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Abstract 

In this paper we study the utility of dis-
course structure for spoken dialogue per-
formance modeling. We experiment with 
various ways of exploiting the discourse 
structure: in isolation, as context infor-
mation for other factors (correctness and 
certainty) and through trajectories in the 
discourse structure hierarchy. Our corre-
lation and PARADISE results show that, 
while the discourse structure is not useful 
in isolation, using the discourse structure 
as context information for other factors 
or via trajectories produces highly predic-
tive parameters for performance analysis. 

1 Introduction 

Predictive models of spoken dialogue system 
(SDS) performance are an important tool for re-
searchers and practitioners in the SDS domain. 
These models offer insights on what factors are 
important for the success of a SDS and allow 
researchers to assess the performance of future 
system improvements without running additional 
costly user experiments. 

One of the most popular models of perform-
ance is the PARADISE framework proposed by 
(Walker et al., 2000). In PARADISE, a set of 
interaction parameters are measured in a SDS 
corpus, and then used in a multivariate linear 
regression to predict the target performance met-
ric. A critical ingredient in this approach is the 
relevance of the interaction parameters for the 
SDS success. A number of parameters that 
measure the dialogue efficiency (e.g. number of 
system/user turns, task duration) and the dia-
logue quality (e.g. recognition accuracy, rejec-
tions, helps) have been shown to be successful in 

(Walker et al., 2000). An extensive set of pa-
rameters can be found in (Möller, 2005a). 

In this paper we study the utility of discourse 
structure as an information source for SDS per-
formance analysis. The discourse structure hier-
archy has been shown to be useful for other 
tasks: understanding specific lexical and pro-
sodic phenomena (Hirschberg and Nakatani, 
1996; Levow, 2004), natural language generation 
(Hovy, 1993), predictive/generative models of 
postural shifts (Cassell et al., 2001), and essay 
scoring (Higgins et al., 2004). 

We perform our analysis on a corpus of 
speech-based tutoring dialogues. A tutoring SDS 
(Litman and Silliman, 2004; Pon-Barry et al., 
2004) has to discuss concepts, laws and relation-
ships and to engage in complex subdialogues to 
correct student misconceptions. As a result, dia-
logues with such systems have a rich discourse 
structure. 

We perform three experiments to measure 
three ways of exploiting the discourse structure. 
In our first experiment, we test the predictive 
utility of the discourse structure in itself. For ex-
ample, we look at whether the number of pop-up 
transitions in the discourse structure hierarchy 
predicts performance in our system. 

The second experiment measures the utility of 
the discourse structure as contextual information 
for two types of student states: correctness and 
certainty. The intuition behind this experiment is 
that interaction events should be treated differ-
ently based on their position in the discourse 
structure hierarchy. For example, we test if the 
number of incorrect answers after a pop-up tran-
sition has a higher predictive utility than the total 
number of incorrect student answers. In contrast, 
the majority of the previous work either ignores 
this contextual information (Möller, 2005a; 
Walker et al., 2000) or makes limited use of the 
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discourse structure hierarchy by flattening it 
(Walker et al., 2001) (Section 5). 

As another way to exploit the discourse struc-
ture, in our third experiment we look at whether 
specific trajectories in the discourse structure are 
indicative of performance. For example, we test 
if two consecutive pushes in the discourse struc-
ture are correlated with higher learning. 

To measure the predictive utility of our inter-
action parameters, we focus primarily on corre-
lations with our performance metric (Section 4). 
There are two reasons for this. First, a significant 
correlation between an interaction parameter and 
the performance metric is a good indicator of the 
parameter’s relevance for PARADISE modeling. 
Second, correlations between factors and the per-
formance metric are commonly used in tutoring 
research to analyze the tutoring/learning process 
(Chi et al., 2001). 

Our correlation and PARADISE results show 
that, while the discourse structure is not useful in 
isolation, using the discourse structure as context 
information for other factors or via trajectories 
produces highly predictive parameters for per-
formance analysis. 

