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Abstract

When a machine learning-based named
entity recognition system is employed in
a new domain, its performance usually de-
grades. In this paper, we provide an em-
pirical study on the impact of training data
size and domain information on the per-
formance stability of named entity recog-
nition models. We present an informative
sample selection method for building high
quality and stable named entity recogni-
tion models across domains. Experimen-
tal results show that the performance of
the named entity recognition model is en-
hanced significantly after being trained
with these informative samples.

1 Introduction

Named entities (NE) are phrases that contain
names of persons, organizations, locations, etc.
Named entity recognition (NER) is an important
task in many natural language processing appli-
cations, such as information extraction and ma-
chine translation. There have been a number of
conferences aimed at evaluating NER systems,
for example, MUC6, MUC7, CoNLL2002 and
CoNLL2003, and ACE (automatic content extrac-
tion) evaluations.

Machine learning approaches are becoming
more attractive for NER in recent years since they
are trainable and adaptable. Recent research on
English NER has focused on the machine learning
approach (Sang and Meulder, 2003). The relevant
algorithms include Maximum Entropy (Borth-
wick, 1999; Klein et al., 2003), Hidden Markov
Model (HMM) (Bikel et al., 1999; Klein et al.,
2003), AdaBoost (Carreras et al., 2003), Memory-
based learning (Meulder and Daelemans, 2003),

Support Vector Machine (Isozaki and Kazawa,
2002), Robust Risk Minimization (RRM) Classi-
fication method (Florian et al., 2003), etc.

For Chinese NER, most of the existing ap-
proaches use hand-crafted rules with word (or
character) frequency statistics. Some machine
learning algorithms also have been investigated in
Chinese NER, including HMM (Yu et al., 1998;
Jing et al., 2003), class-based language model
(Gao et al., 2005; Wu et al., 2005), RRM (Guo
et al., 2005; Jing et al., 2003), etc.

However, when a machine learning-based NER
system is directly employed in a new domain, its
performance usually degrades. In order to avoid
the performance degrading, the NER model is of-
ten retrained with domain-specific annotated cor-
pus. This retraining process usually needs more
efforts and costs. In order to enhance the perfor-
mance stability of NER models with less efforts,
some issues have to be considered in practice. For
example, how much training data is enough for
building a stable and applicable NER model? How
does the domain information and training data size
impact the NER performance?

This paper provides an empirical study on the
impact of training data size and domain informa-
tion on NER performance. Some useful observa-
tions are obtained from the experimental results
on a large-scale annotated corpus. Experimental
results show that it is difficult to significantly en-
hance the performance when the training data size
is above a certain threshold. The threshold of the
training data size varies with domains. The perfor-
mance stability of each NE type recognition also
varies with domains. Corpus statistical data show
that NE types have different distribution across do-
mains. Based on the empirical investigations, we
present an informative sample selection method
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for building high quality and stable NER models.
Experimental results show that the performance of
the NER model is enhanced significantly across
domains after being trained with these informative
samples. In spite of our focus on Chinese, we be-
lieve that some of our observations can be poten-
tially useful to other languages including English.

This paper is organized as follows. Section 2
describes a Chinese NER system using multi-level
linguistic features. Section 3 discusses the impact
of domain information and training data size on
the NER performance. Section 4 presents an in-
formative sample selection method to enhance the
performance of the NER model across domains.
Finally the conclusion is given in Section 5.

2 Chinese NER Based on Multilevel
Linguistic Features

In this paper, we focus on recognizing four types
of NEs: Persons (PER), Locations (LOC), Orga-
nizations (ORG) and miscellaneous named enti-
ties (MISC) which do not belong to the previous
three groups (e.g. products, conferences, events,
brands, etc.). All the NER models in the follow-
ing experiments are trained with a Chinese NER
system. In this section, we simply describe this
Chinese NER system. The Robust Risk Minimiza-
tion (RRM) Classification method and multi-level
linguistic features are used in this system (Guo et
al., 2005).

2.1 Robust Risk Minimization Classifier

We can view the NER task as a sequential classi-
fication problem. Iftoki (i = 0, 1, ..., n) denotes
the sequence of tokenized text which is the input
to the system, then every tokentoki should be as-
signed a class-labelti.

The class label valueti associated with each to-
kentoki is predicted by estimating the conditional
probabilityP (ti = c|xi) for every possible class-
label valuec, wherexi is a feature vector associ-
ated with tokentoki.

