makes mistakes on edges
into prepositions, conjunctions and verbs, and the
latter makes mistakes on edges into nouns (sub-
ject/objects). Each stage by itself is relatively ac-
curate (unlabeled accuracy is79% and labeling ac-
curacy3 is also79%), but since there is very little
overlap in the kinds of errors each makes, overall la-
beled accuracy drops to67%. This drop is not nearly
as significant for other languages.

Another source of potential error is that the aver-
age sentence length of Arabic is much higher than
other languages (around 37 words/sentence). How-
ever, if we only look at performance for sentences
of length less than 30, the labeled accuracy is still
only 71%. The fact that Arabic has only 1500 train-
ing instances might also be problematic. For exam-
ple if we train on 200, 400, 800 and the full training
set, labeled accuracies are54%, 60%, 62% and67%.
Clearly adding more data is improving performance.
However, when compared to the performance of
Slovene (1500 training instances) and Spanish (3300
instances), it appears that Arabic parsing is lagging.

7 Conclusions

We have presented results showing that the spanning
tree dependency parsing framework of McDonald et

3Labeling accuracy is the percentage of words that correctly
label the dependency between the head that they modify, even
if the right head was not identified.

al. (McDonald et al., 2005b; McDonald and Pereira,
2006) generalizes well to languages other than En-
glish. In the future we plan to extend these mod-
els in two ways. First, we plan on examining the
performance difference between two-staged depen-
dency parsing (as presented here) and joint parsing
plus labeling. It is our hypothesis that for languages
with fine-grained label sets, joint parsing and label-
ing will improve performance. Second, we plan on
integrating any available morphological features in
a more principled manner. The current system sim-
ply includes all morphological bi-gram features. It
is our hope that a better morphological feature set
will help with both unlabeled parsing and labeling
for highly inflected languages.
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Abstract

We use SVM classifiers to predict the next
action of a deterministic parser that builds
labeled projective dependency graphs in
an incremental fashion. Non-projective
dependencies are captured indirectly by
projectivizing the training data for the
classifiers and applying an inverse trans-
formation to the output of the parser. We
present evaluation results and an error
analysis focusing on Swedish and Turkish.

1 Introduction

The CoNLL-X shared task consists in parsing texts
in multiple languages using a single dependency
parser that has the capacity to learn from treebank
data. Our methodology for performing this task is
based on four essential components:

• A deterministic algorithm for building labeled
projective dependency graphs (Nivre, 2006).

• History-based feature models for predicting the
next parser action (Black et al., 1992).

• Support vector machines for mapping histories
to parser actions (Kudo and Matsumoto, 2002).

• Graph transformations for recovering non-
projective structures (Nivre and Nilsson, 2005).

All experiments have been performed using Malt-
Parser (Nivre et al., 2006), version 0.4, which is
made available together with the suite of programs
used for pre- and post-processing.1

1www.msi.vxu.se/users/nivre/research/MaltParser.html

2 Parsing Methodology

2.1 Parsing Algorithm

The parsing algorithm used for all languages is the
deterministic algorithm first proposed for unlabeled
dependency parsing by Nivre (2003) and extended
to labeled dependency parsing by Nivre et al. (2004).
The algorithm builds a labeled dependency graph in
one left-to-right pass over the input, using a stack
to store partially processed tokens and adding arcs
using four elementary actions (wheretop is the token
on top of the stack andnextis the next token):

• SHIFT: Pushnextonto the stack.
• REDUCE: Pop the stack.
• RIGHT-ARC(r): Add an arc labeledr from top

to next; pushnextonto the stack.
• LEFT-ARC(r): Add an arc labeledr from next

to top; pop the stack.

Although the parser only derives projective graphs,
the fact that graphs are labeled allows non-projective
dependencies to be captured using the pseudo-
projective approach of Nivre and Nilsson (2005) .

Another limitation of the parsing algorithm is that
it does not assign dependency labels to roots, i.e., to
tokens havingHEAD=0. To overcome this problem,
we have implemented a variant of the algorithm that
starts by pushing an artificial root token withID=0
onto the stack. Tokens havingHEAD=0 can now
be attached to the artificial root in a RIGHT-ARC(r)
action, which means that they can be assigned any
label. Since this variant of the algorithm increases
the overall nondeterminism, it has only been used
for the data sets that include informative root labels
(Arabic, Czech, Portuguese, Slovene).
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FO L C P FE D

S: top + + + + + +
S: top−1 +
I: next + + + + +
I: next+1 + +
I: next+2 +
I: next+3 +
G: head oftop +
G: leftmost dep oftop +
G: rightmost dep oftop +
G: leftmost dep ofnext +

Table 1: Base model; S: stack, I: input, G: graph;
FO: FORM, L: LEMMA , C: CPOS, P: POS,

FE: FEATS, D: DEPREL

2.2 History-Based Feature Models

History-based parsing models rely on features of the
derivation history to predict the next parser action.
The features used in our system are all symbolic
and extracted from the following fields of the data
representation:FORM, LEMMA , CPOSTAG, POSTAG,
FEATS, andDEPREL. Features of the typeDEPREL

have a special status in that they are extracted during
parsing from the partially built dependency graph
and may therefore contain errors, whereas all the
other features have gold standard values during both
training and parsing.2

Based on previous research, we defined a base
model to be used as a starting point for language-
specific feature selection. The features of this model
are shown in Table 1, where rows denote tokens in
a parser configuration (defined relative to the stack,
the remaining input, and the partially built depen-
dency graph), and where columns correspond to data
fields. The base model contains twenty features, but
note that the fieldsLEMMA , CPOSandFEATSare not
available for all languages.

2.3 Support Vector Machines

We use support vector machines3 to predict the next
parser action from a feature vector representing the
history. More specifically, we use LIBSVM (Chang
and Lin, 2001) with a quadratic kernelK(xi, xj) =
(γxT

i xj +r)2 and the built-in one-versus-all strategy
for multi-class classification. Symbolic features are

2The fieldsPHEAD andPDEPRELhave not been used at all,
since we rely on pseudo-projective parsing for the treatment of
non-projective structures.

3We also ran preliminary experiments with memory-based
learning but found that this gave consistently lower accuracy.

converted to numerical features using the standard
technique of binarization, and we split values of the
FEATSfield into its atomic components.4

For some languages, we divide the training data
into smaller sets, based on some features (normally
theCPOSor POSof the next input token), which may
reduce training times without a significant loss in
accuracy (Yamada and Matsumoto, 2003). To avoid
too small training sets, we pool together categories
that have a frequency below a certain thresholdt.

2.4 Pseudo-Projective Parsing

Pseudo-projective parsing was proposed by Nivre
and Nilsson (2005) as a way of dealing with
non-projective structures in a projective data-driven
parser. We projectivize training data by a minimal
transformation, lifting non-projective arcs one step
at a time, and extending the arc label of lifted arcs
using the encoding scheme called HEAD by Nivre
and Nilsson (2005), which means that a lifted arc is
assigned the labelr↑h, wherer is the original label
andh is the label of the original head in the non-
projective dependency graph.

Non-projective dependencies can be recovered by
applying an inverse transformation to the output of
the parser, using a left-to-right, top-down, breadth-
first search, guided by the extended arc labelsr↑h

assigned by the parser. This technique has been used
without exception for all languages.

3 Experiments

Since the projective parsing algorithm and graph
transformation techniques are the same for all data
sets, our optimization efforts have been focused on
feature selection, using a combination of backward
and forward selection starting from the base model
described in section 2.2, andparameter optimization
for the SVM learner, using grid search for an optimal
combination of the kernel parametersγ andr, the
penalty parameterC and the termination criterionǫ,
as well as the splitting features and the frequency
thresholdt. Feature selection and parameter opti-
mization have to some extent been interleaved, but
the amount of work done varies between languages.

4Preliminary experiments showed a slight improvement for
most languages when splitting theFEATS values, as opposed to
taking every combination of atomic values as a distinct value.
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Ara Bul Chi Cze Dan Dut Ger Jap Por Slo Spa Swe TurTotal
LAS 66.71 87.41 86.92 78.42 84.77 78.59 85.82 91.65 87.60 70.30 81.29 84.58 65.6880.19
UAS 77.52 91.72 90.54 84.80 89.80 81.35 88.76 93.10 91.22 78.72 84.67 89.50 75.8285.48
LAcc 80.34 90.44 89.01 85.40 89.16 83.69 91.03 94.34 91.54 80.54 90.06 87.39 78.4986.75

Table 2: Evaluation on final test set; LAS = labeled attachment score, UAS = unlabeled attachment score,
LAcc = label accuracy score; total score excluding Bulgarian

The main optimization criterion has been labeled
attachment score on held-out data, using ten-fold
cross-validation for all data sets with 100k tokens
or less, and an 80-20 split into training and devtest
sets for larger datasets. The number of features in
the optimized models varies from 16 (Turkish) to 30
(Spanish), but the models use all fields available for
a given language, except thatFORM is not used for
Turkish (only LEMMA ). The SVM parameters fall
into the following ranges:γ: 0.12–0.20;r: 0.0–0.6;
C: 0.1–0.7;ǫ: 0.01–1.0. Data has been split on the
POS of the next input token for Czech (t = 200),
German (t = 1000), and Spanish (t = 1000), and
on theCPOSof the next input token for Bulgarian
(t = 1000), Slovene (t = 600), and Turkish (t = 100).
(For the remaining languages, the training data has
not been split at all.)5 A dry run at the end of the
development phase gave a labeled attachment score
of 80.46 over the twelve required languages.

Table 2 shows final test results for each language
and for the twelve required languages together. The
total score is only 0.27 percentage points below the
score from the dry run, which seems to indicate that
models have not been overfitted to the training data.
The labeled attachment score varies from 91.65 to
65.68 but is above average for all languages. We
have the best reported score for Japanese, Swedish
and Turkish, and the score for Arabic, Danish,
Dutch, Portuguese, Spanish, and overall does not
differ significantly from the best one. The unlabeled
score is less competitive, with only Turkish having
the highest reported score, which indirectly indicates
that the integration of labels into the parsing process
primarily benefits labeled accuracy.

4 Error Analysis

An overall error analysis is beyond the scope of this
paper, but we will offer a few general observations

5Detailed specifications of the feature models and learning
algorithm parameters can be found on the MaltParser web page.

before we turn to Swedish and Turkish, focusing on
recall and precision of root nodes, as a reflection of
global syntactic structure, and on attachment score
as a function of arc length. If we start by considering
languages with a labeled attachment score of 85% or
higher, they are characterized by high precision and
recall for root nodes, typically 95/90, and by a grace-
ful degradation of attachment score as arcs grow
longer, typically 95–90–85, for arcs of length 1, 2
and 3–6. Typical examples are Bulgarian (Simov
et al., 2005; Simov and Osenova, 2003), Chinese
(Chen et al., 2003), Danish (Kromann, 2003), and
Swedish (Nilsson et al., 2005). Japanese (Kawata
and Bartels, 2000), despite a very high accuracy, is
different in that attachment score drops from 98%
to 85%, as we go from length 1 to 2, which may
have something to do with the data consisting of
transcribed speech with very short utterances.

A second observation is that a high proportion of
non-projective structures leads to fragmentation in
the parser output, reflected in lower precision for
roots. This is noticeable for German (Brants et al.,
2002) and Portuguese (Afonso et al., 2002), which
still have high overall accuracy thanks to very high
attachment scores, but much more conspicuous for
Czech (B̈ohmov́a et al., 2003), Dutch (van der Beek
et al., 2002) and Slovene (Džeroski et al., 2006),
where root precision drops more drastically to about
69%, 71% and 41%, respectively, and root recall is
also affected negatively. On the other hand, all three
languages behave like high-accuracy languages with
respect to attachment score. A very similar pattern
is found for Spanish (Civit Torruella and Martı́ An-
tońın, 2002), although this cannot be explained by
a high proportion of non-projective structures. One
possible explanation in this case may be the fact that
dependency graphs in the Spanish data are sparsely
labeled, which may cause problem for a parser that
relies on dependency labels as features.

