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Abstract

In this paper we describe a coreference
resolution method that employs a classi-
fication and a clusterization phase. In a
novel way, the clusterization is produced
as a graph cutting algorithm, in which
nodes of the graph correspond to the men-
tions of the text, whereas the edges of the
graph constitute the confidences derived
from the coreference classification. In ex-
periments, the graph cutting algorithm for
coreference resolution, called BESTCUT,
achieves state-of-the-art performance.

1 Introduction

Recent coreference resolution algorithms tackle
the problem of identifying coreferent mentions of
the same entity in text as a two step procedure: (1)
a classification phase that decides whether pairs of
noun phrases corefer or not; and (2) a clusteriza-
tion phase that groups together all mentions that
refer to the same entity. Anentity is an object or
a set of objects in the real world, while amen-
tion is a textual reference to an entity1. Most of
the previous coreference resolution methods have
similar classification phases, implemented either
as decision trees (Soon et al., 2001) or as maxi-
mum entropy classifiers (Luo et al., 2004). More-
over, these methods employ similar feature sets.
The clusterization phase is different across current
approaches. For example, there are several linking
decisions for clusterization. (Soon et al., 2001) ad-
vocate the link-first decision, which links a men-
tion to its closest candidate referent, while (Ng and
Cardie, 2002) consider instead the link-best deci-
sion, which links a mention to its most confident

1This definition was introduced in (NIST, 2003).

candidate referent. Both these clustering decisions
are locally optimized. In contrast, globally opti-
mized clustering decisions were reported in (Luo
et al., 2004) and (DaumeIII and Marcu, 2005a),
where all clustering possibilities are considered by
searching on a Bell tree representation or by us-
ing theLearning as Search Optimization (LaSO)
framework (DaumeIII and Marcu, 2005b) respec-
tively, but the first search is partial and driven by
heuristics and the second one only looks back in
text. We argue that a more adequate clusterization
phase for coreference resolution can be obtained
by using a graph representation.

In this paper we describe a novel representa-
tion of the coreference space as an undirected
edge-weighted graph in which the nodes repre-
sent all the mentions from a text, whereas the
edges between nodes constitute the confidence
values derived from the coreference classification
phase. In order to detect the entities referred in
the text, we need to partition the graph such that
all nodes in each subgraph refer to the same entity.
We have devised a graph partitioning method for
coreference resolution, called BESTCUT, which is
inspired from the well-known graph-partitioning
algorithm Min-Cut (Stoer and Wagner, 1994).
BESTCUT has a different way of computing the
cut weight than Min-Cut and a different way of
stopping the cut2. Moreover, we have slightly
modified the Min-Cut procedures. BESTCUT re-
places the bottom-up search in a tree representa-
tion (as it was performed in (Luo et al., 2004))
with the top-down problem of obtaining the best
partitioning of a graph. We start by assuming that
all mentions refer to a single entity; the graph cut
splits the mentions into subgraphs and the split-

2Whenever a graph is split in two subgraphs, as defined in
(Cormen et al., 2001), a cut of the graph is produced.
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ting continues until each subgraph corresponds to
one of the entities. The cut stopping decision has
been implemented as anSVM-based classification
(Cortes and Vapnik, 1995).

The classification and clusterization phases as-
sume that all mentions are detected. In order to
evaluate our coreference resolution method, we
have (1) implemented a mention detection proce-
dure that has the novelty of employing information
derived from the word senses of common nouns as
well as selected lexico-syntactic information; and
(2) used a maximum entropy model for corefer-
ence classification. The experiments conducted on
MUC andACE data indicate state-of-the-art results
when compared with the methods reported in (Ng
and Cardie, 2002) and (Luo et al., 2004).

The remainder of the paper is organized as fol-
lows. In Section 2 we describe the coreference
resolution method that uses the BESTCUT cluster-
ization; Section 3 describes the approach we have
implemented for detecting mentions in texts; Sec-
tion 4 reports on the experimental results; Section
5 discusses related work; finally, Section 6 sum-
marizes the conclusions.

2 BESTCUT Coreference Resolution

For each entity type (PERSON, ORGANIZATION,
LOCATION, FACILITY or GPE3) we create a graph
in which the nodes represent all the mentions
of that type in the text, the edges correspond to
all pairwise coreference relations, and the edge
weights are the confidences of the coreference re-
lations. We will divide this graph repeatedly by
cutting the links between subgraphs until a stop
model previously learned tells us that we should
stop the cutting. The end result will be a partition
that approximates the correct division of the text
into entities.

