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Abstract

Random Indexing is a vector space tech-
nique that provides an efficient and scal-
able approximation to distributional simi-
larity problems. We present experiments
showing Random Indexing to be poor at
handling large volumes of data and evalu-
ate the use of weighting functions for im-
proving the performance of Random In-
dexing. We find that Random Index is ro-
bust for small data sets, but performance
degrades because of the influence high fre-
quency attributes in large data sets. The
use of appropriate weight functions im-
proves this significantly.

1 Introduction

Synonymy relations between words have been
used to inform many Natural Language Processing
(NLP) tasks. While these relations can be extracted
from manually created resources such as thesauri
(e.g. Roget’s Thesaurus) and lexical databases
(e.g. WordNet, Fellbaum, 1998), it is often ben-
eficial to extract these relationships from a corpus
representative of the task.

Manually created resources are expensive and
time-consuming to create, and tend to suffer from
problems of bias, inconsistency, and limited cover-
age. These problems may result in an inappropri-
ate vocabulary, where some terms are not present
or an unbalanced set of synonyms. In a medical
context it is more likely that administration will re-
fer to the giving of medicine than to paper work,
whereas in a business context the converse is more
likely.

The most common method for automatically
creating these resources uses distributional simi-

larity and is based on the distributional hypoth-
esis that similar words appear in similar con-
texts. Terms are described by collating informa-
tion about their occurrence in a corpus into vec-
tors. These context vectors are then compared for
similarity. Existing approaches differ primarily in
their definition of context, e.g. the surrounding
words or the entire document, and their choice of
distance metric for calculating similarity between
the context vectors representing each term.

In this paper, we analyse the use of Random In-
dexing (Kanerva et al., 2000) for semantic similar-
ity measurement. Random Indexing is an approxi-
mation technique proposed as an alternative to La-
tent Semantic Analysis (LSA, Landauer and Du-
mais, 1997). Random Indexing is more scalable
and allows for the incremental learning of context
information.

Curran and Moens (2002) found that dramati-
cally increasing the volume of raw input data for
distributional similarity tasks increases the accu-
racy of synonyms extracted. Random Indexing
performs poorly on these volumes of data. Noting
that in many NLP tasks, including distributional
similarity, statistical weighting is used to improve
performance, we modify the Random Indexing al-
gorithm to allow for weighted contexts.

We test the performance of the original and our
modified system using existing evaluation metrics.
We further evaluate against bilingual lexicon ex-
traction using distributional similarity (Sahlgren
and Karlgren, 2005). The paper concludes with
a more detailed analysis of Random Indexing in
terms of both task and corpus composition. We
find that Random Index is robust for small cor-
pora, but larger corpora require that the contexts
be weighted to maintain accuracy.
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2 Random Indexing

Random Indexing is an approximating technique
proposed by Kanerva et al. (2000) as an alternative
to Singular Value Decomposition (SVD) for Latent
Semantic Analysis (LSA, Landauer and Dumais,
1997). In LSA, it is assumed that there is some
underlying dimensionality in the data, so that the
attributes of two or more terms that have similar
meanings can be folded onto a single axis.

Sahlgren (2005) criticise LSA for being both
computationally inefficient and requiring the for-
mation of a full co-occurrence matrix and its de-
composition before any similarity measurements
can be made. Random Indexing avoids both these
by creating a short index vector for each unique
context, and producing the context vector for each
term by summing index vectors for each context
as it is read, allowing an incremental building of
the context space.

Hecht-Nielsen (1994) observed that there are
many more nearly orthogonal directions in high-
dimensional space than there are truly orthogo-
nal directions. The random index vectors are
nearly-orthogonal, resulting in an approximate
description of the context space. The approx-
imation comes from the Johnson-Lindenstrauss
lemma (Johnson and Lindenstrauss, 1984), which
states that if we project points in a vector space
into a randomly selected subspace of sufficiently
high dimensionality, the distances between the
points are approximately preserved. Random Pro-
jection (Papadimitriou et al., 1998) and Random
Mapping (Kaski, 1998) are similar techniques that
use this lemma. Achlioptas (2001) showed that
most zero-mean distributions with unit variance,
including very simple ones like that used in Ran-
dom Indexing, produce a mapping that satisfies
the lemma. The following description of Ran-
dom Indexing is taken from Sahlgren (2005) and
Sahlgren and Karlgren (2005).

