
COLING •ACL 2006
TAG+8

The Eighth International Workshop
on Tree Adjoining Grammar and Related Formalisms

Proceedings of the Workshop

Local organizer:
Mark Dras

Program co-chairs:
Laura Kallmeyer and Tilman Becker

15 -16 July 2006

Sydney, Australia

Production and Manufacturing by
BPA Digital
11 Evans St
Burwood VIC 3125
AUSTRALIA

Sponsored by the Department of Computing, Macquarie University
Endorsed by the Association for the Mathematics of Language (ACL SigMoL)

c©2006 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 1-932432-85-X

ii

Table of Contents

Preface . v

Organizers . vii

Workshop Program . ix

The Hidden TAG Model: Synchronous Grammars for Parsing Resource-Poor Languages
David Chiang and Owen Rambow .1

A Constraint Driven Metagrammar
Joseph Le Roux, Benoît Crabbé and Yannick Parmentier .9

The Metagrammar Goes Multilingual: A Cross-Linguistic Look at the V2-Phenomenon
Alexandra Kinyon, Owen Rambow, Tatjana Scheffler, SinWon Yoon and Aravind K. Joshi17

The Weak Generative Capacity of Linear Tree-Adjoining Grammars
David Chiang .25

A Tree Adjoining Grammar Analysis of the Syntax and Semantics of It-Clefts
Chung-hye Han and Nancy Hedberg .33

Pied-Piping in Relative Clauses: Syntax and Compositional Semantics Based on Synchronous
Tree Adjoining Grammar

Chung-hye Han. .41

Negative Concord and Restructuring in Palestinian Arabic: A Comparison of TAG and CCG
Analyses

Frederick M. Hoyt .49

Stochastic Multiple Context-Free Grammar for RNA Pseudoknot Modeling
Yuki Kato, Hiroyuki Seki and Tadao Kasami .57

Binding of Anaphors in LTAG
Neville Ryant and Tatjana Scheffler .65

Quantifier Scope in German: An MCTAG Analysis
Laura Kallmeyer and Maribel Romero .73

Licensing German Negative Polarity Items in LTAG
Timm Lichte and Laura Kallmeyer .81

Semantic Interpretation of Unrealized Syntactic Material in LTAG
Olga Babko-Malaya. .91

Three Reasons to Adopt TAG-Based Surface Realisation
Claire Gardent and Eric Kow. .97

Generating XTAG Parsers from Algebraic Specifications
Carlos Gómez-Rodríguez, Miguel A. Alonso and Manuel Vilares .103

Constraint-Based Computational Semantics: A Comparison between LTAG and LRS
Laura Kallmeyer and Frank Richter .109

iii

SemTAG, the LORIA toolbox for TAG-based Parsing and Generation
Eric Kow, Yannick Parmentier and Claire Gardent .115

Extended Cross-Serial Dependencies in Tree Adjoining Grammars
Marco Kuhlmann and Mathias Möhl .121

Using LTAG-Based Features for Semantic Role Labeling
Yudong Liu and Anoop Sarkar .127

Extracting Syntactic Features from a Korean Treebank
Jungyeul Park .133

Handling Unlike Coordinated Phrases in TAG by Mixing Syntactic Category and Grammatical
Function

Carlos A. Prolo .137

Parsing TAG with Abstract Categorial Grammar
Sylvain Salvati .141

Modeling and Analysis of Elliptic Coordination by Dynamic Exploitation of Derivation Forests
in LTAG Parsing

Djamé Seddah and Benoît Sagot .147

‘Single Cycle’ Languages: Empirical Evidence for TAG-Adjoining
Arthur Stepanov .153

Reconsidering Raising and Experiencers in English
Dennis Ryan Storoshenko .159

Author Index . 165

iv

Preface

It is with great pleasure that we present the current volume of papers accepted for presentation at the
Eighth International Workshop on Tree Adjoining Grammar and Related Formalisms (TAG+8). We are
indebted to the paper authors and the members of our program committee, both of whom contributed
to making this a collection of high quality research papers. Furthermore, we also thank our invited
speakers, Mark Johnson and Mark Steedman, for their participation in the workshop. Finally, our thanks
go to Mark Dras as the local organizer who also helped in numerous ways in preparing the workshop and
the proceedings.

As at previous TAG+ conferences, the topics addressed by the presentations belong to diverse areas
of research, namely the mathematics of grammar formalisms and parsing, the syntax and semantics of
natural languages, compact grammar representations and grammar engineering, the relation between
TAG and other grammar formalisms, and applications to computational biology. By bringing together
these different topics under the common theme of Tree Adjoining Grammars, the workshop promises to
be an inspiring and fruitful event.

The volume contains 24 research papers that will be presented at TAG+8. They are divided into two
parts; the first one covering the 11 papers that are to be deliverd in oral presentations and the second one
covering the 13 papers that are to be presented as posters.

Tilman Becker and Laura Kallmeyer
Program Co-Chairs

v

Organizers

Local Organizer:

Mark Dras, Macquarie University

Program Committee:

Tilman Becker (co-chair), DFKI
Laura Kallmeyer (co-chair), University of Tuebingen
Srinivas Bangalore, AT&T Research
Eric de la Clergerie, INRIA
Dan Flickinger, CSLI, Stanford University
Robert Frank, Johns Hopkins University
Akio Fujiyoshi, Ibaraki University
Claire Gardent, LORIA
Chung-Hye Han, Simon Fraser University
Karin Harbusch, University of Koblenz
Geert-Jan Kruijff, Language Technology Lab, DFKI
Vincenzo Lombardo, University of Turin
David McDonald, BBN Technologies
Martha Palmer, University of Colorado
Owen Rambow, Columbia University
Frank Richter, University of Tuebingen
James Rogers, Earlham College
Maribel Romero, University of Pennsylvania
Anoop Sarkar, Simon Fraser University
Giorgio Satta, University of Padua
Stuart Shieber, Harvard College
Mark Steedman, University of Edinburgh
Matthew Stone, Rutgers University
Yuka Tateisi, Kogakuin University
David Weir, University of Sussex
Vijay K. Shanker, University of Delaware
Naoki Yoshinaga, Japan Society for the Promotion of Science

Invited Speakers:

Mark Steedman, University of Edinburgh
Mark Johnson, Brown University

vii

Workshop Program

Saturday, 15 July 2006

9:00–9:10 Opening Remarks

9:10–9:50 The Hidden TAG Model: Synchronous Grammars for Parsing Resource-Poor Lan-
guages
David Chiang and Owen Rambow

9:50–10:30 A Constraint Driven Metagrammar
Joseph Le Roux, Benoît Crabbé and Yannick Parmentier

10:30–11:00 Coffee Break

11:00–11:40 The Metagrammar Goes Multilingual: A Cross-Linguistic Look at the V2-
Phenomenon
Alexandra Kinyon, Owen Rambow, Tatjana Scheffler, SinWon Yoon and Aravind
K. Joshi

11:40–12:20 The Weak Generative Capacity of Linear Tree-Adjoining Grammars
David Chiang

12:20–13:40 Lunch Break

13:40–14:40 Poster Session I

14:40–15:20 A Tree Adjoining Grammar Analysis of the Syntax and Semantics of It-Clefts
Chung-hye Han and Nancy Hedberg

15:20–15:50 Coffee Break

15:50–16:50 Invited Talk: Mark Steedman

16:50–17:30 Pied-Piping in Relative Clauses: Syntax and Compositional Semantics Based on
Synchronous Tree Adjoining Grammar
Chung-hye Han

19:00 Conference Dinner

ix

Sunday, 16 July 2006

9:30–10:30 Invited Talk: Mark Johnson

10:30–11:00 Coffee Break

11:00–11:40 Negative Concord and Restructuring in Palestinian Arabic: A Comparison of TAG and
CCG Analyses
Frederick M. Hoyt

11:40–12:20 Stochastic Multiple Context-Free Grammar for RNA Pseudoknot Modeling
Yuki Kato, Hiroyuki Seki and Tadao Kasami

12:20–13:40 Lunch Break

13:40–14:40 Poster Session II

14:40–15:20 Binding of Anaphors in LTAG
Neville Ryant and Tatjana Scheffler

15:20–15:50 Coffee Break

15:50–16:30 Quantifier Scope in German: An MCTAG Analysis
Laura Kallmeyer and Maribel Romero

16:30–17:10 Licensing German Negative Polarity Items in LTAG
Timm Lichte and Laura Kallmeyer

17:10–17:30 Closing Remarks

x

Poster Presentations

Semantic Interpretation of Unrealized Syntactic Material in LTAG
Olga Babko-Malaya

Three Reasons to Adopt TAG-Based Surface Realisation
Claire Gardent and Eric Kow

Generating XTAG Parsers from Algebraic Specifications
Carlos Gómez-Rodríguez, Miguel A. Alonso and Manuel Vilares

Constraint-Based Computational Semantics: A Comparison between LTAG and LRS
Laura Kallmeyer and Frank Richter

SemTAG, the LORIA toolbox for TAG-based Parsing and Generation
Eric Kow, Yannick Parmentier and Claire Gardent

Extended Cross-Serial Dependencies in Tree Adjoining Grammars
Marco Kuhlmann and Mathias Möhl

Using LTAG-Based Features for Semantic Role Labeling
Yudong Liu and Anoop Sarkar

Extracting Syntactic Features from a Korean Treebank
Jungyeul Park

Handling Unlike Coordinated Phrases in TAG by Mixing Syntactic Category and Gram-
matical Function
Carlos A. Prolo

Parsing TAG with Abstract Categorial Grammar
Sylvain Salvati

Modeling and Analysis of Elliptic Coordination by Dynamic Exploitation of Derivation
Forests in LTAG Parsing
Djamé Seddah and Benoît Sagot

‘Single Cycle’ Languages: Empirical Evidence for TAG-Adjoining
Arthur Stepanov

Reconsidering Raising and Experiencers in English
Dennis Ryan Storoshenko

xi

xii

Proceedings of the 8th International Workshop on Tree Adjoining Grammar and Related Formalisms, pages 1–8,
Sydney, July 2006.c©2006 Association for Computational Linguistics

The Hidden TAG Model: Synchronous Grammars for Parsing
Resource-Poor Languages

David Chiang∗

Information Sciences Institute
University of Southern California
4676 Admiralty Way, Suite 1001
Marina del Rey, CA 90292, USA

chiang@isi.edu

Owen Rambow
Center for Computational Learning Systems

Columbia University
475 Riverside Dr., Suite 850

New York, NY, USA
rambow@cs.columbia.edu

Abstract

This paper discusses a novel probabilis-
tic synchronous TAG formalism, syn-
chronous Tree Substitution Grammar with
sister adjunction (TSG+SA). We use it
to parse a language for which there is
no training data, by leveraging off a sec-
ond, related language for which there is
abundant training data. The grammar for
the resource-rich side is automatically ex-
tracted from a treebank; the grammar on
the resource-poor side and the synchro-
nization are created by handwritten rules.
Our approach thus represents a combina-
tion of grammar-based and empirical nat-
ural language processing. We discuss the
approach using the example of Levantine
Arabic and Standard Arabic.

