
Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing (EMNLP 2006), pages 301–307,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Learning Phrasal Categories

William P. Headden III, Eugene Charniak and Mark Johnson
Brown Laboratory for Linguistic Information Processing (BLLIP)

Brown University
Providence, RI 02912

{headdenw|ec|mj}@cs.brown.edu

Abstract

In this work we learn clusters of contex-
tual annotations for non-terminals in the
Penn Treebank. Perhaps the best way
to think about this problem is to contrast
our work with that of Klein and Man-
ning (2003). That research used tree-
transformations to create various gram-
mars with different contextual annotations
on the non-terminals. These grammars
were then used in conjunction with a CKY
parser. The authors explored the space
of different annotation combinations by
hand. Here we try to automate the process
— to learn the “right” combination auto-
matically. Our results are not quite as good
as those carefully created by hand, but they
are close (84.8 vs 85.7).

1 Introduction and Previous Research

It is by now commonplace knowledge that accu-
rate syntactic parsing is not possible given only
a context-free grammar with standard Penn Tree-
bank (Marcus et al., 1993) labels (e.g.,S, NP ,
etc.) (Charniak, 1996). Instead researchers
condition parsing decisions on many other fea-
tures, such as parent phrase-marker, and, fa-
mously, the lexical-head of the phrase (Mager-
man, 1995; Collins, 1996; Collins, 1997; Johnson,
1998; Charniak, 2000; Henderson, 2003; Klein
and Manning, 2003; Matsuzaki et al., 2005) (and
others).

One particularly perspicuous way to view the
use of extra conditioning information is that of
tree-transformation (Johnson, 1998; Klein and
Manning, 2003). Rather than imagining the parser
roaming around the tree for picking up the infor-

mation it needs, we rather relabel the nodes to di-
rectly encode this information. Thus rather than
have the parser “look” to find out that, say, the
parent of someNP is anS, we simply relabel the
NP as anNP [S].

This viewpoint is even more compelling if one
does not intend to smooth the probabilities. For
example, considerp(NP → PRN | NP [S]) If
we have no intention of backing off this probabil-
ity to p(NP → PRN | NP) we can treatNP [S]
as an uninterpreted phrasal category and run all
of the standard PCFG algorithms without change.
The result is a vastly simplified parser. This is ex-
actly what is done by Klein and Manning (2003).

Thus the “phrasal categories” of our title refer
to these new, hybrid categories, such asNP [S].
We hope to learn which of these categories work
best given that they cannot be made too specific
because that would create sparse data problems.

The Klein and Manning (2003) parser is an un-
lexicalized PCFG with various carefully selected
context annotations. Their model uses some par-
ent annotations, and marks nodes which initiate or
in certain cases conclude unary productions. They
also propose linguistically motivated annotations
for several tags, includingV P , IN , CC,NP and
S. This results in a reasonably accurate unlexical-
ized PCFG parser.

The downside of this approach is that their fea-
tures are very specific, applying different annota-
tions to different treebank nonterminals. For in-
stance, they mark right-recursiveNPs and not
V Ps (i.e., anNP which is the right-most child
of anotherNP). This is because data sparsity is-
sues preclude annotating the nodes in the treebank
too liberally. The goal of our work is to automate
the process a bit, by annotating with more general
features that apply broadly, and by learning clus-

301

ters of these annotations.

Mohri and Roark (2006) tackle this problem by
searching for what they call “structural zeros”or
sets of events which are individually very likely,
but are unlikely to coincide. This is to be con-
trasted with sets of events that do not appear to-
gether simply because of sparse data. They con-
sider a variety of statistical tests to decide whether
a joint event is a structural zero. They mark the
highest scoring nonterminals that are part of these
joint events in the treebank, and use the resulting
PCFG.

Coming to this problem from the standpoint of
tree transformation, we naturally view our work
as a descendent of Johnson (1998) and Klein and
Manning (2003). In retrospect, however, there are
perhaps even greater similarities to that of (Mager-
man, 1995; Henderson, 2003; Matsuzaki et al.,
2005). Consider the approach of Matsuzaki et al.
(2005). They posit a series of latent annotations
for each nonterminal, and learn a grammar using
an EM algorithm similar to the inside-outside al-
gorithm. Their approach, however, requires the
number of annotations to be specified ahead of
time, and assigns the same number of annotations
to each treebank nonterminal. We would like to
infer the number of annotations for each nonter-
minal automatically.

