
Simple Information Extraction (SIE):
A Portable and Effective IE System

Claudio Giuliano and Alberto Lavelli and Lorenza Romano

ITC-irst

Via Sommarive, 18

38050, Povo (TN)

Italy

{giuliano,lavelli,romano}@itc.it

Abstract

This paper describes SIE (Simple Infor-

mation Extraction), a modular information

extraction system designed with the goal

of being easily and quickly portable across

tasks and domains. SIE is composed by

a general purpose machine learning algo-

rithm (SVM) combined with several cus-

tomizable modules. A crucial role in the

architecture is played by Instance Filter-

ing, which allows to increase efficiency

without reducing effectiveness. The re-

sults obtained by SIE on several standard

data sets, representative of different tasks

and domains, are reported. The experi-

ments show that SIE achieves performance

close to the best systems in all tasks, with-

out using domain-specific knowledge.

1 Introduction

In designing Information Extraction (IE) systems

based on supervised machine learning techniques,

there is usually a tradeoff between carefully tun-

ing the system to specific tasks and domains and

having a ”generic” IE system able to obtain good

(even if not the topmost) performance when ap-

plied to different tasks and domains (requiring a

very reduced porting time). Usually, the former

alternative is chosen and system performance is

often shown only for a very limited number of

tasks (sometimes even only for a single task), af-

ter a careful tuning. For example, in the Bio-entity

Recognition Shared Task at JNLPBA 2004 (Kim

et al., 2004) the best performing system obtained

a considerable performance improvement adopt-

ing domain specific hacks.

A second important issue in designing IE sys-

tems concerns the fact that usually IE data sets are

highly unbalanced (i.e., the number of positive ex-

amples constitutes only a small fraction with re-

spect to the number of negative examples). This

fact has important consequences. In some ma-

chine learning algorithms the unbalanced distri-

bution of examples can yield a significant loss in

classification accuracy. Moreover, very large data

sets can be problematic to process due to the com-

plexity of many supervised learning techniques.

For example, using kernel methods, such as word

sequence and tree kernels, can become prohibitive

due to the difficulty of kernel based algorithms,

such as Support Vector Machines (SVM) (Cortes

and Vapnik, 1995), to scale to large data sets. As

a consequence, reducing the number of instances

without degrading the prediction accuracy is a cru-

cial issue for applying advanced machine learning

techniques in IE, especially in the case of highly

unbalanced data sets.

In this paper, we present SIE (Simple Informa-

tion Extraction), an information extraction system

based on a supervised machine learning approach

for extracting domain-specific entities from docu-

ments. In particular, IE is cast as a classification

problem by applying SVM to train a set of classi-

fiers, based on a simple and general-purpose fea-

ture representation, for detecting the boundaries of

the entities to be extracted.

SIE was designed with the goal of being easily

and quickly portable across tasks and domains. To

support this claim, we conducted a set of exper-

iments on several tasks in different domains and

languages. The results show that SIE is competi-

tive with the state-of-the-art systems, and it often

outperforms systems customized to a specific do-

main.

SIE resembles the “Level One” of the ELIE

algorithm (Finn and Kushmerick, 2004). How-

9

ever, a key difference between the two algorithms

is the capability of SIE to drastically reduce the

computation time by exploiting Instance Filtering

(Gliozzo et al., 2005a). This characteristic allows

scaling from toy problems to real-world data sets

making SIE attractive in applicative fields, such as

bioinformatics, where very large amounts of data

have to be analyzed.

2 A Simple IE system

SIE has a modular system architecture. It is com-

posed by a general purpose machine learning algo-

rithm combined with several customizable com-

ponents. The system components are combined

in a pipeline, where each module constrains the

data structures provided by the previous ones.

This modular specification brings significant ad-

vantages. Firstly, a modular architecture is sim-

pler to implement. Secondly, it allows to easily

integrate different machine learning algorithms.

Finally, it allows, if necessary, a fine tuning to

a specific task by simply specializing few mod-

ules. Furthermore, it is worth noting that we tested

SIE across different domains using the same basic

configuration without exploiting any domain spe-

cific knowledge, such as gazetteers, and ad-hoc

pre/post-processing.

