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Abstract

We propose a simple solution to the se-

quence labeling problem based on an ex-

tension of weighted decomposition ker-

nels. We additionally introduce a multi-

instance kernel approach for representing

lexical word sense information. These

new ideas have been preliminarily tested

on named entity recognition and PP at-

tachment disambiguation. We finally sug-

gest how these techniques could be poten-

tially merged using a declarative formal-

ism that may provide a basis for the inte-

gration of multiple sources of information

when using kernel-based learning in NLP.

1 Introduction

Many tasks related to the analysis of natural lan-

guage are best solved today by machine learning

and other data driven approaches. In particular,

several subproblems related to information extrac-

tion can be formulated in the supervised learning

framework, where statistical learning has rapidly

become one of the preferred methods of choice.

A common characteristic of many NLP problems

is the relational and structured nature of the rep-

resentations that describe data and that are inter-

nally used by various algorithms. Hence, in or-

der to develop effective learning algorithms, it is

necessary to cope with the inherent structure that

characterize linguistic entities. Kernel methods

(see e.g. Shawe-Taylor and Cristianini, 2004) are

well suited to handle learning tasks in structured

domains as the statistical side of a learning algo-

rithm can be naturally decoupled from any rep-

resentational details that are handled by the ker-

nel function. As a matter of facts, kernel-based

statistical learning has gained substantial impor-

tance in the NLP field. Applications are numerous

and diverse and include for example refinement

of statistical parsers (Collins and Duffy, 2002),

tagging named entities (Cumby and Roth, 2003;

Tsochantaridis et al., 2004), syntactic chunking

(Daumé III and Marcu, 2005), extraction of rela-

tions between entities (Zelenko et al., 2003; Cu-

lotta and Sorensen, 2004), semantic role label-

ing (Moschitti, 2004). The literature is rich with

examples of kernels on discrete data structures

such as sequences (Lodhi et al., 2002; Leslie et

al., 2002; Cortes et al., 2004), trees (Collins and

Duffy, 2002; Kashima and Koyanagi, 2002), and

annotated graphs (Gärtner, 2003; Smola and Kon-

dor, 2003; Kashima et al., 2003; Horváth et al.,

2004). Kernels of this kind can be almost in-

variably described as special cases of convolu-

tion and other decomposition kernels (Haussler,

1999). Thanks to its generality, decomposition

is an attractive and flexible approach for defining

the similarity between structured objects starting

from the similarity between smaller parts. How-

ever, excessively large feature spaces may result

from the combinatorial growth of the number of

distinct subparts with their size. When too many

dimensions in the feature space are irrelevant, the

Gram matrix will be nearly diagonal (Schölkopf

et al., 2002), adversely affecting generalization in

spite of using large margin classifiers (Ben-David

et al., 2002). Possible cures include extensive use

of prior knowledge to guide the choice of rele-

vant parts (Cumby and Roth, 2003; Frasconi et al.,

2004), the use of feature selection (Suzuki et al.,

2004), and soft matches (Saunders et al., 2002). In

(Menchetti et al., 2005) we have shown that better

generalization can indeed be achieved by avoid-

ing hard comparisons between large parts. In a
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weighted decomposition kernel (WDK) only small

parts are matched, whereas the importance of the

match is determined by comparing the sufficient

statistics of elementary probabilistic models fit-

ted on larger contextual substructures. Here we

introduce a position-dependent version of WDK

that can solve sequence labeling problems without

searching the output space, as required by other re-

cently proposed kernel-based solutions (Tsochan-

taridis et al., 2004; Daumé III and Marcu, 2005).

The paper is organized as follows. In the next

two sections we briefly review decomposition ker-

nels and its weighted variant. In Section 4 we in-

troduce a version of WDK for solving supervised

sequence labeling tasks and report a preliminary

evaluation on a named entity recognition problem.

In Section 5 we suggest a novel multi-instance ap-

proach for representing WordNet information and

present an application to the PP attachment am-

biguity resolution problem. In Section 6 we dis-

cuss how these ideas could be merged using a

declarative formalism in order to integrate mul-

tiple sources of information when using kernel-

based learning in NLP.