2 Annotation 

Our annotation for discourse structure and stu-
dent state has been performed on a corpus of 95 
experimentally obtained spoken tutoring dia-
logues between 20 students and our system 
ITSPOKE (Litman and Silliman, 2004).  
ITSPOKE is a speech-enabled version of the 
text-based Why2-Atlas conceptual physics tutor-
ing system (VanLehn et al., 2002). When inter-
acting with ITSPOKE, students first type an es-
say answering a qualitative physics problem us-
ing a graphical user interface. ITSPOKE then 
engages the student in spoken dialogue (using 
head-mounted microphone input and speech out-
put) to correct misconceptions and elicit more 
complete explanations, after which the student 
revises the essay, thereby ending the tutoring or 
causing another round of tutoring/essay revision. 
Each student went through the same procedure: 
1) read a short introductory material, 2) took a 
pretest to measure the initial physics knowledge, 
3) work through a set of 5 problems with 
ITSPOKE, and 4) took a posttest similar to the 
pretest. The resulting corpus had 2334 student 
turns and a comparable number of system turns. 

2.1 Discourse structure 
We base our annotation of discourse structure on 
the Grosz & Sidner theory of discourse structure 

(Grosz and Sidner, 1986). A critical ingredient of 
this theory is the intentional structure. According 
to the theory, each discourse has a discourse pur-
pose/intention. Satisfying the main discourse 
purpose is achieved by satisfying several smaller 
purposes/intentions organized in a hierarchical 
structure. As a result, the discourse is segmented 
in discourse segments each with an associated 
discourse segment purpose/intention. This theory 
has inspired several generic dialogue managers 
for spoken dialogue systems (Bohus and Rud-
nicky, 2003). 

 
Figure 1. The discourse structure and transition anno-

tation 
We automate our annotation of the discourse 

structure by taking advantage of the structure of 
the tutored information. A dialogue with 
ITSPOKE follows a question-answer format (i.e. 
system initiative): ITSPOKE asks a question, the 
student provides the answer and then the process 
is repeated. Deciding what question to ask, in 
what order and when to stop is hand-authored 
beforehand in a hierarchical structure that resem-
bles the discourse segment structure (see Figure 
1). Tutor questions are grouped in segments 
which correspond roughly to the discourse seg-
ments. Similarly to the discourse segment pur-
pose, each question segment has an associated 
tutoring goal or purpose. For example, in 
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ITSPOKE there are question segments discuss-
ing about forces acting on the objects, others dis-
cussing about objects’ acceleration, etc. 

In Figure 1 we illustrate ITSPOKE’s behavior 
and our discourse structure annotation. First, 
based on the analysis of the student essay, 
ITSPOKE selects a question segment to correct 
misconceptions or to elicit more complete expla-
nations. This question segment will correspond 
to the top level discourse segment (e.g. DS1). 
Next, ITSPOKE asks the student each question 
in DS1. If the student answer is correct, the sys-
tem moves on to the next question (e.g. Tu-
tor1→Tutor2). If the student answer is incorrect, 
there are two alternatives. For simple questions, 
the system will simply give out the correct an-
swer and move on to the next question (e.g. Tu-
tor3→Tutor4). For complex questions (e.g. apply-
ing physics laws), ITSPOKE will engage into a 
remediation subdialogue that attempts to reme-
diate the student’s lack of knowledge or skills. 
The remediation subdialogue is specified in an-
other question segment and corresponds to a new 
discourse segment (e.g DS2). The new discourse 
segment is dominated by the current discourse 
segment (e.g. DS2 dominated by DS1). Tutor2 
system turn is a typical example; if the student 
answers it incorrectly, ITSPOKE will enter dis-
course segment DS2 and go through its questions 
(Tutor3 and Tutor4). Once all the questions in 
DS2 have been answered, a heuristic determines 
whether ITSPOKE should ask the original ques-
tion again (Tutor2) or simply move on to the next 
question (Tutor5). 