We consider this graph approach to clustering a
more accurate representation of the relations be-
tween mentions than a tree-based approach that
treats only anaphora resolution, trying to connect
mentions with candidate referents that appear in
text before them. We believe that a correct reso-
lution has to tackle cataphora resolution as well,
by taking into account referents that appear in the
text after the anaphors. Furthermore, we believe
that a graph representation of mentions in a text is
more adequate than a tree representation because
the coreference relation is symmetrical in addi-

3Entity types as defined by (NIST, 2003).

tion to being transitive. A greedy bottom-up ap-
proach does not make full use of this property. A
graph-based clusterization starts with a complete
overall view of all the connections between men-
tions, therefore local errors are much less proba-
ble to influence the correctness of the outcome. If
two mentions are strongly connected, and one of
them is strongly connected with the third, all three
of them will most probably be clustered together
even if the third edge is not strong enough, and that
works for any order in which the mentions might
appear in the text.

2.1 Learning Algorithm

The coreference confidence values that become
the weights in the starting graphs are provided by
a maximum entropy model, trained on the train-
ing datasets of the corpora used in our experi-
ments. For maximum entropy classification we
used amaxent4 tool. Based on the data seen, a
maximum entropy model (Berger et al., 1996) of-
fers an expression (1) for the probability that there
exists coreferenceC between a mentionmi and a
mentionmj .

P (C|mi,mj) =
e(

∑
k

λkgk(mi,mj ,C))

Z(mi,mj)
(1)

where gk(mi,mj , C) is a feature andλk is its
weight;Z(mi,mj) is a normalizing factor.

We created the training examples in the same
way as (Luo et al., 2004), by pairing all men-
tions of the same type, obtaining their feature
vectors and taking the outcome (coreferent/non-
coreferent) from the key files.

2.2 Feature Representation

We duplicated the statistical model used by (Luo
et al., 2004), with three differences. First, no fea-
ture combination was used, to prevent long run-
ning times on the large amount ofACE data. Sec-
ond, through an analysis of the validation data, we
implemented seven new features, presented in Ta-
ble 1. Third, as opposed to (Luo et al., 2004), who
represented all numerical features quantized, we
translated each numerical feature into a set of bi-
nary features that express whether the value is in
certain intervals. This transformation was neces-
sary because our maximum entropy tool performs
better on binary features. (Luo et al., 2004)’s fea-
tures were not reproduced here from lack of space;
please refer to the relevant paper for details.

4http://homepages.inf.ed.ac.uk/s0450736/maxenttoolkit.html
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Category Feature name Feature description

lexical head-match true if the two heads are identical
type-pair for each mention: name→ its type, noun→ NOUN , pronoun→ its spelling
name-alias true if a mention is an alias of the other one

syntactic same-governing-category true if both mentions are covered by the same type of node, e.g. NP,VP, PP
path the parse tree path fromm2 to m1

coll-comm true if either mention collocates with a communication verb
grammatical gn-agree true if the two mentions agree in gender and number

Table 1: The added features for the coreference model.

2.3 Clusterization Method: BESTCUT

We start with five initial graphs, one for each en-
tity type, each containing all the mentions of that
type and their weighted connections. This initial
division is correct because no mentions of differ-
ent entity types will corefer. Furthermore, by do-
ing this division we avoid unnecessary confusion
in the program’s decisions and we decrease its run-
ning time. Each of these initial graphs will be cut
repeatedly until the resulting partition is satisfac-
tory. In each cut, we eliminate from the graph the
edges between subgraphs that have a very weak
connection, and whose mentions are most likely
not part of the same entity.

Formally, the graph model can be defined as fol-
lows. LetM = {mi : 1..n} be n mentions in the
document andE = {ej : 1..m} be m entities. Let
g : M → E be the map from a mentionmi ∈ M

to an entityej ∈ E. Let c : MxM → [0, 1] be the
confidence the learning algorithm attaches to the
coreference between two mentionsmi,mj ∈ M .
Let T = {tk : 1..p} be the set of entity types
or classes. Then we attach to each entity classtk
an undirected, edge-weighted graphGk(Vk, Ek),
whereVk = {mi|g(mi).type = tk} and Ek =
{(mi,mj , c(mi,mj))|mi,mj ∈ Vk}.