2 Decomposition Kernels

An R-decomposition structure (Haussler, 1999;

Shawe-Taylor and Cristianini, 2004) on a set X is

a triple R = 〈 ~X , R,~k〉 where ~X = (X1, . . . ,XD)
is a D–tuple of non–empty subsets of X , R is

a finite relation on X1 × · · · × XD × X , and
~k = (k1, . . . , kD) is a D–tuple of positive defi-

nite kernel functions kd : Xd × Xd 7→ IR. R(~x, x)
is true iff ~x is a tuple of “parts” for x — i.e. ~x

is a decomposition of x. Note that this defini-

tion of “parts” is very general and does not re-

quire the parthood relation to obey any specific

mereological axioms, such as those that will be

introduced in Section 6. For any x ∈ X , let

R−1(x) = {(x1, . . . , xD) ∈ ~X : R(~x, x)} de-

note the multiset of all possible decompositions1

of x. A decomposition kernel is then defined as

the multiset kernel between the decompositions:

KR(x, x′) =
∑

~x ∈ R−1(x)

~x′
∈ R−1(x′)

D
∏

d=1

κd(xd, x
′
d) (1)

1Decomposition examples in the string domain include
taking all the contiguous fixed-length substrings or all the
possible ways of dividing a string into two contiguous sub-
strings.

where, as an alternative way of combining the ker-

nels, we can use the product instead of a summa-

tion: intuitively this increases the feature space di-

mension and makes the similarity measure more

selective. Since decomposition kernels form a

rather vast class, the relation R needs to be care-

fully tuned to different applications in order to

characterize a suitable kernel. As discussed in

the Introduction, however, taking all possible sub-

parts into account may lead to poor predictivity be-

cause of the combinatorial explosion of the feature

space.

3 Weighted Decomposition Kernels

A weighted decomposition kernel (WDK) is char-

acterized by the following decomposition struc-

ture:

R = 〈 ~X , R, (δ, κ1, . . . , κD)〉

where ~X = (S, Z1, . . . , ZD), R(s, z1, . . . , zD, x)
is true iff s ∈ S is a subpart of x called the selector

and ~z = (z1, . . . , zD) ∈ Z1×· · ·×ZD is a tuple of

subparts of x called the contexts of s in x. Precise

definitions of s and ~z are domain-dependent. For

example in (Menchetti et al., 2005) we present two

formulations, one for comparing whole sequences

(where both the selector and the context are subse-

quences), and one for comparing attributed graphs

(where the selector is a single vertex and the con-

text is the subgraph reachable from the selector

within a short path). The definition is completed

by introducing a kernel on selectors and a kernel

on contexts. The former can be chosen to be the

exact matching kernel, δ, on S × S, defined as

δ(s, s′) = 1 if s = s′ and δ(s, s′) = 0 otherwise.

The latter, κd, is a kernel on Zd × Zd and pro-

vides a soft similarity measure based on attribute

frequencies. Several options are available for con-

text kernels, including the discrete version of prob-

ability product kernels (PPK) (Jebara et al., 2004)

and histogram intersection kernels (HIK) (Odone

et al., 2005). Assuming there are n categorical

attributes, each taking on mi distinct values, the

context kernel can be defined as:

κd(z, z′) =
n

∑

i=1

ki(z, z′) (2)

where ki is a kernel on the i-th attribute. Denote by

pi(j) the observed frequency of value j in z. Then
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ki can be defined as a HIK or a PPK respectively:

ki(z, z′) =

mi
∑

j=1

min{pi(j), p
′
i(j)} (3)

ki(z, z′) =

mi
∑

j=1

√

pi(j) · p′i(j) (4)

This setting results in the following general form

of the kernel:

K(x, x′) =
∑

(s, ~z) ∈ R−1(x)

(s′, ~z′) ∈ R−1(x′)

δ(s, s′)
D

∑

d=1

κd(zd, z
′
d) (5)

where we can replace the summation of kernels
with

∏D
d=1

1 + κd(zd, z
′
d).

Compared to kernels that simply count the num-

ber of substructures, the above function weights

different matches between selectors according to

contextual information. The kernel can be after-

wards normalized in [−1, 1] to prevent similarity

to be boosted by the mere size of the structures

being compared.

4 WDK for sequence labeling and

applications to NER

In a sequence labeling task we want to map input

sequences to output sequences, or, more precisely,

we want to map each element of an input sequence

that takes label from a source alphabet to an ele-

ment with label in a destination alphabet.

Here we cast the sequence labeling task into

position specific classification, where different se-

quence positions give independent examples. This

is different from previous approaches in the lit-

erature where the sequence labeling problem is

solved by searching in the output space (Tsochan-

taridis et al., 2004; Daumé III and Marcu, 2005).