To compute interaction parameters from the 
discourse structure, we focus on the transitions in 
the discourse structure hierarchy. For each sys-
tem turn we define a transition feature. This fea-
ture captures the position in the discourse struc-
ture of the current system turn relative to the 
previous system turn. We define six labels (see 
Table 1). NewTopLevel label is used for the first 
question after an essay submission (e.g. Tutor1). 
If the previous question is at the same level with 
the current question we label the current question 
as Advance (e.g. Tutor2,4). The first question in a 
remediation subdialogue is labeled as Push (e.g. 
Tutor3). After a remediation subdialogue is com-
pleted, ITSPOKE will pop up and it will either 
ask the original question again or move on to the 
next question. In the first case, we label the sys-
tem turn as PopUp. Please note that Tutor2 will 
not be labeled with PopUp because, in such 
cases, an extra system turn will be created be-
tween Tutor4 and Tutor5 with the same content as 

Tutor2. In addition, variations of “Ok, back to the 
original question” are also included in the new 
system turn to mark the discourse segment 
boundary transition. If the system moves on to 
the next question after finishing the remediation 
subdialogue, we label the system turn as  
PopUpAdv (e.g. Tutor5). Note that while the 
sum of PopUp and PopUpAdv should be equal 
with Push, it is smaller in our corpus because in 
some cases ITSPOKE popped up more than one 
level in the discourse structure hierarchy. In case 
of rejections, the system question is repeated us-
ing variations of “Could you please repeat that?”. 
We label such cases as SameGoal (e.g. Tutor6). 

Discourse structure transitions 

  

Advance 
NewTopLevel 
PopUp 
PopUpAdv 
Push 
SameGoal 

53.4% 
13.5% 
9.2% 
3.5% 

14.5% 
5.9% 

Certainty 

  

Certain 
Uncertain 
Mixed 
Neutral 

41.3% 
19.1% 
2.4% 

37.3% 
Correctness 

  

Correct 
Incorrect 
Partially Correct 
Unable to Answer 

63.3% 
23.3% 
6.2% 
7.1% 

Table 1: Transition and student state distribution. 
Please note that each student dialogue has a 

specific discourse structure based on the dialogue 
that dynamically emerges based on the correct-
ness of her answers. For this reason, the same 
system question in terms of content may get a 
different transition label for different students. 
For example, in Figure 1, if the student would 
have answered Tutor2 correctly, the next tutor 
turn would have had the same content as Tutor5 
but the Advance label. Also, while a human an-
notation of the discourse structure will be more 
complex but more time consuming (Hirschberg 
and Nakatani, 1996; Levow, 2004), its advan-
tages are outweighed by the automatic nature of 
our discourse structure annotation. 

We would like to highlight that our transition 
annotation is domain independent and automatic. 
Our transition labels capture behavior like start-
ing a new dialogue (NewTopLevel), crossing 
discourse segment boundaries (Push, PopUp, 
PopUpAdv) and local phenomena inside a dis-
course segment (Advance, SameGoal). If the dis-
course structure information is available, the 
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transition information can be automatically com-
puted using the procedure described above. 

2.2 Student state 

Because for our tutoring system student learning 
is the relevant performance metric, we hypothe-
size that information about student state in each 
student turn, in terms of correctness and cer-
tainty, will be an important indicator. For exam-
ple, a student being more correct and certain dur-
ing her interaction with ITSPOKE might be 
indicative of a higher learning gain. Also, 
previous studies have shown that tutoring 
specific parameters can improve the quality of 
SDS performance models that model the learning 
gain (Forbes-Riley and Litman, 2006).  

In our corpus, each student turn was manually 
labeled for correctness and certainty (Table 1). 
While our system assigns a correctness label to 
each student turn to plan its next move, we 
choose to use a manual annotation of correctness 
to eliminate the noise introduced by the auto-
matic speech recognition component and the 
natural language understanding component. A 
human annotator used the human transcripts and 
his physics knowledge to label each student turn 
for various degrees of correctness: correct, par-
tially correct, incorrect and unable to answer. 
“Unable to Answer” label was used for turns 
where the student did not answer the system 
question or used variants of “I don’t know”. 

