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Abstract

In this paper, we extend an existing statis-

tical parsing model to produce richer out-

put parse trees, annotated with PropBank

semantic role labels. Our results show

that the model can be robustly extended to

produce more complex output parse trees

without any loss in performance and sug-

gest that joint inference of syntactic and

semantic representations is a viable alter-

native to approaches based on a pipeline

of local processing steps.

1 Introduction

Recent successes in statistical syntactic parsing

based on supervised learning techniques trained

on a large corpus of syntactic trees (Collins, 1999;

Charniak, 2000; Henderson, 2003) have brought

forth the hope that the same approaches could be

applied to the more ambitious goal of recover-

ing the propositional content and the frame se-

mantics of a sentence. Moving towards a shal-

low semantic level of representation is a first ini-

tial step towards the distant goal of natural lan-

guage understanding and has immediate applica-

tions in question-answering and information ex-

traction. For example, an automatic flight reserva-

tion system processing the sentence I want to book

a flight from Geneva to Trento will need to know

that from Geneva denotes the origin of the flight

and to Trento denotes its destination. Knowing

that these two phrases are prepositional phrases,

the information provided by a syntactic parser, is

only moderately useful.

The growing interest in learning deeper infor-

mation is to a large extent supported and due to

the recent development of semantically annotated

databases such as FrameNet (Baker et al., 1998)

or the Proposition Bank (Palmer et al., 2005), that

can be used as training resources for a number of

supervised learning paradigms. We focus here on

the Proposition Bank (PropBank). PropBank en-

codes propositional information by adding a layer

of argument structure annotation to the syntactic

structures of the Penn Treebank (Marcus et al.,

1993). Verbal predicates in the Penn Treebank

(PTB) receive a label REL and their arguments

are annotated with abstract semantic role labels

A0-A5 or AA for those complements of the pred-

icative verb that are considered arguments while

those complements of the verb labelled with a se-

mantic functional label in the original PTB receive

the composite semantic role label AM-X , where

X stands for labels such as LOC, TMP or ADV,

for locative, temporal and adverbial modifiers re-

spectively. A tree structure with PropBank labels

for a sentence from the PTB (section 00) is shown

in Figure 1 below. PropBank uses two levels of

granularity in its annotation, at least conceptually.

Arguments receiving labels A0-A5 or AA do not

express consistent semantic roles and are specific

to a verb, while arguments receiving an AM-X la-

bel are supposed to be adjuncts and the respective

roles they express are consistent across all verbs.1

Recent approaches to learning semantic role la-

bels are based on two-stage architectures. The first

stage selects the elements to be labelled, while the

second determines the labels to be assigned to the

selected elements. While some of these models

are based on full parse trees (Gildea and Jurafsky,

2002; Gildea and Palmer, 2002), other methods

have been proposed that eschew the need for a full

1There are thirteen semantic role labels for modifiers. See
(Palmer et al., 2005) for a detailed discussion of PropBank
semantic roles labels.
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Figure 1: A sample syntactic structure from the PropBank with semantic role annotations.

parse (CoNNL, 2004; CoNLL, 2005). Because of

the way the problem has been formulated – as a

pipeline of parsing (or chunking) feeding into la-

belling – specific investigations of integrated ap-

proaches that solve both the parsing and the se-

mantic role labelling problems at the same time

have not been studied.

We present work to test the hypothesis that a

current statistical parser (Henderson, 2003) can

output richer information robustly, that is with-

out any significant degradation of the parser’s ac-

curacy on the original parsing task, by explicitly

modelling semantic role labels as the interface be-

tween syntax and semantics.

We achieve promising results both on the simple

parsing task, where the accuracy of the parser is

measured on the standard Parseval measures, and

also on the parsing task where the more complex

labels of PropBank are taken into account. We will

call the former task Penn Treebank parsing (PTB

parsing) and the latter task PropBank parsing be-

low.

These results have several consequences. On

the one hand, we show that it is possible to build a

single integrated robust system successfully. This

is a meaningful achievement, as a task combining

semantic role labelling and parsing is more com-

plex than simple syntactic parsing. While the shal-

low semantics of a constituent and its structural

position are often correlated, they sometimes di-

verge. For example, some nominal temporal mod-

ifiers occupy an object position without being ob-

jects, like Tuesday in Figure 1 below. On the other

hand, our results indicate that the proposed mod-

els are robust. To model our task accurately, ad-

ditional parameters must be estimated. However,

given the current limited availability of annotated

treebanks, this more complex task will have to be

solved with the same overall amount of data, ag-

gravating the difficulty of estimating the model’s

parameters due to sparse data. The limited avail-

ability of data is increased further by the high vari-

ability of the argumental labels A0-A5 whose se-

mantics is specific to a given verb or a given verb

sense. Solving this more complex problem suc-

cessfully, then, indicates that the models used are

robust.

