
Expanding the Recall of Relation Extraction by Bootstrapping

Junji Tomita

NTT Cyber Solutions Laboratories,
NTT Corporation

1-1 Hikarinooka Yokosuka-Shi,
Kanagawa 239-0847, Japan

tomita.junji@lab.ntt.co.jp

Stephen Soderland Oren Etzioni

Department of Computer Science
& Engineering

University of Washington
Seattle, WA 98195-2350
�soderlan,etzioni�
@cs.washington.edu

Abstract

Most works on relation extraction assume

considerable human effort for making an

annotated corpus or for knowledge engi-

neering. Generic patterns employed in

KnowItAll achieve unsupervised, high-

precision extraction, but often result in low

recall. This paper compares two boot-

strapping methods to expand recall that

start with automatically extracted seeds

by KnowItAll. The first method is string

pattern learning, which learns string con-

texts adjacent to a seed tuple. The second

method learns less restrictive patterns that

include bags of words and relation-specific

named entity tags. Both methods improve

the recall of the generic pattern method. In

particular, the less restrictive pattern learn-

ing method can achieve a 250% increase

in recall at 0.87 precision, compared to the

generic pattern method.

1 Introduction

Relation extraction is a task to extract tu-

ples of entities that satisfy a given relation

from textual documents. Examples of rela-

tions include CeoOf(Company, Ceo) and Acquisi-

tion(Organization, Organization). There has been

much work on relation extraction; most of it em-

ploys knowledge engineering or supervised ma-

chine learning approaches (Feldman et al., 2002;

Zhao and Grishman, 2005). Both approaches are

labor intensive.

We begin with a baseline information extraction

system, KnowItAll (Etzioni et al., 2005), that does

unsupervised information extraction at Web scale.

KnowItAll uses a set of generic extraction pat-

terns, and automatically instantiates rules by com-

bining these patterns with user supplied relation

labels. For example, KnowItAll has patterns for a

generic “of” relation:

NP1 ’s �relation� , NP2

NP2 , �relation� of NP1

where NP1 and NP2 are simple noun phrases that

extract values of argument1 and argument2 of a

relation, and �relation� is a user-supplied string

associated with the relation. The rules may also

constrain NP1 and NP2 to be proper nouns.

If a user supplies the relation labels “ceo”

and “chief executive officer” for the relation

CeoOf(Company, Ceo), KnowItAll inserts these

labels into the generic patterns shown above, to

create 4 extraction rules:

NP1 ’s ceo , NP2

NP1 ’s chief executive officer , NP2

NP2 , ceo of NP1

NP2 , chief executive officer of NP1

The same generic patterns with different la-

bels can also produce extraction rules for a May-

orOf relation or an InventorOf relation. These

rules have alternating context strings (exact string

match) and extraction slots (typically an NP or

head of an NP). This can produce rules with high

precision, but low recall, due to the wide variety

of contexts describing a relation. This paper looks

at ways to enhance recall over this baseline system

while maintaining high precision.

To enhance recall, we employ bootstrapping

techniques which start with seed tuples, i.e. the

most frequently extracted tuples by the baseline

system. The first method represents rules with

three context strings of tokens immediately adja-

cent to the extracted arguments: a left context,

56

middle context, and right context. These are in-

duced from context strings found adjacent to seed

tuples.

The second method uses a less restrictive pat-

tern representation such as bag of words, similar

to that of SnowBall(Agichtein, 2005). SnowBall is

a semi-supervised relation extraction system. The

input of Snowball is a few hand labeled correct

seed tuples for a relation (e.g. <Microsoft, Steve

Ballmer> for CeoOf relation). SnowBall clusters

the bag of words representations generated from

the context strings adjacent to each seed tuple, and

generates rules from them. It calculates the confi-

dence of candidate tuples and the rules iteratively

by using an EM-algorithm. Because it can extract

any tuple whose entities co-occur within a win-

dow, the recall can be higher than the string pat-

tern learning method. The main disadvantage of

SnowBall or a method which employs less restric-

tive patterns is that it requires Named Entity Rec-

ognizer (NER).