We assume thatP (ti = c|xi) = P (ti =
c|toki, {tj}j≤i). The feature vectorxi can depend
on previously predicted class labels{tj}j≤i, but
the dependency is typically assumed to be local.
In the RRM method, the above conditional proba-
bility model has the following parametric form:

P (ti = c|xi, ti−l, ..., ti−1) = T (wT
c xi + bc),

whereT (y) = min(1, max(0, y)) is the truncation
of y into the interval [0, 1].wc is a linear weight

vector andbc is a constant. Parameterswc andbc

can be estimated from the training data. Given
training data(xi, ti) for i = 1, ..., n, the model
is estimated by solving the following optimization
problem for eachc (Zhang et al., 2002):

inf
w,b

1

n

n
∑

i=1

f(wT
c xi + bc, y

i
c),

whereyi
c = 1 whenti = c, andyi

c = −1 other-
wise. The functionf is defined as:

f(p, y) =
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Given the above conditional probability model,
the best possible sequence ofti’s can be estimated
by dynamic programming in the decoding stage
(Zhang et al., 2002).

2.2 Multilevel Linguistic Features

This Chinese NER system uses Chinese charac-
ters (not Chinese words) as the basic token units,
and then maps word-based features that are as-
sociated with each word into corresponding fea-
tures of those characters that are contained in the
word. This approach can effectively incorporate
both character-based features and word-based fea-
tures. In general, we may regard this approach
as information integration from linguistic views at
different abstraction levels.

We integrate a diverse set of local linguistic fea-
tures, including word segmentation information,
Chinese word patterns, complex lexical linguis-
tic features (e.g. part of speech and semantic fea-
tures), aligned at the character level. In additional,
we also use external NE hints and gazetteers, in-
cluding surnames, location suffixes, organization
suffixes, titles, high-frequency Chinese characters
in Chinese names and translation names, and lists
of locations and organizations. In this system, lo-
cal linguistic features of a token unit are derived
from the sentence containing this token unit. All
special linguistic patterns (i.e. date, time, numeral
expression) are encoded into pattern-specific class
labels aligned with the tokens.

3 Impact of Training Data Size And
Domain Information on the NER
Performance

It is very important to keep the performance sta-
bility of NER models across domains in practice.
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However, the performance usually becomes unsta-
ble when NER models are applied in different do-
mains. We focus on the impact of the training data
size and domain information on the NER perfor-
mance in this section.

3.1 Data

We built a large-scale high-quality Chinese NE an-
notated corpus. The corpus size is 114.25M Chi-
nese characters. All the data are news articles se-
lected from several Chinese newspapers in 2001
and 2002. All the NEs in the corpus are manually
tagged. Documents in the corpus are also man-
ually classified into eight domain categories, in-
cluding politics, sports, science, economics, enter-
tainment, life, society and others. Cross-validation
is employed to ensure the tagging quality.

All the training data and test data in the exper-
iments are selected from this Chinese annotated
corpus. The general training data are randomly se-
lected from the corpus without distinguishing their
domain categories. All the domain-specific train-
ing data are selected from the corpus according to
their domain categories. One general test data set
and seven domain-specific test data sets are used
in our experiments (see Table 1). The size of the
general test data set is 1.34M Chinese characters.
Seven domain-specific test sets are extracted from
the general test data set according to the document
domain categories.

Domain NE distribution in the domain-oriented test data set Test set
PER ORG LOC MISC Total Size

General 11,991 9,820 12,353 1,820 35,984 1.34M
Politics 2,470 1,528 2,540 480 7,018 0.2M
Economics 1,098 2,971 2,362 493 6,924 0.26M
Sports 1,802 1,323 1,246 478 4,849 0.10M
Entertainment 2,458 526 738 542 4,264 0.10M
Society 916 418 823 349 2,506 0.08M
Life 2,331 1,690 3,634 763 8,418 0.39M
Science 1,802 1,323 1,246 478 4,849 0.10M

Table 1: NE distribution in the general and
domain-specific test data sets

In our evaluation, only NEs with correct bound-
aries and correct class labels are considered as the
correct recognition. We use the standard P (i.e.
Precision), R (i.e. Recall), and F-measure (de-
fined as 2PR/(P+R)) to measure the performance
of NER models.

3.2 Impact of Training Data Size on the NER
Performance across Domains

The amount of annotated data is always a bottle-
neck for supervised learning methods in practice.

