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Abstract

Supervised and semi-supervised sense dis-
ambiguation methods will mis-tag the in-
stances of a target word if the senses of
these instances are not defined in sense in-
ventories or there are no tagged instances
for these senses in training data. Here we
used a model order identification method
to avoid the misclassification of the in-
stances with undefined senses by discov-
ering new senses from mixed data (tagged
and untagged corpora). This algorithm
tries to obtain a natural partition of the
mixed data by maximizing a stability cri-
terion defined on the classification result
from an extended label propagation al-
gorithm over all the possible values of
the number of senses (or sense number,
model order). Experimental results on
SENSEVAL-3 data indicate that it outper-
forms SVM, a one-class partially super-
vised classification algorithm, and a clus-
tering based model order identification al-
gorithm when the tagged data is incom-
plete.

1 Introduction

In this paper, we address the problem of partially
supervised word sense disambiguation, which is
to disambiguate the senses of occurrences of a tar-
get word in untagged texts when given incomplete
tagged corpus 1.

Word sense disambiguation can be defined as
associating a target word in a text or discourse

1“incomplete tagged corpus” means that tagged corpus
does not include the instances of some senses for the target
word, while these senses may occur in untagged texts.

with a definition or meaning. Many corpus based
methods have been proposed to deal with the sense
disambiguation problem when given definition for
each possible sense of a target word or a tagged
corpus with the instances of each possible sense,
e.g., supervised sense disambiguation (Leacock et
al., 1998), and semi-supervised sense disambigua-
tion (Yarowsky, 1995).

Supervised methods usually rely on the infor-
mation from previously sense tagged corpora to
determine the senses of words in unseen texts.
Semi-supervised methods for WSD are charac-
terized in terms of exploiting unlabeled data in
the learning procedure with the need of prede-
fined sense inventories for target words. The in-
formation for semi-supervised sense disambigua-
tion is usually obtained from bilingual corpora
(e.g. parallel corpora or untagged monolingual
corpora in two languages) (Brown et al., 1991; Da-
gan and Itai, 1994), or sense-tagged seed examples
(Yarowsky, 1995).

Some observations can be made on the previous
supervised and semi-supervised methods. They
always rely on hand-crafted lexicons (e.g., Word-
Net) as sense inventories. But these resources may
miss domain-specific senses, which leads to in-
complete sense tagged corpus. Therefore, sense
taggers trained on the incomplete tagged corpus
will misclassify some instances if the senses of
these instances are not defined in sense invento-
ries. For example, one performs WSD in informa-
tion technology related texts using WordNet 2 as
sense inventory. When disambiguating the word
“boot” in the phrase “boot sector”, the sense tag-
ger will assign this instance with one of the senses
of “boot” listed in WordNet. But the correct sense

2Online version of WordNet is available at
http://wordnet.princeton.edu/cgi-bin/webwn2.0
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“loading operating system into memory” is not in-
cluded in WordNet. Therefore, this instance will
be associated with an incorrect sense.

So, in this work, we would like to study the
problem of partially supervised sense disambigua-
tion with an incomplete sense tagged corpus.
Specifically, given an incomplete sense-tagged
corpus and a large amount of untagged examples
for a target word 3, we are interested in (1) label-
ing the instances in the untagged corpus with sense
tags occurring in the tagged corpus; (2) trying to
find undefined senses (or new senses) of the target
word 4 from the untagged corpus, which will be
represented by instances from the untagged cor-
pus.

We propose an automatic method to estimate
the number of senses (or sense number, model or-
der) of a target word in mixed data (tagged cor-
pus+untagged corpus) by maximizing a stability
criterion defined on classification result over all
the possible values of sense number. At the same
time, we can obtain a classification of the mixed
data with the optimal number of groups. If the es-
timated sense number in the mixed data is equal
to the sense number of the target word in tagged
corpus, then there is no new sense in untagged
corpus. Otherwise new senses will be represented
by groups in which there is no instance from the
tagged corpus.

This partially supervised sense disambiguation
algorithm may help enriching manually compiled
lexicons by inducing new senses from untagged
corpora.