Instance

Filtering

Feature

Extraction

Learning

Algorithm

Tag

Matcher

Classification

Algorithm

Instance

Filtering

Feature

Extraction
Lexicon

Training Corpus New Documents

Data Model

Tagged

Documents

Filter Model

Extraction

Script

Extraction

Script

Figure 1: The SIE Architecture.

The architecture of the system is shown in Fig-

ure 1. The information extraction task is per-

formed in two phases. SIE learns off-line a set of

data models from a specified labeled corpus, then

the models are applied to tag new documents.

In both phases, the Instance Filtering module

(Section 3) removes certain tokens from the data

set in order to speed-up the whole process, while

Feature Extraction module (Section 4) is used to

extract a pre-defined set of features from the to-

kens. In the training phase, the Learning Mod-

ule (Section 5) learns two distinct models for each

entity, one for the beginning boundary and an-

other for the end boundary (Ciravegna, 2000; Fre-

itag and Kushmerick, 2000). In the recognition

phase, as a consequence, the Classification mod-

ule (Section 5) identifies the entity boundaries as

distinct token classifications. A Tag Matcher mod-

ule (Section 6) is used to match the boundary pre-

dictions made by the Classification module. Tasks

with multiple entities are considered as multiple

independent single-entity extraction tasks (i.e. SIE

only extracts one entity at a time).

3 Instance Filtering

The purpose of the Instance Filtering (IF) mod-

ule is to reduce the data set size and skewness

by discarding harmful and superfluous instances

without degrading the prediction accuracy. This

is a generic module that can be exploited by any

supervised system that casts IE as a classification

problem.

Instance Filtering (Gliozzo et al., 2005a) is

based on the assumption that uninformative words

are not likely to belong to entities to recognize,

being their information content very low. A naive

implementation of this assumption consists in fil-

tering out very frequent words in corpora because

they are less likely to be relevant than rare words.

However, in IE relevant entities can be composed

by more than one token and in some domains a few

of such tokens can be very frequent in the corpus.

For example, in the field of bioinformatics, protein

names often contain parentheses, whose frequency

in the corpus is very high.

To deal with this problem, we exploit a set of In-

stance Filters (called Stop Word Filters), included

in a Java tool called jInFil1. These filters per-

form a “shallow” supervision to identify frequent

words that are often marked as positive examples.

The resulting filtering algorithm consists of two

stages. First, the set of uninformative tokens is

identified by training the term filtering algorithm

on the training corpus. Second, instances describ-

ing “uninformative” tokens are removed from both

the training and the test sets. Note that instances

are not really removed from the data set, but just

1http://tcc.itc.it/research/textec/

tools-resources/jinfil/

10

marked as uninformative. In this way the learning

algorithm will not learn from these instances, but

they will still appear in the feature description of

the remaining instances.

A Stop Word Filter is fully specified by a list of

stop words. To identify such a list, different fea-

ture selection methods taken from the text catego-

rization literature can be exploited. In text catego-

rization, feature selection is used to remove non-

informative terms from representations of texts. In

this sense, IF is closely related to feature selection:

in the former non-informative words are removed

from the instance set, while in the latter they are

removed from the feature set. Below, we describe

the different metrics used to collect a stop word

list from the training corpora.

Information Content (IC) The most commonly

used feature selection metric in text categoriza-

tion is based on document frequency (i.e, the num-

ber of documents in which a term occurs). The

basic assumption is that very frequent terms are

non-informative for document indexing. The fre-

quency of a term in the corpus is a good indica-

tor of its generality, rather than of its information

content. From this point of view, IF consists of

removing all tokens with a very low information

content2.

Correlation Coefficient (CC) In text catego-

rization the χ2 statistic is used to measure the lack

of independence between a term and a category

(Yang and Pedersen, 1997). The correlation coef-

ficient CC2 = χ2 of a term with the negative class

can be used to find those terms that are less likely

to express relevant information in texts.