However, again in retrospect, it is in the work of
Magerman (1995) that we see the greatest similar-
ity. Rather than talking about clustering nodes, as
we do, Magerman creates a decision tree, but the
differences between clustering and decision trees
are small. Perhaps a more substantial difference
is that by not casting his problem as one of learn-
ing phrasal categories Magerman loses all of the
free PCFG technology that we can leverage. For
instance, Magerman must use heuristic search to
find his parses and incurs search errors because of
it. We use an efficient CKY algorithm to do ex-
haustive search in reasonable time.

Belz (2002) considers the problem in a man-
ner more similar to our approach. Beginning with
both a non-annotated grammar and a parent anno-
tated grammar, using a beam search they search
the space of grammars which can be attained via
merging nonterminals. They guide the search us-
ing the performance on parsing (and several other
tasks) of the grammar at each stage in the search.
In contrast, our approach explores the space of
grammars by starting with few nonterminals and

splitting them. We also consider a much wider
range of contextual information than just parent
phrase-markers.

2 Background

A PCFG is a tuple(V,M,µ0, R, q : R → [0, 1]),
whereV is a set of terminal symbols;M = {µi}
is a set of nonterminal symbols;µ0 is a start or
root symbol;R is a set of productions of the form
µi → ρ, whereρ is a sequence of terminals and
nonterminals; andq is a family of probability dis-
tributions over rules conditioned on each rule’s
left-hand side.

As in (Johnson, 1998) and (Klein and Man-
ning, 2003), we annotate the Penn treebank non-
terminals with various context information. Sup-
poseµ is a Treebank non-terminal. Letλ = µ[α]
denote the non-terminal category annotated with a
vector of context featuresα. A PCFG is derived
from the trees in the usual manner, with produc-
tion rules taken directly from the annotated trees,
and the probability of an annotated ruleq(λ →

ρ) = C(λ→ρ)
C(λ) whereC(λ → ρ) andC(λ) are the

number of observations of the production and its
left hand side, respectively.

We refer to the grammar resulting from extract-
ing annotated productions directly out of the tree-
bank as the base grammar.

Our goal is to partition the set of annotated non-
terminals into clustersΦ = {φi}. Each possible
clustering corresponds to a PCFG, with the set of
non-terminals corresponding to the set of clusters.
The probability of a production under this PCFG
is

p(φi → φjφk) =
C(φi → φjφk)

C(φi)

where φs ∈ Φ are clusters of annotated non-
terminals and where:

C(φi → φjφk . . .) =
∑

(λi,λj ,λk...)∈φi×φj×φk... C(λi → λjλk . . .)

We refer to the PCFG of some clustering as the
clustered grammar.

2.1 Features

Most of the features we use are fairly standard.
These include the label of the parent and grand-
parent of a node, its lexical head, and the part of
speech of the head.

Klein and Manning (2003) find marking non-
terminals which have unary rewrites to be helpful.

302

They also find useful annotating two preterminals
(DT ,RB) if they are the product of a unary pro-
duction. We generalize this via two width features:
the first marking a node with the number of non-
terminals to which it rewrites; the second marking
each preterminal with the width of its parent.

Another feature is the span of a nonterminal, or
the number of terminals it dominates, which we
normalize by dividing by the length of the sen-
tence. Hence preterminals have normalized spans
of 1/(length of the sentence), while the root has a
normalized span of 1.

Extending on the notion of a Base NP, intro-
duced by Collins (1996), we mark any nonter-
minal that dominates only preterminals as Base.
Collins inserts a unary NP over any base NPs with-
out NP parents. However, Klein and Manning
(2003) find that this hurts performance relative to
just marking the NPs, and so our Base feature does
not insert.

We have two features describing a node’s posi-
tion in the expansion of its parent. The first, which
we call the inside position, specifies the nonter-
minal’s position relative to the heir of its parent’s
head, (to the left or right) or whether the nontermi-
nal is the heir. (By “heir” we mean the constituent
donates its head, e.g. the heir of anS is typically
theV P under theS.) The second feature, outside
position, specifies the nonterminal’s position rel-
ative to the boundary of the constituent: it is the
leftmost child, the rightmost child, or neither.

Related to this, we further noticed that several
of Klein & Manning’s (2003) features, such as
markingNPs as right recursive or possessive have
the property of annotating with the label of the
rightmost child (when they are NP and POS re-
spectively). We generalize this by marking all
nodes both with their rightmost child and (an anal-
ogous feature) leftmost child.