This paper is organized as follows. First, a
model order identification algorithm will be pre-
sented for partially supervised sense disambigua-
tion in section 2. Section 3 will provide experi-
mental results of this algorithm for sense disam-
biguation on SENSEVAL-3 data. Then related
work on partially supervised classification will be
summarized in section 4. Finally we will conclude
our work and suggest possible improvements in
section 5.

2 Partially Supervised Word Sense
Disambiguation

The partially supervised sense disambiguation
problem can be generalized as a model order iden-

3Untagged data usually includes the occurrences of all the
possible senses of the target word

4“undefined senses” are the senses that do not appear in
tagged corpus.

tification problem. We try to estimate the sense
number of a target word in mixed data (tagged cor-
pus+untagged corpus) by maximizing a stability
criterion defined on classification results over all
the possible values of sense number. If the esti-
mated sense number in the mixed data is equal to
the sense number in the tagged corpus, then there
is no new sense in the untagged corpus. Other-
wise new senses will be represented by clusters in
which there is no instance from the tagged corpus.
The stability criterion assesses the agreement be-
tween classification results on full mixed data and
sampled mixed data. A partially supervised clas-
sification algorithm is used to classify the full or
sampled mixed data into a given number of classes
before the stability assessment, which will be pre-
sented in section 2.1. Then we will provide the
details of the model order identification procedure
in section 2.2.

2.1 An Extended Label Propagation
Algorithm

Table 1: Extended label propagation algorithm.
Function: ELP(DL, DU , k, Y 0

DL+DU
)

Input: labeled examples DL, unlabeled
examples DU , model order k, initial
labeling matrix Y 0

DL+DU
;

Output: the labeling matrix YDU
on DU ;

1 If k < kXL
then

YDU
=NULL;

2 Else if k = kXL
then

Run plain label propagation algorithm
on DU with YDU

as output;
3 Else then
3.1 Estimate the size of tagged data set

of new classes;
3.2 Generate tagged examples from DU

for (kXL
+ 1)-th to k-th new classes;

3.3 Run plain label propagation algorithm
on DU with augmented tagged dataset
as labeled data;

3.4 YDU
is the output from plain label

propagation algorithm;
End if

4 Return YDU
;

Let XL+U = {xi}
n
i=1 be a set of contexts of

occurrences of an ambiguous word w, where xi

represents the context of the i-th occurrence, and n
is the total number of this word’s occurrences. Let
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SL = {sj}
c
j=1 denote the sense tag set of w in XL,

where XL denotes the first l examples xg(1 ≤ g ≤
l) that are labeled as yg (yg ∈ SL). Let XU denote
other u (l + u = n) examples xh(l + 1 ≤ h ≤ n)
that are unlabeled.

Let Y 0
XL+U

∈ N |XL+U |×|SL| represent initial
soft labels attached to tagged instances, where
Y 0

XL+U ,ij = 1 if yi is sj and 0 otherwise. Let Y 0
XL

be the top l rows of Y 0
XL+U

and Y 0
XU

be the remain-
ing u rows. Y 0

XL
is consistent with the labeling in

labeled data, and the initialization of Y 0
XU

can be
arbitrary.

Let k denote the possible value of the number
of senses in mixed data XL+U , and kXL

be the
number of senses in initial tagged data XL. Note
that kXL

= |SL|, and k ≥ kXL
.

The classification algorithm in the order identi-
fication process should be able to accept labeled
data DL

5, unlabeled data DU
6 and model order k

as input, and assign a class label or a cluster index
to each instance in DU as output. Previous super-
vised or semi-supervised algorithms (e.g. SVM,
label propagation algorithm (Zhu and Ghahra-
mani, 2002)) cannot classify the examples in DU

into k groups if k > kXL
. The semi-supervised k-

means clustering algorithm (Wagstaff et al., 2001)
may be used to perform clustering analysis on
mixed data, but its efficiency is a problem for clus-
tering analysis on a very large dataset since multi-
ple restarts are usually required to avoid local op-
tima and multiple iterations will be run in each
clustering process for optimizing a clustering so-
lution.