Odds Ratio (OR) Odds ratio measures the ra-

tio between the odds of a term occurring in the

positive class, and the odds of a term occurring in

the negative class. In text categorization the idea

is that the distribution of the features on the rel-

evant documents is different from the distribution

on non-relevant documents (Raskutti and Kowal-

czyk, 2004). Following this assumption, a term

is non-informative when its probability of being a

negative example is sensibly higher than its prob-

ability of being a positive example (Gliozzo et al.,

2005b).

2The information content of a word w can be measured
by estimating its probability from a corpus by the equation
I(w) = −p(w) log p(w).

An Instance Filter is evaluated by using two

metrics: the Filtering Rate (ψ), the total percent-

age of filtered tokens in the data set, and the Pos-

itive Filtering Rate (ψ+), the percentage of pos-

itive tokens (wrongly) removed. A filter is opti-

mized by maximizing ψ and minimizing ψ+; this

allows us to reduce as much as possible the data

set size preserving most of the positive instances.

We fixed the accepted level of tolerance (ε) on ψ+

and found the maximum ψ by performing 5-fold

cross-validation on the training set.

4 Feature Extraction

The Feature Extraction module is used to extract

for each input token a pre-defined set of features.

As said above, we consider each token an instance

to be classified as a specific entity boundary or

not. To perform Feature Extraction an applica-

tion called jFex3 was implemented. jFex gener-

ates the features specified by a feature extraction

script, indexes them, and returns the example set,

as well as the mapping between the features and

their indices (lexicon). If specified, it only ex-

tracts features for the instances not marked as “un-

informative” by instance filtering. jFex is strongly

inspired by FEX (Cumby and Yih, 2003), but it

introduces several improvements. First of all, it

provides an enriched feature extraction language.

Secondly, it makes possible to further extend this

language through a Java API, providing a flexi-

ble tool to define task specific features. Finally,

jFex can output the example set in formats di-

rectly usable by LIBSVM (Chang and Lin, 2001),

SVMlight (Joachims, 1998) and SNoW (Carlson

et al., 1999).

4.1 Corpus Format

The corpus must be prepared in IOBE notation, a

extension of the IOB notation. Both notations do

not allow nested and overlapping entities. Tokens

outside entities are tagged with O, while the first

token of an entity is tagged with B-entity-type, the

last token is tagged E-entity-type, and all the to-

kens inside the entity boundaries are tagged with

I-entity-type, where entity-type is the type of the

marked entity (e.g. protein, person).

Beside the tokens and their types, the nota-

tion allows to represent general purpose and task-

specific annotations defining new columns. Blank

3http://tcc.itc.it/research/textec/

tools-resources/jfex.html.

11

lines can be used to specify sentence or document

boundaries. Table 1 shows an example of a pre-

pared corpus. The columns are: the entity-type,

the PoS tag, the actual token, the token index, and

the output of the instance filter (the “uninforma-

tive” tokens are marked with 0) respectively.

O TO To 2.12 0
O VB investigate 2.13 0
O IN whether 2.14 0
O DT the 2.15 0
B-cell type NN tumor 2.16 1
O NN expression 2.17 1
O IN of 2.18 0
B-protein NN Beta-2-Microglobulin 2.19 1
O ((2.20 1
B-protein NN Beta 2.21 1
I-protein NN 2 2.22 1
I-protein NN - 2.22 1
E-protein NN M 2.22 1
O)) 2.23 1

Table 1: A corpus fragment represented in IOBE

notation.

4.2 Extraction Language

As input to the begin and end classifiers, we use

a bit-vector representation. Each instance is rep-

resented encoding all the following basic features

for the actual token and for all the tokens in a con-

text window of fixed size (in the reported experi-

ments, 3 words before and 3 words after the actual

token):

Token The actual token.

POS The Part of Speech (PoS) of the token.

Token Shapes This feature maps each token into

equivalence classes that encode attributes

such as capitalization, numerals, single char-

acter, and so on.

Bigrams of tokens and PoS tags.

The Feature Extraction language allows to

formally encode the above problem description

through a script. Table 2 provides the extraction

script used in all the tasks4. More details about the

Extraction Language are provided in (Cumby and

Yih, 2003; Giuliano et al., 2005).