We allocate a d length index vector to each
unique context as is it found. These vectors con-
sist of a large number of 0s and a small number
(ε) of ±1s. Each element is allocated one of these
values with the following probability:











+1 with probability ε/2
d

0 with probability d−ε
d

−1 with probability ε/2
d

Context vectors are generated on-the-fly. As the
corpus is scanned, for each term encountered, its

contexts are extracted. For each new context, an
index vector is produced for it as above. The con-
text vector is the sum of the index vectors of all
the contexts in which the term appears.

The context vector for a term t appearing in one
each in the contexts c1 = [1, 0, 0,−1] and c2 =
[0, 1, 0,−1] would be [1, 1, 0,−2]. If the context
c1 encountered again, no new index vector would
be generated and the existing index vector for c1

would be added to the existing context vector to
produce a new context vector for t of [2, 1, 0,−3].

The distance between these context vectors can
then be measured using any vector space distance
measure. Sahlgren and Karlgren (2005) use the
cosine measure:

cos(θ(u, v)) =
~u · ~v

|~u| |~v|
=

∑d
i=1 ~ui~vi

√

∑d
i=1 ~u2

i

√

∑d
i=1 ~v2

i

Random Indexing allows for incremental sam-
pling. This means that the entire data set need not
be sampled before similarity between terms can be
measured. It also means that additional context
information can be added at any time without in-
validating the information already produced. This
is not feasible with most other word-space mod-
els. The approach used by Grefenstette (1994) and
Curran (2004) requires the re-computation of all
non-linear weights if new data is added, although
some of these weights can be approximated when
adding new data incrementally. Similarly, new
data can be folded into a reduced LSA space, but
there is no guarantee that the original smoothing
will apply correctly to the new data (Sahlgren,
2005).

3 Weights

Our initial experiments using Random Indexing
to extract synonymy relations produced worse re-
sults than those using full vector measures, such as
JACCARD (Curran, 2004), when the full vector is
weighted. We experiment using weight functions
with Random Indexing.

Only a linear weighting scheme can be applied
while maintaining incremental sampling. While
incremental sampling is part of the rationale be-
hind its development, it is not required for Ran-
dom Indexing to work as a dimensionality reduc-
tion technique.

To this end, we revise Random Indexing to en-
able us to use weight functions. For each unique
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IDENTITY 1.0 FREQ f(w, r, w′)

RELFREQ
f(w,r,w′)
f(w,∗,∗)

TF-IDF
f(w,r,w′)
n(∗,r,w′)

TF-IDF† log2(f(w,r,w′)+1)

log2(1+
N

(r,w′)

n(∗,r,w′)
)

MI log( p(w,r,w′)
p(w,∗,∗)p(∗,r,w′)

)

TTEST
p(w,r,w′)−p(∗,r,w′)p(w,∗,∗)√

p(∗,r,w′)p(w,∗,∗)
GREF94 log2(f(w,r,w′)+1)

log2(n(∗,r,w′)+1)

LIN98A log( f(w,r,w′)f(∗,r∗)
f(∗,r,w′)f(w,r,∗)

) LIN98B − log(n(∗,r,w′)
Nw

)

CHI2 cf. Manning and Schütze (1999) LR cf. Manning and Schütze (1999)

DICE
2p(w,r,w′)

p(w,∗,∗)+p(∗,r,w′)

Table 1: Weight Functions Evaluated

context attribute, a d length index vector will be
generated. The context vector of a term w is then
created by the weighted sum of each of its at-
tributes. The results of the original Random In-
dexing algorithm are reproduced using frequency
weighting (FREQ).