1 Parsing Arabic Dialects and Tree
Adjoining Grammar

The Arabic language is a collection of spoken
dialects and a standard written language. The
standard written language is the same throughout
the Arab world, Modern Standard Arabic (MSA),
which is also used in some scripted spoken com-
munication (news casts, parliamentary debates).
It is based on Classical Arabic and is not a na-
tive language of any Arabic speaking people, i.e.,
children do not learn it from their parents but in
school. Thus most native speakers of Arabic are
unable to produce sustained spontaneous MSA.
The dialects show phonological, morphological,
lexical, and syntactic differences comparable to

∗This work was primarily carried out while the first au-
thor was at the University of Maryland Institute for Advanced
Computer Studies.

those among the Romance languages. They vary
not only along a geographical continuum but also
with other sociolinguistic variables such as the ur-
ban/rural/Bedouin dimension.

The multidialectal situation has important neg-
ative consequences for Arabic natural language
processing (NLP): since the spoken dialects are
not officially written and do not have standard or-
thography, it is very costly to obtain adequate cor-
pora, even unannotated corpora, to use for train-
ing NLP tools such as parsers. Furthermore, there
are almost no parallel corpora involving one di-
alect and MSA.

The question thus arises how to create a statisti-
cal parser for an Arabic dialect, when statistical
parsers are typically trained on large corpora of
parse trees. We present one solution to this prob-
lem, based on the assumption that it is easier to
manually create new resources that relate a dialect
to MSA (lexicon and grammar) than it is to man-
ually create syntactically annotated corpora in the
dialect. In this paper, we deal with Levantine Ara-
bic (LA). Our approach does not assume the exis-
tence of any annotated LA corpus (except for de-
velopment and testing), nor of a parallel LA-MSA
corpus.

The approach described in this paper uses a spe-
cial parameterization of stochastic synchronous
TAG (Shieber, 1994) which we call a “hidden TAG
model.” This model couples a model of MSA
trees, learned from the Arabic Treebank, with a
model of MSA-LA translation, which is initial-
ized by hand and then trained in an unsupervised
fashion. Parsing new LA sentences then entails si-
multaneously building a forest of MSA trees and
the corresponding forest of LA trees. Our imple-
mentation uses an extension of our monolingual
parser (Chiang, 2000) based on tree-substitution

1

grammar with sister adjunction (TSG+SA).
The main contributions of this paper are as fol-

lows:

1. We introduce the novel concept of a hidden
TAG model.

2. We use this model to combine statistical ap-
proaches with grammar engineering (specif-
ically motivated from the linguistic facts).
Our approach thus exemplifies the specific
strength of a grammar-based approach.

3. We present an implementation of stochas-
tic synchronous TAG that incorporates vari-
ous facilities useful for training on real-world
data: sister-adjunction (needed for generating
the flat structures found in most treebanks),
smoothing, and Inside-Outside reestimation.

This paper is structured as follows. We first
briefly discuss related work (Section 2) and some
of the linguistic facts that motivate this work (Sec-
tion 3). We then present the formalism, probabilis-
tic model, and parsing algorithm (Section 4). Fi-
nally, we discuss the manual grammar engineering
(Section 5) and evaluation (Section 6).

2 Related Work

This paper is part of a larger investigation into
parsing Arabic dialects (Rambow et al., 2005; Chi-
ang et al., 2006). In that investigation, we exam-
ined three different approaches:

• Sentence transduction, in which a dialect sen-
tence is roughly translated into one or more
MSA sentences and then parsed by an MSA
parser.

• Treebank transduction, in which the MSA
treebank is transduced into an approximation
of a LA treebank, on which a LA parer is then
trained.

• Grammar transduction, which is the name
given in the overview papers to the approach
discussed in this paper. The present paper
provides for the first time a complete tech-
nical presentation of this approach.

Overall, grammar transduction outperformed
the other two approaches.

In other work, there has been a fair amount of
interest in parsing one language using another lan-
guage, see for example (Smith and Smith, 2004;

Hwa et al., 2004). Much of this work, like ours,
relies on synchronous grammars (CFGs). How-
ever, these approaches rely on parallel corpora.
For MSA and its dialects, there are no naturally
occurring parallel corpora. It is this fact that has
led us to investigate the use of explicit linguistic
knowledge to complement machine learning.

3 Linguistic Facts

We illustrate the differences between LA and
MSA using an example:

(1) a.
� �������	��
��� ������������� ����
��

(LA)

AlrjAl
the-men

byHbw
like

$
not

Al$gl
the-work

hdA
this

the men do not like this work

b.
��� �!
��"� #$�%��� ���
��"&"��'�(

(MSA)

lA
not

yHb
like

AlrjAl
the-men

h*A
this

AlEml
the-work

the men do not like this work

Lexically, we observe that the word for ‘work’
is

���	��
)�
Al$gl in LA but

���*�	
��
AlEml in MSA.

In contrast, the word for ‘men’ is the same in both
LA and MSA:

��� ����
��
AlrjAl. There are typically

also differences in function words, in our example�
$ (LA) and

(
lA (MSA) for ‘not’. Morpholog-

ically, we see that LA
�	�������

byHbw has the same
stem as MA

&+��'
yHb, but with two additional

morphemes: the present aspect marker b- which
does not exist in MSA, and the agreement marker
-w, which is used in MSA only in subject-initial
sentences, while in LA it is always used.

Syntactically, we observe three differences.
First, the subject precedes the verb in LA (SVO
order), but follows in MSA (VSO order). This is
in fact not a strict requirement, but a strong pref-
erence: both varieties allow both orders, but in the
dialects, the SVO order is more common, while in
MSA, the VSO order is more common. Second,
we see that the demonstrative determiner follows
the noun in LA, but precedes it in MSA. Finally,
we see that the negation marker follows the verb
in LA, while it precedes the verb in MSA. (Lev-
antine also has other negation markers that pre-
cede the verb, as well as the circumfix m- -$.) The
two phrase structure trees are shown in Figure 1
in the convention of the Linguistic Data Consor-
tium (Maamouri et al., 2004). Unlike the phrase

2

S

NP-TPC
��� ��
)�
‘men’i

VP

V
���������
‘like’

NEG
�

‘not’

NP-SBJ

ti

NP-OBJ

N
���	��
��

‘work’

DET
� ���

‘this’

S

VP

NEG
(

‘not’

V
&+��'
‘like’

NP-SBJ
��� ���
��
‘men’

NP-OBJ

DET
� #��

‘this’

N
���*�	
��

‘work’

Figure 1: LDC-style left-to-right phrase structure trees for LA (left) and MSA (right) for sentence (1)
���������

’like’

���!��
��

‘work’
� �$�

‘this’

��� ��
)�

‘men’

�

‘not’

&+��'
‘like’

���*�	
��

‘work’
� #��

‘this’

��� ��
)�

‘men’

(

‘not’

Figure 2: Unordered dependency trees for LA (left) and MSA (right) for sentence (1)

NP

NNP

Qintex

S

NP VP

VBD

sold

NP

PRT

RP

off

NP

NNS

assets

(α1) (α2) (α3) (α4)

Figure 3: Example elementary trees.

structure trees, the (unordered) dependency trees
for the MSA and LA sentences are isomorphic, as
shown in Figure 2. They differ only in the node
labels.

4 Model

4.1 The synchronous TSG+SA formalism

Our parser (Chiang, 2000) is based on syn-
chronous tree-substitution grammar with sister-
adjunction (TSG+SA). Tree-substitution grammar
(Schabes, 1990) is TAG without auxiliary trees or
adjunction; instead we include a weaker composi-
tion operation, sister-adjunction (Rambow et al.,
2001), in which an initial tree is inserted between
two sister nodes (see Figure 4). We allow multi-
ple sister-adjunctions at the same site, similar to
how Schabes and Shieber (1994) allow multiple
adjunctions of modifier auxiliary trees.

A synchronous TSG+SA is a set of pairs of el-
ementary trees. In each pair, there is a one-to-one
correspondence between the substitution/sister-
adjunction sites of the two trees, which we repre-
sent using boxed indices (Figure 5). A derivation
then starts with a pair of initial trees and proceeds
by substituting or sister-adjoining elementary tree
pairs at coindexed sites. In this way a set of string
pairs 〈S, S ′〉 is generated.

Sister-adjunction presents a special problem
for synchronization: if multiple tree pairs sister-
adjoin at the same site, how should their order on
the source side relate to the order on the target
side? Shieber’s solution (Shieber, 1994) is to al-
low any ordering. We adopt a stricter solution: for
each pair of sites, fix a permutation (either iden-
tity or reversal) for the tree pairs that sister-adjoin
there. Owing to the way we extract trees from the
Treebank, the simplest choice of permutations is:
if the two sites are both to the left of the anchor
or both to the right of the anchor, then multiple
sister-adjoined tree pairs will appear in the same
order on both sides; otherwise, they will appear in
the opposite order. In other words, multiple sister-
adjunction always adds trees from the anchor out-
ward.

A stochastic synchronous TSG+SA adds prob-
abilities to the substitution and sister-adjunction
operations: the probability of substituting an ele-
mentary tree pair 〈α, α′〉 at a substitution site pair

3

S

NP

NNP

Qintex

VP

VP

VBD

sold

NP

NNS

assets

PRT

RP

off

⇒

S

NP

NNP

Qintex

VP

VBD

sold

PRT

RP

off

NP

NNS

assets

Figure 4: Sister-adjunction, with inserted material shown with shaded background

S

NPi↓ 1 VP

V
�	�������

‘like’

NP

ti

NP↓ 2

,

S

VP

V
&+��'

‘like’

NP↓ 1 NP↓ 2

Figure 5: Example elementary tree pair of a synchronous TSG: the SVO transformation (LA on left,
MSA on right)

4

〈η, η′〉 is Ps(α, α′ | η, η′), and the probability of
sister-adjoining 〈α, α′〉 at a sister-adjunction site
pair 〈η, i, η′, i′〉 is Psa(α, α′ | η, i, η′, i′), where
i and i′ indicate that the sister-adjunction occurs
between the i and (i + 1)st (or i′ and (i′ + 1)st)
sisters. These parameters must satisfy the normal-
ization conditions

∑

α,α′

Ps(α, α′ | η, η′) = 1 (1)

∑

α,α′

Psa(α, α′ | η, i, η′, i′) +

Psa(STOP | η, i, η′, i′) = 1 (2)

4.2 Parsing by translation

We intend to apply a stochastic synchronous
TSG+SA to input sentences S ′. This requires pro-
jecting any constraints from the unprimed side of
the synchronous grammar over to the primed side,
and then parsing the sentences S ′ using the pro-
jected grammar, using a straightforward general-
ization of the CKY and Viterbi algorithms. This
gives the highest-probability derivation of the syn-
chronous grammar that generates S ′ on the primed
side, which includes a parse for S ′ and, as a by-
product, a parsed translation of S ′.