We introduce Relation-dependent NER (Rela-

tion NER), which trains an off-the-shelf super-

vised NER based on CRF(Lafferty et al., 2001)

with bootstrapping. This learns relation-specific

NE tags, and we present a method to use these tags

for relation extraction.

This paper compares the following two boot-

strapping strategies.

SPL: a simple string pattern learning method. It

learns string patterns adjacent to a seed tuple.

LRPL: a less restrictive pattern learning method.

It learns a variety of bag of words patterns,

after training a Relation NER.

Both methods are completely self-supervised ex-

tensions to the unsupervised KnowItAll. A user

supplies KnowItAll with one or more relation la-

bels to be applied to one or more generic extrac-

tion patterns. No further tagging or manual selec-

tion of seeds is required. Each of the bootstrapping

methods uses seeds that are automatically selected

from the output of the baseline KnowItAll system.

The results show that both bootstrapping meth-

ods improve the recall of the baseline system. The

two methods have comparable results, with LRPL

outperforms SPL for some relations and SPL out-

performs LRPL for other relations.

The rest of the paper is organized as follows.

Section 2 and 3 describe SPL and LRPL respec-

tively. Section 4 reports on our experiments, and

section 5 and 6 describe related works and conclu-

sions.

2 String Pattern Learning (SPL)

Both SPL and LRPL start with seed tuples that

were extracted by the baseline KnowItAll system,

with extraction frequency at or above a threshold

(set to 2 in these experiments). In these experi-

ments, we downloaded a set of sentences from the

Web that contained an occurrence of at least one

relation label and used this as our reservoir of un-

labeled training and test sentences. We created a

set of positive training sentences from those sen-

tences that contained both argument values of a

seed tuple.

SPL employs a method similar to that of

(Downey et al., 2004). It generates candidate ex-

traction rules with a prefix context, a middle con-

text, and a right context. The prefix is zero to �����
tokens immediately to the left of extracted argu-

ment1, the middle context is all tokens between

argument1 and argument2, and the right context of

zero to ����� tokens immediately to the right of ar-

gument2. It discards patterns with more than ����

intervening tokens or without a relation label.

SPL tabulates the occurrence of such patterns

in the set of positive training sentences (all sen-

tences from the reservoir that contain both argu-

ment values from a seed tuple in either order), and

also tabulates their occurrence in negative training

sentences. The negative training are sentences that

have one argument value from a seed tuple and a

nearest simple NP in place of the other argument

value. This idea is based on that of (Ravichan-

dran and Hovy, 2002) for a QA system. SPL

learns a possibly large set of strict extraction rules

that have alternating context strings and extraction

slots, with no gaps or wildcards in the rules.

SPL selects the best patterns as follows:

1. Groups the context strings that have the exact

same middle string.

2. Selects the best pattern having the largest pat-

tern score, ��, for each group of context

strings having the same middle string.

����� �
�������������� � �

�������������� � ��	�
��������� � �
(1)

3. Selects the patterns having �� greater than

�������	.

57

Figure 1: The architecture of LRPL (Less Restric-

tive Pattern Learning).

where ������������ is a set of sentences that match

pattern � and include both argument values of a

seed tuple. �	�
�������� is a set of sentences that

match � and include just one argument value of

a seed tuple (e.g. just a company or a person for

CeoOf). � is a constant for smoothing.

3 Less Restrictive Pattern Learning

(LRPL)

LRPL uses a more flexible rule representation than

SPL. As before, the rules are based on a window of

tokens to the left of the first argument, a window

of middle tokens, and a window of tokens to the

right of the second argument. Rather than using

exact string match on a simple sequence of tokens,

LRPL uses a combination of bag of words and im-

mediately adjacent token. The left context is based

on a window of ����� tokens immediately to the

left of argument1. It has two sets of tokens: the

token immediately to the left and a bag of words

for the remaining tokens. Each of these sets may

have zero or more tokens. The middle and right

contexts are similarly defined. We call this repre-

sentation extended bag of words.