In this work, we propose an alternative method,
an extended label propagation algorithm (ELP),
which can classify the examples in DU into k
groups. If the value of k is equal to kXL

, then
ELP is identical with the plain label propagation
algorithm (LP) (Zhu and Ghahramani, 2002). Oth-
erwise, if the value of k is greater than kXL

, we
perform classification by the following steps:

(1) estimate the dataset size of each new class as
sizenew class by identifying the examples of new
classes using the “Spy” technique 7 and assuming

5DL may be the dataset XL or a subset sampled from XL.
6DU may be the dataset XU or a subset sampled from

XU .
7The “Spy” technique was proposed in (Liu et al., 2003).

Our re-implementation of this technique consists of three
steps: (1) sample a small subset Ds

L with the size 15%×|DL|
from DL; (2) train a classifier with tagged data DL − Ds

L;
(3) classify DU and Ds

L, and then select some examples from
DU as the dataset of new classes, which have the classifica-

that new classes are equally distributed;
(2) D

′

L = DL, D
′

U = DU ;
(3) remove tagged examples of the m-th new

class (kXL
+ 1 ≤ m ≤ k) from D

′

L
8 and train a

classifier on this labeled dataset without the m-th
class;

(4) the classifier is then used to classify the ex-
amples in D

′

U ;
(5) the least confidently unlabeled point

xclass m ∈ D
′

U , together with its label m, is added
to the labeled data D

′

L = D
′

L + xclass m, and
D

′

U = D
′

U − xclass m;
(6) steps (3) to (5) are repeated for each new

class till the augmented tagged data set is large
enough (here we try to select sizenew class/4 ex-
amples with their sense tags as tagged data for
each new class);

(7) use plain LP algorithm to classify remaining
unlabeled data D

′

U with D
′

L as labeled data.
Table 1 shows this extended label propagation

algorithm.
Next we will provide the details of the plain la-

bel propagation algorithm.

Define Wij = exp(−
d2

ij

σ2 ) if i 6= j and Wii = 0
(1 ≤ i, j ≤ |DL + DU |), where dij is the distance
(e.g., Euclidean distance) between the example xi

and xj , and σ is used to control the weight Wij .
Define |DL + DU | × |DL + DU | probability

transition matrix Tij = P (j → i) =
Wij∑n

k=1
Wkj

,

where Tij is the probability to jump from example
xj to example xi.

Compute the row-normalized matrix T by
T ij = Tij/

∑n
k=1 Tik.

The classification solution is obtained by
YDU

= (I − T uu)−1T ulY
0
DL

. I is |DU | × |DU |

identity matrix. T uu and T ul are acquired by split-
ting matrix T after the |DL|-th row and the |DL|-th
column into 4 sub-matrices.

2.2 Model Order Identification Procedure
For achieving the model order identification (or
sense number estimation) ability, we use a clus-
ter validation based criterion (Levine and Domany,
2001) to infer the optimal number of senses of w
in XL+U .

tion confidence less than the average of that in Ds
L. Classifi-

cation confidence of the example xi is defined as the absolute
value of the difference between two maximum values from
the i-th row in labeling matrix.

8Initially there are no tagged examples for the m-th class
in D

′

L. Therefore we do not need to remove tagged examples
for this new class, and then directly train a classifier with D

′

L.
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Table 2: Model order evaluation algorithm.
Function: CV(XL+U , k, q, Y 0

XL+U
)

Input: data set XL+U , model order k,
and sampling frequency q;
Output: the score of the merit of k;

1 Run the extended label propagation
algorithm with XL, XU , k and Y 0

XL+U
;

2 Construct connectivity matrix Ck based
on above classification solution on XU ;

3 Use a random predictor ρk to assign
uniformly drawn labels to each vector
in XU ;

4 Construct connectivity matrix Cρk
using

above classification solution on XU ;
5 For µ = 1 to q do
5.1 Randomly sample a subset Xµ

L+U with
the size α|XL+U | from XL+U , 0 < α < 1;

5.2 Run the extended label propagation
algorithm with Xµ

L, Xµ
U , k and Y 0µ;

5.3 Construct connectivity matrix Cµ
k using

above classification solution on Xµ
U ;

5.4 Use ρk to assign uniformly drawn labels
to each vector in Xµ

U ;
5.5 Construct connectivity matrix Cµ

ρk
using

above classification solution on Xµ
U ;

Endfor
6 Evaluate the merit of k using following

formula:
Mk = 1

q

∑
µ(M(Cµ

k , Ck) − M(Cµ
ρk

, Cρk
)),

where M(Cµ, C) is given by equation (2);
7 Return Mk;

Then this model order identification procedure
can be formulated as:

k̂XL+U
= argmaxKmin≤k≤Kmax

{CV (XL+U , k, q, Y
0

XL+U
)}.