We also mark whether or not a node borders
the end of a sentence, save for ending punctuation.
(For instance, in this sentence, all the constituents
with the second “marked” rightmost in their span
would be marked).

Another Klein and Manning (2003) feature we
try includes the temporal NP feature, where TMP
markings in the treebank are retained, and propa-
gated down the head inheritance path of the tree.

It is worth mentioning that all the features here
come directly from the treebank. For instance, the
part of speech of the head feature has values only

from the raw treebank tag set. When a preterminal
cluster is split, this assignment does not change the
value of this feature.

3 Clustering

The input to the clusterer is a set of annotated
grammar productions and counts. Our clustering
algorithm is a divisive one reminiscent of (Martin
et al., 1995). We start with a single cluster for each
Treebank nonterminal and one additional cluster
for intermediate nodes, which are described in sec-
tion 3.2.

The clustering method has two interleaved
parts: one in which candidate splits are generated,
and one in which we choose a candidate split to
enact.

For each of the initial clusters, we generate a
candidate split, and place that split in a prior-
ity queue. The priority queue is ordered by the
Bayesian Information Criterion (BIC), e.g.(Hastie
et al., 2003).

The BIC of a modelM is defined as -2*(log
likelihood of the data according toM) +dM *(log
number of observations).dM is the number of de-
grees of freedom in the model, which for a PCFG
is the number of productions minus the number
of nonterminals. Thus in this context BIC can be
thought of as optimizing the likelihood, but with a
penalty against grammars with many rules.

While the queue is nonempty, we remove a can-
didate split to reevaluate. Reevaluation is neces-
sary because, if there is a delay between when a
split is proposed and when a split is enacted, the
grammar used to score the split will have changed.
However, we suppose that the old score is close
enough to be a reasonable ordering measure for
the priority queue. If the reevaluated candidate is
no longer better than the second candidate on the
queue, we reinsert it and continue. However, if it
is still the best on the queue, and it improves the
model, we enact the split; otherwise it is discarded.

When a split is enacted, the old cluster is re-
moved from the set of nonterminals, and is re-
placed with the two new nonterminals of the split.
A candidate split for each of the two new clusters
is generated, and placed on the priority queue.

This process of reevaluation, enacting splits,
and generating new candidates continues until the
priority queue is empty of potential splits.

We select a candidate split of a particular cluster
as follows. For each context feature we generate

303

S^ROOT

NP^S

NNP^NP

Rex

CC^NP

and

NNP^NP

Ginger

VP^S

VBD^VP

ran

NP^VP

NN

home

Figure 1: A Parent annotated tree.

a potential nominee split. To do this we first par-
tition randomly the values for the feature into two
buckets. We then repeatedly try to move values
from one bucket to the other. If doing so results
in an improvement to the likelihood of the training
data, we keep the change, otherwise we reject it.
The swapping continues until moving no individ-
ual value results in an improvement in likelihood.

Suppose we have a grammar derived from a cor-
pus of a single tree, whose nodes have been anno-
tated with their parent as in Figure 1. The base
productions for this corpus are:

S[ROOT] → NP [S] V P [S] 1/1
V P [S] → V BD[V P] NP [V P] 1/1
NP [S] → NP [NP] CC[NP] NP [NP] 1/1
NP [V P] → NN [NP] 1/1
NP [NP] → NNP [NP] 2/2

Suppose we are in the initial state, with a single
cluster for each treebank nonterminal. Consider
a potential split of theNP cluster on the par-
ent feature, which in this example has three val-
ues: S, V P , and NP . If the S and V P val-
ues are grouped together in the left bucket, and
theNP value is alone in the right bucket, we get
cluster nonterminalsNPL = {NP [S], NP [V P]}
andNPR = {NP [NP]}. The resulting grammar
rules and their probabilities are:

S → NPL V P 1/1
V P → V BD NPL 1/1

NPL → NPR CC NPR 1/2
NPL → NN 1/2
NPR → NNP 2/2

If however, V P is swapped to the right bucket
with NP , the rules become:

S → NPL V P 1/1
V P → V BD NPR 1/1

NPL → NPR CC NPR 1/1
NPR → NN 1/3
NPR → NNP 2/3

The likelihood of the tree in Figure 1 is1/4 under
the first grammar, but only4/27 under the second.
Hence in this case we would reject the swap ofV P
from the right to the left buckets.

The process of swapping continues until no im-
provement can be made by swapping a single
value.