The results for Arabic (Hajič et al., 2004; Smřz
et al., 2002) are characterized by low root accuracy
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as well as a rapid degradation of attachment score
with arc length (from about 93% for length 1 to 67%
for length 2). By contrast, Turkish (Oflazer et al.,
2003; Atalay et al., 2003) exhibits high root accu-
racy but consistently low attachment scores (about
88% for length 1 and 68% for length 2). It is note-
worthy that Arabic and Turkish, being “typological
outliers”, show patterns that are different both from
each other and from most of the other languages.

4.1 Swedish

A more fine-grained analysis of the Swedish results
reveals a high accuracy for function words, which
is compatible with previous studies (Nivre, 2006).
Thus, the labeled F-score is 100% for infinitive
markers (IM) and subordinating conjunctions (UK),
and above 95% for determiners (DT). In addition,
subjects (SS) have a score above 90%. In all these
cases, the dependent has a configurationally defined
(but not fixed) position with respect to its head.

Arguments of the verb, such as objects (DO, IO)
and predicative complements (SP), have a slightly
lower accuracy (about 85% labeled F-score), which
is due to the fact that they “compete” in the same
structural positions, whereas adverbials (labels that
end in A) have even lower scores (often below 70%).
The latter result must be related both to the relatively
fine-grained inventory of dependency labels for ad-
verbials and to attachment ambiguities that involve
prepositional phrases. The importance of this kind
of ambiguity is reflected also in the drastic differ-
ence in accuracy between noun pre-modifiers (AT)
(F> 97%) and noun post-modifiers (ET) (F≈ 75%).

Finally, it is worth noting that coordination, which
is often problematic in parsing, has high accuracy.
The Swedish treebank annotation treats the second
conjunct as a dependent of the first conjunct and as
the head of the coordinator, which seems to facil-
itate parsing.6 The attachment of the second con-
junct to the first (CC) has a labeled F-score above
80%, while the attachment of the coordinator to the
second conjunct (++) has a score well above 90%.

4.2 Turkish

In Turkish, very essential syntactic information is
contained in the rich morphological structure, where

6The analysis is reminiscent of the treatment of coordination
in the Collins parser (Collins, 1999).

concatenated suffixes carry information that in other
languages may be expressed by separate words. The
Turkish treebank therefore divides word forms into
smaller units, called inflectional groups (IGs), and
the task of the parser is to construct dependencies
between IGs, not (primarily) between word forms
(Eryiğit and Oflazer, 2006). It is then important
to remember that an unlabeled attachment score
of 75.8% corresponds to a word-to-word score of
82.7%, which puts Turkish on a par with languages
like Czech, Dutch and Spanish. Moreover, when
we break down the results according to whether the
head of a dependency is part of a multiple-IG word
or a complete (single-IG) word, we observe a highly
significant difference in accuracy, with only 53.2%
unlabeled attachment score for multiple-IG heads
versus 83.7% for single-IG heads. It is hard to say
at this stage whether this means that our methods
are ill-suited for IG-based parsing, or whether it is
mainly a case of sparse data for multiple-IG words.

When we break down the results by dependency
type, we can distinguish three main groups. The first
consists of determiners and particles, which have
an unlabeled attachment score over 80% and which
are found within a distance of 1–1.4 IGs from their
head.7 The second group mainly contains subjects,
objects and different kinds of adjuncts, with a score
in the range 60–80% and a distance of 1.8–5.2 IGs to
their head. In this group, information about case and
possessive features of nominals is important, which
is found in theFEATSfield in the data representation.
We believe that one important explanation for our
relatively good results for Turkish is that we break
down theFEATS information into its atomic com-
ponents, independently ofPOSand CPOStags, and
let the classifier decide which one to use in a given
situation. The third group contains distant depen-
dencies, such as sentence modifiers, vocatives and
appositions, which have a much lower accuracy.

5 Conclusion

The evaluation shows that labeled pseudo-projective
dependency parsing, using a deterministic parsing
algorithm and SVM classifiers, gives competitive
parsing accuracy for all languages involved in the

7Given that the average IG count of a word is 1.26 in the
treebank, this means that they are normally adjacent to the head
word.
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shared task, although the level of accuracy varies
considerably between languages. To analyze in
depth the factors determining this variation, and to
improve our parsing methods accordingly to meet
the challenges posed by the linguistic diversity, will
be an important research goal for years to come.
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Abstract

Our approach to dependency parsing is
based on the linear model of McDonald
et al.(McDonald et al., 2005b). Instead of
solving the linear model using the Max-
imum Spanning Tree algorithm we pro-
pose an incremental Integer Linear Pro-
gramming formulation of the problem that
allows us to enforce linguistic constraints.
Our results show only marginal improve-
ments over the non-constrained parser. In
addition to the fact that many parses did
not violate any constraints in the first place
this can be attributed to three reasons: 1)
the next best solution that fulfils the con-
straints yields equal or less accuracy, 2)
noisy POS tags and 3) occasionally our
inference algorithm was too slow and de-
coding timed out.

1 Introduction

This paper presents our submission for the CoNLL
2006 shared task of multilingual dependency pars-
ing. Our parser is inspired by McDonald et
al.(2005a) which treats the task as the search for the
highest scoring Maximum Spanning Tree (MST) in
a graph. This framework is efficient for both pro-
jective and non-projective parsing and provides an
online learning algorithm which combined with a
rich feature set creates state-of-the-art performance
across multiple languages (McDonald and Pereira,
2006).

However, McDonald and Pereira (2006) mention
the restrictive nature of this parsing algorithm. In
their original framework, features are only defined
over single attachment decisions. This leads to cases
where basic linguistic constraints are not satisfied
(e.g. verbs with two subjects). In this paper we
present a novel way to implement the parsing al-
gorithms for projective and non-projective parsing
based on a more generic incremental Integer Linear
Programming (ILP) approach. This allows us to in-
clude additional global constraints that can be used
to impose linguistic information.

The rest of the paper is organised in the following
way. First we give an overview of the Integer Linear
Programming model and how we trained its param-
eters. We then describe our feature and constraint
sets for the 12 different languages of the task (Hajič
et al., 2004; Chen et al., 2003; Böhmov́a et al., 2003;
Kromann, 2003; van der Beek et al., 2002; Brants
et al., 2002; Kawata and Bartels, 2000; Afonso et
al., 2002; Ďzeroski et al., 2006; Civit Torruella and
Mart́ı Antońın, 2002; Nilsson et al., 2005; Oflazer et
al., 2003; Atalay et al., 2003). Finally, our results are
discussed and error analyses for Chinese and Turk-
ish are presented.

2 Model

Our model is based on the linear model presented in
McDonald et al. (2005a),

s (x,y) =
∑

(i,j)∈y

s (i, j) =
∑

w · f (i, j)(1)

wherex is a sentence,y a parse ands a score func-
tion over sentence-parse pairs.f (i, j) is a multidi-
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mensional feature vector representation of the edge
from token i to tokenj and w the corresponding
weight vector. Decoding in this model amounts to
finding they for a givenx that maximisess (x,y)

y′ = argmaxys (x,y)

andy contains no cycles, attaches exactly one head
to each non-root token and no head to the root node.

2.1 Decoding

Instead of using the MST algorithm (McDonald et
al., 2005b) to maximise equation 1, we present an
equivalent ILP formulation of the problem. An ad-
vantage of a general purpose inference technique is
the addition of further linguistically motivated con-
straints. For instance, we can add constraints that
enforce that a verb can not have more than one sub-
ject argument or that coordination arguments should
have compatible types. Roth and Yih (2005) is
similarly motivated and uses ILP to deal with ad-
ditional hard constraints in a Conditional Random
Field model for Semantic Role Labelling.

There are several explicit formulations of the
MST problem as integer programs in the literature
(Williams, 2002). They are based on the concept of
eliminating subtours (cycles), cuts (disconnections)
or requiring intervertex flows (paths). However, in
practice these cause long solving times. While the
first two types yield an exponential number of con-
straints, the latter one scales cubically but produces
non-fractional solutions in its relaxed version, caus-
ing long runtime of the branch and bound algorithm.
In practice solving models of this form did not con-
verge after hours even for small sentences.

To get around this problem we followed an incre-
mental approach akin to Warme (1998). Instead of
adding constraints that forbid all possible cycles in
advance (this would result in an exponential num-
ber of constraints) we first solve the problem without
any cycle constraints. Only if the result contains cy-
cles we add constraints that forbid these cycles and
run the solver again. This process is repeated un-
til no more violated constraints are found. Figure 1
shows this algorithm.

Groetschel et al. (1981) showed that such an ap-
proach will converge after a polynomial number of
iterations with respect to the number of variables.

1. Solve IPPi

2. Find violated constraintsC in the solution ofPi

3. if C = ∅ we are done
4. Pi+1 = Pi ∪ C
5. i = i + 1
6. goto (1)

Figure 1: Incremental Integer Linear Programming

In practice, this technique showed fast convergence
(less than 10 iterations) in most cases, yielding solv-
ing times of less than 0.5 seconds. However, for
some sentences in certain languages, such as Chi-
nese or Swedish, an optimal solution could not be
found after 500 iterations.

In the following section we present the bjective
function, variables and linear constraints that make
up the Integer Linear Program.

2.1.1 Variables

In the implementation1 of McDonald et al.
(2005b) dependency labels are handled by finding
the best scoring label for a given token pair so that

s (i, j) = max s (i, j, label)

goes into Equation 1. This is only exact as long as no
further constraints are added. Since our aim is to add
constraints our variables need to explicitly model la-
bel decisions. Therefore, we introduce binary vari-
ables

li,j,label∀i ∈ 0..n, j ∈ 1..n, label ∈ bestb (i, j)

wheren is the number of tokens and the index 0
represents the root token.bestb (i, j) is the set ofb
labels with maximals (i, j, label). li,j,label equals 1
if there is a dependency with the labellabel between
tokeni (head) andj (child), 0 otherwise.

Furthermore, we introduce binary auxiliary vari-
ables

di,j∀i ∈ 0..n, j ∈ 1..n

representing the existence of a dependency between
tokensi andj. We connect these to theli,j,label vari-
ables by a constraint

di,j =
∑
label

li,j,label

.
1Note, however, that labelled parsing is not described in the

publication.
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2.1.2 Objective Function

Given the above variables our objective function
can be represented as∑

i,j

∑
label∈bestk(i,j)

s (i, j, label) · li,j,label

with a suitablek.

2.1.3 Constraints Added in Advance

Only One Head In all our languages every token
has exactly one head. This yields∑

i>0

di,j = 1

for non-root tokensj > 0 and∑
i

di,0 = 0

for the artificial root node.

Typed Arity Constraints We might encounter so-
lutions of the basic model that contain, for instance,
verbs with two subjects. To forbid these we simply
augment our model with constraints such as∑

j

li,j,subject ≤ 1

for all verbsi in a sentence.

2.1.4 Incremental Constraints

No Cycles If a solution contains one or more cy-
clesC we add the following constraints to our IP:
For everyc ∈ C we add∑

(i,j)∈c

di,j ≤ |c| − 1

to forbid c.