Suppose that S ′ is a sentence of LA. For the
present task we are not actually interested in the
MSA translation of S ′, or the parse of the MSA
translation; we are only interested in the parse of
S′. The purpose of the MSA side of the grammar
is to provide reliable statistics. Thus, we approxi-
mate the synchronous rewriting probabilities as:

Ps(α, α′ | η, η′)

≈ Ps(α | η)Pt(α
′ | α) (3)

Psa(α, α′ | η, i, η′, i′)

≈ Psa(α | η, i)Pt(α
′ | α) (4)

These factors, as we will see shortly, are much eas-
ier to estimate given the available resources.

This factorization is analogous to a hidden
Markov model: the primed derivation is the obser-
vation, the unprimed derivation is the hidden state
sequence (except it is a branching process instead
of a chain); the Ps and Psa are like the transition
probabilities and the Pt are like the observation
probabilities. Hence, we call this model a “hidden
TAG model.”

4.3 Parameter estimation and smoothing

Ps and Psa are the parameters of a monolingual
TSG+SA and can be learned from a monolingual

Treebank (Chiang, 2000); the details are not im-
portant here.

As for Pt, in order to obtain better probability
estimates, we further decompose Pt into Pt1 and
Pt2 so they can be estimated separately (as in the
monolingual parsing model):

Pt(α
′ | α) ≈ Pt1(ᾱ

′ | ᾱ, w′, t′, w, t) ×

Pt2(w
′, t′ | w, t) (5)

where w and t are the lexical anchor of α and its
POS tag, and ᾱ is the equivalence class of α mod-
ulo lexical anchors and their POS tags. Pt2 repre-
sents the lexical transfer model, and Pt1 the syn-
tactic transfer model. Pt1 and Pt2 are initially as-
signed by hand; Pt1 is then reestimated by EM.

Because the full probability table for Pt1 would
be too large to write by hand, and because our
training data might be too sparse to reestimate it
well, we smooth it by approximating it as a linear
combination of backoff models:

Pt1(ᾱ
′ | ᾱ, w′, t′, w, t) ≈

λ1Pt11(ᾱ
′ | ᾱ, w′, t′, w, t) +

(1− λ1)(λ2Pt12(ᾱ
′ | ᾱ, w′, t′) +

(1− λ2)Pt13(ᾱ
′ | ᾱ)) (6)

where each λi, unlike in the monolingual parser,
is simply set to 1 if an estimate is available for that
level, so that it completely overrides the further
backed-off models.

The initial estimates for the Pt1i are set by hand.
The availability of three backoff models makes it
easy to specify the initial guesses at an appropri-
ate level of detail: for example, one might give a
general probability of some ᾱ mapping to ᾱ′ using
Pt13, but then make special exceptions for partic-
ular lexical anchors using Pt11 or Pt12.

Finally Pt2 is reestimated by EM on some held-
out unannotated sentences of L′, using the same
method as Chiang and Bikel (2002) but on the syn-
tactic transfer probabilities instead of the mono-
lingual parsing model. Another difference is that,
following Bikel (2004), we do not recalculate the
λi at each iteration, but use the initial values
throughout.

5 A Synchronous TSG-SA for Dialectal
Arabic

Just as the probability model discussed in the pre-
ceding section factored the rewriting probabilities

5

into three parts, we create a synchronous TSG-SA
and the probabilities of a hidden TAG model in
three steps:

• Ps and Psa are the parameters of a monolin-
gual TSG+SA for MSA. We extract a gram-
mar for the resource-rich language (MSA)
from the Penn Arabic Treebank in a pro-
cess described by Chiang and others (Chiang,
2000; Xia et al., 2000; Chen, 2001).

• For the lexical transfer model Pt2, we cre-
ate by hand a probabilistic mapping between
(word, POS tag) pairs in the two languages.

• For the syntactic transfer model Pt1, we cre-
ated by hand a grammar for the resource-poor
language and a mapping between elementary
trees in the two grammars, along with initial
guesses for the mapping probabilities.

We discuss the hand-crafted lexicon and syn-
chronous grammar in the following subsections.

5.1 Lexical Mapping

We used a small, hand-crafted lexicon of 100
words which mapped all LA function words and
some of the most common open-class words to
MSA. We assigned uniform probabilities to the
mapping. All other MSA words were assumed
to also be LA words. Unknown LA words were
handled using the standard unknown word mecha-
nism.

5.2 Syntactic Mapping

Because of the underlying syntactic similarity be-
tween the two varieties of Arabic, we assume that
every tree in the MSA grammar extracted from the
MSA treebank is also a LA tree. In addition, we
define tree transformations in the Tsurgeon pack-
age (Levy and Andrew, 2006). These consist of
a pattern which matches MSA elementary trees
in the extracted grammar, and a transformation
which produces a LA elementary tree. We per-
form the following tree transformations on all el-
ementary trees which match the underlying MSA
pattern. Thus, each MSA tree corresponds to at
least two LA trees: the original one and the trans-
formed one. If several transformations apply, we
obtain multiple transformed trees.

• Negation (NEG): we insert a $ negation
marker immediately following each verb.

The preverbal marker is generated by a lex-
ical translation of an MSA elementary tree.

• VSO-SVO Ordering (SVO): Both Verb-
Subject-Object (VSO) and Subject-Verb-
Object (SVO) constructions occur in MSA
and LA treebanks. But pure VSO construc-
tions (without pro-drop) occur in the LA cor-
pus only 10ordering in MSA. Hence, the goal
is to skew the distributions of the SVO con-
structions in the MSA data. Therefore, VSO
constructions are replicated and converted to
SVO constructions. One possible resulting
pair of trees is shown in Figure 5.

• The bd construction (BD): bd is a LA noun
that means ‘want’. It acts like a verb in
verbal constructions yielding VP construc-
tions headed by NN. It is typically followed
by an enclitic possessive pronoun. Accord-
ingly, we defined a transformation that trans-
lated all the verbs meaning ‘want’/‘need’ into
the noun bd and changed their respective
POS tag to NN. The subject clitic is trans-
formed into a possessive pronoun clitic. Note
that this construction is a combination lexical
and syntactic transformation, and thus specif-
ically exploits the extended domain of local-
ity of TAG-like formalisms. One possible re-
sulting pair of trees is shown in Figure 6.

6 Experimental Results

While our approach does not rely on any annotated
corpus for LA, nor on a parallel corpus MSA-
LA, we use a small treebank of LA (Maamouri et
al., 2006) to analyze and test our approach. The
LA treebank is divided into a development corpus
and a test corpus, each about 11,000 tokens (using
the same tokenization scheme as employed in the
MSA treebank).

We first use the development corpus to deter-
mine which of the transformations are useful. We
use two conditions. In the first, the input text is
not tagged, and the parser hypothesizes tags. In
the second, the input text is tagged with the gold
(correct) tag. The results are shown in Table 1.
The baseline is simply the application of a pure
MSA Chiang parser to LA. We see that important
improvements are obtained using the lexical map-
ping. Adding the SVO transformation does not
improve the results, but the NEG and BD trans-
formations help slightly, and their effect is (partly)

6

S

VP

N
���

‘want’

PRP$

�
‘my’

S′↓ 1

,

S

VP

V
��'����

‘want’

S′↓ 1

Figure 6: Example elementary tree pair of a synchronous TSG: the BD transformation (LA on left, MSA
on right)

cumulative. (We did not perform these tuning ex-
periments on input without POS tags.)

The evaluation on the test corpus confirms these
results. Using the NEG and BD transformations
and the small lexicon, we obtain a 17.3% error re-
duction relative to the baseline parser (Figure 2).

These results show that the translation lexicon
can be integrated effectively into our synchronous
grammar framework. In addition, some syntac-
tic transformations are useful. The SVO trans-
formation, we assume, turns out not to be useful
because the SVO word order is also possible in
MSA, so that the new trees were not needed and
needlessly introduced new derivations. The BD
transformation shows the importance not of gen-
eral syntactic transformations, but rather of lexi-
cally specific syntactic transformations: varieties
within one language family may differ more in
terms of the lexico-syntactic constructions used
for a specific (semantic or pragmatic) purpose than
in their basic syntactic inventory. Note that our
tree-based synchronous formalism is ideally suited
for expressing such transformations since it is lex-
icalized, and has an extended domain of locality.
Given the impact of the BD transformation, in fu-
ture work we intend to determine more lexico-
structural transformations, rather than pure syntac-
tic transformations. However, one major impedi-
ment to obtaining better results is the disparity in
genre and domain which affects the overall perfor-
mance.

7 Conclusion

We have presented a new probabilistic syn-
chronous TAG formalism, synchronous Tree
Substitution Grammar with sister adjunction
(TSG+SA). We have introduced the concept of
a hidden TAG model, analogous to a Hidden

Markov Model. It allows us to parse a resource-
poor language using a treebank-extracted prob-
abilistic grammar for a resource-rich language,
along with a hand-crafted synchronous grammar
for the resource-poor language. Thus, our model
combines statistical approaches with grammar en-
gineering (specifically motivated from the linguis-
tic facts). Our approach thus exemplifies the
specific strength of a grammar-based approach.
While we have applied this approach to two
closely related languages, it would be interesting
to apply this approach to more distantly related
languages in the future.

Acknowledgments

This paper is based on work done at the 2005
Johns Hopkins Summer Workshop, which was
partially supported by the National Science Foun-
dation under grant 0121285. The first author
was additionally supported by ONR MURI con-
tract FCPO.810548265 and Department of De-
fense contract RD-02-5700. The second author
was additionally supported by contract HR0011-
06-C-0023 under the GALE program. We wish
to thank the other members of our JHU team (our
co-authors on (Rambow et al., 2005)), especially
Nizar Habash and Mona Diab for their help with
the Arabic examples, and audiences at JHU for
their useful feedback.