Although the method lacks the potential for col-

lectively labeling all positions simultaneously, it

results in a much more efficient algorithm.

In the remainder of the section we introduce

a specialized version of the weighted decompo-

sition kernel suitable for a sequence transduction

task originating in the natural language process-

ing domain: the named entity recognition (NER)

problem, where we map sentences to sequences of

a reduced number of named entities (see Sec.4.1).

More formally, given a finite dictionary Σ of

words and an input sentence x ∈ Σ∗, our input ob-

jects are pairs of sentences and indices r = (x, t)

Figure 1: Sentence decomposition.

where r ∈ Σ∗ × IN. Given a sentence x, two in-

tegers b ≥ 1 and b ≤ e ≤ |x|, let x[b] denote the

word at position b and x[b..e] the sub-sequence of

x spanning positions from b to e. Finally we will

denote by ξ(x[b]) a word attribute such as a mor-

phological trait (is a number or has capital initial,

see 4.1) for the word in sentence x at position b.

We introduce two versions of WDK: one with

four context types (D = 4) and one with in-

creased contextual information (D = 6) (see

Eq. 5). The relation R depends on two integers

t and i ∈ {1, . . . , |x|}, where t indicates the po-

sition of the word we want to classify and i the

position of a generic word in the sentence. The

relation for the first kernel version is defined as:

R = {(s, zLL, zLR, zRL, zRR, r)} such that the

selector s = x[i] is the word at position i, the zLL

(LeftLeft) part is a sequence defined as x[1..i] if

i < t or the null sequence ε otherwise and the

zLR (LeftRight) part is the sequence x[i + 1..t] if

i < t or ε otherwise. Informally, zLL is the initial

portion of the sentence up to word of position i,

and zLR is the portion of the sentence from word

at position i + 1 up to t (see Fig. 1). Note that

when we are dealing with a word that lies to the

left of the target word t, its zRL and zRR parts are

empty. Symmetrical definitions hold for zRL and

zRR when i > t. We define the weighted decom-

position kernel for sequences as

K(r, r′)=

|x|
∑

t=1

|x′|
∑

t′=1

δξ(s, s
′)

∑

d∈{LL,LR,RL,RR}

κ(zd, z
′
d) (6)

where δξ(s, s
′) = 1 if ξ(s) = ξ(s′) and 0 oth-

erwise (that is δξ checks whether the two selector

words have the same morphological trait) and κ

is Eq. 2 with only one attribute which then boils

down to Eq. 3 or Eq. 4, that is a kernel over the his-

togram for word occurrences over a specific part.

Intuitively, when applied to word sequences,

this kernel considers separately words to the left

19



of the entry we want to transduce and those to

its right. The kernel computes the similarity for

each sub-sequence by matching the corresponding

bag of enriched words: each word is matched only

with words that have the same trait as extracted by

ξ and the match is then weighted proportionally to

the frequency count of identical words preceding

and following it.

The kernel version with D=6 adds two parts

called zLO (LeftOther) and zRO (RightOther) de-

fined as x[t+1..|r|] and x[1..t] respectively; these

represent the remaining sequence parts so that x =
zLL ◦ zLR ◦ zLO and x = zRL ◦ zRR ◦ zRO.

Note that the WDK transforms the sentence

in a bag of enriched words computed in a pre-

processing phase thus achieving a significant re-

duction in computational complexity (compared to

the recursive procedure in (Lodhi et al., 2002)).

4.1 Named Entity Recognition Experimental

Results

Named entities are phrases that contain the names

of persons, organizations, locations, times and

quantities. For example in the following sentence:

[PER Wolff ] , currently a journalist in [LOC

Argentina ] , played with [PER Del Bosque ] in the

final years of the seventies in [ORG Real Madrid].

we are interested in predicting that Wolff and Del

Bosque are people’s names, that Argentina is a

name of a location and that Real Madrid is a name

of an organization.