Here is an example of how LRPL represents

the context of a training sentence with win-

dow size set to 4. “Yesterday , �Arg2�Steve

Ballmer�/Arg2�, the Chief Executive Officer of

�Arg1�Microsoft�/Arg1� said that he is ...”.

order: arg2_arg1
values: Steve Ballmer, Microsoft
L: {yesterday} {,}
M: {,} {chief executive officer the} {of}
R: {said} {he is that}

Some of the tokens in these bags of words may

be dropped in merging this with patterns from

other training sentences. Each rule also has a con-

fidence score, learned from EM-estimation.

We experimented with simply using three bags

of words as in SnowBall, but found that precision

was increased when we distinguished the tokens

immediately adjacent to argument values from the

other tokens in the left, middle, and right bag of

words.

Less restrictive patterns require a Named Entity

Recognizer (NER), because the patterns can not

extract candidate entities by themselves1. LRPL

trains a supervised NER in bootstrapping for ex-

tracting candidate entities.

Figure 1 overviews LRPL. It consists of two

bootstrapping modules: Relation NER and Rela-

tion Assessor. LRPL trains the Relational NER

from seed tuples provided by the baseline Know-

ItAll system and unlabeled sentences in the reser-

voir. Then it does NE tagging on the sentences to

learn the less restrictive rules and to extract can-

didate tuples. The learning and extraction steps at

Relation Assessor are similar to that of SnowBall;

it generates a set of rules and uses EM-estimation

to compute a confidence in each rule. When these

rules are applied, the system computes a probabil-

ity for each tuple based on the rule confidence, the

degree of match between a sentence and the rule,

and the extraction frequency.

3.1 Relation dependent Named Entity

Recognizer

Relation NER leverages an off-the-shelf super-

vised NER, based on Conditional Random Fields

(CRF). In Figure 1, TrainSentenceGenerator auto-

matically generates training sentences from seeds

and unlabeled sentences in the reservoir. TrainEn-

tityRecognizer trains a CRF on the training sen-

tences and then EntityRecognizer applies the

trained CRF to all the unlabeled sentences, creat-

ing entity annotated sentences.

It can extract entities whose type matches an ar-

gument type of a particular relation. The type is

not explicitly specified by a user, but is automati-

cally determined according to the seed tuples. For

example, it can extract ‘City’ and ‘Mayor’ type en-

tities for MayorOf(City, Mayor) relation. We de-

scribe CRF in brief, and then how to train it in

bootstrapping.

1Although using all noun phrases in a sentence may be
possible, it apparently results in low precision.

58

3.1.1 Supervised Named Entity Recognizer

Several state-of-the-art supervised NERs are

based on a feature-rich probabilistic conditional

classifier such as Conditional Random Fields

(CRF) for sequential learning tasks(Lafferty et al.,

2001; Rosenfeld et al., 2005). The input of CRF is

a feature sequence � of features 	 , and outputs a

tag sequence
 of tags � . In the training phrase, a

set of � ���
� � is provided, and outputs a model

��� . In the applying phase, given � , it outputs a

tag sequence
 by using ��� . In the case of NE

tagging, given a sequence of tokens, it automat-

ically generates a sequence of feature sets; each

set is corresponding to a token. It can incorporate

any properties that can be represented as a binary

feature into the model, such as words, capitalized

patterns, part-of-speech tags and the existence of

the word in a dictionary. It works quite well on

NE tagging tasks (McCallum and Li, 2003).