Figure 1: Performance curves of the general and
specific domain NER models

Thus, we evaluate the impact of training data size
on the NER performance across domains.

In this baseline experiment, an initial general
NER model is trained with 0.1M general data at
first. Then the NER model is incrementally re-
trained by adding 0.1M new general training data
each time till the performance isn’t enhanced sig-
nificantly. The NER performance curve (labelled
with the tag ”General” ) in the whole retraining
process is shown in Figure 1. Experimental results
show that the performance of the general NER
model is significantly enhanced in the first several
retraining cycles since more training data are used.
However, when the general training data set size is
more than 2.4M, the performance enhancement is
very slight.

In order to analyze how the training data size
impacting the performance of NER models in spe-
cific domains, seven domain-specific NER mod-
els are built using the similar retraining process.
Each domain-specific NER model is also trained
with 0.1M domain-specific data at first. Then,
each initial domain-specific NER model is incre-
mentally retrained by adding 0.1M new domain-
specific data each time.

NER F(%) Size NE distribution in the training set
Model thre-

shold
(M) PER ORG LOC MISC Total

General 80.38 2.4 24,960 27,231 21,098 7,439 80,728
Politics 83.09 0.9 11,388 6,618 14,350 1,974 34,330
Econ-
omics 85.46 1.7 7,197 21,113 15,582 3,466 47,358
Sports 90.78 0.6 11,647 8,105 7,468 3,070 30,290
Entert-
ainment 83.31 0.6 12,954 2,823 4,665 3,518 32,860
Society 76.55 0.6 7,099 3,279 6,946 1,909 19,233
Life 81.06 1.7 10,502 5,675 18,980 2,420 37,577
Science 70.02 0.4 1,625 3,010 2,083 902 7,620

Table 2: Performance of NER models, size thresh-
old and NE distribution in the corresponding train-
ing data sets
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The performance curves of these domain-
specific NER models are also shown in Figure 1
(see the curves labelled with the domain tags). Al-
though the initial performance of each domain-
specific NER model varies with domains, the per-
formance is also significantly enhanced in the first
several retraining cycles. When the size of the
domain-specific training data set is above a certain
threshold, the performance enhancement is very
slight as well.

The final performance of the trained NER mod-
els, and the corresponding training data sets are
shown in Table 2.

From these NER performance curves, we obtain
the following observations.

1. More training data are used, higher NER per-
formance can be achieved. However, it is
difficult to significantly enhance the perfor-
mance when the training data size is above a
certain threshold.

2. The threshold of the training data size and
the final achieved performance vary with do-
mains (see Table 2). For example, in enter-
tainment domain, the threshold is 0.6M and
the final F-measure achieves 83.31%. In eco-
nomic domain, the threshold is 1.7M, and the
corresponding F-measure is 85.46%.

3.3 The Performance Stability of Each NE
Type Recognition across Domains

Statistic data on our large-scale annotated corpus
(shown in Table 3) show that the distribution of NE
types varies with domains. We define ” NE density
” to quantitatively measure the NE distribution in
an annotated data set. NE density is defined as ”the
count of NE instances in one thousand Chinese
characters”. Higher NE density usually indicates
that more NEs are contained in the data set. We
may easily measure the distribution of each NE
type across domains using NE density. In this an-
notated corpus, PER, LOC, and ORG have similar
NE density while MISC has the smallest NE den-
sity. All the NE types also have different NE den-
sity in each domain. For example, the NE density
of ORG and LOC is much higher than that of PER
in economic domain. PER and LOC have higher
NE density than ORG in politics domain. PER
has the highest NE density among these NE types
in both sports and entertainment domains. The
unbalanced NE distribution across domains shows

that news articles on different domains usually fo-
cus on different specific NE types. These NE dis-
tribution features imply that each NE type has dif-
ferent domain dependency feature. The perfor-
mance stability of domain-focused NE type recog-
nition becomes more important in domain-specific
applications. For example, since economic news
articles usually focus on ORG and LOC NEs, the
high-quality LOC and ORG recognition models
will be more valuable in economic domain. In ad-
dition, these distribution features also can be used
to guide training and test data selection.