References

Daniel M. Bikel. 2004. On the Parameter Space of
Generative Lexicalized Parsing Models. Ph.D. the-
sis, University of Pennsylvania.

John Chen. 2001. Towards Efficient Statistical Parsing
Using Lexicalized Grammatical Information. Ph.D.
thesis, University of Delaware.

7

no tags gold tags
LP LR F1 LP LR F1

Baseline 59.4 51.9 55.4 64.0 58.3 61.0
Lexical 63.0 60.8 61.9 66.9 67.0 66.9
+ SVO 66.9 66.7 66.8
+ NEG 67.0 67.0 67.0
+ BD 67.4 67.0 67.2

+ NEG + BD 67.4 67.1 67.3

Table 1: Results on development corpus: LP = labeled precision, LR = labeled recall, F1 = balanced
F-measure

no tags gold tags
F1 F1

Baseline 53.5 60.2
Lexical + NEG + BD 60.2 67.1

Table 2: Results on the test corpus: F1 = balanced F-measure

David Chiang and Daniel M. Bikel. 2002. Recovering
latent information in treebanks. In Proceedings of
the Nineteenth International Conference on Compu-
tational Linguistics (COLING), pages 183–189.

David Chiang, Mona Diab, Nizar Habash, Owen Ram-
bow, and Safiullah Shareef. 2006. Parsing Arabic
dialects. In Proceedings of EACL.

David Chiang. 2000. Statistical parsing with an
automatically-extracted tree adjoining grammar. In
38th Meeting of the Association for Computational
Linguistics (ACL’00), pages 456–463, Hong Kong,
China.

Rebecca Hwa, Philip Resnik, Amy Weinberg, Clara
Cabezas, and Okan Kolak. 2004. Bootstrapping
parsers via syntactic projection across parallel texts.
Natural Language Engineering.

Roger Levy and Galen Andrew. 2006. Tregex and
Tsurgeon: tools for querying and manipulating tree
data structures. In Proceedings of LREC.

Mohamed Maamouri, Ann Bies, and Tim Buckwalter.
2004. The Penn Arabic Treebank: Building a large-
scale annotated Arabic corpus. In NEMLAR Con-
ference on Arabic Language Resources and Tools,
Cairo, Egypt.

Mohamed Maamouri, Ann Bies, Tim Buckwalter,
Mona Diab, Nizar Habash, Owen Rambow, and
Dalila Tabessi. 2006. Developing and using a pilot
dialectal Arabic treebank. In Proceedings of LREC,
Genoa, Italy.

Owen Rambow, K. Vijay-Shanker, and David Weir.
2001. D-Tree Substitution Grammars. Computa-
tional Linguistics, 27(1).

Owen Rambow, David Chiang, Mona Diab, Nizar
Habash, Rebecca Hwa, Khalil Sima’an, Vincent

Lacey, Roger Levy, Carol Nichols, and Safiullah
Shareef. 2005. Parsing Arabic dialects. Final Re-
port, 2005 JHU Summer Workshop.

Yves Schabes and Stuart Shieber. 1994. An alternative
conception of tree-adjoining derivation. Computa-
tional Linguistics, 1(20):91–124.

Yves Schabes. 1990. Mathematical and Computa-
tional Aspects of Lexicalized Grammars. Ph.D. the-
sis, Department of Computer and Information Sci-
ence, University of Pennsylvania.

Stuart B. Shieber. 1994. Restricting the weak genera-
tive capacity of Synchronous Tree Adjoining Gram-
mar. Computational Intelligence, 10(4):371–385.

David A. Smith and Noah A. Smith. 2004. Bilingual
parsing with factored estimation: Using English to
parse Korean. In Proceedings of the 2004 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP04).

Fei Xia, Martha Palmer, and Aravind Joshi. 2000. A
uniform method of grammar extraction and its appli-
cations. In Proceedings of the 2000 Conference on
Empirical Methods in Natural Language Processing
(EMNLP00), Hong Kong.

8

Proceedings of the 8th International Workshop on Tree Adjoining Grammar and Related Formalisms, pages 9–16,
Sydney, July 2006.c©2006 Association for Computational Linguistics

A constraint driven metagrammar

Joseph Le Roux
LORIA

Institut National
Polytechnique de Lorraine

615, Rue du Jardin Botanique
54 600 Villers-Lès-Nancy

France
leroux@loria.fr

Benoı̂t Crabbé
HCRC / ICCS

University of Edinburgh
2 Buccleuch Place

EH8 9LW,
Edinburgh, Scotland

bcrabbe@inf.ed.ac.uk

Yannick Parmentier
INRIA / LORIA

Université Henri Poincaré
615, Rue du Jardin Botanique

54 600 Villers-Lès-Nancy
France

parmenti@loria.fr

Abstract

We present an operational framework al-
lowing to express a large scale Tree Ad-
joining Grammar (TAG) by using higher
level operational constraints on tree de-
scriptions. These constraints first meant
to guarantee the well formedness of the
grammatical units may also be viewed as
a way to put model theoretic syntax at
work through an efficient offline grammat-
ical compilation process. Our strategy pre-
serves TAG formal properties, hence en-
sures a reasonable processing efficiency.

1 Introduction

This paper is concerned with the semi-automatic
grammar development of real-scale grammars.
For natural language syntax, lexicalised TAGs are
made of thousands of trees, carrying an extreme
structural redundancy. Their development and
their maintenance is known to be cumbersome as
the size of the grammar raises significantly.

To counter the lack of generalisations inher-
ent to strong lexicalisation, various proposals for
semi-automatic grammar development have been
carried out: lexical rules or meta-rules (Becker,
2000) and metagrammars: (Candito, 1999; Gaiffe
et al., 2002; Xia, 2001). The aim of these frame-
works is twofold: expressing general facts about
the grammar of a language and factorising the in-
formation to avoid redundancy.

The metagrammar path adopts a different per-
spective from the lexical rule based grammar de-
velopment: instead of describing how a derived
tree is different from a canonical one, grammati-
cal description mainly consists of combining frag-
mentary tree descriptions or building blocks.

The paper is structured as follows. We start
in section 2 by providing motivations and back-
ground information on the framework we are us-
ing. Section 3 shows that the metagrammar frame-
work may be viewed as an offline system allowing
to express high level well-formedness constraints
on elementary grammatical structures while pre-
serving TAG computational and formal proper-
ties. Section 4 shows how to implement effi-
ciently this constraint-based approach with logic
programming techniques and finally section 5 pro-
vides an idea of the performance of the imple-
mented system.

2 eXtensible MetaGrammar (XMG)

By opposition to other metagrammatical frame-
works, XMG (Duchier et al., 2004) uses an expres-
sive though simple language, enabling a mono-
tonic description of a real scale grammar. Mono-
tonicity is important because it means that the or-
der of application of the different operations does
not matter. This is the major drawback of lexical-
rule systems. Moreover, (Crabb é, 2005b) shows
that it is sufficiently expressive to implement con-
veniently a core TAG for French.

XMG allows the grammar writer to manipulate
tree descriptions through a control language. The
intuition behind is that a metagrammatical lan-
guage needs to provide means to describe syn-
tactic information along two methodological axis
(Crabb é, 2005b): structure sharing and alterna-
tives. Structure sharing is the axis dedicated to
express factorisation in the grammar, whereas al-
ternatives allow to express regular alternation re-
lationships such as alternatives between the rep-
resentation of a canonical nominal subject and its
interrogative representation, or between an active

9

and a passive verb form1.
Building on this intuition the XMG language al-

lows the user to name partial tree descriptions
within classes. The name of the class can be ma-
nipulated afterwards. For instance the following
tree descriptions on the right of the arrow are as-
sociated with the names stated on the left of the
arrow2:

(1) a. CanonicalSubject →

S

N↓ V

b. RelativisedSubject →

N

N* S

N↓ V

c. VerbalForm →

S

V�

Naming is the main device that allows the gram-
mar writer to express and to take advantage of the
structure sharing axis mentioned above. Indeed
class names can be reused in other descriptions.
Thus names can also be used to describe alterna-
tives. To express, in our simplified example, that a
Subject is an abstract way to name a Relativised-
Subject or a CanonicalSubject, we use a choice op-
erator (∨) as illustrated below:

(2) Subject → CanonicalSubject
∨ RelativisedSubject

Disjunction (non-deterministic choice) is the de-
vice provided by the language to express the
methodological axis of alternatives.

Finally, names can be given to class combina-
tions. To express the composition of two tree de-
scriptions in the language, we use the ∧ operator.

1The passive is a semi-regular alternation, many transi-
tive verbs do not passivise. Our system presupposes a classi-
cal architecture for the computational representation of Tree
Adjoining Grammars such as XTAG, where means to ex-
press such exceptions during the anchoring process are well-
known. In what follows, we therefore consider only tree tem-
plates (or tree schematas) as our working units. Finally the
trees depicted in this paper take their inspiration from the
grammar described by (Abeill é, 2002).

2To represent the tree descriptions mentioned in this pa-
per, we use a graphical notation. Immediate dominance is de-
picted with a straight line and precedence follows the graphi-
cal order. Note that nodes are decorated with their labels only,
ignoring the names of the variables denoting them. Note also
that we use only the reflexive transitive closure of precedence
between sibling nodes and it is explicitly stated with the sym-
bol ≺∗.

Thus we can say that an IntransitiveVerb is made
by the composition of a Subject and a VerbalForm
as follows:

(3) IntransitiveVerb → Subject ∧ VerbalForm

Given these 3 primitives, the control language
is naturally interpreted as a context free grammar
whose terminals are tree descriptions and where
our composition plays the role of concatenation.
This abstract grammar or metagrammar is further
restricted to be non recursive in order to ensure
that the generated TAG is finite.

Provided the axiom IntransitiveVerb, an inter-
preter for this language generates non determinis-
tically all the sentences of the grammar3 underly-
ing a grammatical description. Thus in our current
example the two sentences generated are those de-
picted on the left hand side of the arrows in Figure
1. On the right hand side of the arrow is depicted
the result of the composition of the tree descrip-
tions.

It remains to make clear what is actually this
composition. The grammatical classes may con-
tain information on tree descriptions and/or ex-
press composition of descriptions stated in other
classes. Tree descriptions take their inspiration
from the logic described in (Rogers and Vijay-
Shanker, 1994). Its syntax is the following:

Description ::= x → y | x →∗ y |
x ≺ y | x ≺∗ y |
x[f :E]

where x, y are node variables, → the dominance
relation, ≺ the precedence relation, ∗ denoting the
reflexive transitive closure of a relation. The last
line associates x with a feature f whose value is
the result of evaluating expression E.