Weights are generated using the frequency dis-
tribution of each term and its contexts. This in-
creases the overhead, as we must store the context
attributes for each term. Rather than the context
vector being generated by adding each individual
context, it is generated by adding each the index
vector for each unique context multiplied by its
weight.

The time to calculate the weight of all attributes
of all terms is negligible. The original technique
scales to O(dnm) in construction, for n terms and
m unique attributes. Our new technique scales to
O(d(a + nm)) for a non-zero context attributes
per term, which since a � m is also O(dnm).

Following the notation of Curran (2004), a con-
text relation is defined as a tuple (w, r, w′) where
w is a term, which occurs in some grammatical re-
lation r with another word w′ in some sentence.
We refer to the tuple (r, w′) as an attribute of w.
For example, (dog, direct-obj, walk) indicates that
dog was the direct object of walk in a sentence.

An asterisk indicates the set of all existing val-
ues of that component in the tuple.

(w, ∗, ∗) ≡ {(r, w′)|∃(w, r, w′)}

The frequency of a tuple, that is the number of
times a word appears in a context is f(w, r, w′).
f(w, ∗, ∗) is the instance or token frequency of the
contexts in which w appears. n(w, ∗, ∗) is the type

frequency. This is the number of attributes of w.

f(w, ∗, ∗) ≡
∑

(r,w′)∈(w,∗,∗) f(w, r, w′)

p(w, ∗, ∗) ≡ f(w,∗,∗)
f(∗,∗,∗)

n(w, ∗, ∗) ≡ |(w, ∗, ∗)|
Nw ≡ |{w|n(w, ∗, ∗) > 0}|

Most experiments limited weights to the positive
range; those evaluated with an unrestricted range
are marked with a ± suffix. Some weights were
also evaluated with an extra log2(f(w, r, w′) +
1) factor to promote the influence of higher fre-
quency attributes, indicated by a LOG suffix. Al-
ternative functions are marked with a dagger.

The context vector of each term w is thus:

w̄ =
∑

(r,w′)∈(w,∗,∗)

~(r, w′) wgt(w, r, w′)

where ~(r, w′) is the index vector of the context
(r, w′). The weights functions we evaluate are
those from Curran (2004) and are given in Table 1.

4 Semantic Similarity

The first use of Random Indexing was to measure
semantic similarity using distributional similarity.
Kanerva et al. (2000) used Random Indexing to
find the best synonym match in Test of English
as a Foreign Language (TOEFL). TOEFL was used
by Landauer and Dumais (1997), who reported an
accuracy 36% using un-normalised vectors, which
was improved to 64% using LSA. Kanerva et al.
(2000) produced an accuracy of 48–51% using the
same type of document based contexts and Ran-
dom Indexing, which improved to 62–70% using
narrow context windows. Karlgren and Sahlgren
(2001) improved this to 72% using lemmatisation
and POS tagging.
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4.1 Distributional Similarity

Measuring distributional similarity first requires
the extraction of context information for each of
the vocabulary terms from raw text. The contexts
for each term are collected together and counted,
producing a vector of context attributes and their
frequencies in the corpus. These terms are then
compared for similarity using a nearest-neighbour
search based on distance calculations between the
statistical descriptions of their contexts.

The simplest algorithm for finding synonyms is
a k-nearest-neighbour search, which involves pair-
wise vector comparison of the context vector of
the target term with the context vector of every
other term in the vocabulary.

We use two types of context extraction to pro-
duce both high and low quality context descrip-
tions. The high quality contexts were extracted
from grammatical relations extracted using the
SEXTANT relation extractor (Grefenstette, 1994)
and are lemmatised. This is the same data used in
Curran (2004).

The low quality contexts were extracted taking
a window of one word to the left and right of the
target term. The context is marked as to whether
it preceded or followed the term. Curran (2004)
found this extraction technique to provided rea-
sonable results on the non-speech portion of the
BNC when the data was lemmatised. We do not
lemmatise, which produces noisier data.