Coordination Argument Constraints In coordi-
nation conjuncts have to be of compatible types. For
example, nouns can not coordinate with verbs. We
implemented this constraint by checking the parses
for occurrences of incompatible arguments. If we
find two argumentsj, k for a conjunctioni: di,j and
di,k andj is a noun andk is a verb then we add

di,j + di,k ≤ 1

to forbid configurations in which both dependencies
are active.

Projective Parsing In the incremental ILP frame-
work projective parsing can be easily implemented
by checking for crossing dependencies after each it-
eration and forbidding them in the next. If we see
two dependencies that cross,di,j anddk,l, we add
the constraint

di,j + dk,l ≤ 1

to prevent this in the next iteration. This can also
be used to prevent specific types of crossings. For
instance, in Dutch we could only allow crossing de-
pendencies as long as none of the dependencies is a
“Determiner” relation.

2.2 Training

We used single-best MIRA(Crammer and Singer,
2003).For all experiments we used10 training iter-
ations and non-projective decoding. Note that we
used the original spanning tree algorithm for decod-
ing during training as it was faster.

3 System Summary

We use four different feature sets. The first fea-
ture set,BASELINE, is taken from McDonald and
Pereira (2005b). It uses theFORMand thePOSTAG
fields. This set also includes features that combine
the label and POS tag of head and child such as
(Label, POSHead) and(Label, POSChild−1). For
our Arabic and Japanese development sets we ob-
tained the best results with this configuration. We
also use this configuration for Chinese, German and
Portuguese because training with other configura-
tions took too much time (more than 7 days).

The BASELINE also uses pseudo-coarse-POS tag
(1st character of thePOSTAG) and pseudo-lemma
tag (4 characters of theFORM when the length
is more than3). For the next configuration we
substitute these pseudo-tags by theCPOSTAGand
LEMMAfields that were given in the data. This con-
figuration was used for Czech because for other con-
figurations training could not be finished in time.

The third feature set tries to exploit the generic
FEATSfield, which can contain a list features such
as case and gender. A set of features per depen-
dency is extracted using this information. It con-
sists of cross product of the features inFEATS. We
used this configuration for Danish, Dutch, Spanish
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and Turkish where it showed the best results during
development.

The fourth feature set uses the triplet of la-
bel, POS child and head as a feature such as
(Label, POSHead, POSChild). It also uses the
CPOSTAGand LEMMA fields for the head. This
configuration is used for Slovene and Swedish data
where it performed best during development.

Finally, we add constraints for Chinese, Dutch,
Japanese and Slovene. In particular, arity constraints
to Chinese and Slovene, coordination and arity con-
straints to Dutch, arity and selective projectivity
constraints for Japanese2. For all experimentsb was
set to 2. We did not apply additional constraints to
any other languages due to lack of time.

4 Results

Our results on the test set are shown in Table 1.
Our results are well above the average for all lan-
guages but Czech. For Chinese we perform signif-
icantly better than all other participants (p = 0.00)
and we are in the top three entries for Dutch, Ger-
man, Danish. Although Dutch and Chinese are lan-
guages were we included additional constraints, our
scores are not a result of these. Table 2 compares the
result for the languages with additional constraints.
Adding constraints only marginally helps to improve
the system (in the case of Slovene a bug in our im-
plementation even degraded accuracy). A more de-
tailed explanation to this observation is given in the
following section. A possible explanation for our
high accuracy in Chinese could be the fact that we
were not able to optimise the feature set on the de-
velopment set (see the previous section). Maybe this
prevented us from overfitting. It should be noted that
we did use non-projective parsing for Chinese, al-
though the corpus was fully projective. Our worst
results in comparison with other participants can be
seen for Czech. We attribute this to the reduced
training set we had to use in order to produce a
model in time, even when using the original MST
algorithm.

2This is done in order to capture the fact that crossing de-
pendencies in Japanese could only be introduced through dis-
fluencies.

4.1 Chinese

For Chinese the parser was augmented with a set of
constraints that disallowed more than one argument
of the typeshead, goal, nominal, range, theme, rea-
son, DUMMY, DUMMY1andDUMMY2.

By enforcing arity constraints we could either turn
wrong labels/heads into right ones and improve ac-
curacy or turn right labels/heads into wrong ones and
degrade accuracy. For the test set the number of im-
provements (36) was higher than the number of er-
rors (22). However, this margin was outweighed by
a few sentences we could not properly process be-
cause our inference method timed out. Our overall
improvement was thus unimpressive 7 tokens.

In the context of duplicate “head” dependencies
(that is, dependencies labelled “head”) the num-
ber of sentences where accuracy dropped far out-
weighed the number of sentences where improve-
ments could be gained. Removing the arity con-
straints on “head” labels therefore should improve
our results.

This shows the importance of good second best
dependencies. If the dependency with the second
highest score is the actual gold dependency and its
score is close to the highest score, we are likely to
pick this dependency in the presence of additional
constraints. On the other hand, if the dependency
with the second highest score is not the gold one and
its score is too high, we will probably include this
dependency in order to fulfil the constraints.

There may be some further improvement to be
gained if we train our model usingk-best MIRA
with k > 1 since it optimises weights with respect
to thek best parses.

4.2 Turkish

There is a considerable gap between the unlabelled
and labelled results for Turkish. And in terms of la-
bels the POS typeNoungives the worst performance
because many times a subject was classified as ob-
ject or vice a versa.

Case information in Turkish assigns argument
roles for nouns by marking different semantic roles.
Many errors in the Turkish data might have been
caused by the fact that this information was not ad-
equately used. Instead of fine-tuning our feature set
to Turkish we used the feature cross product as de-
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Model AR CH CZ DA DU GE JP PO SL SP SW TU
OURS 66.65 89.96 67.64 83.63 78.59 86.24 90.51 84.43 71.20 77.38 80.66 58.61
AVG 59.94 78.32 67.17 78.31 70.73 78.58 85.86 80.63 65.16 73.53 76.44 55.95
TOP 66.91 89.96 80.18 84.79 79.19 87.34 91.65 87.60 73.44 82.25 84.58 65.68

Table 1: Labelled accuracy on the test sets.

Constraints DU CH SL JA
with 3927 4464 3612 4526

without 3928 4471 3563 4528

Table 2: Number of tokens correctly classified with
and without constraints.

scribed in Section 3. Some of the rather meaning-
less combinations might have neutralised the effect
of sensible ones. We believe that using morpho-
logical case information in a sound way would im-
prove both the unlabelled and the labelled dependen-
cies. However, we have not performed a separate ex-
periment to test if using the case information alone
would improve the system any better. This could be
the focus of future work.

5 Conclusion

In this work we presented a novel way of solving the
linear model of McDonald et al. (2005a) for projec-
tive and non-projective parsing based on an incre-
mental ILP approach. This allowed us to include
additional linguistics constraints such as “a verb can
only have one subject.”

Due to time constraints we applied additional
constraints to only four languages. For each one
we gained better results than the baseline without
constraints, however, this improvement was only
marginal. This can be attributed to 4 main rea-
sons: Firstly, the next best solution that fulfils the
constraints was even worse (Chinese). Secondly,
noisy POS tags caused coordination constraints to
fail (Dutch). Thirdly, inference timed out (Chinese)
and fourthly, constraints were not violated that often
in the first place (Japanese).

However, the effect of the first problem might be
reduced by training with a higherk. The second
problem could partly be overcome by using a bet-
ter tagger or by a special treatment within the con-
straint handling for word types which are likely to
be mistagged. The third problem could be avoidable

by adding constraints during the branch and bound
algorithm, avoiding the need to resolve the full prob-
lem “from scratch” for every constraint added. With
these remedies significant improvements to the ac-
curacy for some languages might be possible.
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Abstract

Unlexicalized probabilistic context-free
parsing is a general and flexible approach
that sometimes reaches competitive re-
sults in multilingual dependency parsing
even if a minimum of language-specific
information is supplied. Furthermore, in-
tegrating parser results (good at long de-
pendencies) and tagger results (good at
short range dependencies, and more easily
adaptable to treebank peculiarities) gives
competitive results in all languages.

1 Introduction

Unlexicalized probabilistic context-free parsing is
a simple and flexible approach that nevertheless
has shown good performance (Klein and Manning,
2003). We applied this approach to the shared task
(Buchholz et al., 2006) for Arabic (Hajič et al.,
2004), Chinese (Chen et al., 2003), Czech (Böh-
mová et al., 2003), Danish (Kromann, 2003), Dutch
(van der Beek et al., 2002), German (Brants et al.,
2002), Japanese (Kawata and Bartels, 2000), Por-
tuguese (Afonso et al., 2002), Slovene (Džeroski et
al., 2006), Spanish (Civit Torruella and Martí An-
tonín, 2002), Swedish (Nilsson et al., 2005), Turk-
ish (Oflazer et al., 2003; Atalay et al., 2003), but
not Bulgarian (Simov et al., 2005). In our ap-
proach we put special emphasis on language inde-
pendence: We did not use any extraneous knowl-
edge; we did not do any transformations on the
treebanks; we restricted language-specific parame-

ters to a small, easily manageable set (a classifica-
tion of dependency relations into complements, ad-
juncts, and conjuncts/coordinators, and a switch for
Japanese to include coarse POS tag information, see
section 3.4). In a series of post-submission experi-
ments, we investigated how much the parse results
can help a machine learner.

2 Experimental Setup

For development, we chose the initial � sentences of
every treebank, where � is the number of the sen-
tences in the test set. In this way, the sizes were
realistic for the task. For parsing the test data, we
added the development set to the training set.

All the evaluations on the test sets were performed
with the evaluation script supplied by the conference
organizers. For development, we used labelled F-
score computed from all tokens except the ones em-
ployed for punctuation (cf. section 3.2).

3 Context Free Parsing

3.1 The Parser

Basically, we investigated the performance of a
straightforward unlexicalized statistical parser, viz.
BitPar (Schmid, 2004). BitPar is a CKY parser that
uses bit vectors for efficient representation of the
chart and its items. If frequencies for the grammat-
ical and lexical rules in a training set are available,
BitPar uses the Viterbi algorithm to extract the most
probable parse tree (according to PCFG) from the
chart.
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3.2 Converting Dependency Structure to
Constituency Structure

In order to determine the grammar rules required by
the context-free parser, the dependency trees in the
CONLL format have to be converted to constituency
trees. Gaifman (1965) proved that projective de-
pendency grammars can be mapped to context-free
grammars. The main information that needs to be
added in going from dependency to constituency
structure is the category of non-terminals. The usage
of special knowledge bases to determine projections
of categories (Xia and Palmer, 2001) would have
presupposed language-dependent knowledge, so we
investigated two other options: Flat rules (Collins
et al., 1999) and binary rules. In the flat rules ap-
proach, each lexical category projects to exactly one
phrasal category, and every projection chain has a
length of at most one. The binary rules approach
makes use of the X-bar-scheme and thus introduces
along with the phrasal category an intermediate cate-
gory. The phrasal category must not occur more than
once in a projection chain, and a projection chain
must not end in an intermediate category. In both ap-
proaches, projection is only triggered if dependents
are present; in case a category occurs as a depen-
dent itself, no projection is required. In coordination
structures, the parent category is copied from that of
the last conjunct.

Non-projective relations can be treated as un-
bounded dependencies so that their surface posi-
tion (antecedent position) is related to the position
of their head (trace position) with an explicit co-
indexed trace (like in the Penn treebank). To find
the position of trace and antecedent we assume three
constraints: The antecedent should c-command its
trace. The antecedent is maximally near to the trace
in depth of embedding. The trace is maximally near
to the antecedent in surface order.