4In JNLPBA shared task we added some orthographic fea-
tures borrowed from the bioinformatics literature.

-1 inc loc: w [-3, 3]

-1 inc loc: coloc(w,w) [-3, 3]

-1 inc loc: t [-3, 3]

-1 inc loc: coloc(t,t) [-3, 3]

-1 inc loc: sh [-3, 3]

Table 2: The extraction script used in all tasks.

5 Learning and Classification Modules

As already said, we approach IE as a classifica-

tion problem, assigning an appropriate classifica-

tion label to each token in the data set except for

the tokens marked as irrelevant by the instance fil-

ter. As learning algorithm we use SVM-light5. In

particular, we identify the boundaries that indi-

cate the beginning and the end of each entity as

two distinct classification tasks, following the ap-

proach adopted in (Ciravegna, 2000; Freitag and

Kushmerick, 2000). All tokens that begin(end) an

entity are considered positive instances for the be-

gin(end) classifier, while all the remaining tokens

are negative instances. In this way, two distinct

models are learned, one for the beginning bound-

ary and another for the end boundary. All the pre-

dictions produced by the begin and end classifiers

are then paired by the Tag Matcher module.

When we have to deal with more than one en-

tity (i.e., with a multi-class problem) we train 2n

binary classifiers (where n is the number of entity-

types for the task). Again, all the predictions are

paired by the Tag Matcher module.

6 Tag Matcher

All the positive predictions produced by the begin

and end classifiers are paired by the Tag Matcher

module. If nested or overlapping entities occur,

even if they are of different types, the entity with

the highest score is selected. The score of each

entity is proportional to the entity length probabil-

ity (i.e., the probability that an entity has a certain

length) and the scores assigned by the classifiers to

the boundary predictions. Normalizing the scores

makes it possible to consider the score function as

a probability distribution. The entity length distri-

bution is estimated from the training set.

For example, in the corpus fragment of Table 3

the begin and end classifiers have identified four

possible entity boundaries for the speaker of a

seminar. In the table, the left column shows the

5http://svmlight.joachims.org/

12

Table 3: A corpus fragment with multiple predic-

tions.

O The
O speaker
O will
O be
B-speaker Mr. B-speaker (0.23)
I-speaker John B-speaker (0.1), E-speaker (0.12)
E-speaker Smith E-speaker (0.34)
O .

Table 4: The length distribution for the entity

speaker.

entity len 1 2 3 4 5 ...

P(entity len) 0.10 0.33 0.28 0.02 0.01 ...

actual label, while the right column shows the pre-

dictions and their normalized scores. The match-

ing algorithm has to choose among three mutu-

ally exclusive candidates: “Mr. John”, “Mr. John

Smith” and “John Smith”, with scores 0.23 ×
0.12 × 0.33 = 0.009108, 0.23 × 0.34 × 0.28 =

0.021896 and 0.1 × 0.34 × 0.33 = 0.01122, re-

spectively. The length distribution for the entity

speaker is shown in Table 4. In this example, the

matcher, choosing the candidate that maximizes

the score function, namely the second one, extracts

the actual entity.

7 Evaluation

In order to demonstrate that SIE is domain and

language independent we tested it on several tasks

using exactly the same configuration. The tasks

and the experimental settings are described in Sec-

tion 7.1. The results (Section 7.2) show that the

adopted filtering technique decreases drastically

the computation time while preserving (and some-

times improving) the overall accuracy of the sys-

tem.

7.1 The Tasks

SIE was tested on the following IE benchmarks:

JNLPBA Shared Task This shared task (Kim

et al., 2004) is an open challenge task proposed

at the “International Joint Workshop on Natural

Language Processing in Biomedicine and its Ap-

plications”6. The data set consists of 2, 404 MED-

LINE abstracts from the GENIA project (Kim et

6http://research.nii.ac.jp/∼collier/

workshops/JNLPBA04st.htm.

al., 2003), annotated with five entity types: DNA,

RNA, protein, cell-line, and cell-type. The GE-

NIA corpus is split into two partitions: training

(492,551 tokens), and test (101,039 tokens). The

fraction of positive examples with respect to the

total number of tokens in the training set varies

from 0.2% to 6%.