3.1.2 How to Train Supervised NER in

Bootstrapping

We use bootstrapping to train CRF for relation-

specific NE tagging as follows: 1) select the sen-

tences that include all the entity values of a seed

tuple, 2) automatically mark the argument values

in each sentence, and 3)train CRF on the seed

marked sentences. An example of a seed marked

sentence is the following:

seed tuple: <Microsoft, Steve Ballmer>

seed marked sentence:
"Yesterday, <Arg2>Steve Ballmer</Arg2>,
CEO of <Arg1>Microsoft</Arg1>
announced that ..."

Because of redundancy, we can expect to gen-

erate a fairly large number of seed marked sen-

tences by using a few highly frequent seed tuples.

To avoid overfitting on terms from these seed tu-

ples, we substitute the actual argument values with

random characters for each training sentence, pre-

serving capitalization patterns and number of char-

acters in each token.

3.2 Relation Assessor

Relation Assessor employs several SnowBall-like

techniques including making rules by clustering

and EM-estimation for the confidence of the rules

and tuples.

In Figure 1, ContextRepresentationGenerator

generates extended bag of words contexts, from

entity annotated sentences, and classifies the con-

texts into two classes: training contexts �����	 (if

their entity values and their orders match a seed

tuple) and test contexts ����� (otherwise). Train-

ConfidenceEstimator clusters �����	 based on the

match score between contexts, and generates a

rule from each cluster, that has average vectors

over contexts belonging to the cluster. Given a set

of generated rules � and test contexts �����, Confi-

denceEstimator estimates each tuple confidence in

����� by using an EM algorithm. It also estimates

the confidence of the tuples extracted by the base-

line system, and outputs the merged result tuples

with confidence.

We describe the match score calculation

method, the EM-algorithm, and the merging

method in the following sub sections.

3.2.1 Match Score Calculation

The match score (or similarity) of two ex-

tended bag of words contexts ��, � is calculated

as the linear combination of the cosine values be-

tween the corresponding vectors.

���� �� �
�
���

������������ ���� (2)

where, � is the index of left, middle, or right con-

texts. � is the index of left adjacent, right adjacent,

or other tokens. ��� is the weight corresponding

to the context vector indexed by � and �.

To achieve high precision, Relation Assessor

uses only the entity annotated sentences that have

just one entity for each argument (two entities

in total) and where those entities co-occur within

���� tokens window, and it uses at most ����� left

and right tokens. It discards patterns without a re-

lation label.

3.2.2 EM-estimation for tuple and rule

confidence

Several rules generated from only positive ev-

idence result in low precision (e.g. rule “of” for

MayorOf relation generated from “Rudolph Giu-

liani of New York”). This problem can be im-

proved by estimating the rule confidence by the

following EM-algorithm.

1. For each �� in �����, identifies the best match
rule ������, based on the match score be-
tween �� and each rule �. �� is the �th con-
text that includes tuple ��.

�
������ � argmax����� ���� (3)

59

2. Initializes seed tuple confidence,
����� � �

for all ��, where �� is a seed tuple.

3. Calculates tuple confidence,
� , and rule

confidence, �� , by using EM-algorithm. E

and M stages are iterated several times.

E stage:

������ �

�
�
���������� � �

�	
���������� � �
(4)

M stage:

������ � (5)

� �
�
�

������������������������ �����(6)

where

���������� �

�
������ �� �� � ������� ��

� ���������

� is a constant for smoothing.

This algorithm assigns a high confidence to the

rules that frequently co-occur with only high con-

fident tuples. It also assigns a high confidence to

the tuples that frequently co-occur with the con-

texts that match high confidence rules.

When it merges the tuples extracted by the base-

line system, the algorithm uses the following con-

stant value for any context that matches a baseline

pattern.

���������� ���� � ���
�

���������������� ��

(7)

where ��� denotes the context of tuple �� that

matches a baseline pattern, and �� is any baseline

pattern. With this calculation, the confidence of

any tuple extracted by a baseline pattern is always

greater than or equal to that of any tuple that is

extracted by the learned rules and has the same

frequency.