Finally the placement of punctuation signs has
a major impact on the performance of a parser
(Collins et al., 1999). In most of the treebanks, not
much effort is invested into the treatment of punc-
tuation. Sometimes, punctuation signs play a role
in predicate-argument structure (commas acting as
coordinators), but more often they do not, in which
case they are marked by special roles (e.g. “pnct”,
“punct”, “PUNC”, or “PUNCT”). We used a general

mechanism to re-insert such signs, for all languages
but CH (no punctuation signs) and AR, CZ, SL (re-
liable annotation). Correct placement of punctua-
tion presupposes knowledge of the punctuation rules
valid in a language. In the interest of generality, we
opted for a suboptimal solution: Punctuation signs
are inserted in the highest possible position in a tree.

3.3 Subcategorization and Coordination

The most important language-specific information
that we made use of was a classification of de-
pendency relations into complements, coordina-
tors/conjuncts, and other relations (adjuncts).

Given knowledge about complement relations, it
is fairly easy to construct subcategorization frames
for word occurrences: A subcategorization frame is
simply the set of the complement relations by which
dependents are attached to the word. To give the
parser access to these lists, we annotated the cate-
gory of a subcategorizing word with its subcatego-
rization frame. In this way, the parser can learn to as-
sociate the subcategorization requirements of a word
with its local syntactic context (Schiehlen, 2004).

Coordination constructions are marked either in
the conjuncts (CH, CZ, DA, DU, GE, PO, SW) or
the coordinator (AR, SL). If conjuncts show coordi-
nation, a common representation of asyndetic coor-
dination has one conjunct point to another conjunct.
It is therefore important to distinguish coordinators
from conjuncts. Coordinators are either singled out
by special dependency relations (DA, PO, SW) or by
their POS tags (CH, DU). In German, the first con-
junct phrase is merged with the whole coordinated
phrase (due to a conversion error?) so that determin-
ing the coordinator as a head is not possible.

We also experimented with attaching the POS
tags of heads to the categories of their adjunct de-
pendents. In this way, the parser could differenti-
ate between e.g. verbal and nominal adjuncts. In
our experiments, the performance gains achieved by
this strategy were low, so we did not incorporate it
into the system. Possibly, better results could be
achieved by restricting annotation to special classes
of adjuncts or by generalizing the heads’ POS tags.

3.4 Categories

As the treebanks provide a lot of information with
every word token, it is a delicate question to de-
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Ch Da Du Ge Ja Po Sp Tu
coarse POS 72.99 69.38 69.27 – 79.07 66.09
fine POS 61.21 69.78 67.72 7.40 73.44 71.75 54.96
POS + feat – 42.67 40.40 –
dep-rel 76.61 72.77 70.70 70.31 78.12 72.93 66.93 65.03
coarse + dep-rel 77.61 67.56 69.43 – 81.36 64.03
fine + dep-rel 51.21 57.72 68.55 46.28 36.59 54.97

Figure 1: Types of Categories (Development Results)

cide on the type and granularity of the information to
use in the categories of the grammar. The treebanks
specify for every word a (fine-grained) POS tag, a
coarse-grained POS tag, a collection of morphosyn-
tactic features, and a dependency relation (dep-rel).
Only the dependency relation is really orthogonal;
the other slots contain various generalizations of the
same morphological information. We tested sev-
eral options: coarse-grained POS tag (if available),
fine-grained POS tag, fine-grained POS tag with
morphosyntactic features (if available), name of de-
pendency relation, and the combinations of coarse-
grained or fine-grained POS tags with the depen-
dency relation.

Figure 1 shows F-score results on the develop-
ment set for several languages and different com-
binations. The best overall performer is dep-rel;
this somewhat astonishing fact may be due to the
superior quality of the annotations in this slot (de-
pendency relations were annotated by hand, POS
tags automatically). Furthermore, being checked in
evaluation, dependency relations directly affect per-
formance. Since we wanted a general language-
independent strategy, we used always the dep-rel
tags but for Japanese. The Japanese treebank fea-
tures only 8 different dependency relations, so we
added coarse-grained POS tag information. In the
categories for Czech, we deleted the suffixes mark-
ing coordination, apposition and parenthesis (Co,
Ap, Pa), reducing the number of categories roughly
by a factor of four. In coordination, conjuncts inherit
the dep-rel category from the parent.

Whereas the dep-rel information is submitted to
the parser directly in terms of the categories, the
information in the lemma, POS tag and morpho-
syntactic features slot was used only for back-off
smoothing when associating lexical items with cate-

Cz Ge Sp Sw
dep-rel 52.66 70.31 66.93 72.91
new classific 58.92 74.32 66.09 61.59
new + dep-rel 56.94 78.40 64.03 66.32

Figure 4: Manual POS Tag Classes (Development)

gories. A grammar with this configuration was used
to produce the results submitted (cf. line labelled CF
in Figures 2 and 3).

Instead of using the category generalizations sup-
plied with the treebanks directly, manual labour can
be put into discovering classifications that behave
better for the purposes of statistical parsing. So,
Collins et al. (1999) proposed a tag classification
for parsing the Czech treebank. We also investi-
gated a classification for German1, as well as one for
Swedish and one for Spanish, which were modelled
after the German classification. The results in Fig-
ure 4 show that new classifications may have a dra-
matic effect on performance if the treebank is suf-
ficiently large. In the interest of generality, we did
not make use of the language dependent tag classifi-
cations for the results submitted, but we will never-
theless report results that could have been achieved
with these classifications.

3.5 Markovization

Another strategy that is often used in statistical pars-
ing is Markovization (Collins, 1999): Treebanks

1punctuation {$( $” $, $.} adjectives {ADJA ADJD CARD}
adverbs {ADV PROAV PTKA PTKNEG PTKVZ PWAV}
prepositions {APPR APPO APZR APPRART KOKOM} nouns
{NN NE NNE PDS PIS PPER PPOSS PRELS PRF PWS
SYM} determiners {ART PDAT PIAT PRELAT PPOSAT
PWAT} verb forms {VAFIN VMFIN VVFIN} {VAIMP
VVIMP} {VAINF VMINF VVINF} {VAPP VMPP VVPP}
{VVIZU PTKZU} clause-like items {ITJ PTKANT KOUS}
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Ar Ch Cz Da Du Ge Ja Po Sl Sp Sw Tu Bu
Best 66.91 89.96 80.18 84.79 79.19 87.34 91.65 87.60 73.44 82.25 84.58 65.68 87.57
Average 59.94 78.32 67.17 76.16 70.73 78.58 85.86 80.63 65.16 73.52 76.44 55.95 79.98
CF (submitted) 44.39 66.20 53.34 76.05 72.11 68.73 83.35 71.01 50.72 46.96 71.10 49.81 –
MaxEnt 59.16 61.65 63.28 73.25 64.47 73.94 82.79 80.30 66.27 69.73 72.99 47.16 –
combined 61.82 73.34 71.74 79.64 75.51 80.75 88.15 82.43 67.09 71.15 76.88 53.65 –
CF+Markov 45.37 70.76 55.14 74.49 72.55 68.87 84.57 71.89 55.16 47.95 71.18 51.64 –
CFM+newcl 73.84 62.10 77.76 49.61 –
combined 76.84 72.76 82.59 69.38 72.57 –
new rules (in %) 7.15 6.03 4.64 7.34 5.03 7.42 5.59 6.69 21.00 9.50 10.14 14.23

Figure 2: Labelled Accuracy Results on the Test Sets

Ar Ch Cz Da Du Ge Ja Po Sl Sp Sw Tu
CF 41.91 76.61 52.66 72.77 70.69 70.31 81.36 72.76 49.00 66.93 72.91 65.03
CF+Markov 63.00 80.25 52.80 73.31 70.70 70.51 82.59 74.37 52.43 67.81 73.56 82.80
CFM+newcl 83.07 59.03 80.42 69.30

Figure 3: F Score Results on the Development Sets

usually contain very many long rules of low fre-
quency (presumably because inserting nodes costs
annotators time). Such rules cannot have an impact
in a statistical system (the line new-rules in Figure 2
shows the percentage of rules in the test set that are
not in the training set); it is better to view them as
products of a Markov process that chooses first the
head, then the symbols left of the head and finally
the symbols right of the hand. In a bigram model, the
choice of left and right siblings is made dependent
not only on the parent and head category, but also on
the last sibling on the left or right, respectively. For-
mally the probability of a rule with left hand side

�
and right hand side �����������	��
������������� is bro-
ken down to the product of the probability ������
�� ���
of the head, the probabilities of the left siblings
�������! "� �! $#���%�
% ��� and those of the right siblings
�'&(���  � �  )#�� %�
% ��� . Generic symbols designate be-
ginning ( ��*(%��+* ) and end ( ���-,'��%����.,'� ) of the sib-
ling lists. The method can be transferred to plain
unlexicalized PCFG (Klein and Manning, 2003) by
transforming long rules into a series of binary rules:

�0/ � �21 � %�
3%�� � %�� �4#���5
1 � %�
%��! 6,'�7%��� 5 / �! 1 � %�
%��! 8%��! $#�� 5
1 � %�
%��	�9%���* 5 /;:<� %�
%����=%����>#��8?����:<� %�
%��� 6,'�@%��� A? /B:<� %�
3%��� C%��� $#��8?��� :<� %�
%����@%��+*�? / 


If the bigram symbols
:<� %�
3%��  %��  $#�� ? and

1 � %�
%��! 8%��� )#�� 5 occur in less than a certain number
of rules (50 in our case), we smooth to unigram
symbols instead (

:<� %�
3%��D �? and 1 � %�
%��� 5 ). We
used a script of Schmid (2006) to Markovize
infrequent rules in this manner (i.e. all rules with
less than 50 occurrences that are not coordination
rules).

For time reasons, Markovization was not taken
into account in the submitted results. We refer to
Figures 2 and 3 (line labelled CF+Markov) for a list-
ing of the results attainable by Markovization on the
individual treebanks. Performance gains are even
more dramatic if in addition dependency relations +
manual POS tag classes are used as categories (line
labelled CFM+newcl in Figures 2 and 3).

3.6 From Constituency Structure Back to
Dependency Structure

In a last step, we converted the constituent trees back
to dependency trees, using the algorithm of Gaifman
(1965). Special provisos were necessary for the root
node, for which no head is given in certain treebanks
(Džeroski et al., 2006). To interpret the context-free
rules, we associated their children with dependency
relations. This information was kept in a separate
file that was invisible to the parser. In cases there
were several possible interpretations for a context
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free rule, we always chose the most frequent one in
the training data (Schiehlen, 2004).

4 Machine Learning

While the results coming from the statistical parser
are not really competitive, we believe that they nev-
ertheless present valuable information for a machine
learner. To give some substance to this claim, we
undertook experiments with the Zhang Le’s Max-
Ent Toolkit2. For this work, we recast the depen-
dency parsing problem as a classification problem:
Given some feature information on the word to-
ken, in which dependency relations does it stand
to which head? While the representation of depen-
dency relations is straightforward, the representation
of heads is more difficult. Building on past exper-
iments (Schiehlen, 2003), we chose the “nth-tag”
representation which consists of three pieces of in-
formation: the POS tag of the head, the direction in
which the head lies (left or right), and the number of
words with the same POS tag between head and de-
pendent. We used the following features to describe
a word token: the fine-grained POS tag, the lemma
(or full form) if it occurs at least 10 times, the mor-
phosyntactic features, and the POS tags of the four
preceding and the four following word tokens. The
learner was trained in standard configuration (30 it-
erations). The results for this method on the test data
are shown in Figure 2 (line MaxEnt).

In a second experiment we added parsing results
(obtained by 10-fold cross validation on the training
set) in two features: proposed dependency relation
and proposed head. Results of the extended learning
approach are shown in Figure 2 (line combined).