Domain NE distribution in the specific domain
PER LOC ORG MISC ALL Ratio

(%)
Politics 167,989 180,193 105,936 30,830 484,948 16.43
Econ-
omics 117,459 200,261 352,323 76,320 746,363 25.29
Sports 129,137 73,435 98,618 33,304 334,494 11.33
Entert- 154,193 50,408 40,444 52,460 297,505 10.08
ainment
Life 200,222 234,150 145,138 65,733 645,243 21.86
Society 63,793 53,724 43,657 21,162 182,336 6.18
Science 27,878 30,737 72,413 16,824 147,852 5.00
Others 31,723 40,730 26,666 13,926 113,045 3.83
All 892,394 863,638 885,195 310,559 2,951,786 –
Domain NE density in the Chinese annotated corpus Size

PER LOC ORG MISC ALL (M)
Politics 10.70 11.48 6.75 1.96 31.21 15.70
Econ-
omics 4.18 7.13 12.55 2.72 26.58 28.08
Sports 16.43 9.34 12.55 4.24 42.57 7.86
Entert-
ainment 16.81 5.05 4.14 5.72 32.44 9.17
Life 5.64 6.59 4.09 1.85 18.17 35.52
Society 8.57 7.22 5.87 2.84 24.51 7.44
Science 4.30 4.74 11.17 2.60 22.82 6.48
Others 7.9 10.18 6.67 3.48 28.26 4.00
All 7.81 7.56 7.75 2.72 25.89 114.25

Table 3: NE distribution in the Chinese annotated
corpus

In this experiment, the performance stability
of NER models across domains is evaluated, es-
pecially the performance stability of each NE
type recognition. The general NER model is
trained with 2.4M general data. Seven domain-
specific models are trained with the corresponding
domain-specific training sets (see Table 2 in Sec-
tion 3.2).

The performance stability of the general NER
model is firstly evaluated on the general and
domain-specific test data sets (see Table 1 in Sec-
tion 3.1 ). The experimental results are shown in
Table 4. The performance curves of the general
model are shown in Figure 2, including the total
F-measure curve of the NER model (labelled with
the tag ”All”) and F-measure curves of each NE
type recognition in the specific domains (labelled
with the NE tags respectively).

The performance stability of the seven domain-
specific NER models are also evaluated. Each
domain-specific NER model is tested on the gen-
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Domain F(%) of general NER model
PER LOC ORG MISC ALL

General 86.69 85.55 73.59 56.00 80.38
Economic 85.11 88.22 75.91 49.53 80.50
Politics 86.26 87.00 71.31 61.50 81.90
Sports 91.87 89.03 81.67 67.41 86.10
Entertainment 84.24 85.85 68.65 60.96 79.31
Life 86.62 83.54 70.30 58.49 79.73
Society 84.53 76.16 68.89 41.14 74.50
Science 87.74 86.42 65.85 24.10 69.55

Table 4: Performance of the general NER model
in specific domains

Figure 2: Performance curves of the general NER
model in specific domains

eral test data and the other six different domain-
specific test data sets. The experimental results are
shown in Table 5. The performance curves of three
domain-specific NER models are shown in Figure
3, Figure 4 and Figure 5 respectively.

From these experimental results, we have the
following conclusions.

1. The performance stability of all the NER
models is limited across domains. When a
NER model is employed in a new domain, its
performance usually decreases. Moreover, its
performance is usually much lower than the
performance of the corresponding domain-
specific model.

2. The general NER model has better per-

Figure 3: Performance curves of economic do-
main NER model in the other specific domains

NER F(%) in specific domain
Model Gen- Eco- Poli- Spo- Enter- Life Soc- Sci-

eral nomic tics rts tainment iety ence
General 80.38 80.50 81.90 86.10 79.31 79.73 74.50 69.55
Econ-
omic 75.30 85.46 74.32 72.89 68.46 76.23 65.75 68.97
Politics 73.37 66.39 83.09 76.37 71.51 74.83 67.31 53.76
Sports 71.23 62.56 68.99 90.78 73.48 71.18 64.82 53.85
Entert-
ainment 70.82 61.52 72.04 75.34 83.31 71.80 69.10 52.50
Life 73.53 66.92 75.07 73.86 72.68 81.06 69.61 57.36
Society 70.29 62.55 72.70 70.69 72.24 74.10 76.55 53.42
Science 67.26 67.57 69.00 64.32 63.84 69.05 64.85 70.02

Table 5: Performance of NER models in specific
domains

Figure 4: Performance curves of sports domain
NER model in the other specific domains

formance stability than the domain-specific
NER model when they are applied in new do-
mains (see Table 5). Domain-specific mod-
els usually could achieve a higher perfor-
mance in its corresponding domain after be-
ing trained with a smaller amount of domain-
specific annotated data (see Table 2 in Sec-
tion 3.2). However, the performance stability
of domain-specific NER model is poor across
different domains. Thus, it is very popular to
build a general NER model for the general
applications in practice.