The partitioning of the graph is based at each
step on the cut weight. As a starting point, we
used the Min-Cut algorithm, presented and proved
correct in (Stoer and Wagner, 1994). In this simple
and efficient method, the weight of the cut of a
graph into two subgraphs is the sum of the weights
of the edges crossing the cut. The partition that
minimizes the cut weight is the one chosen. The
main procedure of the algorithm computes cuts-
of-the-phase repeatedly and selects the one with
the minimum cut value (cut weight). We adapted
this algorithm to our coreference situation.

To decide the minimum cut (from here on called
the BESTCUT), we use as cut weight the number
of mentions that are correctly placed in their set.
The method for calculating the correctness score is

presented in Figure 1. The BESTCUT at one stage
is the cut-of-the-phase with the highest correctness
score.

cut-weight(Graph G, Cut C = (S,T))
1 corrects-avg ← corrects-max ← 0
2 foreach m ∈ G.V
3 if m ∈ S.V then setm ← S
4 else setm ← T
7 if avgn∈setm.V,n6=mweight(m,n) >

avgn∈G.V \setm.V weight(m,n)
6 then corrects-avg++
7 if maxn∈setm.V,n6=mweight(m,n) >

maxn∈G.V \setm.V weight(m,n)
8 then corrects-max++
9 return (corrects-avg +

corrects-max) / 2

Figure 1: Computing the cut-weight.

An additional learning model was trained to de-
cide if cutting a set of mentions is better or worse
than keeping the mentions together. The model
was optimized to maximize theECM-F score5. We
will denote byS the larger part of the cut andT
the smaller one.C.E is the set of edges crossing
the cut, andG is the current graph before the cut.
S.V andT.V are the set of vertexes inS and in
T , respectively.S.E is the set of edges fromS,
while T.E is the set of edges fromT . The features
for stopping the cut are presented in Table 2. The
model was trained using 10-fold cross-validation
on the training set. In order to learn when to stop
the cut, we generated a list of positive and nega-
tive examples from the training files. Each train-
ing example is associated with a certain cut(S, T ).
Since we want to learn a stop function, the positive
examples must be examples that describe when the
cut must not be done, and the negative examples
are examples that present situations when the cut
must be performed. Let us consider that the list
of entities from a text isE = {ej : 1..m} with
ej = {mi1 ,mi2 , ...mik} the list of mentions that
refer toej . We generated a negative example for
each pair(S = {ei}, T = {ej}) with i 6= j –
each entity must be separated from any other en-

5As introduced by (Luo et al., 2004).

277



Feature name Feature description

st-ratio |S.V |/|T.V | – the ratio between the cut
parts

ce-ratio |C.E|/|G.E| – the proportion of the cut
from the entire graph

c-min min(C.E) – the smallest edge crossing
the cut

c-max max(C.E) – the largest edge crossing
the cut

c-avg avg(C.E) – the average of the edges
crossing the cut

c-hmean hmean(C.E) – the harmonic mean of
the edges crossing the cut

c-hmeax hmeax(C.E) – a variant of the har-
monic mean. hmeax(C.E) = 1 −
hmean(C.E′) where each edge from
E′ has the weight equal to 1 minus the
corresponding edge fromE

lt-c-avg-ratio how many edges from the cut are less
than the average of the cut (as a ratio)

lt-c-hmean-
ratio

how many edges from the cut are less
than the harmonic mean of the cut (as a
ratio)

st-avg avg(S.E + T.E) – the average of the
edges from the graph when the edges
from the cut are not considered

g-avg avg(G.E) – the average of the edges
from the graph

st-wrong-avg-
ratio

how many vertexes are in the wrong part
of the cut using the average measure for
the ‘wrong’ (as a ratio)

st-wrong-
max-ratio

how many vertexes are in the wrong part
of the cut using the max measure for the
‘wrong’ (as a ratio)

lt-c-avg-ratio
< st-lt-c-avg-
ratio

1 if r1 < r2, 0 otherwise;r1 is the ratio
of the edges fromC.E that are smaller
than the average of the cut;r2 is the ratio
of the edges fromS.E + T.E that are
smaller than the average of the cut

g-avg > st-
avg

1 if theavg(G.E) > avg(S.E + T.E),
and 0 otherwise

Table 2: The features for stopping the cut.

tity. We also generated negative examples for all
pairs(S = {ei}, T = E \ S) – each entity must
be separated from all the other entities considered
together. To generate positive examples, we simu-
lated the cut on a graph corresponding to a single
entity ej . Every partial cut of the mentions ofej

was considered as a positive example for our stop
model.