5 Conclusion

We have presented a general approach to parsing
arbitrary languages based on dependency treebanks
that uses a minimum overhead of language-specific
information and nevertheless supplies competitive
results in some languages (Da, Du). Even better re-
sults can be reached if POS tag classifications are
used in the categories that are optimized for specific
languages (Ge). Markovization usually brings an
improvement of up to 2%, a higher gain is reached in
Slovene (where many new rules occur in the testset)

2http://homepages.inf.ed.ac.uk/s0450736/maxent_toolkit.html

and Chinese (which has the highest number of de-
pendency relations). Comparable results in the liter-
ature are Schiehlen’s (2004) 81.03% dependency f-
score reached on the German NEGRA treebank and
Collins et al.’s (1999) 80.0% labelled accuracy on
the Czech PDT treebank. Collins (1999) used a lex-
icalized approach, Schiehlen (2004) used the manu-
ally annotated phrasal categories of the treebank.

Our second result is that context-free parsing
can also boost the performance of a simple tagger-
like machine learning system. While a maximum-
entropy learner on its own achieves competitive re-
sults for only three languages (Ar, Po, Sl), compet-
itive results in basically all languages are produced
with access to the results of the probabilistic parser.

Thanks go to Helmut Schmid for providing sup-
port with his parser and the Markovization script.
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Abstract

Following (McDonald et al., 2005), we
present an application of a maximum
spanning tree algorithm for a directed
graph to non-projective labeled depen-
dency parsing. Using a variant of the
voted perceptron (Collins, 2002; Collins
and Roark, 2004; Crammer and Singer,
2003), we discriminatively trained our
parser in an on-line fashion. After just one
epoch of training, we were generally able
to attain average results in the CoNLL
2006 Shared Task.

1 Introduction

Recently, we have seen dependency parsing grow
more popular. It is not rare to see dependency re-
lations used as features, in tasks such as relation ex-
traction (Bunescu and Mooney, 2005) and machine
translation (Ding and Palmer, 2005). Although En-
glish dependency relations are mostly projective, in
other languages with more flexible word order, such
as Czech, non-projective dependencies are more fre-
quent. There are generally two methods for learn-
ing non-projective dependencies. You could map a
non-projective dependency tree to a projective one,
learn and predict the tree, then bring it back to the
non-projective dependency tree (Nivre and Nilsson,
2005). Non-projective dependency parsing can also
be represented as search for a maximum spanning
tree in a directed graph, and this technique has been
shown to perform well in Czech (McDonald et al.,

2005). In this paper, we investigate the effective-
ness of (McDonald et al., 2005) in the various lan-
guages given by the CoNLL 2006 shared task for
non-projective labeled dependency parsing.

The paper is structured as follows: in section 2
and 3, we review the decoding and learning aspects
of (McDonald et al., 2005), and in section 4, we de-
scribe the extension of the algorithm and the features
needed for the CoNLL 2006 shared task.

2 Non-Projective Dependency Parsing

2.1 Dependency Structure

Let us definex to be a generic sequence of input to-
kens together with their POS tags and other morpho-
logical features, andy to be a generic dependency
structure, that is, a set of edges forx. We use the
terminology in (Taskar et al., 2004) for a generic
structured output prediction, and define apart.

A part represents an edge together with its label.
A part is a tuple〈DEPREL, i, j〉 wherei is the start
point of the edge,j is the end point, andDEPRELis
the label of the edge. The token ati is the head of
the token atj.

Table 1 shows our formulation of building a non-
projective dependency tree as a prediction problem.
The task is to predicty, the set of parts (column 3,
Table 1), givenx, the input tokens and their features
(column 1 and 2, Table 1).

In this paper we use the common method of fac-
toring the score of the dependency structure as the
sum of the scores of all the parts.

A dependency structure is characterized by its
features, and for each feature, we have a correspond-

236



Token POS Edge Part
John NN 〈SUBJ, 2, 1〉
saw VBD 〈PRED, 0, 2〉
a DT 〈DET, 4, 3〉
dog NN 〈OBJ, 2, 4〉
yesterday RB 〈ADJU, 2, 5〉
which WDT 〈MODWH, 7, 6〉
was VBD 〈MODPRED, 4, 7〉
a DT 〈DET, 10, 8〉
Yorkshire NN 〈MODN, 10, 9〉
Terrier NN 〈OBJ, 7, 10〉
. . 〈., 10, 11〉

Table 1: Example Parts

ing weight. The score of a dependency structure
is the sum of these weights. Now, the dependency
structures are factored by the parts, so that each fea-
ture is some type of a specialization of a part. Each
part in a dependency structure maps to several fea-
tures. If we sum up the weights for these features,
we have the score for the part, and if we sum up the
scores of the parts, we have the score for the depen-
dency structure.

For example, let us say we would like to find the
score of the part〈OBJ, 2, 4〉. This is the edge going
to the 4th token ”dog” in Table 1. Suppose there are
two features for this part.

• There is an edge labeled with ”OBJ” that points
to the right. ( =DEPREL, dir(i, j) )

• There is an edge labeled with ”OBJ” starting at
the token ”saw” which points to the right. ( =
DEPREL, dir(i, j), wordi )

If a statement is never true during the training, the
weight for it will be 0. Otherwise there will be a
positive weight value. The score will be the sum of
all the weights of the features given by the part.

In the upcoming section, we explain a decoding
algorithm for the dependency structures, and later
we give a method for learning the weight vector used
in the decoding.

2.2 Maximum Spanning Tree Algorithm

As in (McDonald et al., 2005), the decoding algo-
rithm we used is the Chu-Liu-Edmonds (CLE) al-
gorithm (Chu and Liu, 1965; Edmonds, 1967) for
finding the Maximum Spanning Tree in a directed
graph. The following is a nice summary by (Mc-
Donald et al., 2005).

Informally, the algorithm has each vertex
in the graph greedily select the incoming
edge with highest weight.

Note that the edge is coming from the parent to the
child. This means that given a child nodewordj, we
are finding the parent, or the headwordi such that
the edge(i, j) has the highest weight among alli,
i 6= j.

If a tree results, then this must be the max-
imum spanning tree. If not, there must be
a cycle. The procedure identifies a cycle
and contracts it into a single vertex and
recalculates edge weights going into and
out of the cycle. It can be shown that a
maximum spanning tree on the contracted
graph is equivalent to a maximum span-
ning tree in the original graph (Leonidas,
2003). Hence the algorithm can recur-
sively call itself on the new graph.

3 Online Learning

Again following (McDonald et al., 2005), we have
used the single best MIRA (Crammer and Singer,
2003), which is a variant of the voted perceptron
(Collins, 2002; Collins and Roark, 2004) for struc-
tured prediction. In short, the update is executed
when the decoder fails to predict the correct parse,
and we compare the correct parseyt and the incor-
rect parsey′ suggested by the decoding algorithm.
The weights of the features iny′ will be lowered, and
the weights of the features inyt will be increased ac-
cordingly.

4 Experiments

Our experiments were conducted on CoNLL-X
shared task, with various datasets (Hajič et al., 2004;
Simov et al., 2005; Simov and Osenova, 2003; Chen
et al., 2003; Böhmová et al., 2003; Kromann, 2003;
van der Beek et al., 2002; Brants et al., 2002;
Kawata and Bartels, 2000; Afonso et al., 2002;
Džeroski et al., 2006; Civit Torruella and Martı́ An-
tonı́n, 2002; Nilsson et al., 2005; Oflazer et al.,
2003; Atalay et al., 2003) .

4.1 Dependency Relation

The CLE algorithm works on a directed graph with
unlabeled edges. Since the CoNLL-X shared task
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Given a part〈DEPREL, i, j〉
DEPREL, dir(i, j)
DEPREL, dir(i, j), wordi

DEPREL, dir(i, j), posi

DEPREL, dir(i, j), wordj

DEPREL, dir(i, j), posj

DEPREL, dir(i, j), wordi, posi

DEPREL, dir(i, j), wordj , posj

DEPREL, dir(i, j), wordi−1

DEPREL, dir(i, j), posi−1

DEPREL, dir(i, j), wordi−1, posi−1

DEPREL, dir(i, j), wordj−1

DEPREL, dir(i, j), posj−1

DEPREL, dir(i, j), wordj−1, posj−1

DEPREL, dir(i, j), wordi+1

DEPREL, dir(i, j), posi+1

DEPREL, dir(i, j), wordi+1, posi+1

DEPREL, dir(i, j), wordj+1

DEPREL, dir(i, j), posj+1

DEPREL, dir(i, j), wordj+1, posj+1

DEPREL, dir(i, j), posi−2

DEPREL, dir(i, j), posi+2

DEPREL, dir(i, j), distance =|j − i|
additional features
DEPREL, dir(i, j), wordi, wordj

DEPREL, dir(i, j), posi+1, posi, posi+1

DEPREL, dir(i, j), posi+1, wordi, posi+1

DEPREL, dir(i, j), wordi, posi, posj

DEPREL, dir(i, j), posi, wordj , posj

Table 2: Binary Features for Each Part

requires the labeling of edges, as a preprocessing
stage, we created a directed complete graph with-
out multi-edges, that is, given two distinct nodesi

and j, exactly two edges exist between them, one
from i to j, and the other fromj to i. There is no
self-pointing edge. Then we labeled each edge with
the highest scoring dependency relation. This com-
plete graph was given to the CLE algorithm and the
edge labels were never altered in the course of find-
ing the maximum spanning tree. The result is the
non-projective dependency tree with labeled edges.

4.2 Features

The features we used to score each part (edge)
〈DEPREL, i, j〉 are shown in Table 2. The indexi
is the position of the parent andj is that of the child.

wordj = the word token at the positionj.
posj = the coarse part-of-speech atj.
dir(i, j) = R if i < j, and L otherwise.

No other features were used beyond the combina-
tions of the CPOS tag and the word token in Table 2.

We have evaluated our parser on Arabic, Danish,
Slovene, Spanish, Turkish and Swedish, and used

the ”additional features” listed in Table 2 for all lan-
guages except for Danish and Swedish. The reason
for this is simply that the model with the additional
features did not fit in the 4 GB of memory used in
the training.

Although we could do batch learning by running
the online algorithm multiple times, we run the on-
line algorithm just once. The hardware used is an
Intel Pentinum D at 3.0 Ghz with 4 GB of memory,
and the software was written in C++. The training
time required was Arabic 204 min, Slovene 87 min,
Spanish 413 min, Swedish 1192 min, Turkish 410
min, Danish 381 min.

5 Results

The results are shown in Table 3. Although our fea-
ture set is very simple, the results were around the
averages. We will do error analysis of three notable
languages: Arabic, Swedish and Turkish.

5.1 Arabic

Of 4990 words in the test set, 800 are prepositions.
The prepositions are the most frequently found to-
kens after nouns in this set. On the other hand,
our head attachment error was 44% for prepositions.
Given the relatively large number of prepositions
found in the test set, it is important to get the prepo-
sition attachment right to achieve a higher mark in
this language. The obvious solution is to have a fea-
ture that connects the head of a preposition to the
child of the preposition. However, such a feature
effects the edge based factoring and the decoding al-
gorithm, and we will be forced to modify the MST
algorithm in some ways.

5.2 Swedish

Due to the memory constraint on the computer, we
did not use the additional features for Swedish and
our feature heavily relied on the CPOS tag. At the
same time, we have noticed that relatively higher
performance of our parser compared to the average
coincides with the bigger tag set for CPOS for this
corpus. This suggests that we should be using more
fine grained POS in other languages.