4 Evaluation

The focus of this paper is the comparison be-

tween bootstrapping strategies for extraction, i.e.,

string pattern learning and less restrictive pattern

learning having Relation NER. Therefore, we first

compare these two bootstrapping methods with

the baseline system. Furthermore, we also com-

pare Relation NER with a generic NER, which is

trained on a pre-existing hand annotated corpus.

Table 1: Weights corresponding to a context vector

(���).

adjacency

left other right total

left 0.067 0.133 0.2

context middle 0.24 0.12 0.24 0.6

right 0.133 0.067 0.2

4.1 Relation Extraction Task

We compare SPL and LRPL with the baseline sys-

tem on 5 relations: Acquisition, Merger, CeoOf,

MayorOf, and InventorOf. We downloaded about

from 100,000 to 220,000 sentences for each of

these relations from the Web, which contained a

relation label (e.g. “acquisition”, “acquired”, “ac-

quiring” or “merger”, “merged”, “merging”). We

used all the tuples that co-occur with baseline pat-

terns at least twice as seeds. The numbers of seeds

are between 33 (Acquisition) and 289 (CeoOf).

For consistency, SPL employs the same assess-

ment methods with LRPL. It uses the EM algo-

rithm in Section 3.2.2 and merges the tuples ex-

tracted by the baseline system. In the EM algo-

rithm, the match score ��� �� between a learned

pattern � and a tuple � is set to a constant ������.

LRPL uses MinorThird (Cohen, 2004) imple-

mentation of CRF for Relation NER. The features

used in the experiments are the lower-case word,

capitalize pattern, part of speech tag of the cur-

rent and +-2 tokens, and the previous state (tag)

referring to (Minkov et al., 2005; Rosenfeld et al.,

2005). The parameters used for SPL and LRPL

are experimentally set as follows: �������	 � ��	,

������ � ��
, ���� � 	, ����� � �, � � �,

� � � and the context weights for LRPL shown in

Table 1.

Figure 2-6 show the recall-precision curves. We

use the number of correct extractions to serve as

a surrogate for recall, since computing actual re-

call would require extensive manual inspection of

the large data sets. Compared to the the baseline

system, both bootstrapping methods increases the

number of correct extractions for almost all the re-

lations at around 80% precision. For MayorOf re-

lation, LRPL achieves 250% increase in recall at

0.87 precision, while SPL’s precision is less than

the baseline system. This is because SPL can not

distinguish correct tuples from the error tuples that

60

Figure 2: The recall-precision curve of CeoOf re-

lation.

Figure 3: The recall-precision curve of MayorOf

relation.

co-occur with a short strict pattern, and that have a

wrong entity type value. An example of the error

tuples extracted by SPL is the following:

Learned Pattern: NP1 Mayor NP2
Sentence:
"When Lord Mayor Clover Moore spoke,..."

Tuple: <Lord, Clover Moore>

The improvement of Acquisition and Merger re-

lations is small for both methods; the rules learned

for Merger and Acquisition made erroneous ex-

tractions of mergers of geo-political entities, ac-

quisition of data, ball players, languages or dis-

eases. For InventorOf relation, LRPL does not

work well. This is because ‘Invention’ is not a

proper noun phrase, but a noun phrase. A noun

phrase includes not only nouns, but a particle,

a determiner, and adjectives in addition to non-

capitalized nouns. Our Relation NER was unable

to detect regularities in the capitalization pattern

and word length of invention phrases.

At around 60% precision, SPL achieves higher

recall for CeoOf and MayorOf relations, in con-

Figure 4: The recall-precision curve of Acquisi-

tion relation.

Figure 5: The recall-precision curve of Merger re-

lation.

trast, LRPL achieves higher recall for Acquisition

and Merger. The reason can be that nominal style

relations (CeoOf and MayorOf) have a smaller

syntactic variety for describing them. Therefore,

learned string patterns are enough generic to ex-

tract many candidate tuples.