4.2 Bilingual Lexicon Acquisition

A variation on the extraction of synonymy rela-
tions, is the extraction of bilingual lexicons. This
is the task of finding for a word in one language
words of a similar meaning in a second language.
The results of this can be used to aid manual con-
struction of resources or directly aid translation.

This task was first approached as a distribu-
tional similarity-like problem by Brown et al.
(1988). Their approach uses aligned corpora in
two or more languages: the source language, from
which we are translating, and the target language,
to which we are translating. For a each aligned
segment, they measure co-occurrence scores be-
tween each word in the source segment and each
word in the target segment. These co-occurrence
scores are used to measure the similarity between
source and target language terms

Sahlgren and Karlgren’s approach models the
problem as a distributional similarity problem us-

Source Context Target
Language Language

aaabbc I xxyzzz

bcc II wxy

aab III xzz

Table 2: Paragraph Aligned Corpora

ing the paragraph as context. In Table 2, the source
language is limited to the words a, b and c and the
target language to the words x, y and z. Three para-
graphs in each of these languages are presented as
pairs of translations labelled as a context: aaabbc

is translated as xxyzzz and labelled context I. The
frequency weighted context vector for a is {I:3,
III:2} and for x is {I:2, II:1, III:1}.

A translation candidate for a term in the source
language is found by measuring the similarity be-
tween its context vector and the context vectors of
each of the terms in the target language. The most
similar target language term is the most likely
translation candidate.

Sahlgren and Karlgren (2005) use Random In-
dexing to produce the context vectors for the
source and target languages. We re-implement
their system and apply weighting functions in an
attempt to achieve improved results.

5 Experiments

For the experiments extracting synonymy rela-
tions, high quality contexts were extracted from
the non-speech portion of the British National
Corpus (BNC) as described above. This represents
90% of the BNC, or 90 million words.

Comparisons between low frequency terms are
less accurate than between high frequency terms
as there is less evidence describing them (Cur-
ran and Moens, 2002). This is compounded in
randomised vector techniques because the ran-
domised nature of the representation means that
a low frequency term may have a similar context
vector to a high frequency term while not sharing
many contexts. A frequency cut-off of 100 was
found to balance this inaccuracy with the reduc-
tion in vocabulary size. This reduces the original
246,046 word vocabulary to 14,862 words. Exper-
iments showed d = 1000 and ε = 10 to provide a
balance between speed and accuracy.

Low quality contexts were extracted from por-
tions of the entire of the BNC. These formed cor-
pora of 100,000, 500,000, 1 million, 5 million, 10
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million, 50 million and 100 million words, cho-
sen from random documents. This allowed us test
the effect of both corpus size and context qual-
ity. This produced vocabularies of between 10,380
and 522,163 words in size. Because of the size
of the smallest corpora meant that a high cutoff
would remove to many terms for a fair test, a cut-
off of 5 was applied. The values d = 1000 and
ε = 6 were used.

For our experiments in bilingual lexicon acqui-
sition we follow Sahlgren and Karlgren (2005).
We use the Spanish-Swedish and the English-
German portions of the Europarl corpora (Koehn,
2005).1 These consist of 37,379 aligned para-
graphs in Spanish–Swedish and 45,556 in English-
German. The text was lemmatised using Con-
nexor Machinese (Tapanainen and Jävinen, 1997)2

producing vocabularies of 42,671 terms of Span-
ish, 100,891 terms of Swedish, 40,181 terms of
English and 70,384 terms of German. We use
d = 600 and ε = 6 and apply a frequency cut-
off of 100.

6 Evaluation Measures

The simplest method for evaluation is the direct
comparison of extracted synonyms with a man-
ually created gold standard (Grefenstette, 1994).
To reduce the problem of limited coverage, our
evaluation of the extraction of synonyms combines
three electronic thesauri: the Macquarie, Roget’s
and Moby thesauri.