Previous work has shown that certainty plays 
an important role in the learning and tutoring 
process (Pon-Barry et al., 2006; VanLehn et al., 
2003). A human annotator listened to the dia-
logues between students and ITSPOKE and la-
beled each student turn for its perceived degree 
of certainness. Four labels were used: certain, 
uncertain, neutral and mixed (both certain and 
uncertain). To date, one annotator has labeled all 
student turns in our corpus1. 

3 Interaction parameters 

For each user, interaction parameters measure 
specific aspects of the dialogue with the system. 
We use our transition and student state annota-
tion to create two types of interaction parame-
                                                 
1 The agreement between the manual correctness an-
notation and the correctness assigned by ITSPOKE is 
90% (kappa of 0.79). In a preliminary agreement 
study, a second annotator labeled our corpus for a 
binary version of certainty (uncertainty versus other), 
resulting in a 90% inter-annotator agreement and a 
kappa of 0.68. 

ters: unigrams and bigrams. The difference be-
tween the two types of parameters is whether the 
discourse structure context is used or not. For 
each of our 12 labels (4 for correctness, 4 for 
certainty and 6 for discourse structure), we de-
rive two unigram parameters per student over the 
5 dialogues for that student: a total parameter 
and a percentage parameter. For example, for the 
‘Incorrect’ unigram we compute, for each stu-
dent, the total number of student turns labeled 
with ‘Incorrect’ (parameter Incorrect) and the 
percentage of such student turns out of all stu-
dent turns (parameter Incorrect%). For example, 
if we consider only the dialogue in Figure 1, In-
correct = 3 (Student2,3,5) and Incorrect% = 60% 
(3 out of 5). 

Bigram parameters exploit the discourse struc-
ture context. We create two classes of bigram 
parameters by looking at transition–student state 
bigrams and transition–transition bigrams. The 
transition–student state bigrams combine the in-
formation about the student state with the transi-
tion information of the previous system turn. Go-
ing back to Figure 1, the three incorrect answers 
will be distributed to three bigrams: Advance–
Incorrect (Tutor2–Student2), Push–Incorrect (Tu-
tor3–Student3) and PopUpAdv–Incorrect (Tutor5–
Student5). The transition–transition bigram looks 
at the transition labels of two consecutive system 
turns. For example, the Tutor4–Tutor5 pair will 
be counted as an Advance–PopUpAdv bigram. 

Similar to the unigrams, we compute a total 
parameter and a percentage parameter for each 
bigram. The percentage denominator is number 
of student turns for the transition–student state 
bigrams and the number of system turns minus 
one for the transition–transition bigram. In addi-
tion, for each bigram we compute a relative per-
centage parameter (bigram followed by %rel) by 
computing the percentage relative to the total 
number of times the transition unigram appears 
for that student. For example, we will compute 
the Advance–Incorrect %rel parameter by divid-
ing the number of Advance–Incorrect bigrams 
with the number of Advance unigrams (1 divided 
by 2 in Figure 1); this value will capture the per-
centage of times an Advance transition is fol-
lowed by an incorrect student answer. 

4 Results 

We use student learning as our evaluation metric 
because it is the primary metric for evaluating 
the performance of tutoring systems. Previous 
work (Forbes-Riley and Litman, 2006) has suc-
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cessfully used student learning as the perform-
ance metric in the PARADISE framework. Two 
quantities are used to measure student learning: 
the pretest score and the posttest score. Both tests 
consist of 40 multiple-choice questions; the test’s 
score is computed as the percentage of correctly 
answered questions. The average score and stan-
dard deviation for each test are: pretest 0.47 
(0.17) and posttest 0.68 (0.17). 

We focus primarily on correlations between 
our interaction parameters and student learning. 
Because in our data the pretest score is signifi-
cantly correlated with the posttest score, we 
study partial Pearson’s correlations between our 
parameters and the posttest score that account for 
the pretest score. This correlation methodology is 
commonly used in the tutoring research (Chi et 
al., 2001). For each trend or significant correla-
tion we report the unigram/bigram, its average 
and standard deviation over all students, the 
Pearson’s Correlation Coefficient (R) and the 
statistical significance of R (p). 