We chose not to include pronouns in the BEST-
CUT initial graphs, because, since most features
are oriented towards Named Entities and common
nouns, the learning algorithm (maxent) links pro-
nouns with very high probability to many possi-
ble antecedents, of which not all are in the same
chain. Thus, in the clusterization phase the pro-
nouns would act as a bridge between different en-
tities that should not be linked. To prevent this,
we solved the pronouns separately (at the end of

BESTCUT(Graph Gi)
1 entities.clear()
2 queue.push back(Gi)
3 while not queue.empty()
4 G ← queue.pop front()
5 (S,T) ← ProposeCut(G)
6 if StopTheCut(G,S,T)
7 then
8 entities.add(NewEntity(G))
9 else

10 queue.push back(S)
11 queue.push back(T)
12 return entities

Figure 2: The general algorithm for BESTCUT.

the BESTCUT algorithm) by linking them to their
antecedent with the best coreference confidence.

Figure 2 details the main procedure of the
BESTCUT algorithm. The algorithm receives as
input a weighted graph having a vertex for each
mention considered and outputs the list of entities
created. In each stage, a cut is proposed for all
subgraphs in the queue. In case StopTheCut de-
cides that the cut must be performed on the sub-
graph, the two sides of the cut are added to the
queue (lines 10-11); if the graph is well connected
and breaking the graph in two parts would be a
bad thing, the current graph will be used to cre-
ate a single entity (line 8). The algorithm ends
when the queue becomes empty. ProposeCut (Fig-

ProposeCut(Graph G)
1 while |G.V | > 1
2 (S,T) ← ProposeCutPhase(G)
3 if the cut-of-the-phase (S,T)

is-lighter than the current
best cut (Sb, Tb)

4 then store the cut-of-the-phase
as (Sb, Tb)

5 return (Sb, Tb)

Figure 3: The algorithm for ProposeCut.

ure 3) returns a cut of the graph obtained with
an algorithm similar to the Min-Cut algorithm’s
procedure called MinimumCut. The differences
between our algorithm and the Min-Cut proce-
dure are thatthe most tightly connected vertex
in each step of the ProposeCutPhase procedure,z,
is found using expression 2:

z = argmaxy 6∈Awa(A, y) (2)

wherewa(A, y) = 1
|A|

∑
x∈A w(x, y), and theis-

lighter test function uses the correctness score
presented before: the partial cut with the larger
correctness score is better. The ProposeCutPhase
function is presented in Figure 4.
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ProposeCutPhase(Graph G)
1 A ← {G.V.first}
2 while |A| < |G.V |
3 last ← the most tightly

connected vertex
4 add last to A
5 store the cut-of-the-phase and

shrink G by merging the two
vertexes added last

6 return (G.V \ {last}, last)

Figure 4: The algorithm for ProposeCutPhase.

2.4 An Example

Let us consider an example of how the BESTCUT

algorithm works on two simple sentences (Fig-
ure 5). The entities present in this example are:
{Mary1, the girl5} and {a brother2, John3, The
boy4}. Since they are all PERSONs, the algorithm

Mary1 hasa brother2, John3. The boy4 is older than

the girl5.

Figure 5: An example.
will be applied on a single graph, corresponding to
the class PERSONand composed of all these men-
tions.

The initial graph is illustrated in Figure 6, with
the coreference relation marked through a differ-
ent coloring of the nodes. Each node number cor-
responds to the mention with the same index in
Figure 5.
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Figure 6: The initial graph

The strongest confidence score is betweena
brother2 and John3, because they are connected
through an apposition relation. The graph was
simplified by eliminating the edges that have an
insignificant weight, e.g. the edges betweenJohn3
andthe girl5 or betweenMary1 anda brother2.