We follow Curran (2004) and use two perfor-
mance measures: direct matches (DIRECT) and
inverse rank (INVR). DIRECT is the number of
returned synonyms found in the gold standard.
INVR is the sum of the inverse rank of each match-
ing synonym, e.g. matches at ranks 3, 5 and 28
give an inverse rank score of 1

3 + 1
5 + 1

28 . With
at most 100 matching synonyms, the maximum
INVR is 5.187. This more fine grained as it incor-
porates the both the number of matches and their
ranking.

The same 300 single word nouns were used for
evaluation as used by Curran (2004) for his large
scale evaluation. These were chosen randomly
from WordNet such that they covered a range over
the following properties: frequency, number of
senses, specificity and concreteness. On average
each evaluation term had 301 gold-standard syn-

1http://www.statmt.org/europarl/
2http://www.connexor.com/

Weight DIRECT INVR
FREQ 2.87 0.94
IDENTITY 3.18 0.95
RELFREQ 2.87 0.94
TF-IDF 0.30 0.07
TF-IDF† 3.92 1.39
MI 1.52 0.54
MILOG 3.38 1.39
MI± 1.87 0.65
MILOG± 3.49 1.41
TTEST 1.06 0.52
TTESTLOG 1.53 0.62
TTEST± 1.06 0.52
TTESTLOG± 1.52 0.61
GREF94 2.82 0.86
LIN98A 1.52 0.50
LIN98B 2.95 0.84
CHI2 0.46 0.25
DICE 3.32 1.11
DICELOG 2.56 0.81
LR 1.96 0.58

Table 3: Evaluation of synonym extraction

onyms. For each of these terms, the closest 100
terms and their similarity scores were extracted.

For the evaluation of bilingual lexicon acqui-
sition we use two online lexical resources used
by Sahlgren and Karlgren (2005) as gold stan-
dards: Lexin’s online Swedish-Spanish lexicon3

and TU Chemnitz’ online English-German dic-
tionary.4 Each of the elements in a compound
or multi-word expression is treated as a poten-
tial translation. The German abblendlicht (low beam

light) is treated as a translation candidate for low,
beam and light separately.

Low coverage is more of problem than in our
thesaurus task as we have not used combined re-
sources. There are an average of 19 translations
for each of the 3,403 Spanish terms and 197 trans-
lations for each of the 4,468 English terms. The
English-German translation count is skewed by
the presence of connectives in multi-word expres-
sions, such as of and on, producing mistranslations.
Sahlgren and Karlgren (2005) provide good com-
mentary on the evaluation of this task.

Spanish and English are used as the source lan-
guages. The 200 closest terms in the target lan-
guage are found for all terms in both the source
vocabulary and the gold-standards.

We measure the DIRECT score and INVR as
above. In addition we measure the precision of the
closest translation candidate, as used in Sahlgren
and Karlgren (2005).

3http://lexin.nada.kth.se/sve-spa.shtml
4http://dict.tu-chemnitz.de/
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Weight English-German Spanish-Swedish
DIRECT Precision INVR DIRECT Precision INVR

FREQ 6.1 58% 0.97 0.8 47% 0.53
IDENTITY 6.0 58% 0.91 0.8 47% 0.53
RELFREQ 6.1 58% 0.97 0.8 47% 0.53
TF-IDF 4.9 53% 0.84 0.8 43% 0.50
TF-IDF† 6.3 58% 0.94 0.8 47% 0.53
MI 2.3 58% 0.76 0.8 48% 0.56
MILOG 2.1 58% 0.76 0.8 49% 0.56
MI± 4.6 57% 0.86 0.8 46% 0.53
MILOG± 4.6 57% 0.87 0.8 47% 0.54
TTEST 2.1 57% 0.75 0.8 48% 0.56
TTESTLOG 1.9 56% 0.72 0.8 46% 0.54
TTEST± 4.3 57% 0.85 0.8 45% 0.53
TTESTLOG± 4.0 56% 0.80 0.8 46% 0.53
GREF94 6.1 58% 0.95 0.8 48% 0.54
LIN98A 4.0 59% 0.82 0.8 48% 0.56
LIN98B 5.9 58% 0.91 0.8 48% 0.54
CHI2 3.1 50% 0.71 0.7 41% 0.48
DICE 5.7 58% 0.95 0.8 47% 0.53
DICELOG 4.7 57% 0.90 0.8 46% 0.52
LR 4.5 57% 0.86 0.8 47% 0.54