5.3 Turkish

The difficulty with parsing Turkish stems from the
large unlabeled attachment error rate on the nouns
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Language LAS AV SD
Arabic 62.83% 59.92% 6.53
Danish 75.81% 78.31% 5.45
Slovene 64.57% 65.61% 6.78
Spanish 73.17% 73.52% 8.41
Swedish 79.49% 76.44% 6.46
Turkish 54.23% 55.95% 7.71
Language UAS AV SD
Arabic 74.27% 73.48% 4.94
Danish 81.72% 84.52% 4.29
Slovene 74.88% 76.53% 4.67
Spanish 77.58% 77.76% 7.81
Swedish 86.62% 84.21% 5.45
Turkish 68.77% 69.35% 5.51

Table 3: Labeled and Unlabeled Attachment Score

(39%). Since the nouns are the most frequently oc-
curring words in the test set (2209 out of 5021 to-
tal), this seems to make Turkish the most challeng-
ing language for any system in the shared task. On
the average, there are 1.8 or so verbs per sentence,
and nouns have a difficult time attaching to the cor-
rect verb or postposition. This, we think, indicates
that there are morphological features or word order-
ing features that we really need in order to disam-
biguate them.

6 Future Work

As well as making use of fine-grained POS tags and
other morphological features, given the error analy-
sis on Arabic, we would like to add features that are
dependent on two or more edges.

6.1 Bottom-Up Non-Projective Parsing

In order to incorporate features which depend on
other edges, we propose Bottom-Up Non-Projective
Parsing. It is often the case that dependency rela-
tions can be ordered by how close one relation is to
the root of dependency tree. For example, the de-
pendency relation between a determiner and a noun
should be decided before that between a preposition
and a noun, and that of a verb and a preposition, and
so on. We can use this information to do bottom-up
parsing.

Suppose all words have a POS tag assigned to
them, and every edge labeled with a dependency re-
lation is attached to a specific POS tag at the end
point. Also assume that there is an ordering of POS
tags such that the edge going to the POS tag needs
be decided before other edges. For example, (1) de-

terminer, (2) noun, (3) preposition, (4) verb would
be one such ordering. We propose the following al-
gorithm:

• Assume we have tokens as nodes in a graph and no edges
are present at first. For example, we have tokens ”I”,
”ate”, ”with”, ”a”, ”spoon”, and no edges between them.

• Take the POS tag that needs to be decided next. Find all
edges that go to each token labeled with this POS tag,
and put them in the graph. For example, if the POS is
noun, put edges from ”ate” to ”I”, from ”ate” to ”spoon”,
from ”with” to ”I”, from ”with” to ”spoon”, from ”I” to
”spoon”, and from ”spoon” to ”I”.

• Run the CLE algorithm on this graph. This selects the
highest incoming edge to each token with the POS tag we
are looking at, and remove cycles if any are present.

• Take the resulting forests and for each edge, bring the in-
formation on the child node to the parent node. For ex-
ample, if this time POS was noun, and there is an edge to
a preposition ”with” from a noun ”spoon”, then ”spoon”
is absorbed by ”with”. Note that since no remaining de-
pendency relation will attach to ”spoon”, we can safely
ignore ”spoon” from now on.

• Go back and repeat until no POS is remaining and we
have a dependency tree. Now in the next round, when
deciding the score of the edge from ”ate” to ”with”, we
can use the all information at the token ”with”, including
”spoon”.

7 Conclusion

We have extended non-projective unlabeled de-
pendency parsing (McDonald et al., 2005) to a
very simple non-projective labeled dependency and
showed that the parser performs reasonably well
with small number of features and just one itera-
tion of training. Based on the analysis of the Ara-
bic parsing results, we have proposed a bottom-
up non-projective labeled dependency parsing algo-
rithm that allows us to use features dependent on
more than one edge, with very little disadvantage
compared to the original algorithm.
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Abstract

In this paper, we propose a three-step 
multilingual dependency parser, which 
generalizes an efficient parsing algorithm 
at first phase, a root parser and post-
processor at the second and third stages. 
The main focus of our work is to provide 
an efficient parser that is practical to use 
with combining only lexical and part-of-
speech features toward language inde-
pendent parsing. The experimental results 
show that our method outperforms Malt-
parser in 13 languages. We expect that 
such an efficient model is applicable for 
most languages. 

1 Introduction 

The target of dependency parsing is to automati-
cally recognize the head-modifier relationships 
between words in natural language sentences. Usu-
ally, a dependency parser can construct a similar 
grammar tree with the dependency graph. In this 
year, CoNLL-X shared task (Buchholz et al., 2006) 
focuses on multilingual dependency parsing with-
out taking the language-specific knowledge into 
account. The ultimate goal of this task is to design 
an ideal multilingual portable dependency parsing 
system. 
  To accomplish the shared task, we present a very 
light-weight and efficient parsing model to the 13 
distinct treebanks (Haji  et al., 2004; Simov et al., 
2005; Simov and Osenova, 2003; Chen et al., 2003; 

Böhmová et al., 2003; Kromann 2003; van der 
Beek et al., 2002; Brants et al., 2002; Kawata and 
Bartels, 2000; Afonso et al., 2002; Džeroski et al., 
2006; Civit and Martí 2002; Nivre et al., 2005; 
Oflazer et al., 2003; Atalay et al., 2003) with a 
three-step process, Nivre’s algorithm (Nivre, 2003), 
root parser, and post-processing. Our method is 
quite different from the conventional three-pass 
processing, which usually exhaustively processes 
the whole dataset three times, while our method 
favors examining the “un-parsed” tokens, which 
incrementally shrink. At the beginning, we slightly 
modify the original parsing algorithm (proposed by 
(Nivre, 2003)) to construct the initial dependency 
graph. A root parser is then used to recognize root 
words, which were not parsed during the previous 
step. At the third phase, the post-processor (which 
is another learner) recognizes the still un-parsed 
words. However, in this paper, we aim to build a 
multilingual portable parsing model without em-
ploying deep language-specific knowledge, such as 
lemmatization, morphologic analyzer etc. Instead, 
we only make use of surface lexical and part-of-
speech (POS) information. Combining these shal-
low features, our parser achieves a satisfactory re-
sult for most languages, especially Japanese. 
  In the remainder of this paper, Section 2 describes 
the proposed parsing model, and Section 3 lists the 
experimental settings and results. Section 4 pre-
sents the discussion and analysis of our parser with 
three selected languages. In Section 5, we draw the 
future direction and conclusion. 

2 System Description 
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Over the past decades, many state-of-the-art pars-
ing algorithm were proposed, such as head-word 
lexicalized PCFG (Collins, 1998), Maximum En-
tropy (Charniak, 2000), Maximum/Minimum 
spanning tree (MST) (McDonald et al., 2005), Bot-
tom-up deterministic parsing (Yamada and Ma-
tsumoto, 2003), and Constant-time deterministic 
parsing (Nivre, 2003). Among them, the Nivre’s 
algorithm (Nivre, 2003) was shown to be most ef-
ficient method, which only costs at most 2n transi-
tion actions to parse a sentence (O(n3) for the 
bottom-up or MST approaches). Nivre’s method is 
mainly consists of four transition actions, 
Left/Right/Reduce/Shift. We further extend these 
four actions by dividing the “reduce” into “reduce” 
and “sleep (reduce-but-shift)” two actions. Because 
the too early reduce action makes the following 
words difficult to find the parents. Thus, during 
training, if a word which is the child of the top of 
the stack, it is then assigned to the “sleep” category 
and pushed into stack, otherwise, the conventional 
reduce action is applied. Besides, we do not ar-
range these transition actions with priority order, 
instead, the decision is made by the classifier. The 
overall parsing model can be found in Figure 1. 
Table 1 lists the detail system spec of our model. 

Figure 1: System architecture 

Table 1: Overall parsing system summary  
. Parsing Algorithm: 1. Nivre's Algorithm (Nivre, 2003) 

2. Root Parser 
3. Exhaustive-based Post-processing 

. Parser Characteris-
tics:

1. Top-down + Bottom-up 
2. Deterministic + Exhaustive 
3. Labeling integrated 
4. Non-Projective 

. Learner: SVMLight (Joachims, 1998) 
  (1) One-versus-One 

(2) Linear Kernel 
. Feature Set: 1. Lexical (Unigram/Bigram) 

2. Fine-grained POS and Coarse grained 
BiCPOS

. Post-Processing: Another learner is used to re-recognize 
heads in stacks 

. Additional/External 
Resources: Non-Used 

2.1 Constant-time Parser and Analysis 

The Nivre’s algorithm makes use of a stack and an 
input list to model the word dependency relations 
via identifying the transition action of the top token 
on the stack (Top) and the next token of the input 
list (Next). Typically a learning algorithm can be 
used to recognize these actions via encoding fea-
tures of the two terms (Top and Next). The “Left” 
and “Reduce” pops the Top from stack whereas the 
“Right”, “Reduce-But-Shift”, and “Shift” push to-
ken Next into the top of stack. Nivre (Nivre, 2003) 
had proved that this algorithm can accomplish de-
pendency parsing at most 2n transition actions.  

Although, the Nivre’s algorithm is much more 
efficient than the others, it produces three problems. 

1. It does not explicitly indicate which words are 
the roots. 

2. Some of the terms in the stack do not belong 
to the root but still should be parsed. 

3. It always only compares the Top and Next
words.

The problem (2) and (3) are complement with each 
other. A straightforward way resolution is to adopt 
the exhaustive parsing strategy (Covington, 2001). 
Unfortunately, such a brute-force way may cause 
exponential training and testing spaces, which is 
impractical to apply to the large-scale corpus, for 
example, the Czech Treebank (1.3 million words). 
To overcome this and keep the efficiency, we de-
sign a post-processor that re-cycles the residuum in 
the stack and re-identify the heads of them. Since 
most of the terms (90-95%) of the terms had be 
processed in previous stages, the post-processor 
just exhaustively parses a small part. In addition, 
for problem (1), we propose a root parser based on 
the parsed result of the Nivre’s algorithm. We dis-
cuss the root-parser and post-processor in the next 
two subsections.

2.2 Root Parser 

After the first stage, the stack may contain root and 
un-parsed words. The root parser identifies the root 
word in the stack. The main advantage of this 
strategy could avoid sequential classification proc-
ess, which only focuses on terms in the stack.  

We build a classifier, which learns to find root 
word based on encoding context and children fea-
tures. However, most of the dependency relations 
were constructed at the first stage. Thus, we have 
more sufficient head-modifier information rather 
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than only taking the contexts into account. The 
used features are listed as follows. 

Neighbor terms,bigrams,POS,BiCPOS (+/-2 window) 
Left most child term, POS, Bigram, BiCPOS 
Right most child term, POS, Bigram, BiCPOS 

2.3 Post-Processing 

Before post-processing, we remove the root words 
from stack, which were identified by root-parser. 
The remaining un-parsed words in stack were used 
to construct the actual dependency graph via ex-
haustive comparing with parsed-words. It is neces-
sary to build a post-processor since there are about 
10% un-parsed words in each training set. We pro-
vide the un-parsed rate of each language in Table 2 
(the r.h.s. part).

By applying previous two steps (constant-time 
parser and root parser) to the training data, the re-
maining un-parsed tokens were recorded. Not only 
using the forward parsing direction, the backward 
direction is also taken into account in this statistics. 
Averagely, the un-parsed rates of the forward and 
backward directions are 13% and 4% respectively. 
The back ward parsing often achieves lower un-
parsed rate among all languages (except for Japa-
nese and Turkish). 

To find the heads of the un-parsed words, we 
copy the whole sentence into the word list again, 
and re-compare the un-parsed tokens (in stack) and 
all of the words in the input list. Comparing with 
the same words is disallowed. The comparing 
process is going on until the actual head is found. 
Acquiescently, we use the nearest root words as its 
head. Although such a brute force way is time-
consuming. However, it only parses a small part of 
un-parsed tokens (usually, 2 or 3 words per sen-
tence).