(1)

k̂XL+U
is the estimated sense number in XL+U ,

Kmin (or Kmax) is the minimum (or maximum)
value of sense number, and k is the possible value
of sense number in XL+U . Note that k ≥ kXL

.
Then we set Kmin = kXL

. Kmax may be set as a
value greater than the possible ground-truth value.
CV is a cluster validation based evaluation func-
tion. Table 2 shows the details of this function.
We set q, the resampling frequency for estimation
of stability score, as 20. α is set as 0.90. The ran-
dom predictor assigns uniformly distributed class
labels to each instance in a given dataset. We
run this CV procedure for each value of k. The
value of k that maximizes this function will be se-

lected as the estimation of sense number. At the
same time, we can obtain a partition of XL+U with
k̂XL+U

groups.
The function M(Cµ, C) in Table 2 is given by

(Levine and Domany, 2001):

M(Cµ
, C) =

∑
i,j

1{Cµ
i,j = Ci,j = 1, xi, xj ∈ X

µ

U}∑
i,j

1{Ci,j = 1, xi, xj ∈ X
µ

U}
,

(2)

where Xµ
U is the untagged data in Xµ

L+U , Xµ
L+U

is a subset with the size α|XL+U | (0 < α < 1)
sampled from XL+U , C or Cµ is |XU | × |XU | or
|Xµ

U | × |Xµ
U | connectivity matrix based on classi-

fication solutions computed on XU or Xµ
U respec-

tively. The connectivity matrix C is defined as:
Ci,j = 1 if xi and xj belong to the same cluster,
otherwise Ci,j = 0. Cµ is calculated in the same
way.

M(Cµ, C) measures the proportion of example
pairs in each group computed on XU that are also
assigned into the same group by the classification
solution on Xµ

U . Clearly, 0 ≤ M ≤ 1. Intu-
itively, if the value of k is identical with the true
value of sense number, then classification results
on the different subsets generated by sampling
should be similar with that on the full dataset. In
the other words, the classification solution with the
true model order as parameter is robust against re-
sampling, which gives rise to a local optimum of
M(Cµ, C).

In this algorithm, we normalize M(Cµ
k , Ck) by

the equation in step 6 of Table 2, which makes
our objective function different from the figure of
merit (equation ( 2)) proposed in (Levine and Do-
many, 2001). The reason to normalize M(Cµ

k , Ck)
is that M(Cµ

k , Ck) tends to decrease when increas-
ing the value of k (Lange et al., 2002). Therefore
for avoiding the bias that the smaller value of k
is to be selected as the model order, we use the
cluster validity of a random predictor to normalize
M(Cµ

k , Ck).
If k̂XL+U

is equal to kXL
, then there is no new

sense in XU . Otherwise (k̂XL+U
> kXL

) new
senses of w may be represented by the groups in
which there is no instance from XL.

3 Experiments and Results

3.1 Experiment Design

We evaluated the ELP based model order iden-
tification algorithm on the data in English lexi-
cal sample task of SENSEVAL-3 (including all
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Table 3: Description of The percentage of official
training data used as tagged data when instances
with different sense sets are removed from official
training data.

The percentage of official
training data used as tagged data

Ssubset = {s1} 42.8%
Ssubset = {s2} 76.7%
Ssubset = {s3} 89.1%

Ssubset = {s1, s2} 19.6%
Ssubset = {s1, s3} 32.0%
Ssubset = {s2, s3} 65.9%

the 57 English words ) 9, and further empirically
compared it with other state of the art classifi-
cation methods, including SVM 10 (the state of
the art method for supervised word sense disam-
biguation (Mihalcea et al., 2004)), a one-class par-
tially supervised classification algorithm (Liu et
al., 2003) 11, and a semi-supervised k-means clus-
tering based model order identification algorithm.