4.2 Entity Recognition Task

Generic types such as person, organization, and

location cover many useful relations. One might

expect that NER trained for these generic types,

can be used for different relations without mod-

ifications, instead of creating a Relation NER.

To show the effectiveness of Relation NER, we

compare Relation NER with a generic NER

trained on a pre-existent hand annotated corpus

for generic types; we used MUC7 train, dry-run

test, and formal-test documents(Table 2) (Chin-

chor, 1997). We also incorporate the following

additional knowledge into the CRF’s features re-

ferring to (Minkov et al., 2005; Rosenfeld et al.,

61

Figure 6: The recall-precision curve of InventorOf

relation.

Table 2: The number of entities and unique entities

in MUC7 corpus. The number of documents is

225.

entity all uniq

Organization 3704 993

Person 2120 1088

Location 2912 692

2005): first and last names, city names, corp des-

ignators, company words (such as “technology”),

and small size lists of person title (such as “mr.”)

and capitalized common words (such as “Mon-

day”). The base features for both methods are the

same as the ones described in Section 4.1.

The ideal entity recognizer for relation extrac-

tion is recognizing only entities that have an ar-

gument type for a particular relation. Therefore,

a generic test set such as MUC7 Named Entity

Recognition Task can not be used for our evalu-

ation. We randomly selected 200 test sentences

from our dataset that had a pair of correct enti-

ties for CeoOf or MayorOf relations, and were not

used as training for the Relation NER. We mea-

sured the accuracy as follows.

��������
 �
����������� ���������
�

���������
�
(8)

�����������
 �
����������� ���������
�

������������
(9)

where, ��������
 is a set of true entities that have

an argument type of a target relation. ���������� is

a set of entities extracted as an argument.

Because Relation NER is trained for argument

types (such as ‘Mayor’), and the generic NER is

trained for generic types (such as person), this cal-

culation is in favor of Relation NER. For fair com-

parison, we also use the following measure.

���������
�	���� �
����������� �������
�	�����

������������
(10)

where, ������
�	���� is a set of true entities that

have a generic type 2.

Table 3 shows that the Relation NER consis-

tently works better than the generic NER, even

when additional knowledge much improved the

recall. This suggests that training a Relation NER

for each particular relation in bootstrapping is bet-

ter approach than using a NER trained for generic

types.

5 Related Work

SPL is a similar approach to DIPRE (Brin, 1998)

DIPRE uses a pre-defined simple regular expres-

sion to identify argument values. Therefore, it can

also suffer from the type error problem described

above. LRPL avoids this problem by using the Re-

lation NER.

LRPL is similar to SnowBall(Agichtein, 2005),

which employs a generic NER, and reported that

most errors come from NER errors. Because our

evaluation showed that Relation NER works better

than generic NER, a combination of Relation NER

and SnowBall can make a better result in other set-

tings. 3

(Collins and Singer, 1999) and (Jones, 2005)

describe self-training and co-training methods for

Named Entity Classification. However, the prob-

lem of NEC task, where the boundary of entities

are given by NP chunker or parser, is different

from NE tagging task. Because the boundary of an

entity is often different from a NP boundary, the

technique can not be used for our purpose; “Mi-

crosoft CEO Steve Ballmer” is tagged as a single

noun phrase.

6 Conclusion

This paper describes two bootstrapping strategies,

SPL, which learns simple string patterns, and

LRPL, which trains Relation NER and uses it with

less restrictive patterns. Evaluations showed both

2Although ������������ can be defined in the same way,
we did not use it, because of our purpose and much effort
needed for complete annotation for generic types.

3Of course, further study needed for investigating whether
Relation NER works with a smaller number of seeds.

62

Table 3: The argument precision and recall is the average over all arguments for CeoOf, and MayorOf

relations. The Location is for MayorOf, Organization is for CeoOf, and person is the average of both

relations.

