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Abstract

Markov order-1 conditional random fields
(CRFs) and semi-Markov CRFs are two
popular models for sequence segmenta-
tion and labeling. Both models have ad-
vantages in terms of the type of features
they most naturally represent. We pro-
pose a hybrid model that is capable of rep-
resenting both types of features, and de-
scribe efficient algorithms for its training
and inference. We demonstrate that our
hybrid model achieves error reductions of
18% and 25% over a standard order-1 CRF
and a semi-Markov CRF (resp.) on the
task of Chinese word segmentation. We
also propose the use of a powerful fea-
ture for the semi-Markov CRF: the log
conditional odds that a given token se-
quence constitutes a chunk according to
a generative model, which reduces error
by an additional 13%. Our best system
achieves 96.8% F-measure, the highest re-
ported score on this test set.

1 Introduction

The problem of segmenting sequence data into
chunks arises in many natural language applica-
tions, such as named-entity recognition, shallow
parsing, and word segmentation in East Asian lan-
guages. Two popular discriminative models that
have been proposed for these tasks are the condi-
tional random field (CRFs) (Lafferty et al., 2001)
and the semi-Markov conditional random field
(semi-CRF) (Sarawagi and Cohen, 2004).

A CRF in its basic form is a model for label-
ing tokens in a sequence; however it can easily
be adapted to perform segmentation via labeling

each token asBEGIN or CONTINUATION, or accord-
ing to some similar scheme. CRFs using this tech-
nique have been shown to be very successful at the
task of Chinese word segmentation (CWS), start-
ing with the model of Peng et al. (2004). In the
Second International Chinese Word Segmentation
Bakeoff (Emerson, 2005), two of the highest scor-
ing systems in the closed track competition were
based on a CRF model. (Tseng et al., 2005; Asa-
hara et al., 2005)

While the CRF is quite effective compared with
other models designed for CWS, one wonders
whether it may be limited by its restrictive inde-
pendence assumptions on non-adjacent labels: an
order-M CRF satisfies the order-M Markov as-
sumption that, globally conditioned on the input
sequence, each label is independent of all other
labels given theM labels to its left and right.
Consequently, the model only “sees” word bound-
aries within a moving window ofM + 1 charac-
ters, which prohibits it from explicitly modeling
the tendency of strings longer than that window
to form words, or from modeling the lengths of
the words. Although the window can in principle
be widened by increasingM , this is not a practi-
cal solution as the complexity of training and de-
coding a linear sequence CRF grows exponentially
with the Markov order.

The semi-CRF is a sequence model that is de-
signed to address this difficulty via careful relax-
ation of the Markov assumption. Rather than re-
casting the segmentation problem as a labeling
problem, the semi-CRF directly models the dis-
tribution of chunk boundaries.1 In terms of inde-

1As it was originally described, the semi-CRF also as-
signs labels to each chunk, effectively performing joint seg-
mentation and labeling, but in a pure segmentation problem
such as CWS, the use of labels is unnecessary.
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pendence, using an order-M semi-CRF entails the
assumption that, globally conditioned on the input
sequence, the position of each chunk boundary is
independent of all other boundaries given the po-
sitions of theM boundaries to its left and right
regardless of how far away they are. Even with an
order-1 model, this enables several classes of fea-
tures that one would expect to be of great utility
to the word segmentation task, in particularword
lengthandword identity.

Despite this, the only work of which we are
aware exploring the use of a semi-Markov CRF
for Chinese word segmentation did not find signif-
icant gains over the standard CRF (Liang, 2005).
This is surprising, not only because the additional
features a semi-CRF enables are intuitively very
useful, but because as we will show, an order-M
semi-CRF is strictly more powerful than an or-
der-M CRF, in the sense that any feature that can
be used in the latter can also be used in the for-
mer, or equivalently, the semi-CRF makes strictly
weaker independence assumptions. Given a judi-
cious choice of features (or simply enough training
data) the semi-CRF should be superior.