2.4 Features and Learners 

For the constant-time parser of the first stage, we 
employ the features as follows. 

Basic features:  
Top.word,Top.pos,Top.lchild.pos,Top.lchild.relation,
Top.rchild.pos, Top.rchild.relation,Top.head.pos, 
Top.head.relation,
Next.word, Next.pos, Next.lchild.pos, 
Next.lchild.relation, Next+1.pos, Next+2.pos, Next+3.pos

Enhanced features: 
Top.bigram,Top.bicpos,Next.bigram,Next.bicpos,
Next+1.word,Next+2.word,Next+3.word

In this paper, we use the support vector machines 
(SVM) (Joachims, 1998) as the learner. SVM is 
widely used in many natural language processing 
(NLP) areas, for example, POS tagging (Wu et al., 
2006). However, the SVM is a binary classifier 
which only recognizes true or false. For multiclass 
problem, we use the so-called one-versus-one 
(OVO) method with linear kernel to combine the 
results of each pairwise subclassifier. The final 
class in testing phase is mainly determined by ma-
jority voting. 
  For all languages, our parser uses the same set-
tings and features. For all the languages (except 
Japanese and Turkish), we use backward parsing 
direction to keep the un-parsed token rate low. 

3 Experimental Result 

3.1 Dataset and Evaluation Metrics 

The testing data is provided by the (Buchholz et al., 
2006) which consists of 13 language treebanks. 
The experimental results are mainly evaluated by 
the unlabeled and labeled attachment scores. The 
CoNLL also provided a perl-scripter to automatic 
compute these rates. 

3.2 System Results 

Table 2 presents the overall parsing performance 
of the 13 languages. As shown in Table 2, we list 
two parsing results at the second and third columns 
(new and old). It is worth to note that the result B 
is produced by removing the enhanced features and 
the post-processing step from our parser, while the 
result A is the complete use of the enhanced fea-
tures and the overall three-step parsing. In this year, 
we submit result B to the CoNLL shared task due 
to the time limitation.  
  In addition, we also apply the Maltparser, which 
is implemented with the Nivre’s algorithm (Nivre, 
2003) to be compared. The Maltpaser also includes 
the SVM and memory-based learner (MBL). Nev-
ertheless, it does not optimize the SVM where the 
training and testing times are too long to be com-
pared even the linear kernel is used. Therefore we 
use the default MBL and feature model 3 (M3) in 
this experiment. We also perform the significant 
test to evaluate the statistical difference among the 
three results. If the answer is “Yes”, it means the 
two systems are significant difference under at 
least 95% confidence score (p < 0.05). 
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Table 2: A general statistical table of labeled attachment score, test and un-parsed rate (percentage) 
Statistic test Un-Parsed Rate A

(New result) 
B

(Old result)
C

(Maltparser) A vs. B B vs. C A vs. C Forward Backward 
Arabic 63.75 63.81 54.11 No Yes Yes 10.3 1.4
Chinese 81.25 74.81 73.92 Yes No Yes 4.01 2.3
Czech 71.24 59.36 59.36 Yes No Yes 16.1 5.6
Danish 79.52 78.38 77.31 No No No 12.8 2.5
Dutch 68.45 68.45 63.61 No Yes Yes 18.4 9.8
German 79.57 76.52 76.52 Yes No Yes 12.7 9.2
Japanese 91.43 90.11 89.07 Yes No Yes 1.1 4.4
Portugese 81.33 81.47 75.38 No Yes Yes 24.3 3.17
Slovene 68.41 67.83 55.04 No Yes Yes 14.9 5.5
Spanish 74.65 72.99 72.81 Yes No Yes 20 0.5
Swedish 79.53 71.72 76.28 Yes Yes Yes 19.1 2.8
Turkish 55.33 55.09 52.18 No Yes Yes 2.5 4
Bulgarian 81.23 79.73 79.73 No No No 15.7 1.2
AVG 75.05 72.32 69.64 13.22 4.02

4 Discussion 

4.1 Analysis of Overview Aspect 

Although our method is efficient for parsing that 
achieves satisfactory result, it is still away from the 
state-of-the-art performance. Many problems give 
rise to not only the language-specific characteris-
tics, but also the parsing strategy. We found that 
our method is weak to the large-scale training size 
and large dependency class datasets, for example, 
German (Brants et al., 2002) and Czech. For Dutch, 
we observe that the large non-projective tokens 
and relations in this set. Overall, we conclude the 
four main limitations of our parsing model. 

1.Unbalanced and large dependency relation 
classes 

2.Too fine or coarse POS tag 
3.Long sentences and non-projective token rates 
4.Feature engineering and root accuracy 

The main reason of the first problem is still caused 
by the unbalanced distribution of the training data. 
Usually, the right-action categories obtain much 
fewer training examples. For example, in the Turk-
ish data, 50 % of the categories receive less than 
0.1% of the training examples, 2/3 are the right 
dependency group. For the Czech, 74.6% of the 
categories receive less than 0.1% of the training 
examples.  

Second, the too fine grained size of POS tag  set 
often cause the features too specific that is difficult 
to be generalized by the learner. Although we 
found the grained size is not the critical factor of 
our parser, it is closely related to the fourth prob-
lem, feature engineering. For example, in Chinese 
(Chen et al., 2003), there are 303 fine grained POS 
types which achieves better result on the labeled 
attachment score is higher than the coarse grained 

(81.25 vs. 81.17). Intuitively, the feature combina-
tions deeply affect the system performance (see A 
vs. C where we extend more features than the 
original Nivre’s algorithm). 

Problem 3 exposes the disadvantage of our 
method, which is weak to identify the long dis-
tance dependency. The main reason is resulted 
from the Nivre’s algorithm in step 1. This method 
is quite sensitive and non error-recovered since it is 
a deterministic parsing strategy. Abnormal or 
wrong push or pop actions usually cause the error 
propagation to the remaining words in the list. For 
example, there are large parts of errors are caused 
by too early reduce or missed left arc makes some 
words could not find the actual heads. On the con-
trary, one can use an N-best selection to choose the 
optimal dependency graph or applying MST or 
exhaustive parsing schema. Usually, these ap-
proaches are quite inefficient which requires at 
least O(n3).

Finally, in this paper, we only take the surface 
lexical word and POS tag into account without 
employing the language-specific features, such as 
Lemma, Morph…etc. Actually, it is an open ques-
tion to compile and investigate the feature engi-
neering. On the other hand, we also find the 
performance of the root parser in some languages 
is poor. For example, for Dutch the root precision 
rate is only 38.52, while the recall rate is 76.07. It 
indicates most of the words in stack were wrongly 
recognized as root. This is because there are sub-
stantially un-parsed rate that left many un-parsed 
words remain in stack. One way to remedy the 
problem can adjust the root parser to independently 
identify root word by sequential word classifica-
tion at first step and then apply the Nivre’s algo-
rithm. We left the comparison of the issue as future 
work.
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4.2 Analysis of Specific View 

We select three languages, Arabic, Japanese, and 
Turkish to be more detail analysis. Figure 2 illus-
trates the learning curve of the three languages and 
Table 3 summarizes the comparisons of “fine vs. 
coarse” POS types and “forward vs. backward” 
parsing directions.
  For the three languages, we found that most of the 
errors frequently appear to the noun POS tags 
which often denominate half of the training set. In 
Turkish, the lower performance on the noun POS 
attachment rate deeply influents the overall parsing. 
For example, the error rate of Noun in Turkish is 
39% which is the highest error rate. On the con-
trary, the head error rates fall in the middle rank 
for the other two languages.  

Figure 2: Learning curve of the three datasets 
Table 3: Parsing performance of different grained 
POS tags and forward/backward parsing directions

Parsing 
direction LA-Score  POS

grained LA-Score

Ja Forward 91.35 Fine 91.35 
 Backward 85.75 Forward Coarse 91.25 
Ar Forward 60.62 Fine 63.55 

Backward 63.55 Backward Coarse 63.63 
Tu Forward 55.47 Fine 55.47 

Backward 55.59 Forward Coarse 55.59 

  In Turkish, we also find an interesting result 
where the recall rate of the distance=2 parsing 
(56.87) is lower than distance=3-6, and >7 (62.65, 
57.83). In other words, for Turkish, our parser 
failed to recognize the distance=2 dependency rela-
tions. For the other languages, usually the identifi-
cation rate of the longer distance parsing should be 
lower than the smaller distance. Thus, a future 
work to parsing Turkish, should put more emphasis 
on improving not only the noun POS type, but also 
the distance=2 parsing.  
  Besides, the root parsing accuracy is also an im-
portant factor to most languages. In Japanese, al-

though our parser achieves more than 97% 
left/right arc rates. However, for the root word pre-
cision rate is quite lower (85.97). Among all de-
pendency relation classification rates, the root class 
usually locates in the lowest rank for the three lan-
guages.

5 Conclusion and Future Remarks 

Dependency parsing is one of the most important 
issues in NLP community. This paper presents and 
analyzes the impact of the efficient parsing model 
that only combines with lexical and part-of-speech 
information. To go language-independent, we did 
not tune any parameter settings in our model and 
exclude most of the language-dependent feature set, 
which provided by the CoNLL (Buchholz et al., 
2006). The main focus of our work coincides with 
the target goal of the CoNLL shared task, i.e., go 
multilingual dependency parsing without taking 
the language-specific knowledge into account. A 
future work on the deterministic parsing strategy is 
to convert the existing model toward N-best pars-
ing.
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Abstract

This paper presents an approach to depen-
dency parsing which can utilize any stan-
dard machine learning (classification) al-
gorithm. A decision list learner was used
in this work. The training data provided
in the form of a treebank is converted to a
format in which each instance represents
information about one word pair, and the
classification indicates the existence, di-
rection, and type of the link between the
words of the pair. Several distinct mod-
els are built to identify the links between
word pairs at different distances. These
models are applied sequentially to give the
dependency parse of a sentence, favoring
shorter links. An analysis of the errors,
attribute selection, and comparison of dif-
ferent languages is presented.

1 Introduction

This paper presents an approach to supervised learn-
ing of dependency relations in a language using stan-
dard machine learning techniques. The treebanks
(Hajič et al., 2004; Chen et al., 2003; Böhmová
et al., 2003; Kromann, 2003; van der Beek et al.,
2002; Brants et al., 2002; Kawata and Bartels, 2000;
Afonso et al., 2002; Džeroski et al., 2006; Civit Tor-
ruella and Martı́ Antonı́n, 2002; Nilsson et al., 2005;
Oflazer et al., 2003; Atalay et al., 2003) provided for
the CoNLL shared task(Buchholz et al., 2006) were
converted to a set of instances each of which con-
sists of the attributes of a candidate word pair with

a classification that indicates the existence, direction
and type of the dependency link between the pair.

An initial model is built to identify dependency
relations between adjacent word pairs using a deci-
sion list learning algorithm. To identify longer dis-
tance relations, the adjacent modifiers are dropped
from the sentence and a second order model is built
based on the word pairs that come into contact. A
total of three models were built using this technique
successively and used for parsing.

All given attributes are considered as candidates
in an attribute selection process before building each
model. In addition, attributes indicating suffixes of
various lengths and character type information were
constructed and used.

To parse a given sentence, the models are applied
sequentially, each one considering candidate word
pairs and adding new links without deleting the ex-
isting links or creating conflicts (cycles or crossings)
with them. Thus, the algorithm can be considered a
bottom-up, multi-pass, deterministic parser. Given
a candidate word pair, the models may output “no
link”, or give a link with a specified direction and
type. Thus labeling is an integrated step. Word
pair candidates that may form cycles or crossings
are never considered, so the parser will only gen-
erate projective structures.