Argument Location Organization Person

Recall Precision F Precision Precision Precision

R-NER 0.650 0.912 0.758 0.922 0.906 0.955

G-NER 0.392 0.663 0.492 0.682 0.790 0.809

G-NER+dic 0.577 0.643 0.606 0.676 0.705 0.842

methods enhance the recall of the baseline sys-

tem for almost all the relations. For some rela-

tions, SPL and LRPL have comparable recall and

precision. For InventorOf, where the invention is

not a named entity, SPL performed better, because

its patterns are based on noun phrases rather than

named entities.

LRPL works better than SPL for MayorOf re-

lation by avoiding several errors caused by the tu-

ples that co-occur with a short strict context, but

have a wrong type entity value. Evaluations also

showed that Relation NER works better than the

generic NER trained on MUC7 corpus with addi-

tional dictionaries.

Acknowledgements

This work was done while the first author was a visit-

ing Scholar at the University of Washington. The work was

carried out at the University’s Turing Center and was sup-

ported in part by NSF grant IIS-0312988, DARPA contract

NBCHD030010, ONR grant N00014-02-1-0324, and a gift

from Google. We would like to thank Dr. Eugene Agichtein

for informing us the technical details of SnowBall, and Prof.

Ronen Feldman for a helpful discussion.

References

Eugene Agichtein. 2005. Extracting Relations From
Large Text Collections. Ph.D. thesis, Columbia Uni-
versity.

Sergey Brin. 1998. Extracting Patterns and Relations
from the World Wide Web. In WebDB Workshop at
EDBT’98, pages 172–183, Valencia, Spain.

Nancy Chinchor. 1997. Muc-7 named entity task defi-
nition version 3.5.

William W. Cohen. 2004. Minorthird: Methods for
identifying names and ontological relations in text
using heuristics for inducing regularities from data.

Michael Collins and Yoram Singer. 1999. Unsuper-
vised models for named entity classification. In
EMNLP 99.

Doug Downey, Oren Etzioni, Stephen Soderland, and
Daniel S. Weld. 2004. Learning text patterns
for web information extraction and assessment. In
AAAI 2004 Workshop on ATEM.

Oren Etzioni, Michael Cafarella, Doug Downey, Ana-
Maria Popescu, Tal Shaked, Stephen Soderland,
Daniel S. Weld, and Alexander Yates. 2005. Unsu-
pervised named-entity extraction from the web: an
experimental study. Artif. Intell., 165(1):91–134.

Ronen Feldman, Yonatan Aumann, Michal Finkelstein-
Landau, Eyal Hurvitz, Yizhar Regev, and Ariel
Yaroshevich. 2002. A comparative study of in-
formation extraction strategies. In CICLing, pages
349–359.

Rosie Jones. 2005. Learning to Extract Entities from
Labeled and Unlabeled Texts. Ph.D. thesis, CMU-
LTI-05-191.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In ICML ’01, pages 282–289.

Andrew McCallum and Wei Li. 2003. Early results for
named entity recognition with conditional random
fields, feature induction and web-enhanced lexicons.
In CoNLL-2003).

Einat Minkov, Richard C. Wang, and William W. Co-
hen. 2005. Extracting personal names from email:
Applying named entity recognition to informal text.
In EMNLP/HLT-2005.

D. Ravichandran and D. Hovy. 2002. Learning Sur-
face Text Patterns for a Question Answering Sys-
tem. In Procs. of the 40th Annual Meeting of the As-
sociation for Computational Linguistics, pages 41–
47, Philadelphia, Pennsylvania.

Binyamin Rosenfeld, Moshe Fresko, and Ronen Feld-
man. 2005. A systematic comparison of feature-
rich probabilistic classifiers for ner tasks. In PKDD,
pages 217–227.

Shubin Zhao and Ralph Grishman. 2005. Extracting
relations with integrated information using kernel
methods. In ACL’05, pages 419–426, June.

63