We propose that the reason for this discrepancy
may be that despite the greater representational
power of the semi-CRF, there are some valuable
features that are more naturally expressed in a
CRF segmentation model, and so they are not typ-
ically included in semi-CRFs (indeed, they have
not to date been used in any semi-CRF model for
any task, to our knowledge). In this paper, we
show that semi-CRFs are strictly more expressive,
and also demonstrate how CRF-type features can
be used in a semi-CRF model for Chinese word
segmentation. Our experiments show that a model
incorporating both types of features can outper-
form models using only one or the other type.

Orthogonally, we explore in this paper the use
of a very powerful feature for the semi-CRF de-
rived from a generative model.

It is common in statistical NLP to use as fea-
tures in a discriminative model the (logarithm of
the) estimated probability of some event accord-
ing to a generative model. For example, Collins
(2000) uses a discriminative classifier for choosing
among the topN parse trees output by a generative
baseline model, and uses the log-probability of a
parse according to the baseline model as a feature
in the reranker. Similarly, the machine translation
system of Och and Ney uses log-probabilities of

phrasal translations and other events as features in
a log-linear model (Och and Ney, 2002; Och and
Ney, 2004). There are many reasons for incorpo-
rating these types of features, including the desire
to combine the higher accuracy of a discriminative
model with the simple parameter estimation and
inference of a generative one, and also the fact that
generative models are more robust in data sparse
scenarios (Ng and Jordan, 2001).

For word segmentation, one might want to use
as a local feature the log-probability that a segment
is a word, given the character sequence it spans. A
curious property of this feature is that it induces
a counterintuitive asymmetry between theis-word
and is-not-wordcases: the component generative
model can effectively dictate that a certain chunk
isnota word, by assigning it a very low probability
(driving the feature value to negative infinity), but
it cannot dictate that a chunkis a word, because
the log-probability is bounded above.2 If instead
the log conditional oddslog Pi(y|x)

Pi(¬y|x) is used, the
asymmetry disappears. We show that such a log-
odds feature provides much greater benefit than
the log-probability, and that it is useful to include
such a feature even when the model also includes
indicator function features for every word in the
training corpus.

2 Hybrid Markov/Semi-Markov CRF

The model we describe is formally a type of semi-
Markov CRF, distinguished only in that it also in-
volves CRF-style features. So we first describe the
semi-Markov model in its general form.

2.1 Semi-Markov CRF

An (unlabeled) semi-Markov conditional random
field is a log-linear model defining the conditional
probability of a segmentation given an observation
sequence. The general form of a log-linear model
is as follows: given an inputx ∈ X, an output
y ∈ Y , a feature mappingΦ : X × Y 7→ Rn, and
a weight vectorw, the conditional probability of
y givenx is estimated as:

P (y | x) =
exp (w · Φ(x,y))

Z(x)

whereZ : x 7→ R is a normalizing factor.w
is typically chosen to maximize the conditional
likelihood of a labeled training set. In the word

2We assume the weight assigned to the log-probability
feature is positive.
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segmentation task,x is an ordered sequence of
characters(x1, x2, . . . , xn), andy is a set of in-
dices corresponding to the start of each word:
{y1, y2, . . . , ym} such thaty1 = 1, ym ≤ n, and
for all j, yj < yj+1. A log-linear model in this
space is an order-1 semi-CRF if its feature mapΦ
decomposes according to

Φ(x,y) =
m∑

j=1

φS(yj , yj+1,x) (1)

whereφS is a local feature map that only considers
one chunk at a time (definingym+1 = n+1). This
decomposition is responsible for the characteristic
independence assumptions of the semi-CRF.