Function BESTCUT starts with the whole graph.
The first cut of the phase, obtained by function
ProposeCutPhase, is the one in Figure 7.a. This
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Figure 7: Cuts-of-the-phase

cut separates node 2 from the rest of the graph.
In calculating the score of the cut (using the algo-
rithm from Figure 1), we obtain an average num-
ber of three correctly placed mentions. This can
be verified intuitively on the drawing: mentions
1, 2 and 5 are correctly placed, while 3 and 4 are
not. The score of this cut is therefore 3. The sec-
ond, the third and the fourth cuts of the phase, in
Figures 7.b, 7.c and 7.d, have the scores 4, 5 and
3.5 respectively. An interesting thing to note at
the fourth cut is that the score is no longer an in-
teger. This happens because it is calculated as an
average betweencorrects-avg = 4and corrects-
max = 3. The methods disagree about the place-
ment of mention 1. The average of the outgo-
ing weights of mention 1 is 0.225, less than 0.5
(the default weight assigned to a single mention)
therefore the first method declares it is correctly
placed. The second considers only the maximum;
0.6 is greater than 0.5, so the mention appears to
be more strongly connected with the outside than
the inside. As we can see, the contradiction is be-
cause of the uneven distribution of the weights of
the outgoing edges.

The first proposed cut is the cut with the great-

279



FACILITY ORGANIZATION PERSON LOCATION GPE

POWER#9

PERSON#1 PEOPLE#1

CHARACTER#1

...

expert#1

Peter_Pan#2

womankind#1

population#1

homeless#2

.........

... ...
...

......

Frankenstein#2 oil_tycoon#1worker#1

Figure 8: Part of the hierarchy containing 42 WordNet equivalent concepts for the five entity types, with
all their synonyms and hyponyms. The hierarchy has 31,512 word-sense pairs in total

est score, which is Cut3 (Figure 7.c). Because this
is also the correct cut, all cuts proposed after this
one will be ignored– the machine learning algo-
rithm that was trained when to stop a cut will al-
ways declare against further cuts. In the end, the
cut returned by function BESTCUT is the correct
one: it divides mentionsMary1 andthe girl5 from
mentionsa brother2, John3 andThe boy4.

3 Mention Detection

Because our BESTCUT algorithm relies heavily
on knowing entity types, we developed a method
for recognizing entity types for nominal mentions.
Our statistical approach uses maximum entropy
classification with a few simple lexical and syn-
tactic features, making extensive use of WordNet
(Fellbaum, 1998) hierarchy information. We used
the ACE corpus, which is annotated with men-
tion and entity information, as data in a super-
vised machine learning method to detect nominal
mentions and their entity types. We assigned six
entity types: PERSON, ORGANIZATION, LOCA-
TION, FACILITY , GPEandUNK (for those who are
in neither of the former categories) and two gener-
icity outcomes: GENERIC and SPECIFIC. We
only considered the intended value of the mentions
from the corpus. This was motivated by the fact
that we need to classify mentions according to the
context in which they appear, and not in a general
way. Only contextual information is useful further
in coreference resolution. We have experimentally
discovered that the use of word sense disambigua-
tion improves the performance tremendously (a
boost in score of 10%), therefore all the features
use the word senses from a previously-applied
word sense disambiguation program, taken from
(Mihalcea and Csomai, 2005).

For creating training instances, we associated

an outcome to each markable (NP) detected in the
training files: the markables that were present in
the key files took their outcome from the key file
annotation, while all the other markables were as-
sociated with outcomeUNK. We then created a
training example for each of the markables, with
the feature vector described below and as target
function the outcome. The aforementioned out-
come can be of three different types. The first type
of outcome that we tried was the entity type (one
member of the set PERSON, ORGANIZATION, LO-
CATION, FACILITY , GPE and UNK); the second
type was the genericity information (GENERIC or
SPECIFIC), whereas the third type was a combi-
nation between the two (pairwise combinations
of the entity types set and the genericity set, e.g.
PERSON SPECIFIC).

The feature set consists of WordNet features,
lexical features, syntactic features and intelligent
context features, briefly described in Table 3. With
the WordNet features we introduce theWordNet
equivalent concept. A WordNet equivalent con-
cept for an entity type is a word-sense pair from
WordNet whose gloss is compatible with the def-
inition of that entity type. Figure 8 enumerates a
few WordNet equivalent concepts for entity class
PERSON (e.g. CHARACTER#1), with their hier-
archy of hyponyms (e.g. Frankenstein#2). The
lexical feature is useful because some words are
almost always of a certain type (e.g.“com-
pany”). The intelligent context set of features
are an improvement on basic context features that
use the stems of the words that are within a win-
dow of a certain size around the word. In addi-
tion to this set of features, we created more fea-
tures by combining them into pairs. Each pair
contains two features from two different classes.
For instance, we will have features like:is-a-
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Category Feature name Feature description