The chosen dataset is provided by the shared

task of CoNLL–2002 (Saunders et al., 2002)

which concerns language–independent named en-

tity recognition. There are four types of phrases:

person names (PER), organizations (ORG), loca-

tions (LOC) and miscellaneous names (MISC),

combined with two tags, B to denote the first item

of a phrase and I for any non–initial word; all other

phrases are classified as (OTHER). Of the two

available languages (Spanish and Dutch), we run

experiments only on the Spanish dataset which is a

collection of news wire articles made available by

the Spanish EFE News Agency. We select a sub-

set of 300 sentences for training and we evaluate

the performance on test set. For each category, we

evaluate the Fβ=1 measure of 4 versions of WDK:

word histograms are matched using HIK (Eq. 3)

and the kernels on various parts (zLL, zLR,etc) are

combined with a summation SUMHIK or product

PROHIK; alternatively the histograms are com-

Table 1: NER experiment D=4

CLASS SUMHIS PROHIS SUMPRO PROPRO

B-LOC 74.33 68.68 72.12 66.47
I-LOC 58.18 52.76 59.24 52.62
B-MISC 52.77 43.31 46.86 39.00
I-MISC 79.98 80.15 77.85 79.65
B-ORG 69.00 66.87 68.42 67.52
I-ORG 76.25 75.30 75.12 74.76
B-PER 60.11 56.60 59.33 54.80
I-PER 65.71 63.39 65.67 60.98

MICRO Fβ=1 69.28 66.33 68.03 65.30

Table 2: NER experiment with D=6

CLASS SUMHIS PROHIS SUMPRO PROPRO

B-LOC 74.81 73.30 73.65 73.69
I-LOC 57.28 58.87 57.76 59.44
B-MISC 56.54 64.11 57.72 62.11
I-MISC 78.74 84.23 79.27 83.04
B-ORG 70.80 73.02 70.48 73.10
I-ORG 76.17 78.70 74.26 77.51
B-PER 66.25 66.84 66.04 67.46
I-PER 68.06 71.81 69.55 69.55

MICRO Fβ=1 70.69 72.90 70.32 72.38

bined with a PPK (Eq. 4) obtaining SUMPPK,

PROPPK.

The word attribute considered for the selector

is a word morphologic trait that classifies a word

in one of five possible categories: normal word,

number, all capital letters, only capital initial and

contains non alphabetic characters, while the con-

text histograms are computed counting the exact

word frequencies.

Results reported in Tab. 1 and Tab. 2 show that

performance is mildly affected by the different

choices on how to combine information on the var-

ious contexts, though it seems clear that increasing

contextual information has a positive influence.

Note that interesting preliminary results can be

obtained even without the use of any refined lan-

guage knowledge, such as part of speech tagging

or shallow/deep parsing.

5 Kernels for word semantic ambiguity

Parsing a natural language sentence often involves

the choice between different syntax structures that

are equally admissible in the given grammar. One

of the most studied ambiguity arise when deciding

between attaching a prepositional phrase either to

the noun phrase or to the verb phrase. An example

could be:

1. eat salad with forks (attach to verb)

2. eat salad with tomatoes (attach to noun)
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The resolution of such ambiguities is usually per-

formed by the human reader using its past expe-

riences and the knowledge of the words mean-

ing. Machine learning can simulate human experi-

ence by using corpora of disambiguated phrases to

compute a decision on new cases. However, given

the number of different words that are currently

used in texts, there would never be a sufficient

dataset from which to learn. Adding semantic in-

formation on the possible word meanings would

permit the learning of rules that apply to entire cat-

egories and can be generalized to all the member

words.

5.1 Adding Semantic with WordNet

WordNet (Fellbaum, 1998) is an electronic lexi-

cal database of English words built and annotated

by linguistic researchers. WordNet is an exten-

sive and reliable source of semantic information

that can be used to enrich the representation of a

word. Each word is represented in the database by

a group of synonym sets (synset), with each synset

corresponding to an individual linguistic concept.

All the synsets contained in WordNet are linked by

relations of various types. An important relation

connects a synset to its hypernyms, that are its im-

mediately broader concepts. The hypernym (and

its opposite hyponym) relation defines a semantic

hierarchy of synsets that can be represented as a

directed acyclic graph. The different lexical cat-

egories (verbs, nouns, adjectives and adverbs) are

contained in distinct hierarchies and each one is

rooted by many synsets.