Section 2 gives the details of the learning algo-
rithm. Section 3 describes the first pass model of
links between adjacent words. Section 4 details
the approach for identifying long distance links and
presents the parsing results.
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2 The Learning Algorithm

The Greedy Prepend Algorithm (Yuret and Ture,
2006) was used to build decision lists to identify de-
pendency relations. A decision list is an ordered list
of rules where each rule consists of a pattern and a
classification (Rivest, 1987). The first rule whose
pattern matches a given instance is used for its clas-
sification. In our application the pattern specifies the
attributes of the two words to be linked such as parts
of speech and morphological features. The classi-
fication indicates the existence and the type of the
dependency link between the two words.

Table 1 gives a subset of the decision list that iden-
tifies links between adjacent words in German. The
class column indicates the type of the link, the pat-
tern contains attributes of the two candidate words X
and Y, as well as their neighbors (XL1 indicates the
left neighbor of X). For example, given the part of
speech sequence APPR-ART-NN, there would be an
NK link between APPR and ART (matches rule 3), but
there would be no link between ART and NN (rule 1
overrides rule 2).

Rule Class Pattern
1 NONE XL1:postag=APPR
2 L:NK X:postag=ART Y:postag=NN
3 R:NK X:postag=APPR
4 NONE

Table 1: A four rule decision list for adjacent word
dependencies in German

The average training instance for the depen-
dency problem has over 40 attributes describing the
two candidate words including suffixes of different
lengths, parts of speech and information on neigh-
boring words. Most of this information may be re-
dundant or irrelevant to the problem at hand. The
number of distinct attribute values is on the order
of the number of distinct word-forms in the train-
ing set. GPA was picked for this problem because
it has proven to be fairly efficient and robust in the
presence of irrelevant or redundant attributes in pre-
vious work such as morphological disambiguation
in Turkish (Yuret and Ture, 2006) and protein sec-
ondary structure prediction (Kurt, 2005).

3 Dependency of Adjacent Words

We start by looking at adjacent words and try to pre-
dict whether they are linked, and if they are, what
type of link they have. This is a nice subproblem to
study because: (i) It is easily converted to a standard
machine learning problem, thus amenable to com-
mon machine learning techniques and analysis, (ii)
It demonstrates the differences between languages
and the impact of various attributes. The machine
learning algorithm used was GPA (See Section 2)
which builds decision lists.

Table 2 shows the percentage of adjacent tokens
that are linked in the training sets for the languages
studied1 . Most languages have approximately half
of the adjacent words linked. German, with 42.15%
is at the low end whereas Arabic and Turkish with
above 60% are at the high end. The differences may
be due to linguistic factors such as the ubiquity of
function words which prefer short distance links, or
it may be an accident of data representation: for ex-
ample each token in the Turkish data represents an
inflectional group, not a whole word.

Arabic 61.02 Japanese 54.81
Chinese 56.59 Portuguese 50.81
Czech 48.73 Slovene 45.62
Danish 55.93 Spanish 51.28
Dutch 55.54 Swedish 48.26
German 42.15 Turkish 62.60

Table 2: Percentage of adjacent tokens linked.

3.1 Attributes
The five attributes provided for each word in the
treebanks were the wordform, the lemma, the
coarse-grained and fine-grained parts of speech, and
a list of syntactic and/or morphological features. In
addition I generated two more attributes for each
word: suffixes of up to n characters (indicated
by suffix[n]), and character type information, i.e.
whether the word contains any punctuation charac-
ters, upper case letters, digits, etc.

Two questions to be answered empirically are: (i)
How much context to include in the description of
each instance, and (ii) Which attributes to use for
each language.

1Including non-scoring tokens
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Table 3 shows the impact of using varying
amounts of context in Spanish. I used approximately
10,000 instances for training and 10,000 instances
for testing. Only the postag feature is used for
each word in this experiment. As an example, con-
sider the word sequence w1 . . . wiwi+1 . . . wn, and
the two words to be linked are wi and wi+1. Con-
text=0 means only information about wi and wi+1

is included, context=1 means we also include wi−1

and wi+2, etc. The table also includes the number
of rules in each decision list. The results are typical
of the experiments performed with other languages
and other attribute combinations: there is a statisti-
cally significant improvement going from context=0
to context=1. Increasing the context size further
does not have a significant effect.

Context Rules Accuracy
0 161 83.17
1 254 87.31
2 264 87.05
3 137 87.14

Table 3: Context size vs. accuracy in Spanish.

A number of experiments were run to determine
the best attribute combinations for each language.
Table 4 gives a set of results for single attributes in
Spanish. These results are based on 10,000 training
instances and all experiments use context=1. Postag
was naturally the most informative single attribute
on all languages tested, however the second best
or the best combination varied between languages.
Suffix[3] indicates all suffixes up to three characters
in length. The FEATS column was split into its con-
stituent features each of which was treated as a bi-
nary attribute.

Attributes Rules Accuracy
postag 254 87.31
cpostag 154 85.72
suffix[3] 328 77.15
lemma 394 76.78
form 621 75.06
feats 66 71.95
ctype 47 53.40

Table 4: Attributes vs. accuracy in Spanish.

There are various reasons for performing at-
tribute selection. Intuitively, including more infor-
mation should be good, so why not use all the at-
tributes? First, not every machine learning algo-
rithm is equally tolerant of redundant or irrelevant
attributes. Naive Bayes gets 81.54% and C4.5 gets
86.32% on the Spanish data with the single postag
attribute using context=1. One reason I chose GPA
was its relative tolerance to redundant or irrelevant
attributes. However, no matter how robust the algo-
rithm, the lack of sufficient training data will pose a
problem: it becomes difficult to distinguish informa-
tive attributes from non-informative ones if the data
is sparse. About half of the languages in this study
had less than 100,000 words of training data. Fi-
nally, studying the contribution of each attribute type
in each language is an interesting research topic in
its own right. The next section will present the best
attribute combinations and the resulting accuracy for
each language.

3.2 Results

Language Attributes Accuracy
Arabic ALL 76.87
Chinese postag, cpostag 84.51
Czech postag, lemma 79.25
Danish postag, form 86.96
Dutch postag, feats 85.36
German postag, form 87.97
Japanese postag, suffix[2] 95.56
Portuguese postag, lemma 90.18
Slovene ALL 85.19
Spanish postag, lemma 89.01
Swedish postag, form 83.20
Turkish ALL 85.27

Table 5: Adjacent word link accuracy.

Table 5 gives the best attribute combinations for
determining adjacent word links for each language
studied. The attribute combinations and the corre-
sponding models were determined using the training
sets, and the accuracy reported is on the test sets.
These attribute combinations were used as part of
the model in the final evaluation. I used context=1
for all the models. Because of time limitations at-
tribute combinations with more than two attributes

248



could not be tested and only the first 100,000 train-
ing instances were used. Exceptions are indicated
with “ALL”, where all attributes were used in the
model – these are cases where using all the attributes
outperformed other subsets tried.

For most languages, the adjacent word link accu-
racy is in the 85-90% range. The outliers are Ara-
bic and Czech at the lower end, and Japanese at the
higher end. It is difficult to pinpoint the exact rea-
sons: Japanese has the smallest set of link types,
and Arabic has the greatest percentage of adjacent
word links. Some of the differences between the
languages come from linguistic origins, but many
are due to the idiosyncrasies of our particular data
set: number of parts of speech, types of links, qual-
ity of the treebank, amount of data are all arbitrary
factors that effect the results. One observation is that
the ranking of the languages in Table 5 according to
performance is close to the ranking of the best re-
sults in the CoNLL shared task – the task of linking
adjacent words via machine learning seems to be a
good indicator of the difficulty of the full parsing
problem.

4 Long Distance Dependencies

Roughly half of the dependency links are between
non-adjacent words in a sentence. To illustrate how
we can extend the previous section’s approach to
long distance links, consider the phrase “kick the
red ball”. The adjacent word linker can only find
the red-ball link even if it is 100% accurate. How-
ever once that link has been correctly identified, we
can drop the modifier “red” and do a second pass
with the words “kick the ball”. This will identify the
link the-ball, and dropping the modifier again leaves
us with “kick ball”. Thus, doing three passes over
this word sequence will bring all linked words into
contact and allow us to use our adjacent word linker.
Table 6 gives the percentage of the links discovered
in each pass by a perfect model in Spanish.

Pass: 1 2 3 4 5
Link%: 51.09 23.56 10.45 5.99 3.65

Table 6: Spanish links discovered in multiple passes.

We need to elaborate a bit on the operation of
“dropping the modifiers” that lead from one pass to

the next. After the discovery of the red-ball link
in the above example, it is true that “red” can no
longer link with any other words to the right (it can-
not cross its own head), but it can certainly link with
the words to the left. To be safe, in the next pass
we should consider both the-red and the-ball as can-
didate links. In the actual implementation, given a
partial linkage, all “potentially adjacent” word pairs
that do not create cycles or link crossings were con-
sidered as candidate pairs for the next pass.

There are significant differences between the first
pass and the second pass. Some word pairs will
rarely be seen in contact during the first pass (e.g.
“kick ball”). Maybe more importantly, we will
have additional “syntactic” context during the sec-
ond pass, i.e. information about the modifiers dis-
covered in the first pass. All this argues for building
a separate model for the second pass, and maybe for
further passes as well.

In the actual implementation, models for three
passes were built for each language. To create the
training data for the n’th pass, all the links that can
be discovered with (n-1) passes are taken as given,
and all word pairs that are “potentially adjacent”
given this partial linkage are used as training in-
stances. To describe each training instance, I used
the attributes of the two candidate words, their sur-
face neighbors (i.e. the words they are adjacent to
in the actual sentence), and their syntactic neighbors
(i.e. the words they have linked with so far).

To parse a sentence the three passes were run se-
quentially, with the whole sequence repeated twice2.
Each pass adds new links to the existing partial link-
age, but does not remove any existing links. Table 7
gives the labeled and unlabeled attachment score for
the test set of each language using this scheme.

5 Conclusion

I used standard machine learning techniques to in-
vestigate the lower bound accuracy and the impact
of various attributes on the subproblem of identify-
ing dependency links between adjacent words. The
technique was then extended to identify long dis-
tance dependencies and used as a parser. The model
gives average results for Turkish and Japanese but

2This counterintuitive procedure was used because it gave
the best results on the training set.
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Language LAS UAS
Arabic 52.42 68.82
Chinese 72.72 78.37
Czech 51.86 66.36
Danish 71.56 78.16
Dutch 62.75 66.17
German 63.82 67.71
Japanese 84.35 87.31
Portuguese 70.35 79.46
Slovene 55.06 70.60
Spanish 69.63 73.89
Swedish 65.23 73.25
Turkish 60.31 71.54

Table 7: Labeled and unlabeled attachment scores.

generally performs below average. The lack of a
specialized parsing algorithm taking into account
sentence wide constraints and the lack of a prob-
abilistic component in the model are probably to
blame. Nevertheless, the particular decomposition
of the problem and the simplicity of the resulting
models provide some insight into the difficulties as-
sociated with individual languages.
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2004. Prague Arabic dependency treebank: Develop-
ment in data and tools. In Proc. of the NEMLAR In-
tern. Conf. on Arabic Language Resources and Tools,
pages 110–117.

Y. Kawata and J. Bartels. 2000. Stylebook for the
Japanese treebank in VERBMOBIL. Verbmobil-
Report 240, Seminar für Sprachwissenschaft, Univer-
sität Tübingen.
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