WordNet is-a-TYPE true if the mention is of entity type TYPE; five features
WN-eq-concept-hyp true if the mention is in hyponym set ofWN-eq-concept; 42 features
WN-eq-concept-syn true if the mention is in synonym set ofWN-eq-concept; 42 features

lexical stem-sense pair between the stem of the word and theWN sense of the word by theWSD

syntactic pos part of speech of the word by thePOStagger
is-modifier true if the mention is a modifier in another noun phrase
modifier-to-TYPE true if the mention is a modifier to a TYPE mention
in-apposition-with TYPE of the mention our mention is in apposition with

intelligent context all-mods the nominal, adjectival and pronominal modifiers in the mention’s parse tree
preps the prepositions right before and after the mention’s parsetree

Table 3: The features for the mention detection system.

PERSON∼in-apposition-with(PERSON).
All these features apply to the “true head” of

a noun phrase, i.e. if the noun phrase is a parti-
tive construction (“five students”, “a lot of com-
panies”, “a part of the country”), we extract the
“true head”, the whole entity that the part was
taken out of (“students”, “companies”, “coun-
try” ), and apply the features to that “true head”
instead of the partitive head.

For combining the mention detection module
with the BESTCUT coreference resolver, we also
generated classifications for Named Entities and
pronouns by using the same set of features minus
the WordNet ones (which only apply to nominal
mentions). For the Named Entity classifier, we
added the featureNamed-Entity-typeas obtained
by the Named Entity Recognizer. We generated
a list of all the markable mentions and their en-
tity types and presented it as input to the BEST-
CUT resolver instead of the list of perfect men-
tions. Note that this mention detection does not
contain complete anaphoricity information. Only
the mentions that are a part of the five consid-
ered classes are treated as anaphoric and clus-
tered, while theUNK mentions are ignored, even
if an outside anaphoricity classifier might catego-
rize some of them as anaphoric.

4 Experimental Results

The clusterization algorithms that we imple-
mented to evaluate in comparison with our method
are (Luo et al., 2004)’s Belltree and Link-Best
(best-first clusterization) from (Ng and Cardie,
2002). The features used were described in section
2.2. We experimented on theACE Phase 2 (NIST,
2003) andMUC6 (MUC-6, 1995) corpora. Since
we aimed to measure the performance of corefer-
ence, the metrics used for evaluation are theECM-
F (Luo et al., 2004) and theMUC P, R andF scores
(Vilain et al., 1995).

In our first experiment, we tested the three
coreference clusterization algorithms on the
development-test set of theACE Phase 2 corpus,
first on true mentions (i.e. the mentions annotated
in the key files), then on detected mentions (i.e.
the mentions output by our mention detection sys-
tem presented in section 3) and finally without any
prior knowledge of the mention types. The results
obtained are tabulated in Table 4. As can be ob-
served, when it has prior knowledge of the men-
tion types BESTCUT performs significantly bet-
ter than the other two systems in theECM-F score
and slightly better in theMUC metrics. The more
knowledge it has about the mentions, the better it
performs. This is consistent with the fact that the
first stage of the algorithm divides the graph into
subgraphs corresponding to the five entity types. If
BESTCUT has no information about the mentions,
its performance ranks significantly under the Link-
Best and Belltree algorithms inECM-F and MUC

R. Surprisingly enough, the Belltree algorithm, a
globally optimized algorithm, performs similarly
to Link-Best in most of the scores.

Despite not being as dramatically affected as
BESTCUT, the other two algorithms also decrease
in performance with the decrease of the mention
information available, which empirically proves
that mention detection is a very important module
for coreference resolution. Even with anF-score
of 77.2% for detecting entity types, our mention
detection system boosts the scores of all three al-
gorithms when compared to the case where no in-
formation is available.