Hand-in-hand with the feature decomposition
and independence assumptions comes the capac-
ity for exact decoding using the Viterbi algorithm,
and exact computation of the objective gradient
using the forward-backward algorithm, both in
time quadratic in the lengths of the sentences.
Furthermore, if the model is constrained to pro-
pose only chunkings with maximum word length
k, then the time for inference and training be-
comes linear in the sentence length (and ink). For
Chinese word segmentation, choosing a moderate
value ofk does not pose any significant risk, since
the vast majority of Chinese words are only a few
characters long: in our training set, 91% of word
tokens were one or two characters, and 99% were
five characters or less.

Using a semi-CRF as opposed to a traditional
Markov CRF allows us to model some aspects
of word segmentation that one would expect to
be very informative. In particular, it makes pos-
sible the use of local indicator function features
of the type “the chunk consists of character se-
quenceχ1, . . . , χ`,” or “the chunk is of length̀ .”
It also enables “pseudo-bigram language model”
features, firing when a given word occurs in the
context of a given character unigram or bigram.3

And crucially, although it is slightly less natural
to do so, any feature used in an order-1 Markov
CRF can also be represented in a semi-CRF. As
Markov CRFs are used in the most competitive
Chinese word segmentation models to date, one
might expect that incorporating both types of fea-
tures could yield a superior model.

3We did not experiment with this type of feature.

2.2 CRF vs. Semi-CRF

In order to compare the two types of linear CRFs,
it is convenient to define a representation of the
segmentation problem in terms of character labels
as opposed to sets of whole words. Denote by
L(y) ∈ {B,C}n (for BEGIN vs. CONTINUATION)
the sequence{L1, L2, . . . Ln} of labels such that
Li = B if and only if yi ∈ y. It is clear that if we
constrainL1 = B, the two representationsy and
L(y) are equivalent. An order-1 Markov CRF is a
log-linear model in which the global feature vector
Φ decomposes into a sum over local feature vec-
tors that consider bigrams of the label sequence:

Φ(x,y) =
n∑

i=1

φM (Li, Li+1, i,x) (2)

(whereLn+1 is defined asB). The local features
that are most naturally expressed in this context
are indicators of some joint event of the label bi-
gram(Li, Li+1) and nearby characters inx. For
example, one might use the feature “the current
characterxi is χ andLi = C”, or “the current and
next characters are identical andLi = Li+1 = B.”

Although we have heretofore disparaged the
CRF as being incapable of representing such pow-
erful features as word identity, the type of features
that it most naturally represents should be help-
ful in CWS for generalizing to unseen words. For
example, the first feature mentioned above could
be valuable to rule out certain word boundaries if
χ were a character that typically occurs only as a
suffix but that combines freely with a variety of
root forms to create new words. This type of fea-
ture (specifically, a feature indicating theabsence
as opposed to thepresenceof a chunk boundary)
is a bit less natural in a semi-CRF, since in that
case local featuresφS(yj , yj+1,x) are defined on
pairs of adjacent boundaries. Information about
which tokens arenot on boundaries is only im-
plicit, making it a bit more difficult to incorporate
that information into the features. Indeed, neither
Liang (2005) nor Sarawagi and Cohen (2004) nor
any other system using a semi-Markov CRF on
any task has included this type of feature to our
knowledge. We hypothesize (and our experiments
confirm) that the lack of this feature explains the
failure of the semi-CRF to outperform the CRF for
word segmentation in the past.

Before showing how CRF-type features can be
used in a semi-CRF, we first demonstrate that the
semi-CRF is indeed strictly more expressive than
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the CRF, meaning that any global feature mapΦ
that decomposes according to (2) also decomposes
according to (1). It is sufficient to show that for
any feature mapΦM of a Markov CRF, there exists
a semi-Markov-type feature mapΦS such that for
anyx,y,

ΦM (x,y) =
n∑

i=1

φM (Li, Li+1, i,x) (3)

=
m∑

j=1

φS(yj , yj+1,x) = ΦS(x,y)