CoNLL 2002 & 2003 Shared Tasks These

shared tasks (Tjong Kim Sang, 2002; Tjong

Kim Sang and De Meulder, 2003)7 concern

language-independent named entity recognition.

Four types of named entities are considered:

persons (PER), locations (LOC), organizations

(ORG) and names of miscellaneous (MISC) en-

tities that do not belong to the previous three

groups. SIE was applied to the Dutch and English

data sets. The Dutch corpus is divided into three

partitions: training and validation (on the whole

258, 214 tokens), and test (73, 866 tokens). The

fraction of positive examples with respect to the

total number of tokens in the training set varies

from 1.1% to 2%. The English corpus is divided

into three partitions: training and validation (on

the whole 274, 585 tokens), and test (50, 425 to-

kens). The fraction of positive examples with re-

spect to the total number of tokens in the training

set varies from 1.6% to 3.3%.

TERN 2004 The TERN (Time Expression

Recognition and Normalization) 2004 Evaluation8

requires systems to detect and normalize temporal

expressions occurring in English text (SIE did not

address the normalization part of the task). The

TERN corpus is divided into two partitions: train-

ing (249,295 tokens) and test (72,667 tokens). The

fraction of positive examples with respect to the

total number of tokens in the training set is about

2.1%.

Seminar Announcements The Seminar An-

nouncements (SA) collection (Freitag, 1998) con-

sists of 485 electronic bulletin board postings. The

purpose of each document in the collection is to

announce or relate details of an upcoming talk or

seminar. The documents were annotated for four

entities: speaker, location, stime, and etime. The

corpus is composed by 156, 540 tokens. The frac-

tion of positive examples varies from about 1% to

7http://www.cnts.ua.ac.be/conll2002/

ner/, http://www.cnts.ua.ac.be/conll2003/

ner/.
8http://timex2.mitre.org/tern.html.

13

Metric ε ψtrain/test R P F1 T

0 66.4 67.0 66.7 615

CC 1 64.1/62.3 67.5 67.3 67.4 420
2.5 80.1/78.0 66.6 69.1 67.8 226
5 88.9/86.4 64.8 68.1 66.4 109

OR 1 70.7/68.9 68.3 67.3 67.8 308
2.5 81.0/79.1 67.5 68.3 67.9 193
5 87.8/85.6 65.4 68.2 66.8 114

IC 1 37.3/36.9 58.5 65.7 61.9 570
2.5 38.4/38.0 56.9 65.4 60.9 558
5 39.5/38.9 55.6 65.5 60.1 552

Zhou and Su (2004) 76.0 69.4 72.6

baseline 52.6 43.6 47.7

Table 5: Filtering Rate, Micro-averaged Recall,

Precision, F1 and Time for JNLPBA.

Metric ε ψtrain/test R P F1 T

0 73.6 78.7 76.1 134

CC 1 64.4/64.4 71.6 79.9 75.5 70
2.5 75.1/73.3 72.8 80.3 76.4 50
5 88.6/84.2 66.6 64.7 65.6 24

OR 1 71.5/71.6 72.0 78.3 75.0 61
2.5 82.1/80.7 73.6 78.9 76.2 39
5 90.5/86.1 66.8 64.5 65.6 19

IC 1 47.3/47.5 67.0 79.2 72.6 101
2.5 51.3/51.5 65.9 79.3 72.0 95
5 55.7/56.0 63.8 78.9 70.5 89

Carreras et al. (2002) 76.3 77.8 77.1

baseline 45.4 81.3 58.3

Table 6: Filtering Rate, Micro-averaged Recall,

Precision, F1 and total computation time for

CoNLL-2002 (Dutch).

about 2%. The entire document collection is ran-

domly partitioned five times into two sets of equal

size, training and test (Lavelli et al., 2004). For

each partition, learning is performed on the train-

ing set and performance is measured on the corre-

sponding test set. The resulting figures are aver-

aged over the five test partitions.