Several metrics have been devised to compute

a similarity score between two words using Word-

Net. In the following we resort to a multiset ver-

sion of the proximity measure used in (Siolas and

d’Alche Buc, 2000), though more refined alterna-

tives are also possible (for example using the con-

ceptual density as in (Basili et al., 2005)). Given

the acyclic nature of the semantic hierarchies, each

synset can be represented by a group of paths that

follows the hypernym relations and finish in one of

the top level concepts. Two paths can then be com-

pared by counting how many steps from the roots

they have in common. This number must then be

normalized dividing by the square root of the prod-

uct between the path lengths. In this way one can

accounts for the unbalancing that arise from dif-

ferent parts of the hierarchies being differently de-

tailed. Given two paths π and π′, let l and l′ be

their lengths and n be the size of their common

part, the resulting kernel is:

k(π, π′) =
n√
l · l′

(7)

The demonstration that k is positive definite arise

from the fact that n can be computed as a posi-

tive kernel k∗ by summing the exact match ker-

nels between the corresponding positions in π and

π′ seen as sequences of synset identifiers. The

lengths l and l′ can then be evaluated as k∗(π, π)
and k∗(π′, π′) and k is the resulting normalized

version of k∗.

The kernel between two synsets σ and σ′ can

then be computed by the multi-set kernel (Gärtner

et al., 2002a) between their corresponding paths.

Synsets are organized into forty-five lexicogra-

pher files based on syntactic category and logical

groupings. Additional information can be derived

by comparing the identifiers λ and λ′ of these file

associated to σ and σ′. The resulting synset kernel

is:

κσ(σ, σ′) = δ(λ, λ′) +
∑

π∈Π

∑

π′∈Π′

k(π, π′) (8)

where Π is the set of paths originating from σ and

the exact match kernel δ(λ, λ′) is 1 if λ ≡ λ′ and

0 otherwise. Finally, the kernel κω between two

words is itself a multi-set kernel between the cor-

responding sets of synsets:

κω(ω, ω′) =
∑

σ∈Σ

∑

σ′∈Σ′

κσ(σ, σ′) (9)

where Σ are the synsets associated to the word ω.

5.2 PP Attachment Experimental Results

The experiments have been performed using the

Wall-Street Journal dataset described in (Ratna-

parkhi et al., 1994). This dataset contains 20, 800
training examples and 3, 097 testing examples.

Each phrase x in the dataset is reduced to a verb

xv, its object noun xn1
and prepositional phrase

formed by a preposition xp and a noun xn2
. The

target is either V or N whether the phrase is at-

tached to the verb or the noun. Data have been pre-

processed by assigning to all the words their cor-

responding synsets. Additional meanings derived

from specific synsets have been attached to the

words as described in (Stetina and Nagao, 1997).

The kernel between two phrases x and x′ is then

computed by combining the kernels between sin-

gle words using either the sum or the product.
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Method Acc Pre Rec

S 84.6% ± 0.65% 90.8% 82.2%

P 84.8% ± 0.65% 92.2% 81.0%

SW 85.4% ± 0.64% 90.9% 83.6%

SWL 85.3% ± 0.64% 91.1% 83.2%

PW 85.9% ± 0.63% 92.2% 83.1%

PWL 86.2% ± 0.62% 92.1% 83.7%

Table 3: Summary of the experimental results on

the PP attachment problem for various kernel pa-

rameters.

Results of the experiments are reported in Tab. 3

for various kernels parameters: S or P denote if

the sum or product of the kernels between words

are used, W denotes that WordNet semantic infor-

mation is added (otherwise the kernel between two

words is just the exact match kernel) and L denotes

that lexicographer files identifiers are used. An ad-

ditional gaussian kernel is used on top of Kpp. The

C and γ parameters are selected using an inde-

pendent validation set. For each setting, accuracy,

precision and recall values on the test data are re-

ported, along with the standard deviation of the es-

timated binomial distribution of errors. The results

demonstrate that semantic information can help in

resolving PP ambiguities. A small difference ex-

ists between taking the product instead of the sum

of word kernels, and an additional increase in the

amount of information available to the learner is

given by the use of lexicographer files identifiers.

6 Using declarative knowledge for NLP

kernel integration

Data objects in NLP often require complex repre-

sentations; suffice it to say that a sentence is nat-

urally represented as a variable length sequence

of word tokens and that shallow/deep parsers are

reliably used to enrich these representations with

links between words to form parse trees. Finally,

additional complexity can be introduced by in-

cluding semantic information. Various facets of

this richness of representations have been exten-

sively investigated, including the expressiveness

of various grammar formalisms, the exploitation

of lexical representation (e.g. verb subcategoriza-

tion, semantic tagging), and the use of machine

readable sources of generic or specialized knowl-

edge (dictionaries, thesauri, domain specific on-

tologies). All these efforts are capable to address

language specific sub-problems but their integra-

tion into a coherent framework is a difficult feat.