To this end, note that there are only four possible
label bigrams:BB, BC, CB, andCC. As a di-
rect result of the definition ofL(y), we have that
(Li, Li+1) = (B,B) if and only if some word of
length one begins ati, or equivalently, there exists
a wordj such thatyj = i andyj+1−yj = 1. Sim-
ilarly, (Li, Li+1) = (B,C) if and only if some
word of length> 1 begins ati, etc. Using these
conditions, we can defineφS to satisfy equation 3
as follows:

φS(yj , yj+1,x) = φM (B,B, yj ,x)

if yj+1 − yj = 1, and

φS(yj , yj+1,x) = φM (B,C, yj ,x)

+
yj+1−2∑
k=yj+1

φM (C,C, k,x) (4)

+ φM (C,B, yj+1 − 1,x)

otherwise. Defined thus,
∑m

j=1 φS will contain ex-
actlyn φM terms, corresponding to then label bi-
grams.4

2.3 Order-1 Markov Features in a Semi-CRF

While it is fairly intuitive that any feature used in a
1-CRF can also be used in a semi-CRF, the above
argument reveals an algorithmic difficulty that is
likely another reason that such features are not typ-
ically used. The problem is essentially an effect of
the sum forCC label bigrams in (4): quadratic
time training and decoding assumes that the fea-
tures of each chunkφS(yj , yj+1,x) can be multi-
plied with the weight vectorw in a number of op-
erations that is roughly constant over all chunks,

4We have discussed the case of Markov order-1, but the
argument can be generalized to show that an order-M CRF
has an equivalent representation as an order-M semi-CRF,
for anyM .

procedureComputeScores(x,w)
for i = 2 . . . (n− 1) do

σCC
i ← φM (C,C, i,x) ·w

end for
for a = 1 . . . n do

CCsum← 0
for b = (a + 1) . . . (n + 1) do

if b− a = 1 then
σab ← φM (B,B, a,x) ·w

else
σab ← φM (B,C, a,x) ·w + CCsum

+φM (C,B, b− 1,x) ·w
CCsum← CCsum + σCC

b−1

end if
end for

end for

Figure 1: Dynamic program for computing chunk
scoresσab with 1-CRF-type features.

but if one näıvely distributes the product over the
sum, longer chunks will take proportionally longer
to score, resulting in cubic time algorithms.5

In fact, it is possible to use these features
without any asymptotic decrease in efficiency by
means of a dynamic program. Both Viterbi and
forward-backward involve the scoresσab = w ·
φS(a, b,x). Suppose that before starting those al-
gorithms, we compute and cache the scoreσab of
each chunk, so that remainder the algorithm runs
in quadratic time, as usual. This pre-computation
can be done quickly if we first compute the values
σCC

i = w · φM (C,C, i,x), and use them to fill in
the values ofσab as shown in Figure 1.

In addition, computing the gradient of the semi-
CRF objective requires that we compute the ex-
pected value of each feature. For CRF-type fea-
tures, this is tantamount to being able to compute
the probability that each label bigram(Li, Li+1)
takes any value. Assume that we have already run
standard forward-backward inference so that we
have for any(a, b) the probability that the subse-
quence(xa,xa+1, . . . ,xb−1) segments as a chunk,
P (chunk(a, b)). Computing the probability that
(Li, Li+1) takes the valuesBB, BC or CB is
simple to compute:

P (Li, Li+1 = BB) = P (chunk(i, i + 1))

5Note that the problem would arise even if only zero-order
Markov (label unigram) features were used, only in that case
the troublesome features would be those that involved the la-
bel unigramC.
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and, e.g.,

P (Li, Li+1 = BC) =
∑

j>i+1

P (chunk(i, j)),

but the same method of summing over chunks can-
not be used for the valueCC since for each label
bigram there are quadratically many chunks cor-
responding to that value. In this case, the solution
is deceptively simple: using the fact that for any
given label bigram, the sum of the probabilities of
the four labels must be one, we can deduce that

P (Li, Li+1 = CC) = 1.0− P (Li, Li+1 = BB)
− P (Li, Li+1 = BC)− P (Li, Li+1 = CB).