7.2 Results

The experimental results in terms of filtering rate,

recall, precision, F1, and computation time for

JNLPBA, CoNLL-2002, CoNLL-2003, TERN and

SA are given in Tables 5, 6, 7, 8 and 9 respectively.

To show the differences among filtering strategies

for JNLPBA, CoNLL-2002, TERN 2004 we used

CC, OR and IC filters, while the results for SA

and CoNLL-2003 are reported only for OR filter

(which usually produces the best performance).

For all filters we report results obtained by set-

ting four different values for parameter ε, the max-

imum value allowed for the Filtering Rate of pos-

itive examples. ε = 0 means that no filter is used.

Metric ε ψtrain/test R P F1 T

0 76.7 90.5 83.1 228

OR 1 70.4/83.9 78.2 88.1 82.8 74
2.5 83.6/95.6 76.4 62.6 68.8 33
5 90.5/97.2 75.3 66.5 70.7 14

Florian et al. (2003) 88.5 89.0 88.8

baseline 50.9 71.9 59.6

Table 7: Filtering Rate, Micro-averaged Recall,

Precision, F1 and total computation time for

CoNLL-2003 (English).

Metric ε ψtrain/test R P F1 T

0 77.9 89.8 83.4 82

CC 1 41.8/41.2 76.6 90.7 83.1 57
2.5 64.5/62.8 60.3 88.6 71.7 41
5 86.9/81.7 59.7 76.0 66.9 14

OR 1 56.4/54.6 77.5 91.1 83.8 48
2.5 69.4/66.7 59.8 88.1 71.2 36
5 82.9/79.0 59.5 88.6 71.2 20

IC 1 17.8/17.4 74.9 91.2 82.3 48
2.5 24.0/23.3 74.8 91.5 82.3 36
5 27.6/27.1 75.0 91.5 82.5 20

Table 8: Filtering Rate, Micro-averaged Recall,

Precision, F1 and total computation time for

TERN.

The results indicate that both CC and OR do ex-

hibit good performance and are far better than IC

in all the tasks. For example, in the JNLPBA data

set, OR allows to remove more than 70% of the in-

stances, losing less than 1% of the positive exam-

ples. These results pinpoint the importance of us-

ing a supervised metric to collect stop words. The

results also highlight that both CC and OR are ro-

bust against overfitting, because the difference be-

tween the filtering rates in the training and test sets

is minimal. We also report a significant reduction

of the data skewness. Table 10 shows that all the IF

techniques reduce sensibly the skewness ratio, the

ratio between the number of negative and positive

examples, on the JNLPBA data set9. As expected,

both CC and OR consistently outperform IC.

The computation time10 reported includes the

time to perform the overall process of training and

testing the boundary classifiers for each entity11.

The results indicate that both CC and OR are far

superior to IC, allowing a drastic reduction of the

time. Supervised IF techniques are then particu-

9We only report results for this data set as it exhibits the
highest skewness ratios.

10All the experiments have been performed using a dual
1.66 GHz Power Mac G5.

11Execution time for filter optimization is not reported be-
cause it is negligible.

14

Metric ε ψtrain/test R P F1 T

0 81.3 92.5 86.6 179

OR 1 53.6/86.2 81.5 92.1 86.5 91
2.5 69.1/90.8 81.6 90.5 85.9 44
5 74.7/90.8 81.0 85.0 83.0 31

Table 9: Filtering Rate, Micro-averaged Recall,

Precision, F1 and total computation time for SA.

entity ε CC OR IC

protein 0 17.1 17.1 17.1
1 7.5 3.8 9.6
2.5 3.0 2.5 9.0
5 1.5 1.4 8.8

DNA 0 59.3 59.3 59.3
1 26.4 18.5 33.2
2.5 14.7 12.6 31.7
5 8.3 8.6 32.4

RNA 0 596.2 596.2 596.2
1 250.7 253.1 288.4
2.5 170.4 170.1 274.5
5 92.4 111.1 280.7

cell type 0 72.9 72.9 72.9
1 13.8 13.4 43.2
2.5 6.3 6.5 43.9
5 3.4 4.4 44.5

cell line 0 146.4 146.4 146.4
1 40.4 41.6 87.7
2.5 24.2 25.9 87.5
5 13.6 14.6 89.6

Table 10: Skewness ratio of each entity for

JNLPBA.

larly convenient when dealing with large data sets.