The data for English lexical samples task in
SENSEVAL-3 consists of 7860 examples as offi-
cial training data, and 3944 examples as official
test data for 57 English words. The number of
senses of each English word varies from 3 to 11.

We evaluated these four algorithms with differ-
ent sizes of incomplete tagged data. Given offi-
cial training data of the word w, we constructed
incomplete tagged data XL by removing the all
the tagged instances from official training data that
have sense tags from Ssubset, where Ssubset is a
subset of the ground-truth sense set S for w, and S
consists of the sense tags in official training set for
w. The removed training data and official test data
of w were used as XU . Note that SL = S−Ssubset.
Then we ran these four algorithm for each target
word w with XL as tagged data and XU as un-
tagged data, and evaluated their performance us-
ing the accuracy on official test data of all the 57
words. We conducted six experiments for each tar-
get word w by setting Ssubset as {s1}, {s2}, {s3},
{s1, s2}, {s1, s3}, or {s2, s3}, where si is the i-th
most frequent sense of w. Ssubset cannot be set as
{s4} since some words have only three senses. Ta-
ble 3 lists the percentage of official training data
used as tagged data (the number of examples in in-

9Available at http://www.senseval.org/senseval3
10we used a linear SV M light, available at

http://svmlight.joachims.org/.
11Available at http://www.cs.uic.edu/∼liub/LPU/LPU-

download.html

complete tagged data divided by the number of ex-
amples in official training data) when we removed
the instances with sense tags from Ssubset for all
the 57 words. If Ssubset = {s3}, then most of
sense tagged examples are still included in tagged
data. If Ssubset = {s1, s2}, then there are very few
tagged examples in tagged data. If no instances are
removed from official training data, then the value
of percentage is 100%.

Given an incomplete tagged corpus for a target
word, SVM does not have the ability to find the
new senses from untagged corpus. Therefore it la-
bels all the instances in the untagged corpus with
sense tags from SL.

Given a set of positive examples for a class and
a set of unlabeled examples, the one-class partially
supervised classification algorithm, LPU (Learn-
ing from Positive and Unlabeled examples) (Liu
et al., 2003), learns a classifier in four steps:

Step 1: Identify a small set of reliable negative
examples from unlabeled examples by the use of a
classifier.

Step 2: Build a classifier using positive ex-
amples and automatically selected negative exam-
ples.

Step 3: Iteratively run previous two steps until
no unlabeled examples are classified as negative
ones or the unlabeled set is null.

Step 4: Select a good classifier from the set of
classifiers constructed above.

For comparison, LPU 12 was run to perform
classification on XU for each class in XL. The
label of each instance in XU was determined by
maximizing the classification score from LPU out-
put for each class. If the maximum score of an
instance is negative, then this instance will be la-
beled as a new class. Note that LPU classifies
XL+U into kXL

+ 1 groups in most of cases.
The clustering based partially supervised sense

disambiguation algorithm was implemented by re-
placing ELP with a semi-supervised k-means clus-
tering algorithm (Wagstaff et al., 2001) in the
model order identification procedure. The label
information in labeled data was used to guide the
semi-supervised clustering on XL+U . Firstly, the
labeled data may be used to determine initial clus-
ter centroids. If the cluster number is greater

12The three parameters in LPU were set as follows: “-s1
spy -s2 svm -c 1”. It means that we used the spy technique for
step 1 in LPU, the SVM algorithm for step 2, and selected the
first or the last classifier as the final classifier. It is identical
with the algorithm “Spy+SVM IS” in Liu et al. (2003).
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than kXL
, the initial centroids of clusters for new

classes will be assigned as randomly selected in-
stances. Secondly, in the clustering process, the
instances with the same class label will stay in
the same cluster, while the instances with different
class labels will belong to different clusters. For
better clustering solution, this clustering process
will be restarted three times. Clustering process
will be terminated when clustering solution con-
verges or the number of iteration steps is more than
30. Kmin = kXL

= |SL|, Kmax = Kmin + m. m
is set as 4.

We used Jensen-Shannon (JS) divergence (Lin,
1991) as distance measure for semi-supervised
clustering and ELP, since plain LP with JS diver-
gence achieves better performance than that with
cosine similarity on SENSEVAL-3 data (Niu et al.,
2005).