Finally, we achieve robustness without simpli-

fying the parsing architecture. Specifically, ro-

bustness is achieved without resorting to the stip-

ulation of strong independence assumptions to

compensate for the limited availability and high

variability of data. Consequently, such an achieve-

ment demonstrates not only that the robustness

of the parsing model, but also its scalability and

portability.

2 The Basic Parsing Architecture

To achieve the complex task of assigning seman-

tic role labels while parsing, we use a family of

statistical parsers, the Simple Synchrony Network

(SSN) parsers (Henderson, 2003), which do not

make any explicit independence assumptions, and

are therefore likely to adapt without much modi-

fication to the current problem. This architecture

has shown state-of-the-art performance.

SSN parsers comprise two components, one

which estimates the parameters of a stochastic

model for syntactic trees, and one which searches

for the most probable syntactic tree given the
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parameter estimates. As with many other sta-

tistical parsers (Collins, 1999; Charniak, 2000),

SSN parsers use a history-based model of parsing.

Events in such a model are derivation moves. The

set of well-formed sequences of derivation moves

in this parser is defined by a Predictive LR push-

down automaton (Nederhof, 1994), which imple-

ments a form of left-corner parsing strategy. The

derivation moves include: projecting a constituent

with a specified label, attaching one constituent

to another, and shifting a tag-word pair onto the

pushdown stack.

Unlike standard history-based models, SSN

parsers do not state any explicit independence as-

sumptions between derivation steps. They use a

neural network architecture, called Simple Syn-

chrony Network (Henderson and Lane, 1998), to

induce a finite history representation of an un-

bounded sequence of moves. The history repre-

sentation of a parse history d1, . . . , di−1, which

we denote h(d1, . . . , di−1), is assigned to the con-

stituent that is on the top of the stack before the ith

move.

The representation h(d1, . . . , di−1) is computed

from a set f of features of the derivation move

di−1 and from a finite set D of recent history rep-

resentations h(d1, . . . , dj), where j < i − 1. Be-

cause the history representation computed for the

move i − 1 is included in the inputs to the com-

putation of the representation for the next move

i, virtually any information about the derivation

history could flow from history representation to

history representation and be used to estimate the

probability of a derivation move. However, the re-

cency preference exhibited by recursively defined

neural networks biases learning towards informa-

tion which flows through fewer history represen-

tations. (Henderson, 2003) exploits this bias by

directly inputting information which is considered

relevant at a given step to the history representa-

tion of the constituent on the top of the stack be-

fore that step. In addition to history representa-

tions, the inputs to h(d1, . . . , di−1) include hand-

crafted features of the derivation history that are

meant to be relevant to the move to be chosen

at step i. For each of the experiments reported

here, the set D that is input to the computation of

the history representation of the derivation moves

d1, . . . , di−1 includes the most recent history rep-

resentation of the following nodes: topi, the node

on top of the pushdown stack before the ith move;

the left-corner ancestor of topi (that is, the second

top-most node on the parser’s stack); the leftmost

child of topi; and the most recent child of topi, if

any. The set of features f includes the last move in

the derivation, the label or tag of topi, the tag-word

pair of the most recently shifted word, and the left-

most tag-word pair that topi dominates. Given the

hidden history representation h(d1, · · · , di−1) of a

derivation, a normalized exponential output func-

tion is computed by SSNs to estimate a probabil-

ity distribution over the possible next derivation

moves di.
2

The second component of SSN parsers, which

searches for the best derivation given the pa-

rameter estimates, implements a severe pruning

strategy. Such pruning handles the high compu-

tational cost of computing probability estimates

with SSNs, and renders the search tractable. The

space of possible derivations is pruned in two dif-

ferent ways. The first pruning occurs immediately

after a tag-word pair has been pushed onto the

stack: only a fixed beam of the 100 best deriva-

tions ending in that tag-word pair are expanded.

For training, the width of such beam is set to five.