It is apparent that theMUC score does not vary
significantly between systems. This only shows
that none of them is particularly poor, but it is not
a relevant way of comparing methods– theMUC

metric has been found too indulgent by researchers
((Luo et al., 2004), (Baldwin et al., 1998)). The
MUC scorer counts the common links between the
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MUC score
Clusterization algorithm Mentions ECM-F% MUC P% MUC R% MUC F%

BESTCUT key 82.7 91.1 88.2 89.63
detected 73.0 88.3 75.1 81.17
undetected 41.2 52.0 82.4 63.76

Belltree(Luo et al., 2004) key 77.9 88.5 89.3 88.90
detected 70.8 86.0 76.6 81.03
undetected 52.6 40.3 87.1 55.10

Link-Best(Ng and Cardie, 2002) key 77.9 88.0 90.0 88.99
detected 70.7 85.1 77.3 81.01
undetected 51.6 39.6 88.5 54.72

Table 4: Comparison of results between three clusterization algorithms onACE Phase 2. The learning
algorithms aremaxentfor coreference andSVM for stopping the cut in BESTCUT. In turn, we obtain
the mentions from the key files, detect them with our mention detection algorithm or do not use any
information about them.

annotation keys and the system output, while the
ECM-F metric aligns the detected entities with the
key entities so that the number of common men-
tions is maximized. TheECM-F scorer overcomes
two shortcomings of theMUC scorer: not consid-
ering single mentions and treating every error as
equally important (Baldwin et al., 1998), which
makes theECM-F a more adequate measure of
coreference.

Our second experiment evaluates the impact
that the different categories of our added features
have on the performance of the BESTCUT sys-
tem. The experiment was performed with a max-
ent classifier on theMUC6 corpus, which was pri-
orly converted intoACE format, and employed
mention information from the key annotations.

MUC score
Model ECM-F% P% R% F%

baseline 78.3 89.5 91.5 90.49
+grammatical 78.4 89.2 92.5 90.82
+lexical 83.1 92.4 91.6 92.00
+syntactic 85.1 92.7 92.4 92.55

Table 5: Impact of feature categories on BEST-
CUT on MUC6. Baseline system has the (Luo et
al., 2004) features. The system was tested on key
mentions.

From Table 5 we can observe that the lexi-
cal features (head-match, type-pair, name-alias)
have the most influence on theECM-F and MUC

scores, succeeded by the syntactic features (same-
governing-category, path, coll-comm). Despite
what intuition suggests, the improvement the
grammatical featuregn-agreebrings to the system
is very small.

5 Related Work

It is of interest to discuss why our implementa-
tion of the Belltree system (Luo et al., 2004) is
comparable in performance to Link-Best (Ng and
Cardie, 2002). (Luo et al., 2004) do the clus-
terization through a beam-search in the Bell tree
using either a mention-pair or an entity-mention
model, the first one performing better in their ex-
periments. Despite the fact that the Bell tree is a
complete representation of the search space, the
search in it is optimized for size and time, while
potentially losing optimal solutions– similarly to
a Greedy search. Moreover, the fact that the two
implementations are comparable is not inconceiv-
able once we consider that (Luo et al., 2004) never
compared their system to another coreference re-
solver and reported their competitive results on
true mentions only.

(Ng, 2005) treats coreference resolution as a
problem of ranking candidate partitions generated
by a set of coreference systems. The overall per-
formance of the system is limited by the perfor-
mance of its best component. The main differ-
ence between this approach and ours is that (Ng,
2005)’s approach takes coreference resolution one
step further, by comparing the results of multiple
systems, while our system is a single resolver; fur-
thermore, he emphasizes the global optimization
of ranking clusters obtained locally, whereas our
focus is on globally optimizing the clusterization
method inside the resolver.

(DaumeIII and Marcu, 2005a) use theLearning
as Search Optimizationframework to take into ac-
count the non-locality behavior of the coreference
features. In addition, the researchers treat men-
tion detection and coreference resolution as a joint
problem, rather than a pipeline approach like we
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do. By doing so, it may be easier to detect the
entity type of a mention once we have additional
clues (expressed in terms of coreference features)
about its possible antecedents. For example, label-
ing Washingtonas a PERSON is more probable af-
ter encounteringGeorge Washingtonpreviously in
the text. However, the coreference problem does
not immediately benefit from the joining.

6 Conclusions

We have proposed a novel coreference clusteri-
zation method that takes advantage of the effi-
ciency and simplicity of graph algorithms. The
approach is top-down and globally optimized, and
takes into account cataphora resolution in addition
to anaphora resolution. Our system compares fa-
vorably to two other implemented coreference sys-
tems and achieves state-of-the-art performance on
theACE Phase 2 corpus on true and detected men-
tions. We have also briefly described our mention
detection system whose output we used in con-
junction with the BESTCUT coreference system to
achieve better results than when no mention infor-
mation was available.
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