For the LP process in ELP algorithm, we con-
structed connected graphs as follows: two in-
stances u, v will be connected by an edge if u is
among v’s 10 nearest neighbors, or if v is among
u’s 10 nearest neighbors as measured by cosine or
JS distance measure (following (Zhu and Ghahra-
mani, 2002)).

We used three types of features to capture the
information in all the contextual sentences of tar-
get words in SENSEVAL-3 data for all the four
algorithms: part-of-speech of neighboring words
with position information, words in topical con-
text without position information (after removing
stop words), and local collocations (as same as the
feature set used in (Lee and Ng, 2002) except that
we did not use syntactic relations). We removed
the features with occurrence frequency (counted
in both training set and test set) less than 3 times.

If the estimated sense number is more than the
sense number in the initial tagged corpus XL, then
the results from order identification based meth-
ods will consist of the instances from clusters of
unknown classes. When assessing the agreement
between these classification results and the known
results on official test set, we will encounter the
problem that there is no sense tag for each instance
in unknown classes. Slonim and Tishby (2000)
proposed to assign documents in each cluster with
the most dominant class label in that cluster, and
then conducted evaluation on these labeled docu-
ments. Here we will follow their method for as-
signing sense tags to unknown classes from LPU,
clustering based order identification process, and

ELP based order identification process. We as-
signed the instances from unknown classes with
the dominant sense tag in that cluster. The result
from LPU always includes only one cluster of the
unknown class. We also assigned the instances
from the unknown class with the dominant sense
tag in that cluster. When all instances have their
sense tags, we evaluated the their results using the
accuracy on official test set.

3.2 Results on Sense Disambiguation

Table 4 summarizes the accuracy of SVM, LPU,
the semi-supervised k-means clustering algorithm
with correct sense number |S| or estimated sense
number k̂XL+U

as input, and the ELP algorithm
with correct sense number |S| or estimated sense
number k̂XL+U

as input using various incomplete
tagged data. The last row in Table 4 lists the av-
erage accuracy of each algorithm over the six ex-
perimental settings. Using |S| as input means that
we do not perform order identification procedure,
while using k̂XL+U

as input is to perform order
identification and obtain the classification results
on XU at the same time.

We can see that ELP based method outperforms
clustering based method in terms of average accu-
racy under the same experiment setting, and these
two methods outperforms SVM and LPU. More-
over, using the correct sense number as input helps
to improve the overall performance of both clus-
tering based method and ELP based method.

Comparing the performance of the same sys-
tem with different sizes of tagged data (from the
first experiment to the third experiment, and from
the fourth experiment to the sixth experiment), we
can see that the performance was improved when
given more labeled data. Furthermore, ELP based
method outperforms other methods in terms of ac-
curacy when rare senses (e.g. s3) are missing in
the tagged data. It seems that ELP based method
has the ability to find rare senses with the use of
tagged and untagged corpora.

LPU algorithm can deal with only one-class
classification problem. Therefore the labeled data
of other classes cannot be used when determining
the positive labeled data for current class. ELP
can use the labeled data of all the known classes to
determine the seeds of unknown classes. It may
explain why LPU’s performance is worse than
ELP based sense disambiguation although LPU
can correctly estimate the sense number in XL+U
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Table 4: This table summarizes the accuracy of SVM, LPU, the semi-supervised k-means clustering al-
gorithm with correct sense number |S| or estimated sense number k̂XL+U

as input, and the ELP algorithm
with correct sense number |S| or estimated sense number k̂XL+U

as input on the official test data of ELS
task in SENSEVAL-3 when given various incomplete tagged corpora.

Clustering algorithm ELP algorithm Clustering algorithm ELP algorithm
SVM LPU with |S| as input with |S| as input with k̂XL+U

as input with k̂XL+U
as input

Ssubset =
{s1} 30.6% 22.3% 43.9% 47.8% 40.0% 38.7%

Ssubset =
{s2} 59.7% 54.6% 44.0% 62.4% 48.5% 62.6%

Ssubset =
{s3} 67.0% 53.4% 48.7% 67.2% 52.4% 69.1%

Ssubset =
{s1, s2} 14.6% 13.1% 44.4% 40.2% 35.6% 33.0%

Ssubset =
{s1, s3} 25.7% 21.1% 48.5% 37.9% 39.8% 31.0%

Ssubset =
{s2, s3} 56.2% 53.1% 47.3% 59.4% 46.6% 58.7%

Average accuracy 42.3% 36.3% 46.1% 52.5% 43.8% 48.9%

Table 5: These two tables provide the mean and
standard deviation of absolute values of the differ-
ence between ground-truth results |S| and sense
numbers estimated by clustering or ELP based or-
der identification procedure respectively.