A second reduction of the search space prunes

the space of possible project or attach derivation

moves: a best-first search strategy is applied to the

five best alternative decisions only.

The next section describes our model, extended

to produce richer output parse trees annotated with

semantic role labels.

3 Learning Semantic Role Labels

Previous work on learning function labels during

parsing (Merlo and Musillo, 2005; Musillo and

Merlo, 2005) assumed that function labels repre-

sent the interface between lexical semantics and

syntax. We extend this hypothesis to the seman-

tic role labels assigned in PropBank, as they are

an exhaustive extension of function labels, which

have been reorganised in a coherent inventory of

labels and assigned exhaustively to all sentences in

the PTB. Because PropBank is built on the PTB, it

inherits in part its notion of function labels which

is directly integrated into the AM-X role labels.

A0-A5 or AA labels correspond to many of the

unlabelled elements in the PTB and also to those

elements that PTB annotators had classified as re-

2The on-line version of Backpropagation is used to train
SSN parsing models. It performs a gradient descent with
a maximum likelihood objective function and weight decay
regularization (Bishop, 1995).
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Figure 2: A sample syntactic structure with semantic role labels lowered onto the preterminals.

ceiving a syntactic functional label such as SBJ

(subject) or DTV (dative).

Because they are projections of the lexical se-

mantics of the elements in the sentence, semantic

role labels are projected bottom-up, they tend to

appear low in the tree and they are infrequently

found on the higher levels of the parse tree, where

projections of grammatical, as opposed to lexical,

elements usually reside. Because they are the in-

terface level with syntax, semantic labels are also

subject to distributional constraints that govern

syntactic dependencies, such as argument struc-

ture or subcategorization. We attempt to capture

such constraints by modelling the c-command re-

lation. Recall that the c-command relation relates

two nodes in a tree, even if they are not close to

each other, provided that the first node dominat-

ing one node also dominate the other. This notion

of c-command captures both linear and hierarchi-

cal constraints and defines the domain in which

semantic role labelling applies.

While PTB function labels appear to overlap to

a large extent with PropBank semantic rolel labels,

work by (Ye and Baldwin, 2005) on semantic la-

belling prepositional phrases, however, indicates

that the function labels in the Penn Treebank are

assigned more sporadically and heterogeneously

than in PropBank. Apparently only the “easy”

cases have been tagged functionally, because as-

signing these function tags was not the main goal

of the annotation. PropBank instead was anno-

tated exhaustively, taking all cases into account,

annotating multiple roles, coreferences and dis-

continuous constituents. It is therefore not void

of interest to test our hypothesis that, like function

labels, semantic role labels are the interface be-

tween syntax and semantics, and they need to be

recovered by applying constraints that model both

higher level nodes and lower level ones.

We assume that semantic roles are very often

projected by the lexical semantics of the words in

the sentence. We introduce this bottom-up lexical

information by fine-grained modelling of seman-

tic role labels. Extending a technique presented in

(Klein and Manning, 2003) and adopted in (Merlo

and Musillo, 2005; Musillo and Merlo, 2005) for

function labels, we split some part-of-speech tags

into tags marked with semantic role labels. The

semantic role labels attached to a non-terminal di-

rectly projected by a preterminal and belonging to

a few selected categories (DIR, EXT, LOC, MNR,

PNC, CAUS and TMP) were propagated down to

the pre-terminal part-of-speech tag of its head. To

affect only labels that are projections of lexical se-

mantics properties, the propagation takes into ac-

count the distance of the projection from the lex-

ical head to the label, and distances greater than

two are not included. Figure 2 illustrates the result

of this operation.

In our augmented model, inputs to each history

representation are selected according to a linguis-

tically motivated notion of structural locality over

which dependencies such as argument structure or

subcategorization could be specified.

In SSN parsing models, the set D of nodes that

are structurally local to a given node on top of the

stack defines the structural distance between this

given node and other nodes in the tree. Such a no-

tion of distance determines the number of history

representations through which information passes

14
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Figure 3: Flow of information in original SSN parsers (dashed lines), enhanced by biases specific to

semantic role labels to capture the notion of c-command (solid lines).

to flow from the representation of a node i to the

representation of a node j. By adding nodes to

the set D, one can shorten the structural distance

between two nodes and enlarge the locality do-

main over which dependencies can be specified.