For example, using the CC metric the time re-

quired by SIE to perform the JNLPBA task is re-

duced from 615 to 109 minutes (see Table 5).

Both OR and CC allow to drastically reduce

the computation time and maintain the prediction

accuracy12 with small values of ε. Using OR,

for example, with ε = 2.5% on JNLPBA, F1 in-

creases from 66.7% to 67.9%. On the contrary,

for CoNLL-2002 and TERN, for ε > 2.5% and

ε > 1% respectively, the performance of all the

filters rapidly declines. The explanation for this

behavior is that, for the last two tasks, the differ-

ence between the filtering rates on the training and

test sets becomes much larger for ε > 2.5% and

ε > 1%, respectively. That is, the data skewness

changes significantly from the training to the test

set. It is not surprising that an extremely aggres-

sive filtering step reduces too much the informa-

tion available to the classifiers, leading the overall

12For JNLPBA, CoNLL 2002 & 2003 and Tern 2004, re-
sults are obtained using the official evaluation software made
available by the organizers of the tasks.

performance to decrease.

SIE achieves results close to the best systems in

all tasks13. It is worth noting that state-of-the-art

IE systems often exploit external, domain-specific

information (e.g. gazetteers (Carreras et al., 2002)

and lexical resources (Zhou and Su, 2004)) while

SIE adopts exactly the same feature set and does

not use any external or task dependent knowledge

source.

8 Conclusion and Future Work

The portability, the language independence and

the efficiency of SIE suggest its applicability in

practical problems (e.g. semantic web, infor-

mation extraction from biological data) in which

huge collections of texts have to be processed ef-

ficiently. In this perspective we are pursuing the

recognition of bio-entities from several thousands

of MEDLINE abstracts. In addition, the effective-

ness of instance filtering will allow us to experi-

ment with complex kernel methods. For the fu-

ture, we plan to implement more aggressive in-

stance filtering schemata for Entity Recognition,

by performing a deeper semantic analysis of the

texts.

Acknowledgments

SIE was developed in the context of the IST-

Dot.Kom project (http://www.dot-kom.

org), sponsored by the European Commission as

part of the Framework V (grant IST-2001-34038).

Claudio Giuliano and Lorenza Romano have been

supported by the ONTOTEXT project, funded by

the Autonomous Province of Trento under the

FUP-2004 research program.

References

Andrew J. Carlson, Chad M. Cumby, Jeff L. Rosen, and
Dan Roth. 1999. SNoW user’s guide. Technical
Report UIUCDCS-DCS-R-99-210, Department of
Computer Science, University of Illinois at Urbana-
Champaign, April.

Xavier Carreras, Lluı́s Márques, and Lluı́s Padró.
2002. Named entity extraction using adaboost. In
Proceedings of CoNLL-2002, Taipei, Taiwan.

Chih-Chung Chang and Chih-Jen Lin, 2001. LIB-
SVM: a library for support vector machines.

13Note that the TERN results cannot be disclosed, so no di-
rect comparison can be provided. For the reasons mentioned
in (Lavelli et al., 2004), direct comparison cannot be provided
for Seminar Announcements as well.

15

Software available at http://www.csie.ntu.
edu.tw/∼cjlin/libsvm.

Fabio Ciravegna. 2000. Learning to tag for infor-
mation extraction. In F. Ciravegna, R. Basili, and
R. Gaizauskas, editors, Proceedings of the ECAI
workshop on Machine Learning for Information Ex-
traction, Berlin.

Corinna Cortes and Vladimir Vapnik. 1995. Support-
vector networks. Machine Learning, 20(3):273–
297.

Chad Cumby and W. Yih. 2003. FEX user guide.
Technical report, Department of Computer Science,
University of Illinois at Urbana-Champaign, April.