3. The performance of PER, LOC and ORG
recognition is better than that of MISC recog-

Figure 5: Performance curves of politics domain
NER model in the other specific domains
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nition in NER (see Figure 2∼ Figure 5).
The main reason for the poor performance of
MISC recognition is that there are less com-
mon indicative features among various MISC
NEs which we do not distinguish. In addi-
tion, NE density of MISC is much less than
that of PER, LOC, and ORG. There are a
relatively small number of positive training
samples for MISC recognition.

4. NE types have different domain dependency
attribute. The performance stability of each
NE type recognition varies with domains (see
Figure 2∼ Figure 5). The performance of
PER and LOC recognition are more stable
across domains. Thus, few efforts are needed
to adapt the existing high-quality general
PER and LOC recognition models in domain-
specific applications. Since ORG and MISC
NEs usually contain more domain-specific
semantic information, ORG and MISC are
more domain-dependent than PER and LOC.
Thus, more domain-specific features should
be mined for ORG and MISC recognition.

4 Use Informative Training Samples to
Enhance the Performance of NER
Models across Domains

A higher performance system usually requires
more features and a larger number of training data.
This requires larger system memory and more effi-
cient training method, which may not be available.
Within the limitation of available training data and
computational resources, it is necessary for us to
either limit the number of features or select more
informative data which can be efficiently handled
by the training algorithm. Active learning method
is usually employed in text classification (McCal-
lum and Nigam et al., 1998). It is only recently
employed in NER (Shen et al., 2004).

In order to enhance the performance and over-
come the limitation of available training data and
computational resources, we present an informa-
tive sample selection method using a variant of
uncertainty-sampling (Lewis and Catlett, 1994).
The main steps are described as follows.

1. Build an initial NER model (F-
measure=76.24%) using an initial data
set. The initial data set (about 1M Chinese
characters) is randomly selected from the
large-scale candidate data set (about 9M ).

Figure 6: Performance curves of general NER
models after being trained with informative sam-
ples and random samples respectively

2. Refine the training set by adding more infor-
mative samples and removing those redun-
dant samples. In this refinement phase, all of
the data are annotated by the current recogni-
tion model (e.g. the initial model built in Step
1). Each annotation has a confidence score
associated with the prediction. In general, an
annotation with lower confidence score usu-
ally indicates a wrong prediction. The con-
fidence score of the whole sample sentence
is defined as the average of the confidence
scores of all the annotations contained in the
sentence. Thus, we add those sample sen-
tences with lower confidence scores into the
training set. Meanwhile, in order to keep a
reasonable size of the training set, those old
training sample sentences with higher confi-
dence scores are removed from the current
training set. In each retraining phase, all of
the sample sentences are sorted by the con-
fidence score. The top 1000 new sample
sentences with lowest confidence scores are
added into the current training set. The top
500 old training sample sentences with high-
est confidence scores are removed from the
current training set.

3. Retrain a new Chinese NER model with the
newly refined training set

4. Repeat Step 2 and Step 3, until the perfor-
mance doesn’t improve any more.

We apply this informative sample selection
method to incrementally build the general domain
NER model. The size of the final informative
training sample set is 1.05M Chinese characters.
This informative training sample set has higher
NE density than the random training data set (see
Table 6).
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We denote this general NER model trained with
the informative sample set as ”general informa-
tive model”, and denote the general-domain model
which is trained with 2.4M random general train-
ing data as ”general random model”. The perfor-
mance curves of the general NER models after be-
ing trained with informative samples and random
data respectively are shown in Figure 6. Experi-
ment results (see Table 6) show that there is a sig-
nificant enhancement in F-measure if using infor-
mative training samples. Compared with the ran-
dom model, the informative model can increase F-
measure by 4.21 percent points.