First we report significant correlations for uni-
grams to test our first hypothesis. Next, for our 
second and third experiment, we report correla-
tions for transition–student state and transition–
transition parameters. Finally, we report our pre-
liminary results on PARADISE modeling. 

4.1 Unigram correlations 

In our first proposed experiment, we want to test 
the predictive utility of discourse structure in 
isolation. We compute correlations between our 
transition unigram parameters and learning. We 
find no trends or significant correlations. This 
result suggests that discourse structure in isola-
tion has no predictive utility. 

Here we also report all trends and significant 
correlations for student state unigrams as the 
baseline for contextual correlations to be pre-
sented in Section 4.2. We find only one signifi-
cant correlation (Table 2): students with a higher 
percentage of neutral turns (in terms of certainty) 
are negatively correlated with learning. We hy-
pothesize that this correlation captures the stu-
dent involvement in the tutoring process: more 
involved students will try harder thus expressing 
more certainty or uncertainty. In contrast, less 
involved students will have fewer certain/uncer-
tain/mixed turns and, in consequence, more neu-
tral turns. Surprisingly, student correctness does 
not significantly correlate with learning. 
Parameter Mean (SD) R. p 

Neutral % 37% (8%) -.47 .04 
Table 2: Trend and significant unigram correlations 

4.2 Transition–student state correlations 

For our second experiment, we need to determine 
the predictive utility of transition–student state 
bigram parameters. We find a large number of 
correlations for both transition–correctness bi-
grams and transition–certainty bigrams. 

Transition–correctness bigrams 
This type of bigram informs us whether ac-

counting for the discourse structure transition 
when looking at student correctness has any pre-
dictive value. We find several interesting trends 
and significant correlations (Table 3).  

The student behavior, in terms of correctness, 
after a PopUp or a PopUpAdv transition is very 
informative about the student learning process. 
In both situations, the student has just finished a 
remediation subdialogue and the system is pop-
ping up either by reasking the original question 
again (PopUp) or by moving on to the next ques-
tion (PopUpAdv). We find that after PopUp, the 
number of correct student answers is positively 
correlated with learning. In contrast, the number, 
the percentage and the relative percentage of in-
correct student answers are negatively correlated 
with learning. We hypothesize that this correla-
tion indicates whether the student took advantage 
of the additional learning opportunities offered 
by the remediation subdialogue. By answering 
correctly the original system question (PopUp–
Correct), the student demonstrates that she has 
absorbed the information from the remediation 
dialogue. This bigram is an indication of a suc-
cessful learning event. In contrast, answering the 
original system question incorrectly (PopUp–
Incorrect) is an indication of a missed learning 
opportunity; the more events like this happen the 
less the student learns. 

Parameter Mean (SD) R. p 
PopUp–Correct 7 (3.3) .45 .05 
PopUp–Incorrect 2 (1.8) -.42 .07 
PopUp–Incorrect % 1.6% (1.2%) -.46 .05 
PopUp–Incorrect %rel 17% (13%) -.39 .10 
PopUpAdv–Correct 2.5 (2) .43 .06 
PopUpAdv–Correct % 2% (1.3%) .52 .02 
NewTopLevel–Incorrect 2.3 (1.8) .56 .01 
NewTopLevel–Incorrect % 1.9% (1.4%) .49 .03 
NewTopLevel–Incorrect %rel 15% (12%) .51 .02 
Advance–Correct 40.5 (9.8) .45 .05 
Table 3: Trend and significant transition–correctness 

bigram correlations 
Similarly, being able to correctly answer the 

tutor question after popping up from a remedia-
tion subdialogue (PopUpAdv–Correct) is posi-
tively correlated with learning. Since in many 
cases, these system questions will make use of 
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the knowledge taught in the remediation subdia-
logues, we hypothesize that this correlation also 
captures successful learning opportunities. 