Table 4: Evaluation of bilingual lexicon extraction

7 Results

Table 3 shows the results for the experiments ex-
tracting synonymy. The basic Random Indexing
algorithm (FREQ) produces a DIRECT score of
2.87, and an INVR of 0.94. It is interesting that
the only other linear weight, IDENTITY, produces
more accurate results. This shows high frequency,
low information contexts reduce the accuracy of
Random Indexing. IDENTITY removes this effect
by ignoring frequency, but does not address the
information aspect. A more accurate weight will
consider the information provided by a context in
its weighting.

There was a large variance in the effective-
ness of the other weights and most proved to be
detrimental to Random Indexing. TF-IDF was the
worst, reducing the DIRECT score to 0.30 and the
INVR to 0.07. TF-IDF†, which is a log-weighted
alternative to TF-IDF, produced very good results.

With the exception of DICELOG, adding an
additional log factor improved performance (TF-
IDF†, MILOG and TTESTLOG). Unrestricted
ranges improved the MI family, but made no dif-
ference to TTEST. Grefenstette’s variation on
TF-IDF (GREF94) does not perform as well as
TF-IDF†, and Lin’s variations on MI± (LIN98A,
LIN98B) do not perform as well as MILOG±.

MILOG± had a higher INVR than TF-IDF†, but
a lower DIRECT score, indicating that it forces
more correct results to the top of the results list,
but also forces some correct results further down
so that they no longer appear in the top 100.

Weight BNC LARGE
DIRECT INVR DIRECT INVR

FREQ 8.9 0.93 7.2 0.85
TF-IDF† 11.8 1.39 12.5 1.50
MILOG± 10.5 1.41 13.8 1.75

Table 5: Evaluation of Random Indexing using a
very large corpus

The effect of high frequency contexts is in-
creased further as we increase the size of the cor-
pus. Table 5 presents results using the 2 billion
word corpus used by Curran (2004). This consists
of the non-speech portion of the BNC, the Reuter’s
Corpus Volume 1 and most of the English news
holdings of the LDC in 2003. Contexts were ex-
tracted as presented in Section 4. A frequency cut-
off of 100 was applied and the values d = 1000
and ε = 5 for FREQ and ε = 10 for the improved
weights were used.

We see that the very large corpus has reduced
the accuracy of frequency weighted Random In-
dexing. In contrast, our two top performers have
both substantially increased in accuracy, present-
ing a 75–100% improvment in performance over
FREQ. MILOG± is more accurate than TF-IDF†
for both measures of accuracy now, indicating it is
a better weight function for very large data sets.

7.1 Bilingual Lexicon Acquisition

When the same function were applied to the bilin-
gual lexicon acquisition task we see substantially
different results: neither the improvement nor the
extremely poor results are found (Table 4).

462



 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  20  40  60  80  100

IN
V
R

Corpus Size (millions of words)

FREQ
IDENTITY
TF-IDF†

MILOG
JACCARD

Figure 1: Random Indexing using window-based
context

In the English-German corpora we replicate
Sahlgren and Karlgren’s (2005) results, with a pre-
cision of 58%. This has a DIRECT score of 6.1 and
an INVR of 0.97. The only weight to make an im-
provement is TF-IDF†, which has a DIRECT score
of 6.3, but a lower INVR and all weights perform
worse in at least one measure.