Type Using informative sample set Using random training set
(1.05M) (2.4M)

F(%) NEs NE density F(%) NEs NE density
PER 89.87 18,898 18.00 86.69 24,960 10.38
LOC 89.68 24,862 23.68 85.55 21,089 11.33
ORG 79.22 22,173 21.12 73.59 27,231 8.78
MISC 64.27 8,067 7.68 56.00 7,439 3.10
Total 84.59 74,000 70.48 80.38 80,728 33.58

Table 6: Performance of informative model and
random model in the general domain

Domain F(%) of general informative model
PER LOC ORG MISC ALL

Economic 89.26 90.66 81.24 61.14 84.63
Politics 89.36 89.37 74.76 65.95 84.70
Sports 93.65 90.66 86.00 72.05 88.71
Entertainment 88.38 87.54 73.88 58.32 82.74
Life 89.15 88.35 75.68 72.01 84.66
Society 86.61 82.15 72.99 58.55 79.49
Science 90.91 88.35 71.69 25.16 72.71

Table 7: Performance of the general informative
model in specific domains

This informative model is also evaluated on the
domain-specific test sets. Experimental results are
shown in Table 7. We view the performance of the
domain-specific NER model as the baseline per-
formance in its corresponding domain (see Table
8), denoted asFbaseline. The performance of in-
formative model in specific domains is very close
to the correspondingFbaseline (see Figure 7). We
define the domain-specific average F-measure as
the average of all the F-measure of the NER model
in seven specific domains, denote asF . The av-
erage of all theFbaseline in specific domains is
denoted asF baseline. The average F-measure of
the informative model and the random model in
specific domains is denoted asF informative and
F random respectively. Compared withF baseline

(F =81.47%), the informative model increasesF

by 1.05 percent points. However,F decreases by
2.67 percent points if using the random model. Es-
pecially, the performance of the informative model
is better than the corresponding baseline perfor-

Figure 7: Performance comparison of informa-
tive model, random model, and the corresponding
domain-specific models

mance in politics, life, society and science do-
mains. Moreover, the size of the informative sam-
ple set is much less than the life domain training
set (1.7M).

NER F(%) in specific domains
model Eco- Poli- Spo- Entert- Life So- Sci- F

nomic tics rts ainment ciety ence
domain-
specific 85.46 83.09 90.78 83.31 81.06 76.55 70.02 81.47
(baseline)
Infor-
mative 84.63 84.70 88.71 82.74 84.66 79.49 72.71 82.52
Random 80.50 81.90 86.10 79.31 79.73 74.50 69.55 78.80
NER δ(F ) in specific domain
model δ(F ) = (F − F ) σ

Eco- Poli- Spo- Entert- Life So- Sci-
nomic tics rts ainment ciety ence

Infor-
mative 2.11 2.18 6.19 0.22 2.14 -3.03 -9.81 4.74
Random 1.7 3.1 7.3 0.51 0.93 -4.3 -9.25 4.94

Table 8: Performance comparison of informa-
tive model, random model and the corresponding
domain-specific model in each specific domain

The informative model has much better perfor-
mance than the random model in specific domains
(see Table 8 and Figure 7).F informative is 82.52%
while F random is 78.80%. The informative model
can increaseF by 3.72 percent points. The infor-
mative model is also more stable than the random
model in specific domains (see Table 8). Standard
deviation of F-measure for the informative model
is 4.74 while that for the random model is 4.94.

Our experience with the incremental sample se-
lection provides the following hints.

1. The performance of the NER model across
domains can be significantly enhanced after
being trained with informative samples. In
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order to obtain a high-quality and stable NER
model, it is only necessary to keep the infor-
mative samples. Informative sample selec-
tion can alleviate the problem of obtaining a
large amount of annotated data. It is also an
effective method for overcoming the poten-
tial limitation of computational resources.

2. In learning NER models, annotated results
with lower confidence scores are more use-
ful than those samples with higher confidence
scores. This is consistent with other studies
on active learning.

5 Conclusion

Efficient and robust NER model is very impor-
tant in practice. This paper provides an empirical
study on the impact of training data size and do-
main information on the performance stability of
NER. Experimental results show that it is difficult
to significantly enhance the performance when the
training data size is above a certain threshold. The
threshold of the training data size varies with do-
mains. The performance stability of each NE type
recognition also varies with domains. The large-
scale corpus statistic data also show that NE types
have different distribution across domains. These
empirical investigations provide useful hints for
enhancing the performance stability of NER mod-
els across domains with less efforts. In order to en-
hance the NER performance across domains, we
present an informative training sample selection
method. Experimental results show that the per-
formance is significantly enhanced by using infor-
mative training samples.

In the future, we’d like to focus on further
exploring more effective methods to adapt NER
model to a new domain with much less efforts,
time and performance degrading.
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