Another set of interesting correlations is pro-
duced by the NewTopLevel–Incorrect bigram. 
We find that the number, the percentage and the 
relative percentage of times ITSPOKE starts a 
new essay revision dialogue that results in an 
incorrect student answer is positively correlated 
with learning. The content of the essay revision 
dialogue is determined based on ITSPOKE’s 
analysis of the student essay. We hypothesize 
that an incorrect answer to the first tutor question 
is indicative of the system’s picking of a topic 
that is problematic for the student. Thus, we see 
more learning in students for which more knowl-
edge gaps are discovered and addressed by 
ITSPOKE. 

Finally, we find the number of times the stu-
dent answers correctly after an advance transition 
is positively correlated with learning (the Ad-
vance–Correct bigram). We hypothesize that this 
correlation captures the relationship between 
students that advance without having major prob-
lems and a higher learning gains. 

Transition–certainty bigrams 
Next we look at the combination between the 

transition in the dialogue structure and the stu-
dent certainty (Table 4). These correlations offer 
more insight on the negative correlation between 
the Neutral % unigram parameter and student 
learning. We find that out of all neutral student 
answers, those that follow an Advance transi-
tions are negatively correlated with learning. 
Similar to the Neutral % correlation, we hy-
pothesize that Advance–Neutral correlations cap-
ture the lack of involvement of the student in the 
tutoring process. This might be also due to 
ITSPOKE engaging in teaching concepts that the 
student is already familiar with.  
Parameter Mean (SD) R. p 

Advance–Neutral 27 (8.3) -.40 .08 
Advance–Neutral % 21% (6%) -.62 .00 
Advance–Neutral %rel 38% (10%) -.73 .00 
SameGoal–Neutral %rel 35% (31%) .46 .05 
Table 4: Trend and significant transition–certainty 

bigram correlations 
In contrast, staying neutral in terms of cer-

tainty after a system rejection is positively corre-
lated with learning. These correlations show that 
based on their position in the discourse structure, 
neutral student answers will be correlated either 
negatively or positively with learning. 

Unlike student state unigram parameters 
which produce only one significant correlation, 

transition–student state bigram parameters pro-
duce a large number of trend and significant cor-
relations (14). This result suggests that exploiting 
the discourse structure as a contextual informa-
tion source can be beneficial for performance 
modeling. 

4.3 Transition–transition bigrams 

For our third experiment, we are looking at the 
transition–transition bigram correlations (Table 
5). These bigrams help us find trajectories of 
length two in the discourse structure that are as-
sociated with better student learning. Because 
our student state is domain dependent, translating 
the transition–student state bigrams to a new 
domain will require finding a new set of relevant 
factors to replace the student state. In contrast, 
because our transition information is domain in-
dependent, transition–transition bigrams can be 
easily implemented in a new domain.  

The Advance–Advance bigram covers situa-
tions where the student is covering tutoring ma-
terial without major knowledge gaps. This is be-
cause an Advance transition happens when the 
student either answers correctly or his incorrect 
answer can be corrected without going into a 
remediation subdialogue. Just like with the Ad-
vance–Correct correlation (recall Table 3), we 
hypothesize that these correlations links higher 
learning gains to students that cover a lot of ma-
terial without many knowledge gap.  
Parameter Mean (SD) R. p 

Advance–Advance 35 (9.1) .47 .04 
Push–Push 2.2 (1.7) .50 .03 
Push–Push % 1.8% (1.3%) .52 .02 
Push–Push %rel 11% (7%) .52 .02 
SameGoal–Push %rel 18% (23%) .49 .03 
Table 5: Trend and significant transition–transition 

bigram correlations 
The Push–Push bigrams capture another inter-

esting behavior. In these cases, the student incor-
rectly answers a question, entering a remediation 
subdialogue; she also incorrectly answers the 
first question in the remediation dialogue enter-
ing an even deeper remediation subdialogue. We 
hypothesize that these situations are indicative of 
big student knowledge gaps. In our corpus, we 
find that the more such big knowledge gaps are 
discovered and addressed by the system the 
higher the learning gain. 