Our results for the Spanish-Swedish corpora
show similar results. Our accuracy is down from
that in Sahlgren and Karlgren (2005). This is ex-
plained by our application of the frequency cut-off
to both the source and target languages. There are
more weights with higher accuracies, and fewer
with significantly lower accuracies.

7.2 Smaller Corpora

The absence of a substantial improvement in bilin-
gual lexicon acquisition requires further investiga-
tion. Three main factors differ between our mono-
lingual and bilingual experiments: that we are
smoothing a homogeneous data set in our mono-
lingual experiments and a heterogeneous data set
in our bilingual experiments; we are using local
grammatical contexts in our monolingual experi-
ments and paragraph contexts in our bilingual ex-
periments; and, the volume of raw data used in our
monolingual experiments is many times that used
in our bilingual experiments.

Figure 1 presents results for corpora extracted
from the BNC using the window-based context.
Results are shown for the original Random Index-
ing (FREQ) and using IDENTITY, MILOG± and
TF-IDF†, as well as for the full vector measure-
ment using JACCARD measure and the TTEST±

weight (Curran, 2004). Of the Random Index-
ing results FREQ produces the lowest overall re-

sults. It performs better than MILOG± for very
small corpora, but produces near constant results
for greater corpus sizes. Curran and Moens (2002)
found that increasing the volume of input data in-
creased the accuracy of results generated using a
full vector space model. Without weighting, Ran-
dom Indexing fails this, but after weighting is ap-
plied Curran and Moens’ results are confirmed.

The quality of context extracted influences how
weights perform individually, but Random In-
dexing using weights still outperforms not using
weights. The relative performance of MILOG±

has been reduced when compared with TF-IDF†,
but is still greater then FREQ.

Gorman and Curran (2006) showed Random In-
dexing to be much faster than full vector space
techniques, but with a 46–56% reduction in accu-
racy compared to using JACCARD and TTEST± .
Using the MI± weight kept the improvement in
speed but with only a 10–18% reduction in accu-
racy. When JACCARD and TTEST± are used with
our low quality contexts they perform consistently
worse that Random Indexing. This indicates Ran-
dom Indexing is stable in the presence of noisy
data. It would be interesting to further compare
these results to those produced by LSA.

The results we have presented have shown that
applying weights to Random Indexing can im-
prove its performance for thesaurus extraction
tasks. This improvement is dependent on the vol-
ume of raw data used to generate the context in-
formation. It is less dependent on the quality of
contexts extracted.

What we have not shown is whether this extends
to the extraction of bilingual lexicons. The bilin-
gual corpora have 12-16 million words per lan-
guage, and for this sized corpora we already see
substantial improvement with corpora as small as
5 million words (Figure 1). It may be that ex-
tracting paragraph-level contexts is not well suited
to weighting, or that the heterogeneous nature of
the aligned corpora reduces the meaningfulness of
weighting. There is also the question as to whether
it can be applied to all languages. There is a lack of
freely available large-scale multi-lingual resources
that makes this difficult to examine.

8 Conclusion

We have applied weighting functions to the vec-
tor space approximation Random Indexing. For
large data sets we found a significant improvement
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when weights were applied. For smaller data sets
we found that Random Indexing was sufficiently
robust that weighting had at most a minor effect.

Our weighting schemes removed the possibil-
ity of incremental learning of the term space. An
interesting direction would be the development of
algorithms that allowed the incremental applica-
tion of weights, perhaps by re-weighting vectors
when a new context is learned.

Other areas left open for investigation are the in-
teraction between Random Indexing, weights and
the type of context extracted, the use of large-
scale bilingual corpora, the acquisition of lexi-
cons for non-Indo-European languages and across
language family boundaries, and the difference in
effect term and paragraph/document contexts for
thesaurus extraction.

We have demonstrated that the accuracy of Ran-
dom Indexing can be improved by applying weight
functions, increasing accuracy by up to 50% on the
BNC and 100% on a 2 billion word corpus.
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