The likelihood of the training data according to
the clustered grammar is

∏

r∈R

p(r)C(r)

for R the set of observed productionsr = φi →
φj . . . in the clustered grammar. Notice that when
we are looking to split a clusterφ, only produc-
tions that contain the nonterminalφ will have
probabilities that change. To evaluate whether a
change increases the likelihood, we consider the
ratio between the likelihood of the new model, and
the likelihood of the old model.

Furthermore, when we move a value from one
bucket to another, only a fraction of the rules will
have their counts change. Suppose we are mov-
ing valuex from the left bucket to the right when
splittingφi. Letφx ⊆ φi be the set of base nonter-
minals inφi that have valuex for the feature being
split upon. Only clustered rules that contain base
grammar rules which use nonterminals inφx will
have their probability change. These observations
allow us to process only a relatively small number
of base grammar rules.

Once we have generated a potential nominee
split for each feature, we select the partitioning
which leads to the greatest improvement in the
BIC as the candidate split of this cluster. This can-
didate is placed on the priority queue.

One odd thing about the above is that in the lo-
cal search phase of the clustering we use likeli-
hood, while in the candidate selection phase we
use BIC. We tried both measures in each phase,
but found that this hybrid measure outperformed
using only one or the other.

3.1 Model Selection

Unfortunately, the grammar that results at the end
of the clustering process seems to overfit the train-
ing data. We resolve this by simply noting period-
ically the intermediate state of the grammar, and
using this grammar to parse a small tuning set (we
use the first 400 sentences of WSJ section 24, and
parse this every 50 times we enact a split). At the
conclusion of clustering, we select the grammar

304

A

B C <D> E F

(a)

A

B [C,<D>,E,F]

C [<D>,E,F]

[<D>,E]

D E

F

(b)

Figure 2: (a) A production. (b) The production,
binarized.

with the highest f-score on this tuning set as the
final model.

3.2 Binarization

Since our experiments make use of a CKY
(Kasami, 1965) parser1 we must modify the tree-
bank derived rules so that each expands to at most
two labels. We perform this in a manner simi-
lar to Klein and Manning (2003) and Matsuzaki
et al. (2005) through the creation of intermediate
nodes, as in Figure 2. In this example, the nonter-
minal heir ofA’s head isD, indicated in the figure
by markingD with angled brackets. The square
brackets indicate an intermediate node, and the la-
bels inside the brackets indicate that the node will
eventually be expanded into those labels.

Klein and Manning (2003) employ Collins’
(1999) horizontal markovization to desparsify
their intermediate nodes. This means that given
an intermediate node such as[C 〈D〉EF] in Fig-
ure 2, we forget those labels which will not be ex-
panded past a certain horizon. Klein and Manning
(2003) use a horizon of two (or less, in some cases)
which means only the next two labels to be ex-
panded are retained. For instance in in this exam-
ple [C 〈D〉EF] is markovized to[C 〈D〉 . . . F],
sinceC andF are the next two non-intermediate
labels.

Our mechanism lays out the unmarkovized in-
termediate rules in the same way, but we mostly
use our clustering scheme to reduce sparsity. We
do so by aligning the labels contained in the in-
termediate nodes in the order in which they would
be added when increasing the markovization hori-

1The implementation we use was created by Mark John-
son and used for the research in (Johnson, 1998). It is avail-
able at his homepage.

zon from zero to three. We also always keep
the heir label as a feature, following Klein and
Manning (2003). So for instance,[C 〈D〉EF]
is represented as having Treebank label “IN-
TERMEDIATE”, and would have feature vector
(D,C,F,E,D),while [〈D〉EF] would have fea-
ture vector(D,F,E,D,−), where the first item
is the heir of the parent’s head. The “-” in-
dicates that the fourth item to be expanded is
here non-existent. The clusterer would consider
each of these five features as for a single pos-
sible split. We also incorporate our other fea-
tures into the intermediate nodes in two ways.
Some features, such as the parent or grandpar-
ent, will be the same for all the labels in the in-
termediate node, and hence only need to be in-
cluded once. Others, such as the part of speech
of the head, may be different for each label. These
features we align with those of corresponding la-
bel in the Markov ordering. In our running ex-
ample, suppose each child nodeN has part of
speech of its headPN , and we have a parent fea-
ture. Our aligned intermediate feature vectors then
become(A,D,C, PC , F, PF , E, PE ,D, PD) and
(A,D,F, PF , E, PE ,D, PD,−,−). As these are
somewhat complicated, let us explain them by un-
packing the first, the vector for[C 〈D〉EF]. Con-
sulting Figure 2 we see that its parent isA. We
have chosen to put parents first in the vector, thus
explaining (A, ...). Next comes the heir of the
constituent,D. This is followed by the first con-
stituent that is to be unpacked from the binarized
version,C, which in turn is followed by its head
part-of-speechPC , giving us (A,D,C, PC , ...).
We follow with the next non-terminal to be un-
packed from the binarized node and its head part-
of-speech, etc.