The SameGoal–Push bigram captures another 
type of behavior after system rejections that is 
positively correlated with learning (recall the 
SameGoal–Neutral bigram, Table 4). In our pre-
vious work (Rotaru and Litman, 2006), we per-
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formed an analysis of the rejected student turns 
and studied how rejections affect the student 
state. The results of our analysis suggested a new 
strategy for handling rejections in the tutoring 
domain: instead of rejecting student answers, a 
tutoring SDS should make use of the available 
information. Since the recognition hypothesis for 
a rejected student turn would be interpreted most 
likely as an incorrect answer thus activating a 
remediation subdialogue, the positive correlation 
between SameGoal–Push and learning suggests 
that the new strategy will not impact learning. 

Similar to the second experiment, the results 
of our third experiment are also positive: in con-
trast to transition unigrams, our domain inde-
pendent trajectories can produce parameters with 
a high predictive utility. 

4.4 PARADISE modeling 

Here we present our preliminary results on ap-
plying the PARADISE framework to model 
ITSPOKE performance. A stepwise multivariate 
linear regression procedure (Walker et al., 2000) 
is used to automatically select the parameters to 
be included in the model. Similar to (Forbes-
Riley and Litman, 2006), in order to model the 
learning gain, we use posttest as the dependent 
variable and force the inclusion of the pretest 
score as the first variable in the model. 

For the first experiment, we feed the model all 
transition unigrams. As expected due to lack of 
correlations, the stepwise procedure does not 
select any transition unigram parameter. The 
only variable in the model is pretest resulting in a 
model with a R2 of .22. 

For the second and third experiment, we first 
build a baseline model using only unigram pa-
rameters. The resulting model achieves an R2 of 
.39 by including the only significantly correlated 
unigram parameter: Neutral %. Next, we build a 
model using all unigram parameters and all sig-
nificantly correlated bigram parameters. The new 
model almost doubles the R2 to 0.75. Besides the 
pretest, the parameters included in the resulting 
model are (ordered by the degree of contribution 
from highest to lowest): Advance–Neutral %rel, 
and PopUp–Incorrect %. These results strengthen 
our correlation conclusions: discourse structure 
used as context information or as trajectories in-
formation is useful for performance modeling. 
Also, note that the inclusion of student certainty 
in the final PARADISE model provides addi-
tional support to a hypothesis that has gained a 
lot of attention lately: detecting and responding 
to student emotions has the potential to improve 

learning (Craig et al., 2004; Forbes-Riley and 
Litman, 2005; Pon-Barry et al., 2006). 

The performance of our best model is compa-
rable or higher than training performances re-
ported in previous work (Forbes-Riley and Lit-
man, 2006; Möller, 2005b; Walker et al., 2001). 
Since our training data is relatively small (20 
data points) and overfitting might be involved 
here, in the future we plan to do a more in-depth 
evaluation by testing if our model generalizes on 
a larger ITSPOKE corpus we are currently anno-
tating. 

5 Related work 

Previous work has proposed a large number of 
interaction parameters for SDS performance 
modeling (Möller, 2005a; Walker et al., 2000; 
Walker et al., 2001). Several information sources 
are being tapped to devise parameters classified 
by (Möller, 2005a) in several categories: dia-
logue and communication parameters (e.g. dia-
logue duration, number of system/user turns), 
speech input parameters (e.g. word error rate, 
recognition/concept accuracy) and meta-
communication parameters (e.g. number of help 
request, cancel requests, corrections). 