Tree descriptions are interpreted as finite linear
ordered trees being the minimal models of the de-
scription.

Using tree descriptions, the above mentioned
operation of tree “composition” breaks down to a
conjunction of formulas where variables of each
conjunct are in first approximation renamed to
avoid name collisions. Renaming is a crucial dif-
ference with previous approaches to metagrammar
(Candito, 1999; Xia, 2001) where the user had to
manage explicitly a “global namespace”. Here a
specific attention is given to namespace manage-
ment, because this was a bottleneck for real scale

3Understood as compositions of tree fragments.

10

S

N↓ V
Le garçon. . .
The boy. . .

∧

S

V�
dort

sleeps

⇒

S

N↓ V�
Le garçon dort

The boy who sleeps
N

N* S

N↓ V
(Le garçon) qui. . .
(The boy) who. . .

∧

S

V�

dort
sleeps

⇒

N

N* S

N↓ V�
Le garçon qui dort
The boy who sleeps

Figure 1: Interpretation of a grammatical description

grammar design. More precisely each class has
its own namespace of identifiers and namespace
merging can be triggered when a class combina-
tion occurs. This merging relies on a fine-grained
import/export mechanism.

In addition to conjunction and disjunction, XMG
is augmented with syntactic sugar to offer some
of the features other metagrammatical formalisms
propose. For instance, inheritance of classes is not
built-in in the core language but is realised through
conjunction and namespace import. Of course,
this restricts users to monotonic inheritance (spe-
cialisation) but it seems to be sufficient for most
linguists.

3 Constraining admissible structures

XMG has been tested against the development of a
large scale French Grammar (Crabb é, 2005a). To
ease practical grammatical development we have
added several augmentations to the common tree
description language presented so far in order to
further restrict the class of admissible structures
generated by the metagrammar.

Further constraining the structures generated by
a grammar is a common practice in computational
linguistics. For instance a Lexical Functional
Grammar (Bresnan and Kaplan, 1982) further re-
stricts the structures generated by the grammar by
means of a functional uniqueness and a functional
completeness principles. These constraints further
restricts the class of admissible structures gener-
ated by an LFG grammar to verify valency condi-
tions.

For TAG and in a theoretical context, (Frank,
2002) states a set of such well formedness prin-
ciples that contribute to formulate a TAG theory
within a minimalist framework. In what remains

we describe operational constraints of this kind
that further restrict the admissibility of the struc-
ture generated by the metagrammar. By contrast
with the principles stated by (Frank, 2002), we
do not make any theoretical claim, instead we
are stating operational constraints that have been
found useful in practical grammar development.

However as already noted by (Frank, 2002) and
by opposition to an LFG framework where con-
straints apply to the syntactic structure of a sen-
tence as a whole, we formulate here constraints on
the well-formedness of TAG elementary trees. In
other words these constraints apply to units that
define themselves their own global domain of lo-
cality. In this case, it means that we can safely
ignore locality issues while formulating our con-
straints. This is theoretically weaker than formu-
lating constraints on the whole sentential structure
but this framework allows us to generate common
TAG units, preserving the formal and computa-
tional properties of TAG.

We formulate this constraint driven framework
by specifying conditions on model admissibility.
Methodologically the constraints used in the de-
velopment of the French TAG can be classified
in four categories: formal constraints, operational
constraints, language dependent constraints and
theoretical principles.

First the formal constraints are those constrain-
ing the trees generated by the model builder to
be regular TAG trees. These constraints require
the trees to be linear ordered trees with appropri-
ate decorations : each node has a category label,
leaf nodes are either terminal, foot or substitution,
there is at most one foot node, the category of the
foot note is identical to that of the root node, each
tree has at least one leaf node which is an anchor.

11

It is worth noting here that using a different set
of formal constraints may change the target for-
malism. Indeed XMG provides a different set of
formal constraints (not detailed here) that allow to
generate elementary units for another formalism,
namely Interaction Grammars.

The second kind of constraint is a single op-
erational constraint dubbed the colouration con-
straint. We found it convenient in the course
of grammar development. It consists of associ-
ating colour-based polarities to the nodes to en-
sure a proper combination of the fragmentary
tree descriptions stated within classes. Since in
our framework descriptions stated in two different
classes are renamed before being conjoined, given
a formula being the conjunction of the two follow-
ing tree descriptions :

(4)

X

W Z

X

Z Y

both the following trees are valid models of that
formula:

(5) (a)

X

W Z Y (b)

X

W Z Z Y

In the context of grammar development, however,
only (a) is regarded as a desired model. To rule out
(b) (Candito, 1999; Xia, 2001) use a naming con-
vention that can be viewed as follows4: they assign
a name to every node of the tree description. Both
further constrain model admissibility by enforcing
the identity of the interpretation of two variables
associated to the same name. Thus the description
stated in their systems can be exemplified as fol-
lows:

(6)

Xa

Wb Zc

Xa

Zc Yd

Though solving the initial formal problem, this de-
sign choice creates two additional complications:
(1) it constrains the grammar writer to manually
manage a global naming, entailing obvious prob-
lems as the size of the grammatical description
grows and (2) it prevents the user to reuse sev-
eral times the same class in a composition. This
case is a real issue in the context of grammati-
cal development since a grammar writer willing
to describe a ditransitive context with two prepo-
sitional phrases cannot reuse two times a fragment

4They actually use a different formal representation that
does not affect the present discussion.

describing such a PP since the naming constraint
will identify them.

To solve these problems we use a colouration
constraint. This constraint associates unary prop-
erties, colours, to every node of the descriptions.
A colour is taken among the set red(•R), black(•B),
white (◦W). A valid model is a model in which ev-
ery node is coloured either in red or black. Two
variables in the description interpreted by the same
node have their colours merged following the table
given in Figure 2.

•B •R ◦W ⊥
•B ⊥ ⊥ •B ⊥
•R ⊥ ⊥ ⊥ ⊥
◦W •B ⊥ ◦W ⊥

⊥ ⊥ ⊥ ⊥ ⊥

Figure 2: Colour identification rules.

The table indicates the resulting colour after
a merge. The ⊥ symbol indicates that this two
colours cannot be merged and hence two nodes la-
belled with these colours cannot be merged. Note
that the table is designed to ensure that merging is
not a procedural operation.

The idea behind colouration is that of saturat-
ing the tree description. The colour white repre-
sents the non saturation or the need of a node to
be combined with a resource, represented by the
colour black. Black nodes need not necessarily
be combined with other nodes. Red is the colour
used to label nodes that cannot be merged with
any other node. A sample tree description with
coloured node is as follows:

(7)

X•B

W•R Z•B

X◦W

Z◦W Y•R

Colours contribute to rule out the (b) case and re-
move the grammar writer the burden of managing
manually a “global namespace”.

The third category of constraints are language
dependent constraints. In the case of French, such
constraints are clitic ordering, islands constraints,
etc. We illustrate these constraints with clitic or-
dering in French. In French clitics are non tonic
particles with two specific properties already iden-
tified by (Perlmutter, 1970): first they appear in
front of the verb in a fixed order according to their
rank (8a-8b) and second two different clitics in
front of the verb cannot have the same rank (8c).
For instance the clitics le, la have the rank 3 and
lui the rank 4.

12

S

N↓ V’≺+ ∧

V’

Cl↓3 V≺+ ∧

V’

Cl↓4 V≺+ ∧

S

V’

V� ⇒

S

N↓ V’

Cl↓3 Cl↓4 V�

S

N↓ V’

Cl↓4 Cl↓3 V�

Figure 3: Clitic ordering

(8) a. Jean le3 lui4 donne
John gives it to him

b. *Jean lui4 le3 donne
*John gives to him it

c. *Jean le3 la3 donne
*John gives it it

In the French grammar of (Crabb é, 2005a) trees
with clitics are generated with the fragments illus-
trated on the left of the arrow in Figure 35. As
illustrated on the right of the arrow, the composi-
tion may generate ill-formed trees. To rule them
out we formulate a clitic ordering constraint. Each
variable labelled with a clitic category is also la-
belled with a property, an integer representing its
rank. The constraint stipulates that sibling nodes
labelled with a rank have to be linearly ordered ac-
cording to the order defined over integers.

Overall language dependent constraints handle
cases where the information independently spec-
ified in different fragments may interact. These
interactions are a counterpart in a metagrammar to
the interactions between independently described
lexical rules in a lexical rule based system. As-
suming independent lexical rules moving canoni-
cal arguments (NP or PP) to their clitic position,
lexical rules fall short for capturing the relative or-
dering among clitics6 .

A fourth category of constraints, not imple-
mented in our system so far are obviously the lan-
guage independent principles defining the theory
underlying the grammar. Such constraints could
involve for instance a Principle of Predicate Argu-
ment Coocurrency (PPAC) or even the set of min-
imalist principles described by (Frank, 2002).

4 Efficient implementation

We describe now the implementation of our meta-
grammatical framework. In particular, we will fo-

5Colours are omitted.
6This observation was already made by (Perlmutter, 1970)

in a generative grammar framework where clitics where as-
sumed to be moved by transformations.

cus on the implementation of the constraints dis-
cussed above within XMG.

As mentioned above, a metagrammar corre-
sponds to a reduced description of the grammar.
In our case, this description consists of tree frag-
ments combined either conjunctively or disjunc-
tively. These combinations are expressed using
a language close to the Definite Clause Grammar
formalism (Pereira and Warren, 1980), except that
partial tree descriptions are used as terminal sym-
bols. In this context, a metagrammar can be re-
duced to a logic program whose execution will
lead to the computation of the trees of the gram-
mar.

To perform this execution, a compiler for our
metagrammatical language has been implemented.
This compilation is a 3-step process as shown in
Figure 4.

First, the metagrammar is compiled into in-
structions for a specific virtual machine inspired
by the Warren’s Abstract Machine (Ait-Kaci,
1991). These instructions correspond to the un-
folding of the relations7 contained in the tree de-
scriptions of the metagrammar.

Then, the virtual machine performs unifications
of structures meant to refer to corresponding in-
formation within fragments (e.g. two nodes, two
feature structures ...). Note that the XMG’s virtual
machine uses the structure sharing technique for
memory management, i.e. data are represented by
a pair pattern – environment in which to interpret
it. The consequences are that (a) we save mem-
ory when compiling the metagrammar, and (b) we
have to perform pointer dereferencing during uni-
fication. Even if the latter is time-consuming, it
remains more efficient than structure copying as
we have to possibly deal with a certain amount of
tree descriptions.