One might object that features of theC andCC
labels (the ones presenting algorithmic difficulty)
are unnecessary, since under certain conditions,
their removal would not in fact change the expres-
sivity of the model or the distribution that maxi-
mizes training likelihood. This will indeed be the
case when the following conditions are fulfilled:

1. All label bigram features are of the form

φM (Li,Li+1, i,x) =
1{(Li, Li+1) = α & pred(i,x)}

for some label bigramα and predicatepred,
and any such feature with a given predicate
has variants for all four label bigramsα.

2. No regularization is used during training.

A proof of this claim would require too much
space for this paper, but the key is that, given a
model satisfying the above conditions, one can
obtain an equivalent model via adding, for each
feature type overpred, some constant to the four
weights corresponding to the four label bigrams,
such that theCC bigram features all have weight
zero.

In practice, however, one or both of these con-
ditions is always broken. It is common knowl-
edge that regularization of log-linear models with
a large number of features is necessary to achieve
high performance, and typically in NLP one de-
fines feature templates and chooses only those fea-
tures that occur in some positive example in the
training set. In fact, if both of these conditions are
fulfilled, it is very likely that the optimal model
will have some weights with infinite values. We
conclude that it is not a practical alternative to omit
theC andCC label features.

2.4 Generative Features in a Discriminative
Model

When using the output of a generative model as
a feature in a discriminative model, Raina et al.
(2004) provide a justification for the use of log
conditional odds as opposed to log-probability:
they show that using log conditional odds as fea-
tures in a logistic regression model is equivalent
to discriminatively training weights for the fea-
tures of a Näıve Bayes classifier to maximize
conditional likelihood.6 They demonstrate that
the resulting classifier, termed a “hybrid genera-
tive/discriminative classifier”, achieves lower test
error than either pure Naı̈ve Bayes or pure logistic
regression on a text classification task, regardless
of training set size.

The hybrid generative/discriminative classifier
also uses a unique method for using the same data
used to estimate the parameters of the compo-
nent generative models for training the discrimina-
tive model parametersw without introducing bias.
A “leave-one-out” strategy is used to choosew,
whereby the feature values of thei-th training ex-
ample are computed using probabilities estimated
with thei-th example held out. The beauty of this
approach is that since the probabilities are esti-
mated according to (smoothed) relative frequency,
it is only necessary during feature computation to
maintain sufficient statistics and adjust them as
necessary for each example.

In this paper, we experiment with the use of
a single “hybrid” local semi-CRF feature, the
smoothed log conditional odds that a given sub-
sequencexab = (xa, . . . ,xb−1) forms a word:

log
wordcount(xab) + 1

nonwordcount(xab) + 1
,

where wordcount(xab) is the number of times
xab forms a word in the training set, and
nonwordcount(xab) is the number of timesxab

occurs, not segmented into a single word. The
models we test are not strictly speaking hybrid
generative/discriminative models, since we also
use indicator features not derived from a genera-
tive model. We did however use the leave-one-out
approach for computing the log conditional odds
feature during training.

6In fact, one more step beyond what is shown in that paper
is required to reach the stated conclusion, since their features
are not actually log conditional odds, butlog P (x|y)

P (x|¬y)
. It is

simple to show that in the given context this feature is equiv-
alent to log conditional odds.
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3 Experiments

To test the ideas discussed in this paper, we com-
pared the performance of semi-CRFs using vari-
ous feature sets on a Chinese word segmentation
task. The data used was the Microsoft Research
Beijing corpus from the Second International
Chinese Word Segmentation Bakeoff (Emerson,
2005), and we used the same train/test split used in
the competition. The training set consists of 87K
sentences of Beijing dialect Chinese, hand seg-
mented into 2.37M words. The test set contains
107K words comprising roughly 4K sentences.
We used a maximum word lengthk of 15 in our
experiments, which accounted for 99.99% of the
word tokens in our training set. The 249 train-
ing sentences that contained words longer than 15
characters were discarded. We did not discard any
test sentences.