Aidan Finn and Nicholas Kushmerick. 2004. Multi-
level boundary classification for information extrac-
tion. In Proceedings of the 15th European Confer-
ence on Machine Learning, Pisa, Italy.

Radu Florian, Abe Ittycheriah, Hongyan Jing, and
Tong Zhang. 2003. Named entity recognition
through classifier combination. In Walter Daele-
mans and Miles Osborne, editors, Proceedings of
CoNLL-2003, pages 168–171. Edmonton, Canada.

Dayne Freitag and Nicholas Kushmerick. 2000.
Boosted wrapper induction. In Proceedings of the
17th National Conference on Artificial Intelligence
(AAAI 2000), pages 577–583.

Dayne Freitag. 1998. Machine Learning for Informa-
tion Extraction in Informal Domains. Ph.D. thesis,
Carnegie Mellon University.

Claudio Giuliano, Alberto Lavelli, and Lorenza Ro-
mano. 2005. Simple information extraction (SIE).
Technical report, ITC-irst.

Alfio Massimiliano Gliozzo, Claudio Giuliano, and
Raffaella Rinaldi. 2005a. Instance filtering for en-
tity recognition. SIGKDD Explorations (special is-
sue on Text Mining and Natural Language Process-
ing), 7(1):11–18, June.

Alfio Massimiliano Gliozzo, Claudio Giuliano, and
Raffaella Rinaldi. 2005b. Instance pruning by fil-
tering uninformative words: an Information Extrac-
tion case study. In Proceedings of the Sixth Interna-
tional Conference on Intelligent Text Processing and
Computational Linguistics (CICLing-2005), Mexico
City, Mexico, 13-19 February.

T. Joachims. 1998. Making large-scale support
vector machine learning practical. In A. Smola
B. Schölkopf, C. Burges, editor, Advances in Ker-
nel Methods: Support Vector Machines. MIT Press,
Cambridge, MA.

J. Kim, T. Ohta, Y. Tateishi, and J. Tsujii. 2003. Ge-
nia corpus - a semantically annotated corpus for bio-
textmining. Bioinformatics, 19(Suppl.1):180–182.

J. Kim, T. Ohta, Y. Tsuruoka, Y. Tateisi, and N. Col-
lier. 2004. Introduction to the bio-entity recog-
nition task at JNLPBA. In N. Collier, P. Ruch,
and A. Nazarenko, editors, Proceedings of the In-
ternational Joint Workshop on Natural Language
Processing in Biomedicine and its Applications
(JNLPBA-2004), pages 70–75, Geneva, Switzer-
land, August 28–29.

A. Lavelli, M. Califf, F. Ciravegna, D. Freitag, C. Giu-
liano, N. Kushmerick, and L. Romano. 2004. IE
evaluation: Criticisms and recommendations. In
AAAI-04 Workshop on Adaptive Text Extraction and
Mining (ATEM-2004), San Jose, California.

Bhavani Raskutti and Adam Kowalczyk. 2004.
Extreme re-balancing for SVMs: a case study.
SIGKDD Explor. Newsl., 6(1):60–69.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Walter Daelemans and Miles Osborne, editors, Pro-
ceedings of CoNLL-2003, pages 142–147. Edmon-
ton, Canada.

Erik F. Tjong Kim Sang. 2002. Introduction to the
CoNLL-2002 shared task: Language-independent
named entity recognition. In Proceedings of
CoNLL-2002, pages 155–158. Taipei, Taiwan.

Yiming Yang and Jan O. Pedersen. 1997. A compara-
tive study on feature selection in text categorization.
In Douglas H. Fisher, editor, Proceedings of the
14th International Conference on Machine Learning
(ICML-97), pages 412–420, Nashville, US. Morgan
Kaufmann Publishers, San Francisco, US.

Guo Dong Zhou and Jian Su. 2004. Exploring deep
knowledge resources in biomedical name recogni-
tion. In Proceedings of 2004 Joint Workshop on Nat-
ural Processing in Biomedicine and its Applications,
Geneva, Switzerland.

16