But most of these parameters do not take into 
account the discourse structure information. A 
notable exception is the DATE dialogue act an-
notation from (Walker et al., 2001). The DATE 
annotation captures information on three dimen-
sions: speech acts (e.g. acknowledge, confirm), 
conversation domain (e.g. conversation- versus 
task-related) and the task model (e.g. subtasks 
like getting the date, time, origin, and destina-
tion). All these parameters can be linked to the 
discourse structure but flatten the discourse 
structure. Moreover, the most informative of 
these parameters (the task model parameters) are 
domain dependent. Similar approximations of the 
discourse structure are also common for other 
SDS tasks like predictive models of speech rec-
ognition problems (Gabsdil and Lemon, 2004). 

We extend over previous work in several ar-
eas. First, we exploit in more detail the hierarchi-
cal information in the discourse structure. We 
quantify this information by recording the dis-
course structure transitions. Second, in contrast 
to previous work, our usage of discourse struc-
ture is domain independent (the transitions). 
Third, we exploit the discourse structure as a 
contextual information source. To our knowl-
edge, previous work has not employed parame-
ters similar with our transition–student state bi-
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gram parameters. Forth, via the transition–
transition bigram parameters, we exploit trajecto-
ries in the discourse structure as another domain 
independent source of information for perform-
ance modeling. Finally, similar to (Forbes-Riley 
and Litman, 2006), we are tackling a more prob-
lematic performance metric: the student learning 
gain. While the requirements for a successful 
information access SDS are easier to spell out, 
the same can not be said about tutoring SDS due 
to the current limited understanding of the hu-
man learning process. 

6 Conclusion 

In this paper we highlight the role of discourse 
structure for SDS performance modeling. We 
experiment with various ways of using the dis-
course structure: in isolation, as context informa-
tion for other factors (correctness and certainty) 
and through trajectories in the discourse structure 
hierarchy. Our correlation and PARADISE re-
sults show that, while the discourse structure is 
not useful in isolation, using the discourse struc-
ture as context information for other factors or 
via trajectories produces highly predictive pa-
rameters for performance analysis. Moreover, the 
PARADISE framework selects in the final model 
only discourse-based parameters ignoring pa-
rameters that do not use the discourse structure 
(certainty and correctness unigrams are ignored). 

Our significant correlations also suggest ways 
we should modify our system. For example, the 
PopUp–Incorrect negative correlations suggest 
that after a failed learning opportunity the system 
should not give out the correct answer but en-
gage in a secondary remediation subdialogue 
specially tailored for these situations. 

In the future, we plan to test the generality of 
our PARADISE model on other corpora and to 
compare models built using our interaction pa-
rameters against models based on parameters 
commonly used in previous work (Möller, 
2005a). Testing if our results generalize to a hu-
man annotation of the discourse structure and 
automated models of certainty and correctness is 
also of importance. We also want to see if our 
results hold for performance metrics based on 
user satisfaction questionnaires; in the new 
ITSPOKE corpus we are currently annotating, 
each student also completed a user satisfaction 
survey (Forbes-Riley and Litman, 2006) similar 
to the one used in the DARPA Communicator 
multi-site evaluation (Walker et al., 2002).  

Our work contributes to both the computa-
tional linguistics domain and the tutoring do-
main. For the computational linguistics research 
community, we show that discourse structure is 
an important information source for SDS per-
formance modeling. Our analysis can be ex-
tended easily to other SDS. First, a similar auto-
matic annotation of the discourse structure can 
be performed in SDS that rely on dialogue man-
agers inspired by the Grosz & Sidner theory of 
discourse (Bohus and Rudnicky, 2003). Second, 
the transition–transition bigram parameters are 
domain independent. Finally, for the other suc-
cessful usage of discourse structure (transition–
student state bigrams) researchers have only to 
identify relevant factors and then combine them 
with the discourse structure information. In our 
case, we show that instead of looking at the user 
state in isolation (Forbes-Riley and Litman, 
2006), combining it with the discourse structure 
transition can generate informative interaction 
parameters. 

For the tutoring research community, we show 
that discourse structure, an important concept in 
computational linguistics theory, can provide 
useful insights regarding the learning process. 
The correlations we observe in our corpus have 
intuitive interpretations (successful/failed learn-
ing opportunities, discovery of deep student 
knowledge gaps, providing relevant tutoring). 
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