Clustering based method ELP based method
Ssubset =
{s1} 1.3±1.1 2.2±1.1

Ssubset =
{s2} 2.4±0.9 2.4±0.9

Ssubset =
{s3} 2.6±0.7 2.6±0.7

Ssubset =
{s1, s2} 1.2±0.6 1.6±0.5

Ssubset =
{s1, s3} 1.4±0.6 1.8±0.4

Ssubset =
{s2, s3} 1.8±0.5 1.8±0.5

when only one sense is missing in XL.
When very few labeled examples are avail-

able, the noise in labeled data makes it difficult
to learn the classification score (each entry in
YDU

). Therefore using the classification confi-
dence criterion may lead to poor performance of
seed selection for unknown classes if the classifi-
cation score is not accurate. It may explain why
ELP based method does not outperform cluster-
ing based method with small labeled data (e.g.,
Ssubset = {s1}).

3.3 Results on Sense Number Estimation

Table 5 provides the mean and standard devia-
tion of absolute difference values between ground-

truth results |S| and sense numbers estimated by
clustering or ELP based order identification pro-
cedures respectively. For example, if the ground
truth sense number of the word w is kw, and the es-
timated value is k̂w, then the absolute value of the
difference between these two values is |kw − k̂w|.
Therefore we can have this value for each word.
Then we calculated the mean and deviation on this
array of absolute values. LPU does not have the
order identification capability since it always as-
sumes that there is at least one new class in un-
labeled data, and does not further differentiate the
instances from these new classes. Therefore we do
not provide the order identification results of LPU.

From the results in Table 5, we can see that esti-
mated sense numbers are closer to ground truth re-
sults when given less labeled data for clustering or
ELP based methods. Moreover, clustering based
method performs better than ELP based method in
terms of order identification when given less la-
beled data (e.g., Ssubset = {s1}). It seems that
ELP is not robust to the noise in small labeled data,
compared with the semi-supervised k-means clus-
tering algorithm.

4 Related Work

The work closest to ours is partially supervised
classification or building classifiers using positive
examples and unlabeled examples, which has been
studied in machine learning community (Denis et
al., 2002; Liu et al., 2003; Manevitz and Yousef,
2001; Yu et al., 2002). However, they cannot
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group negative examples into meaningful clusters.
In contrast, our algorithm can find the occurrence
of negative examples and further group these neg-
ative examples into a “natural” number of clusters.
Semi-supervised clustering (Wagstaff et al., 2001)
may be used to perform classification by the use
of labeled and unlabeled examples, but it encoun-
ters the same problem of partially supervised clas-
sification that model order cannot be automatically
estimated.

Levine and Domany (2001) and Lange et al.
(2002) proposed cluster validation based criteria
for cluster number estimation. However, they
showed the application of the cluster validation
method only for unsupervised learning. Our work
can be considered as an extension of their methods
in the setting of partially supervised learning.

In natural language processing community, the
work that is closely related to ours is word sense
discrimination which can induce senses by group-
ing occurrences of a word into clusters (Schütze,
1998). If it is considered as unsupervised meth-
ods to solve sense disambiguation problem, then
our method employs partially supervised learning
technique to deal with sense disambiguation prob-
lem by use of tagged and untagged texts.

5 Conclusions

In this paper, we present an order identification
based partially supervised classification algorithm
and investigate its application to partially super-
vised word sense disambiguation problem. Exper-
imental results on SENSEVAL-3 data indicate that
our ELP based model order identification algo-
rithm achieves better performance than other state
of the art classification algorithms, e.g., SVM,
a one-class partially supervised algorithm (LPU),
and a semi-supervised k-means clustering based
model order identification algorithm.
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