It might be fairly objected that this formulation
of binarization loses the information of whether a
label is to the left, right, or is the heir of the par-
ent’s head. This is solved by the inside position
feature, described in Section 2.1 which contains
exactly this information.

3.3 Smoothing

In order to ease comparison between our work
and that of Klein and Manning (2003), we follow
their lead in smoothing no production probabilities
save those going from preterminal to nonterminal.
Our smoothing mechanism runs roughly along the
lines of theirs.

305

LP LR F1 CB 0CB
Klein & Manning 86.3 85.1 85.7 1.31 57.2
Matsuzaki et al. 86.1 86.0 86.1 1.39 58.3

This paper 84.8 84.8 84.8 1.47 57.1

Table 1: Parsing results on final test set (Section
23).

Run LP LR F1 CB 0CB
1 85.3 85.6 85.5 1.29 59.5
2 85.8 85.9 85.9 1.29 59.4
3 85.1 85.5 85.3 1.36 58.0
4 85.3 85.7 85.5 1.30 59.9

Table 2: Parsing results for grammars generated
using clusterer with different random seeds. All
numbers here are on the development test set (Sec-
tion 22).

Preterminal rules are smoothed as follows. We
consider several classes of unknown words, based
on capitalization, the presence of digits or hy-
phens, and the suffix. We estimate the probabil-
ity of a tag T given a word (or unknown class)
W , as p(T | W) = C(T,W)+hp(T |unk)

C(W)+h
, where

p(T | unk) = C(T, unk)/C(unk) is the prob-
ability of the tag given any unknown word class.
In order to estimate counts of unknown classes,we
let the clusterer see every tree twice: once un-
modified, and once with the unknown class re-
placing each word seen less than five times. The
production probabilityp(W | T) is thenp(T |
W)p(W)/p(T) wherep(W) andp(T) are the re-
spective empirical distributions.

The clusterer does not use smoothed probabil-
ities in allocating annotated preterminals to clus-
ters, but simply the maximum likelihood estimates
as it does elsewhere. Smoothing is only used in the
parser.

4 Experiments

We trained our model on sections 2-21 of the Penn
Wall Street Journal Treebank. We used the first
400 sentences of section 24 for model selection.
Section 22 was used for testing during develop-
ment, while section 23 was used for the final eval-
uation.

5 Discussion

Our results are shown in Table 1. The first three
columns show the labeled precision, recall and f-
measure, respectively. The remaining two show
the number of crossing brackets per sentence,

and the percentage of sentences with no crossing
brackets.

Unfortunately, our model does not perform
quite as well as those of Klein and Manning (2003)
or Matsuzaki et al. (2005). It is worth noting that
Matsuzaki’s grammar uses a different parse evalu-
ation scheme than Klein & Manning or we do.

We select the parse with the highest probability
according to the annotated grammar. Matsuzaki,
on the other hand, argues that the proper thing to
do is to find the most likely unannotated parse.
The probability of this parse is the sum over the
probabilities of all annotated parses that reduce
to that unannotated parse. Since calculating the
parse that maximizes this quantity is NP hard, they
try several approximations. One is what Klein &
Manning and we do. However, they have a better
performing approximation which is used in their
reported score. They do not report their score
on section 23 using the most-probable-annotated-
parse method. They do however compare the per-
formance of different methods using development
data, and find that their better approximation gives
an absolute improvement in f-measure in the .5-1
percent range. Hence it is probable that even with
their better method our grammar would not out-
perform theirs.

Table 2 shows the results on the development
test set (Section 22) for four different initial ran-
dom seeds. Recall that when splitting a cluster, the
initial partition of the base grammar nonterminals
is made randomly. The model from the second run
was used for parsing the final test set (Section 23)
in Table 1.

One interesting thing our method allows is for
us to examine which features turn out to be useful
in which contexts. We noted for each trereebank
nonterminal, and for each feature, how many times
that nonterminal was split on that feature, for the
grammar selected in the model selection stage. We
ran the clustering with these four different random
seeds.