To capture a locality domain appropriate for se-

mantic role parsing, we add the most recent child

of topi labelled with a semantic role label to the set

D. These additions yield a model that is sensitive

to regularities in structurally defined sequences

of nodes bearing semantic role labels, within and

across constituents. This modification of the bi-

ases is illustrated in Figure 3.

This figure displays two constituents, S and VP

with some of their respective child nodes. The VP

node is assumed to be on the top of the parser’s

stack, and the S one is supposed to be its left-

corner ancestor. The directed arcs represent the

information that flows from one node to another.

According to the original SSN model in (Hender-

son, 2003), only the information carried over by

the leftmost child and the most recent child of a

constituent directly flows to that constituent. In

the figure above, only the information conveyed

by the nodes α and δ is directly input to the node

S. Similarly, the only bottom-up information di-

rectly input to the VP node is conveyed by the

child nodes ǫ and θ. In the original SSN models,

nodes bearing a function label such as φ1 and φ2

are not directly input to their respective parents.

In our extended model, information conveyed by

φ1 and φ2 directly flows to their respective par-

ents. So the distance between the nodes φ1 and

φ2, which stand in a c-command relation, is short-

ened. For more information on this technique to

capture domains induced by the c-command rela-

tion, see (Musillo and Merlo, 2005).

We report the effects of these augmentations on

parsing results in the experiments described below.

4 Experiments

Our extended semantic role SSN parser was

trained on sections 2-21 and validated on section

24 from the PropBank. Training, validating and

testing data sets consist of the PTB data anno-

tated with PropBank semantic roles labels, as pro-

vided in the CoNLL-2005 shared task (Carreras

and Marquez, 2005).

Our augmented model has a total 613 of non-

terminals to represents both the PTB and Prop-

Bank labels of constituents, instead of the 33 of

the original SSN parser. The 580 newly introduced

labels consist of a standard PTB label followed

by a set of one or more PropBank semantic role

such as PP-AM-TMP or NP-A0-A1. As a result

of lowering the six AM-X semantic role labels,

240 new part-of-speech tags were introduced to

partition the original tag set which consisted of 45

tags. SSN parsers do not tag their input sentences.

To provide the augmented model with tagged in-

put sentences, we trained an SVM tagger whose

features and parameters are described in detail in

(Gimenez and Marquez, 2004). Trained on section

2-21, the tagger reaches a performance of 95.45%

on the test set (section 23) using our new tag set.

As already mentioned, argumental labels A0-A5

are specific to a given verb or a given verb sense,

thus their distribution is highly variable. To re-

duce variability, we add some of the tag-verb pairs

licensing these argumental labels to the vocabu-

15



F R P
PropBank training and PropBank parsing task 82.3 82.1 82.4
PropBank training and PTB parsing task 88.8 88.6 88.9

PTB training and PTB parsing task (Henderson, 2003) 88.6 88.3 88.9

Table 1: Percentage F-measure (F), recall (R), and precision (P) of our SSN parser on two different tasks

and the original SSN parser.

lary of our model. We reach a total of 4970 tag-

word pairs.3 This vocabulary comprises the orig-

inal 512 pairs of the original SSN model, and our

added pairs which must occur at least 10 times in

the training data. Our vocabulary as well as the

new 240 POS tags and the new 580 non-terminal

labels are included in the set f of features input to

the history representations as described in section

2.

We perform two different evaluations on our

model trained on PropBank data. Recall that

we distinguish between two parsing tasks: the

PropBank parsing task and the PTB parsing task.

To evaluate the first parsing task, we compute

the standard Parseval measures of labelled recall

and precision of constituents, taking into account

not only the 33 original labels but also the 580

newly introduced PropBank labels. This evalua-

tion gives us an indication of how accurately and

exhaustively we can recover this richer set of non-

terminal labels. The results, computed on the test-

ing data set from the PropBank, are shown on the

first line of Table 1.

To evaluate the PTB task, we compute the la-

belled recall and precision of constituents, ignor-

ing the set of PropBank semantic role labels that

our model assigns to constituents. This evalua-

tion indicates how well we perform on the stan-

dard PTB parsing task alone, and its results on the

testing data set from the PTB are shown on the

second line of Table 1.

The third line of Table 1 gives the performance

on the simpler PTB parsing task of the original

SSN parser (Henderson, 2003), that was trained

on the PTB data sets contrary to our SSN model

trained on the PropBank data sets.