Eventually, as a result of this instruction pro-
cessing by the virtual machine, we obtain poten-

7These relations are either dominance or precedence be-
tween node variables, or their reflexive transitive closure, or
the labelling of node variable with feature structures.

13

STEP1

(translation of concrete syntax)

INTO INSTRUCTIONS

CONCRETE SYNTAX

METAGRAMMATICAL

COMPILATION OF

TREE DESCRIPTION SOLVING

STEP3

(unification of data structures)

STEP2

A SPECIFIC VIRTUAL MACHINE

INSTRUCTIONS BY

EXECUTION OF THE

INPUT: MetaGrammar

Total tree descriptions OUTPUT: TAGCompiled partial tree descriptions

Figure 4: Metagrammar compilation.

tially total tree descriptions, that have to be solved
in order to produce the expected TAG.

Now, we will introduce XMG’s tree description
solver and show that it is naturally designed to pro-
cess efficiently the higher level constraints men-
tioned above. In particular, we will see that the
description solver has been designed to be easily
extended with additional parametric admissibility
constraints.

4.1 Tree descriptions solving

To find the minimal models corresponding to the
total tree descriptions obtained by accumulating
fragmentary tree descriptions, we use a tree de-
scription solver. This solver has been developed in
the Constraint Programming paradigm using the
constraint satisfaction approach of (Duchier and
Niehren, 2000). The idea is to translate relations
between node variables into constraints over sets
of integers.

Basically, we refer to a node of the input de-
scription in terms of the nodes being equals,
above, below, or on its side (see Figure 5). More
precisely, we associate each node of the descrip-
tion with an integer, then our reference to a node
corresponds to a tuple containing sets of nodes (i.e.
sets of integers).

As a first approximation, let us imagine that we
refer to a node x in a model by means of a 5-tuple
N i

x = (Eq, Up, Down, Left, Right) where i is an in-
teger associated with x and Eq (respectively Up,
Down, Left, Right) denotes the set of nodes8 in the
description which are equal, (respectively above,
below, left, and right) of x.

Then we can convert the relations between
nodes of our description language into constraints
on sets of integer.

8I.e. integers.

Eq

Up

Down

Left

Right

Figure 5: Node representation.

For instance, if we consider 2 nodes x and y of

the description. Assuming we associate x with the

integer i and y with j, we can translate the domi-

nance relation x → y the following way9:

N i
x→ N j

y≡
[N i

x.EqUp ⊆ N
j
y.Up∧N i

x.Down ⊇ N
j
y.EqDown

∧N i
x.Left ⊆ N

j
y.Left∧N i

x.Right ⊆ N
j
y.Right]

This means that if the node10 x strictly dominates
y in the input description, then (i) the set of nodes
that are above or equal x in a valid model is in-
cluded in the set of those that are strictly above y

and (ii) the dual holds for the nodes that are above
and (iii) the set of nodes that are on the left of y is
included in the set of those that are on the left of x

and (iv) similarly for the right part.
Once the constraints framework is settled, we

can search for the solutions to our problem, i.e.
the variable assignments for each of the sets of in-
tegers used to refer to the nodes of the input de-
scription. This search is performed by associating
with each pair of nodes (x, y) of the input descrip-
tion a choice variable denoting the mutually ex-
clusive relations11 between these two nodes. Then

9N i
x.EqUp corresponds to the disjoint union of N i

x.Eq and
N i

x.Up, similarly for N
j

x.EqDown with N i
x.Eq and N i

x.Down.
10One should read the node denoted by the variable x.
11Either x equals y, x dominates y, y dominates x, x pre-

cedes y or y precedes x.

14

we use a search strategy to explore the consistent
assignments to these choices variables (and the as-
sociated assignments for sets of integers referring
to nodes)12 . Note that the strategy used in XMG
is a first-fail strategy which leads to very good re-
sults (see section 5 below). The implementation
of this solver has been done using the constraint
programming support of the Mozart Programming
System (The Oz-Mozart Board, 2005).

4.2 Extension to higher-level constraints
solving

An important feature of our approach is that this
system of constraints over integer sets can be
extended so that we not only ensure tree well-
formedness of the outputted trees, but also the re-
spect of linguistic properties such as the unique-
ness of clitics in French, etc.

The idea is that if we extend adequately our
node representation, we can find additional con-
straints that reflects the syntactic constraints we
want to express.

Clitic uniqueness For instance, let us consider
the clitic uniqueness constraint introduced above.
We want to express the fact that in a valid model
φ, there is only one node having a given property
p (i.e. a parameter of the constraint, here the cat-
egory clitic13). This can be done by introducing,
for each node x of the description, a boolean vari-
able px indicating whether the node denoting x in
the model has this property or not. Then, if we call
Vφ

p the set of integers referring to nodes having the
property p in a model, we have:

px ≡ (N i
x.Eq ∩ V

φ
p) 6= ∅

Finally, if we represent the true value with the in-
teger 1 and false with 0, we can sum the px for
each x in the model. When this sum gets greater
than 1, we can consider that we are not building a
valid model.

Colouration constraint Another example of the
constraints introduced in section 3 is coloura-
tion. Colouration represents operational con-
straints whose effect is to control tree fragment
combination. The idea is to label nodes with a
colour between red, black and white. Then, during

12More information about the use of such choice variables
is given in (Duchier, 1999)

13In fact, the uniqueness concerns the rank of the clitics,
see (Crabb é, 2005b), §9.6.3.

description solving, nodes are identified according
to the rules given previously (see Figure 2).

That is, red nodes are not identified with any
other node, white nodes can be identified with a
black one. Black nodes are not identified with
each other. A valid model in this context is a satu-
rated tree, i.e. where nodes are either black (possi-
bly resulting from identifications) or red. In other
words, for every node in the model, there is at most
one red or black node with which it has been iden-
tified. The implementation of such a constraint
is done the following way. First, the tuples rep-
resenting nodes are extended by adding a integer
field RB referring to the red or black node with
which the node has been identified. Then, con-
sidering the following sets of integers: VR, VB,
VW respectively containing the integers referring
to red, black and white nodes in the input descrip-
tion, the following constraints hold:

x ∈ VR ⇒ N i
x.RB = i ∧ N i

x.Eq = {i} (a)

x ∈ VB ⇒ N i
x.RB = i (b)

x ∈ VW ⇒ N i
x.RB ∈ V

φ
B (c)

where Vφ
B represents the black nodes in a model,

i.e. Vφ
B = Vφ ∩ VB. (a) expresses the fact that for

red nodes, N i
x.RB is the integer i associated with

x itself, and N i
x.Eq is a set only containing i. (b)

means that for black nodes, we have that N i
x.RB is

also the integer i denoting x itself, but we cannot
say anything about N i

x.Eq. Eventually (c) means
that whites nodes have to be identified with a black
one.

Thus, we have seen that Constraint Program-
ming offers an efficient and relatively natural way
of representing syntactic constraints, as ”all” that
has to be done is to find an adequate node repre-
sentation in terms of sets of nodes, then declare the
constraints associated with these sets, and finally
use a search strategy to compute the solutions.

5 Some features

There are two points worth considering here: (i)
the usability of the formalism to describe a real
scale grammar with a high factorisation, and (ii)
the efficiency of the implementation in terms of
time and memory use.

Concerning the first point, XMG has been used
successfully to compute a TAG having more than
6,000 trees from a description containing 293

15

classes14 . Moreover, this description has been de-
signed relatively quickly as the description lan-
guage is intuitive as advocated in (Crabb é, 2005a).

Concerning the efficiency of the system, the
compilation of this TAG with more than 6,000 trees
takes about 15 min with a P4 processor 2.6 GHz
and 1 GB RAM. Note that compared with the
compilation time of previous approaches (Candito,
1999; Gaiffe et al., 2002) (with the latter, a TAG of
3,000 trees was compiled in about an hour), these
results are quite encouraging.

Eventually, XMG is released under the terms of
the GPL-like CeCILL license15 and can be freely
downloaded at http://sourcesup.cru.fr/xmg.

6 Conclusion

Unlike previous approaches, the description lan-
guage implemented by XMG is fully declara-
tive, hence allowing to reuse efficient techniques
borrowed to Logic Programming. The system
has been used successfully to produce core TAG

(Crabb é, 2005b) and Interaction Grammar (Per-
rier, 2003) for French along with a core French
TAG augmented with semantics (Gardent, 2006).

This paper shows that the metagrammar can be
used to put model theoretic syntax at work while
preserving reasonably efficient processing proper-
ties. The strategy used here builds on constraining
offline a TAG whose units are elementary trees The
other option is to formulate constraints applied
on-line, in the course of parsing, applying on the
whole syntactic structure. In a dependency frame-
work, XDG followed this path (Debusmann et al.,
2004), however it remains unknown to us whether
this approach remains computationally tractable
for parsing with real scale grammars.

References
A. Abeill é. 2002. Une grammaire électronique du franais.

CNRS Editions, Paris.

H. Ait-Kaci. 1991. Warren’s abstract machine: A tuto-
rial reconstruction. In K. Furukawa, editor, Proc. of the
Eighth International Conference of Logic Programming.
MIT Press, Cambridge, MA.

T. Becker. 2000. Patterns in metarules. In A. Abeille and
O. Rambow, editors, Tree Adjoining Grammars: formal,
computational and linguistic aspects. CSLI publications,
Stanford.

14I.e. tree fragments or conjunction / disjunction of frag-
ments

15More information about this license at http://www.
cecill.info/index.en.html.

Joan Bresnan and Ronal M. Kaplan. 1982. The Mental Rep-
resentation of Grammatical Relations. The MIT Press,
Cambridge MA.

M.H. Candito. 1999. Représentation modulaire et
paramétrable de grammaires électroniques lexicalisées :
application au franç ais et à l’italien. Ph.D. thesis, Uni-
versit é Paris 7.

B. Crabb é. 2005a. Grammatical development with XMG.
Proceedings of the Fifth International Conference on Log-
ical Aspects of Computational Linguistics (LACL05).

B. Crabb é. 2005b. Représentation informatique de gram-
maires fortement lexicalisées : Application à la gram-
maire d’arbres adjoints. Ph.D. thesis, Universit é Nancy
2.

R. Debusmann, D. Duchier, and G.-J. M. Kruijff. 2004. Ex-
tensible dependency grammar: A new methodology. In
Proceedings of the COLING 2004 Workshop on Recent
Advances in Dependency Grammar, Geneva/SUI.

