
BE: A Search Engine for NLP Research

Michael J. Cafarella, Oren Etzioni
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195-2350

{mjc,etzioni}@cs.washington.edu

Many modern natural language-processing applica-
tions utilize search engines to locate large numbers of
Web documents or to compute statistics over the Web
corpus. Yet Web search engines are designed and op-
timized for simple human queries—they are not well
suited to support such applications. As a result, these
applications are forced to issue millions of successive
queries resulting in unnecessary search engine load and
in slow applications with limited scalability.

In response, we have designed the Bindings Engine
(BE), which supports queries containing typed vari-
ables and string-processing functions (Cafarella and
Etzioni, 2005). For example, in response to the query
“powerful 〈noun〉” BE will return all the nouns in its
index that immediately follow the word “powerful”,
sorted by frequency. (Figure 1 shows several possible
BE queries.) In response to the query “Cities such as
ProperNoun(Head(〈NounPhrase〉))”, BE will return a
list of proper nouns likely to be city names.

president Bush <Verb>

cities such as ProperNoun(Head(<NounPhrase>))
<NounPhrase> is the CEO of <NounPhrase>

Figure 1: Examples of queries that can be handled
by BE. Queries that include typed variables and
string-processing functions allow certain NLP tasks
to be done very efficiently.

BE’s novel neighborhood index enables it to do so
with O(k) random disk seeks and O(k) serial disk
reads, where k is the number of non-variable terms in
its query. A standard search engine requires O(k + B)
random disk seeks, where B is the number of vari-
able “bindings” found in the corpus. Since B is typ-
ically very large, BE vastly reduces the number of ran-
dom disk seeks needed to process a query. Such seeks
operate very slowly and make up the bulk of query-
processing time. As a result, BE can yield several
orders of magnitude speedup for large-scale language-
processing applications. The main cost is a modest in-
crease in space to store the index.

To illustrate BE’s capabilities, we have built an ap-
plication to support interactive information extraction
in response to simple user queries. For example, in re-
sponse to the user query “insects”, the application re-
turns the results shown in Figure 2. The application

Figure 2: Most-frequently-seen extractions for
query “insects”. The score for each extraction is the
number of times it was retrieved over several BE ex-
traction phrases.

generates this list by using the query term to instantiate
a set of generic extraction phrase queries such as “in-
sects such as 〈NounPhrase〉”. In effect, the application
is doing a kind of query expansion to enable naive users
to extract information. In an effort to find high-quality
extractions, we sort the list by the hit count for each
binding, summed over all the queries.

The key difference between this BE application,
called KNOWITNOW, and domain-independent infor-
mation extraction systems such as KNOWITALL (Et-
zioni et al., 2005) is that BE enables extraction at in-
teractive speeds — the average time to expand and re-
spond to a user query is between 1 and 45 seconds.
With additional optimization, we believe we can reduce
that time to 5 seconds or less. A detailed description of
KNOWITNOW appears in (Cafarella et al., 2005).

References
M. Cafarella and O. Etzioni. 2005. A Search En-

gine for Natural Language Applications. In Procs.
of the 14th International World Wide Web Confer-
ence (WWW 2005).

M. Cafarella, D. Downey, S. Soderland, and O. Etzioni.
2005. Knowitnow: Fast, scalable information ex-
traction from the web. In Procs. of EMNLP.

O. Etzioni, M. Cafarella, D. Downey, S. Kok,
A. Popescu, T. Shaked, S. Soderland, D. Weld, and
A. Yates. 2005. Unsupervised named-entity extrac-
tion from the web: An experimental study. Artificial
Intelligence, 165(1):91–134.

9



 

10