5 Discussion

These results clearly indicate that our model can

perform the PTB parsing task at levels of per-

3Such pairs consists of a tag and a word token. No attempt
at collecting word types was made.

formance comparable to state-of-the-art statistical

parsing, by extensions that take the nature of the

richer labels to be recovered into account. They

also suggest that the relationship between syntac-

tic PTB parsing and semantic PropBank parsing

is strict enough that an integrated approach to the

problem of semantic role labelling is beneficial.

In particular, recent models of semantic role la-

belling separate input indicators of the correlation

between the structural position in the tree and the

semantic label, such as path, from those indicators

that encode constraints on the sequence, such as

the previously assigned role (Kwon et al., 2004).

In this way, they can never encode directly the con-

straining power of a certain role in a given struc-

tural position onto a following node in its struc-

tural position. In our augmented model, we at-

tempt to capture these constraints by directly mod-

elling syntactic domains defined by the notion of

c-command.

Our results also confirm the findings in (Palmer

et al., 2005). They take a critical look at some

commonly used features in the semantic role la-

belling task, such as the path feature. They sug-

gest that the path feature is not very effective be-

cause it is sparse. Its sparseness is due to the oc-

currence of intermediate nodes that are not rele-

vant for the syntactic relations between an argu-

ment and its predicate. Our model of domains is

less noisy, and consequently more robust, because

it can focus only on c-commanding nodes bearing

semantic role labels, thus abstracting away from

those nodes that smear the pertinent relations.

(Yi and Palmer, 2005) share the motivation of

our work. Like the current work, they observe

that the distributions of semantic labels could po-

tentially interact with the distributions of syntactic

labels and redefine the boundaries of constituents,

thus yielding trees that reflect generalisations over

both these sources of information.

To our knowledge, no results have yet been pub-

lished on parsing the PropBank. Accordingly, it is

not possible to draw a straigthforward quantitative
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F R P
(Haghighi et al., 2005) 83.4 83.1 83.7
(Pradhan et al., 2005) 83.3 83.0 83.5
(Punyakanok et al., 2005) 83.1 82.8 83.3
(Marquez et al., 2005) 83.1 82.8 83.3
(Surdeanu and Turmo, 2005) 82.7 82.5 83.0

PropBank SSN 81.6 81.3 81.9

Table 2: Percentage F-measure (F), recall (R), and precision (P) of our Propbank SSN parser and state-

of-the-art semantic role labelling systems on the PropBank parsing task (1267 sentences from PropBank

validating data sets; Propbank data sets are available at http://www.lsi.upc.edu/ srlconll/st05/st05.html).

comparison between our PropBank SSN parser

and other PropBank parsers. However, state-of-

the-art semantic role labelling systems (CoNLL,

2005) use parse trees output by state-of-the-art

parsers (Collins, 1999; Charniak, 2000), both for

training and testing, and return partial trees anno-

tated with semantic role labels. An indirect way

of comparing our parser with semantic role la-

bellers suggests itself. We merge the partial trees

output by a semantic role labeller with the output

of a parser it was trained on, and compute Prop-

Bank parsing performance measures on the result-

ing parse trees. The first five lines of Table 2 re-

port such measures for the five best semantic role

labelling systems (Haghighi et al., 2005; Pradhan

et al., 2005; Punyakanok et al., 2005; Marquez

et al., 2005; Surdeanu and Turmo, 2005) accord-

ing to (CoNLL, 2005). The partial trees output

by these systems were merged with the parse trees

returned by (Charniak, 2000)’s parser. These sys-

tems use (Charniak, 2000)’s parse trees both for

training and testing as well as various other infor-

mation sources including sets of n-best parse trees

(Punyakanok et al., 2005; Haghighi et al., 2005)

or chunks (Marquez et al., 2005; Pradhan et al.,

2005) and named entities (Surdeanu and Turmo,

2005). While our preliminary results indicated in

the last line of Table 2 are not state-of-the-art, they

do demonstrate the viability of SSN parsers for

joint inference of syntactic and semantic represen-

tations.

6 Conclusions

In this paper, we have explored extensions to an

existing state-of-the-art parsing model. We have

achieved promising results on parsing the Propo-

sition Bank, showing that our extensions are suf-

ficiently robust to produce parse trees annotated

with shallow semantic information. Future work

will lie in extracting semantic role relations from

such richly annotated trees, for applications such

as information extraction or question answering.

In addition, further research will explore the rele-

vance of semantic role features to parse reranking.
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