In order to be directly comparable to the Bake-
off results, we also worked under the very strict
“closed test” conditions of the Bakeoff, which re-
quire that no information or data outside of the
training set be used, not even prior knowledge of
which characters represent Arabic numerals, Latin
characters or punctuation marks.

3.1 Features Used

We divide our main features into two types accord-
ing to whether they are most naturally used in a
CRF or a semi-CRF.

The CRF-type features are indicator functions
that fire when the character label (or label bigram)
takes some value and some predicate of the input
at a certain position relative to the label is satis-
fied. For each character label unigramL at posi-
tion i, we use the same set of predicate templates
checking:

• The identity ofxi−1 andxi

• The identity of the character bigram starting
at positionsi− 2, i− 1 andi

• Whetherxj andxj+1 are identical, forj =
(i− 2) . . . i

• Whetherxj andxj+2 are identical, forj =
(i− 3) . . . i

• Whether the sequencexj . . .xj+3 forms an
AABB sequence forj = (i− 4) . . . i

• Whether the sequencexj . . .xj+3 forms an
ABAB sequence forj = (i− 4) . . . i

The latter four feature templates are designed to
detect character or word reduplication, a morpho-
logical phenomenon that can influence word seg-
mentation in Chinese. The first two of these were
also used by Tseng et al. (2005).

For label bigrams(Li, Li+1), we use the same
templates, but extending the range of positions
by one to the right.7 Each label uni- or bigram
also has a “prior” feature that always fires for
that label configuration. All configurations con-
tain the above features for the label unigramB,
since these are easily used in either a CRF or semi-
CRF model. To determine the influence of CRF-
type features on performance, we also test config-
urations in which bothB andC label features are
used, and configurations using all label uni- and
bigrams.

In the semi-Markov conditions, we also use as
feature templates indicators of the length of a word
`, for ` = 1 . . . k, and indicators of the identity of
the corresponding character sequence.

All feature templates were instantiated with val-
ues that occur in positive training examples. We
found that excluding CRF-type features that occur
only once in the training set consistently improved
performance on the development set, so we use a
count threshold of two for the experiments. We do
not do any thresholding of the semi-CRF features,
however.

Finally, we use the single generative feature,
log conditional odds that the given string forms
a word. We also present results using the more
typical log conditional probability instead of the
odds, for comparison. In fact, these are both semi-
Markov-type features, but we single them out to
determine what they contribute over and above the
other semi-Markov features.

3.2 Results

The results of test set runs are summarized in ta-
ble 3.2. The columns indicate which CRF-type
features were used: features of only the labelB,
features of label unigramsB and C, or features
of all label unigrams and bigrams. The rows indi-
cate which semi-Markov-type features were used:

7For both label unigram and label bigram features, the in-
dices are chosen so that the feature set exhibits no asymmetry
with respect to direction: for each feature considering some
boundary and some property of the character(s) at a given
offset to the left, there is a corresponding feature considering
that boundary and the same property of the character(s) at the
same offset to the right, and vice-versa.
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Features B only uni uni+bi
none 92.33 94.71 95.69
semi 95.28 96.05 96.46
prob 93.86 95.40 96.04

semi+prob 95.51 96.24 96.55
odds 95.10 96.06 96.40

semi+odds 96.27 96.77 96.84

Table 1: Test F-measure for different model con-
figurations.

“semi” means length and word identity features
were used, “prob” means the log-probability fea-
ture was used, and “odds” means the log-odds fea-
ture was used.

To establish the impact of each type of feature
(C label unigrams, label bigrams, semi-CRF-type
features, and the log-odds feature), we look at the
reduction in error brought about by adding each
type of feature. First consider the effect of the
CRF-type features. Adding theC label features
reduces error by 31% if no semi-CRF features are
used, by 16% when semi-CRF indicator features
are turned on, and by 13% when all semi-CRF fea-
tures (including log-odds) are used. Using all label
bigrams reduces error by 44%, 25%, and 15% in
these three conditions, respectively.