We find that in particular, the clusterer only
found the head feature to be useful in very spe-
cific circumstances. It was used quite a bit to
split preterminals; but for phrasals it was only
used to splitADJP ,ADV P ,NP ,PP ,V P ,QP ,
andSBAR. The part of speech of the head was
only used to splitNP andV P .

Furthermore, the grandparent tag appears to be
of importance primarily forV P andPP nonter-

306

minals, though it is used once out of the four runs
for NPs.

This indicates that perhaps lexical parsers might
be able to make do by only using lexical head and
grandparent information in very specific instances,
thereby shrinking the sizes of their models, and
speeding parsing. This warrants further investiga-
tion.

6 Conclusion

We have presented a scheme for automatically
discovering phrasal categories for parsing with a
standard CKY parser. The parser achieves 84.8%
precision-recall f-measure on the standard test-
section of the Penn WSJ-Treebank (section 23).
While this is not as accurate as the hand-tailored
grammar of Klein and Manning (2003), it is close,
and we believe there is room for improvement.
For starters, the particular clustering scheme is
only one of many. Our algorithm splits clus-
ters along particular features (e.g., parent, head-
part-of-speech, etc.). One alternative would be to
cluster simultaneously on all the features. It is
not obvious which scheme should be better, and
they could be quite different. Decisions like this
abound, and are worth exploring.

More radically, it is also possible to grow many
decision trees, and thus many alternative gram-
mars. We have been impressed by the success of
random-forest methods in language modeling (Xu
and Jelinek, 2004). In these methods many trees
(the forest) are grown, each trying to predict the
next word. The multiple trees together are much
more powerful than any one individually. The
same might be true for grammars.

Acknowledgement

The research presented here was funded in part by
DARPA GALE contract HR 0011-06-20001.

References

Anja Belz. 2002. Learning grammars for different
parsing tasks by partition search. InProceedings of
the 19th international conference on Computational
Linguistics, pages 1–7.

Eugene Charniak. 1996. Tree-bank grammars. In
Proceedings of the Thirteenth National Conference
on Artificial Intelligence, pages 1031–1036. AAAI
Press/MIT Press.

Eugene Charniak. 2000. A maximum-entropy-
inspired parser. InProceedings of NAACL, pages
132–139.

Michael J. Collins. 1996. A new statistical parser
based on bigram lexical dependencies. InThe Pro-
ceedings of the 34th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 184–191.

Michael Collins. 1997. Three generative, lexicalised
models for statistical parsing. InThe Proceedings
of the 35th Annual Meeting of the Association for
Computational Linguistics.

Michael Collins. 1999.Head-driven Statistical Mod-
els for Natural Language Parsing. Ph.D. thesis, The
University of Pennsylvania.

Trevor Hastie, Robert Tibshirani, and Jerome Fried-
man. 2003.The Elements of Statistical Learning.
Springer, New York.

James Henderson. 2003. Inducing history representa-
tions for broad coverage statistical parsing. InPro-
ceedings of HLT-NAACL 2003, pages 25–31.

Mark Johnson. 1998. PCFG models of linguis-
tic tree representations.Computational Linguistics,
24(4):613–632.

Tadao Kasami. 1965. An efficient recognition and syn-
tax algorithm for context-free languages. Technical
Report AF-CRL-65-758, Air Force Cambridge Re-
search Laboratory.

Dan Klein and Christopher Manning. 2003. Accu-
rate unlexicalized parsing. InProceedings of the
41st Annual Meeting of the Association for Compu-
tational Linguistics.

David M. Magerman. 1995. Statistical decision-tree
models for parsing. InThe Proceedings of the 33rd
Annual Meeting of the Association for Computa-
tional Linguistics, pages 276–283.

Michell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank.Computa-
tional Linguistics, 19(2):313–330.

Sven Martin, Jörg Liermann, and Hermann Ney. 1995.
Algorithms for bigram and trigram word cluster-
ing. In Proceedings of the European Conference
on Speech, Communication and Technology, pages
1253–1256.

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii.
2005. Probabilistic CFG with latent annotations. In
Proceedings of the 2005 Meeting of the Association
for Computational Linguistics.

Mehryar Mohri and Brian Roark. 2006. Effective self-
training for parsing. InProceedings of HLT-NAACL
2006.

Peng Xu and Fred Jelinek. 2004. Random forests
in language modeling. InProceedings of EMNLP
2004.

307