Recent ideas for constructing kernel functions

starting from logical representations may offer an

appealing solution. Gärtner et al. (2002) have pro-

posed a framework for defining kernels on higher-

order logic individuals. Cumby and Roth (2003)

used description logics to represent knowledge

jointly with propositionalization for defining a ker-

nel function. Frasconi et al. (2004) proposed

kernels for handling supervised learning in a set-

ting similar to that of inductive logic programming

where data is represented as a collection of facts

and background knowledge by a declarative pro-

gram in first-order logic. In this section, we briefly

review this approach and suggest a possible way of

exploiting it for the integration of different sources

of knowledge that may be available in NLP.

6.1 Declarative Kernels

The definition of decomposition kernels as re-

ported in Section 2 is very general and covers al-

most all kernels for discrete structured data de-

veloped in the literature so far. Different kernels

are designed by defining the relation decompos-

ing an example into its “parts”, and specifying

kernels for individual parts. In (Frasconi et al.,

2004) we proposed a systematic approach to such

design, consisting in formally defining a relation

by the set of axioms it must satisfy. We relied

on mereotopology (Varzi, 1996) (i.e. the theory

of parts and places) in order to give a formal def-

inition of the intuitive concepts of parthood and

connection. The formalization of mereotopolog-

ical relations allows to automatically deduce in-

stances of such relations on the data, by exploit-

ing the background knowledge which is typically

available on structured domains. In (Frasconi et

al., 2004) we introduced declarative kernels (DK)

as a set of kernels working on mereotopological

relations, such as that of proper parthood (≺P) or

more complex relations based on connected parts.

A typed syntax for objects was introduced in order

to provide additional flexibility in defining kernels

on instances of the given relation. A basic kernel

on parts KP was defined as follows:

KP (x, x′)=
∑

s≺P x

s′
≺P x′

δT (s, s′)
(

κ(s, s′)+KP (s, s′)
)

(10)

where δT matches objects of the same type and κ

is a kernel over object attributes.
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Declarative kernels were tested in (Frasconi et

al., 2004) on a number of domains with promising

results, including a biomedical information extrac-

tion task (Goadrich et al., 2004) aimed at detecting

protein-localization relationships within Medline

abstracts. A DK on parts as the one defined in

Eq. (10) outperformed state-of-the-art ILP-based

systems Aleph and Gleaner (Goadrich et al., 2004)

in such information extraction task, and required

about three orders of magnitude less training time.

6.2 Weighted Decomposition Declarative

Kernels

Declarative kernels can be combined with WDK

in a rather straightforward way, thus taking the ad-

vantages of both methods. A simple approach is

that of using proper parthood in place of selec-

tors, and topology to recover the context of each

proper part. A weighted decomposition declara-

tive kernel (WD2K) of this kind would be defined

as in Eq. (10) simply adding to the attribute ker-

nel κ a context kernel that compares the surround-

ing of a pair of objects—as defined by the topol-

ogy relation—using some aggregate kernel such as

PPK or HIK (see Section 3). Note that such defini-

tion extends WDK by adding recursion to the con-

cept of comparison by selector, and DK by adding

contexts to the kernel between parts. Multiple con-

texts can be easily introduced by employing differ-

ent notions of topology, provided they are consis-

tent with mereotopological axioms. As an exam-

ple, if objects are words in a textual document, we

can define l-connection as the relation for which

two words are l-connected if there are consequen-

tial within the text with at most l words in be-

tween, and obtain growingly large contexts by in-

creasing l. Moreover, an extended representation

of words, as the one employing WordNet semantic

information, could be easily plugged in by includ-

ing a kernel for synsets such as that in Section 5.1

into the kernel κ on word attributes. Additional

relations could be easily formalized in order to ex-

ploit specific linguisitc knowledge: a causal rela-

tion would allow to distinguish between preceding

and following context so to take into consideration

word order; an underlap relation, associating two

objects being parts of the same super-object (i.e.

pre-terminals dominated by the same non-terminal

node), would be able to express commanding no-

tions.

The promising results obtained with declarative

kernels (where only very simple lexical informa-

tion was used) together with the declarative ease

to integrate arbitrary kernels on specific parts are

all encouraging signs that boost our confidence in

this line of research.
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