Contrary to previous conclusions, our results
show a significant impact due to the use of semi-
CRF-type features, when CRF-type features are
held constant. Adding semi-CRF indicator fea-
tures results in a 38% error reduction without
CRF-type features, and 18% with them. Adding
semi-CRF indicator features plus the log-odds fea-
ture gives 52% and 27% in these two conditions,
respectively.

Finally, across configurations, the log condi-
tional odds does much better than log condi-
tional probability. When the log-odds feature is
added to the complete CRF model (uni+bi) as
the only semi-CRF-type feature, errors are re-
duced by 24%, compared to only 7.6% for the log-
probability. Even when the other semi-CRF-type
features are present as well, log-odds reduces error
by 13% compared to 2.5% for log-probability.

Our best model, combining all features, resulted
in an error reduction of 12% over the highest score
on this dataset from the 2005 Sighan closed test
competition (96.4%), achieved by the pure CRF
system of Tseng et al. (2005).

3.3 Discussion

Our results indicate that both Markov-type and
semi-Markov-type features are useful for generali-
zation to unseen data. This may be because the
two types of features are in a sense complemen-
tary: semi-Markov-type features such as word-
identity are valuable for modeling the tendency
of known strings to segment as words, while la-
bel based features are valuable for modeling prop-
erties of sub-lexical components such as affixes,
helping to generalize to words that have not previ-
ously been encountered. We did not explicitly test
the utility of CRF-type features for improving re-
call on out-of-vocabulary items, but we note that
in the Bakeoff, the model of Tseng et al. (2005),
which was very similar to our CRF-only system
(only containing a few more feature templates),
was consistently among the best performing sys-
tems in terms of test OOV recall (Emerson, 2005).

We also found that for this sequence segmenta-
tion task, the use of log conditional odds as a fea-
ture results in much better performance than the
use of the more typical log conditional probabil-
ity. It would be interesting to see the log-odds
applied in more contexts where log-probabilities
are typically used as features. We have presented
the intuitive argument that the log-odds may be
advantageous because it does not exhibit the 0-1
asymmetry of the log-probability, but it would be
satisfying to justify the choice on more theoretical
grounds.

4 Relation to Previous Work

There is a significant volume of work explor-
ing the use of CRFs for a variety of chunking
tasks, including named-entity recognition, gene
prediction, shallow parsing and others (Finkel et
al., 2005; Culotta et al., 2005; Sha and Pereira,
2003). The current work indicates that these sys-
tems might be improved by moving to a semi-CRF
model.

There have not been a large number of studies
using the semi-CRF, but the few that have been
done found only marginal improvements over pure
CRF systems (Sarawagi and Cohen, 2004; Liang,
2005; Dauḿe III and Marcu, 2005). Notably,
none of those studies experimented with features
of chunknon-boundaries, as is achieved by the use
of CRF-type features involving the labelC, and
we take this to be the reason for their not obtain-
ing higher results.
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Although it has become fairly common in NLP
to use the log conditional probabilities of events
as features in a discriminative model, we are not
aware of any work using the log conditional odds.

5 Conclusion

We have shown that order-1 semi-Markov condi-
tional random fields are strictly more expressive
than order-1 Markov CRFs, and that the added
expressivity enables the use of features that lead
to improvements on a segmentation task. On the
other hand, Markov CRFs can more naturally in-
corporate certain features that may be useful for
modeling sub-chunk phenomena and generaliza-
tion to unseen chunks. To achieve the best per-
formance for segmentation, we propose that both
types of features be used, and we show how this
can be done efficiently.

Additionally, we have shown that a log condi-
tional odds feature estimated from a generative
model can be superior to the more common log
conditional probability.
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