D. Duchier and J. Niehren. 2000. Dominance constraints
with set operators. In Proceedings of CL2000, volume
1861 of Lecture Notes in Computer Science, pages 326–
341. Springer.

D. Duchier, J. Le Roux, and Y. Parmentier. 2004. The Meta-
grammar Compiler: An NLP Application with a Multi-
paradigm Architecture. In 2nd International Mozart/Oz
Conference (MOZ’2004), Charleroi.

D. Duchier. 1999. Set constraints in computational linguis-
tics - solving tree descriptions. In Workshop on Declara-
tive Programming with Sets (DPS’99), Paris, pp. 91 - 98.

Robert Frank. 2002. Phrase Structure Composition and Syn-
tactic Dependencies. MIT Press, Boston.

B. Gaiffe, B. Crabb é, and A. Roussanaly. 2002. A new meta-
grammar compiler. In Proceedings of TAG+6, Venice.

C. Gardent. 2006. Int égration d’une dimension s émantique
dans les grammaires d’arbres adjoints. In Actes de La
13ème édition de la conférence sur le TALN (TALN 2006).

F. Pereira and D. Warren. 1980. Definite clause grammars
for language analysis —a survey of the formalism and a
comparison to augmented transition networks. Artificial
Intelligence, 13:231–278.

David Perlmutter. 1970. Surface structure constraints in syn-
tax. Linguistic Inquiry, 1:187–255.

Guy Perrier. 2003. Les grammaires d’interaction. HDR en
informatique, Universit é Nancy 2.

J. Rogers and K. Vijay-Shanker. 1994. Obtaining trees from
their descriptions: An application to tree-adjoining gram-
mars. Computational Intelligence, 10:401–421.

The Oz-Mozart Board. 2005. The Oz-Mozart Programming
System. http://www.mozart-oz.org.

Fei Xia. 2001. Automatic Grammar Generation from two
Different Perspectives. Ph.D. thesis, University of Penn-
sylvania.

16

Proceedings of the 8th International Workshop on Tree Adjoining Grammar and Related Formalisms, pages 17–24,
Sydney, July 2006.c©2006 Association for Computational Linguistics

The Metagrammar Goes Multilingual:
A Cross-Linguistic Look at the V2-Phenomenon

Alexandra Kinyon
Department of CIS

University of Pennsylvania
kinyon@linc.cis.upenn.edu

Tatjana Scheffler
Department of Linguistics
University of Pennsylvania

tatjana@ling.upenn.edu

Aravind K. Joshi
Department of CIS

University of Pennsylvania
joshi@linc.cis.upenn.edu

Owen Rambow
CCLS

Columbia University
rambow@cs.columbia.edu

SinWon Yoon
UFRL

Université Paris 7
swyoon@linguist.jussieu.fr

Abstract

We present an initial investigation into
the use of a metagrammar for explic-
itly sharing abstract grammatical specifi-
cations among languages. We define a
single class hierarchy for a metagrammar
which allows us to automatically gener-
ate grammars for different languages from
a single compact metagrammar hierarchy.
We use as our linguistic example the verb-
second phenomenon, which shows con-
siderable variation while retaining a ba-
sic property, namely the fact that the verb
can appear in one of two positions in the
clause.

1 An Overview of Metagrammars
A metagrammar (MG) factors common properties
of TAG elementary trees to avoid redundancy, ease
grammar development, and expand coverage with
minimal effort: typically, from a compact man-
ually encoded MG of a few dozen classes, one
or more TAGs with several hundreds of elemen-
tary trees are automatically generated. This is
appealing from a grammar engineering point of
view, and also from a linguistic point of view:
cross-linguistic generalizations are expressed di-
rectly in the MG. In this paper, we extend some
earlier work on multilingual MGs (Candito, 1998;
Kinyon and Rambow, 2003) by proposing cross-
linguistic and framework-neutral syntactic invari-
ants, which we apply to TAG. We focus on the
verb-second phenomenon as a prototypical exam-
ple of cross-language variation.

The notion of Metagrammar Metagrammars
were first introduced by Candito (1996) to manu-
ally encode syntactic knowledge in a compact and

abstract class hierarchy which supports multiple
inheritance, and from which a TAG is automati-
cally generated offline. Candito’s class hierarchy
imposes a general organization of syntax into three
dimensions:

� Dimension 1: to encode initial subcategoriza-
tion frames i.e. TAG tree families

� Dimension 2: to encode valency alternations
/ redistribution of syntactic functions

� Dimension 3: to encode the surface realiza-
tion of arguments.

Each class in the MG hierarchy is associated
with a partial tree description The tool computes
a set of well-formed classes by combining exactly
one terminal class from dimension 1, one termi-
nal class from dimension 2, and� terminal classes
from dimensions 3 (� being the number of argu-
ments subcategorized by the lexical head anchor-
ing the elementary tree(s) generated). The con-
junction of the tree descriptions associated with
each well-formed class in the set yields a minimal
satisfying description, which results in the gener-
ation of one or more elementary trees. Candito’s
tool was used to develop a large TAG for French
as well as a medium-size TAG for Italian Candito
(1999), so multilinguality was addressed from the
start, but each language had its dedicated hierar-
chy, with no sharing of classes despite the obvious
similarities between Italian and French. A related
approach was proposed by (Xia, 2001); the work
of Evans, Gazdar, and Weir (2000) also has some
common elements with MG.

Framework- and language-neutral syntactic
invariants Using a MG, and following Can-
dito, we can postulate cross-linguistic and cross-
framework syntactic invariants such as:

17

� The notion of subcategorization
� The existence of a finite number of syntactic

functions (subject, object etc.)
� The existence of a finite number of syntactic

categories (NP, PP, etc.)
� The existence of valency alternations (Can-

dito’s dimension 2)

� The existence, orthogonal to valency alterna-
tions, of syntactic phenomena which do not
alter valency, such aswh-movement (Can-
dito’s dimension 3).

These invariants — unlike other framework-
specific syntactic assumptions such as the exis-
tence of “movement” or “wh-traces” — are ac-
cepted by most if not all existing frameworks, even
though the machinery of a given framework may
not necessarily account explicitly for each invari-
ant. For instance, TAG does not have an explicit
notion of syntactic function: although by conven-
tion node indices tend to reflect a function, it is not
enforced by the framework’s machinery.1

Hypertags Based on such framework- and
language-neutral syntactic properties, Kinyon
(2000) defined the notion ofHypertag (HT), a
combination of Supertags (ST) Srinivas (1997)
and of the MG. A ST is a TAG elementary tree,
which provides richer information than standard
POS tagging, but in a framework-specific man-
ner (TAG), and also in a grammar-specific manner
since a ST tagset can’t be ported from one TAG
to another TAG. A HT is an abstraction of STs,
where the main syntactic properties of any given
ST is encoded in a general readable Feature Struc-
ture (FS), by recording which MG classes a ST in-
herited from when it was generated. Figure 1 illus-
trates the�ST, HT� pair for Par qui sera accom-
pagńee Marie‘By whom will Mary be accompa-
nied’. We see that a HT feature structure directly
reflects the MG organization, by having 3 features
“Dimension 1”, “Dimension 2” and “Dimension
3”, where each feature takes its value from the MG
terminal classes used to generate a given ST.

The XMG Tool Candito’s tool brought a sig-
nificant linguistic insight, therefore we essentially
retain the above-mentioned syntactic invariants.
However, more recent MG implementations have
been developed since, each adding its significant
contribution to the underlying metagrammatical
hypothesis.

In this paper, we use the eXtensible MetaGram-
mar (XMG) tool which was developed by Crabbé

1But several attempts have been made to explicitly add
functions to TAG, e.g. by Kameyama (1986) to retain the
benefits of both TAG and LFG, or by Prolo (2006) to account
for the coordination of constituents of different categories,
yet sharing the same function.

S

PP

P

par

N�Wh�
(qui)

S

Aux

sera

V�
accompagnée

N� �
(Marie)

�
�DIMENSION1 STRICTTRANSITIVE

DIMENSION2 PERSONALFULL PASSIVE

DIMENSION3 �SUBJECT INVERTEDSUBJECT

COMPLEMENT WHQUESTIONEDBYCOMPLEMENT	

�

Figure 1: A�SuperTag, HyperTag� pair for ac-
compagńee (‘accompanied’) obtained with Can-
dito’s MetaGrammar compiler

(2005). In XMG, an MG consists of a set of
classessimilar to those in object-oriented pro-
gramming, which are structured into a multiple
inheritance hierarchy. Each class specifies a par-
tial tree description (expressed by dominance and
precedence constraints). The nodes of these tree
fragment descriptions may be annotated with fea-
tures. Classes may instantiate each other, and they
may be parametrized (e.g., to hand down features
like the grammatical function of a substitution
node). The compiler unifies the instantiations of
tree descriptions that are called. This unification
is additionally guided bynode colors, constraints
that specify that a node must not be unified with
any other node (red), must be unified (white), or
may be unified, but only with a white node (black).
XMG allows us to implement a hierarchy similar
to that of Candito, but it also allows us to modify
and extend it, as no structural assumptions about
the class hierarchy are hard-coded.

2 The V2 Phenomenon
The Verb-Second (V2) phenomenon is a well-
known set of data that demonstrates small-scale
cross-linguistic variation. The examples in (1)
show German, a language with a V2-constraint:
(1a) is completely grammatical, while (1b) is not.
This is considered to be due to the fact that the
finite verb is required to be located in “second po-
sition” (V2) in German. Other languages with a
V2 constraint include Dutch, Yiddish, Frisian, Ice-
landic, Mainland Scandinavian, and Kashmiri.

(1) a. Auf
on

dem
the

Weg
path

sieht
sees

der
the

Junge
boy

eine
a

Ente.
duck

‘On the path, the boy sees a duck.’

18

b. * Auf
on

dem
the

Weg
path

der
the

Junge
boy

sieht
sees

eine
a

Ente.
duck

Int.: ‘On the path, the boy sees a duck.’

Interestingly, these languages differ with re-
spect to how exactly the constraint is realized.
Rambow and Santorini (1995) present data from
the mentioned languages and provide a set of pa-
rameters that account for the exhibited variation.
In the following, for the sake of brevity, we will
confine the discussion to two languages: German,
and Yiddish. The German data is as follows (we
do not repeat (1a) from above):

(2) a. Der
the

Junge
boy

sieht
sees

eine
a

Ente
duck

auf
on

dem
the

Weg.
path

‘On the path, the boy sees a duck.’
b. . . . ,

. . . ,
dass
that

der
the

Junge
boy

auf
on

dem
the

Weg
path

eine
a

Ente
duck

sieht.
sees

‘. . . , that the boy sees a duck on the path.’
c. Eine

a
Ente
duck

sieht
sees

der
the

Junge.
boy

‘The boy sees a duck.’

The Yiddish data:
(3) a. Dos

the
yingl
boy

zet
sees

oyfn
on-the

veg
path

a
a

katshke.
duck

‘On the path, the boy sees a duck.’
b. Oyfn

on-the
veg
path

zet
sees

dos
the

yingl
boy

a
a

katshke.
duck.

‘On the path, the boy sees a duck.’
c. . . . ,

. . . ,
az
that

dos
the

yingl
boy

zet
sees

a
a

katshke
duck

‘. . . , that the boy sees a duck.’

While main clauses exhibit V2 in German, embed-
ded clauses with complementizers are verb-final
(2b). In contrast, Yiddish embedded clauses must
also be V2 (3c).

3 Handling V2 in the Metagrammar
It is striking that the basic V2 phenomenon is the
same in all of these languages: the verb can ap-
pear in either its underlying position, or in sec-
ond position (or, in some cases, third). We claim
that what governs the appearance of the verb
in these different positions (and thus the cross-
linguistic differences) is that the heads—the verbal
head and functional heads such as auxiliaries and
complementizers—interact in specific ways. For
example, in German a complementizer is not com-
patible with a verbal V2 head, while in Yiddish it
is. We express the interaction among heads by as-
signing the heads different values for a set of fea-
tures. Which heads can carry which feature values
is a language-specific parameter. Our implementa-
tion is based on the previous pen-and-pencil anal-
ysis of Rambow and Santorini (1995), which we
have modified and extended.

The work we present in this paper thus has
a threefold interest: (1) we show how to han-
dle an important syntactic phenomenon cross-
linguistically in a MG framework; (2) we partially

validate, correct, and extend a previously proposed
linguistically-motivated analysis; and (3) we pro-
vide an initial fragment of a MG implementa-
tion from which we generate TAGs for languages
which are relatively less-studied and for which no
TAG currently exists (Yiddish).

4 Elements of Our Implementation
In this paper, we only address verbal elementary
trees. We define a verbal realization to be a com-
bination of three classes (or “dimensions” in Can-
dito’s terminology): asubcategorization frame,
a redistribution of arguments/valency alternation
(in our case, voice, which we do not further dis-
cuss), and atopology, which encodes the posi-
tion and characteristics of the verbal head. Thus,
we reinterpret Candito’s “Dimension 3” to con-
centrate on the position of the verbal heads, with
the different argument realizations (topicalized,
base position) depending on the available heads,
rather than defined as first-class citizens. The sub-
cat and argument redistributions result in a set of
structures forargumentswhich are left- or right-
branching (depending on language and grammat-
ical function). Figure 2 shows some argument
structures for German. The topology reflects the
basic clause structure, that is, the distribution of ar-
guments and adjuncts, and the position of the verb
(initial, V2, final, etc.). Our notion of sentence
topology is thus similar to the notion formalized
by Gerdes (2002). Specifically, we see positions
of arguments and adjuncts as defined by the posi-
tions of their verbal heads. However, while Gerdes
(2002) assumes as basic underlying notions the
fields created by the heads (the traditionalVorfeld
for the topicalized element and theMittelfeld be-
tween the verb in second position and the verb in
clause-final position), we only use properties of
the heads. The fields are epiphenomenal for us.As
mentioned above, we use the following set of fea-
tures to define our MG topology:

� I (finite tense and subject-verb agreement):
creates a specifier position for agreement
which must be filled in a derivation, but al-
lows recursion (i.e., adjunction at IP).

� Top (topic): a feature which creates a spec-
ifier position for the topic (semantically rep-
resented in a lambda abstraction) which must
be filled in a derivation, and which does not
allow recursion.

� M (mood): a feature with semantic content
(to be defined), but no specifier.

� C (complementizer): a lexical feature intro-
duced only by complementizers.

We can now define our topology in more detail.
It consists of two main parts:

19

German:
What Features Introduced Directionality

1 Verb (clause-final) +I head-final
2 Verb (V2, subject-inital) +M, +Top, +I head-initial
3 Verb (V2, non-subject-initial) +M, +Top head-initial
4 Complementizer +C, +M head-initial

Yiddish:
What Features Introduced Directionality

1 Verb +I head-initial
2 Verb (V2, subject-inital) +M, +Top, +I head-initial
3 Verb (V2, non-subject-initial) +M, +Top head-initial
4 Complementizer +C head-initial

Figure 4: Head inventories for German and Yiddish.

1:
�
�
�
�
�
�
�
�
��

CAT V
I +
TOP �

M �

C �

black

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

CAT V
I �

TOP �

M �

C �

white

�
�
�
�
�
�
�
��

v

2:
�
�
�
�
�
�
�
�
��

CAT V
I +
TOP +
M +
C �

black

�
�
�
�
�
�
�
��

v
�
�
�
�
�
�
�
�
��

CAT V
I �

TOP �

M �

C �

white

�
�
�
�
�
�
�
��

3:
�
�
�
�
�
�
�
�
��

CAT V
I +
TOP +
M +
C �

black

�
�
�
�
�
�
�
��

v
�
�
�
�
�
�
�
�
��

CAT V
I +
TOP �

M �

C �

white

�
�
�
�
�
�
�
��

4:
�
�
�
�
�
�
�
�
��

CAT V
I +
TOP �

M +
C +
black

�
�
�
�
�
�
�
��

comp
�
�
�
�
�
�
�
�
��

CAT V
I +
TOP �

M �

C �

white

�
�
�
�
�
�
�
��

Figure 5: Head structures for German corresponding to the table in Figure 4 (above)

1:
�
�
�
�
�
�
�
�
��

CAT V
I +
TOP �

M �

C �

black

�
�
�
�
�
�
�
��

v
�
�
�
�
�
�
�
�
��

CAT V
I �

TOP �

M �

C �

white

�
�
�
�
�
�
�
��

2:
�
�
�
�
�
�
�
�
��

CAT V
I +
TOP +
M +
C �

black

�
�
�
�
�
�
�
��

v
�
�
�
�
�
�
�
�
��

CAT V
I �

TOP �

M �

C �

white

�
�
�
�
�
�
�
��

3:
�
�
�
�
�
�
�
�
��

CAT V
I +
TOP +
M +
C �

black

�
�
�
�
�
�
�
��

v
�
�
�
�
�
�
�
�
��

CAT V
I +
TOP �

M �

C �

white

�
�
�
�
�
�
�
��

4:
�
�
�
�
�
�
�
�
��

CAT V
I +
TOP +
M +
C +
black

�
�
�
�
�
�
�
��

comp
�
�
�
�
�
�
�
�
��

CAT V
I +
TOP +
M +
C �

white

�
�
�
�
�
�
�
��

Figure 6: Head structures for Yiddish corresponding to the table in Figure 4 (below)

20

�
�
�
��
CAT V
I +
TOP +
black

�
�
��

NP���� �
�
�
��
CAT V
I +
TOP +
white

�
�
��

�
�
�
��
CAT V
I +
TOP �

black

�
�
��

NP���� �
�
�
��
CAT V
I +
TOP �

white

�
�
��

�
�
�
��
CAT V
I �
TOP +
black

�
�
��

NP������ �
�
�
��
CAT V
I �
TOP +
white

�
�
��

�
�
�
��
CAT V
I �
TOP �

black

�
�
��

NP������ �
�
�
��
CAT V
I �
TOP �

white

�
�
��

Figure 2: The argument structures

�
CAT V
white �
�
�
�
�
�
�
�
�
��

CAT V
I �

TOP �

M �

C �

black

�
�
�
�
�
�
�
��

	
Figure 3: The projection structure; feature values
can be filled in at the top feature structure to con-
trol the derivation.

� The projection includes the origin of the
verb in the phrase structure (with an empty
head since we assume it is no longer there)
and its maximal projection. It is shown in
Figure 3. The maximal projection expresses
the expected feature content. For example,
if we want to model non-finite clauses, the
maximal projection will have [�I], while root
V2 clauses will have [+Top], and embedded
finite clauses with complementizers will have
[+I,+C].

� Structures forheads, which can be head-
initial or head-final. They introduce catego-
rial features. Languages differ in what sort of
heads they have. Which heads are available
for a given language is captured in ahead in-
ventory, i.e., a list of possible heads for that
language (which use the head structure just
mentioned). Two such lists are shown in Fig-
ure 4, for German and Yiddish. The corre-
sponding head structures are shown in Fig-
ures 5 and 6.

A topology is a combination of the projection
and any combination of heads allowed by the
language-specific head inventory. This is hard
to express in XMG, so instead we list the spe-
cific combinations allowed. One might ask how
we derive trees for language without the V2 phe-
nomenon. Languages without V2 will usually
have a smaller set of possible heads. We are work-
ing on a metagrammar for Korean in parallel with
our work on the V2 languages. Korean is very
much like German without the V2 phenomenon:
the verbal head can only be in clause-final position
(i.e., head 1 from Figure 5. However, passiviza-
tion and scrambling can be treated the same way
in Korean and German, since these phenomena are
independent of V2.

5 Sample Derivation
Given a feature ordering (C� M � Top � I) and
language-specific head inventories as in Figure 4,
we compile out MGs for German (Figure 5) and
Yiddish (Figure 6).2 The projection and the ar-
gument realizations do not differ between the two
languages: thus, these parts of the MG can be
reused. The features, which were introduced for
descriptive reasons, now guide the TAG compila-
tion: only certain heads can be combined. Further-
more, subjects and non-subjects are distinguished,
as well as topicalized and non-topicalized NPs
(producing 4 kinds of arguments so far). The com-
piler picks out any number of compatible elements
from the Metagrammar and performs the unifica-
tions of nodes that are permitted (or required) by

2All terminal nodes are “red”; spine nodes have been an-
notated with their color.

21

the node descriptions and the colors. By way of
example, the derivations of elementary trees which
can be used in a TAG analysis of German (2c) and
Yiddish (3c) are shown in Figures 7 and 8, respec-
tively.

6 Conclusion and Future work
This paper showed how cross-linguistic general-
izations (in this case, V2) can be incorporated into
a multilingual MG. This allows not only the reuse
of MG parts for new (often, not well-studied) lan-
guages, but it also enables us to study small-scale
parametric variation between languages in a con-
trolled and formal way. We are currently modify-
ing and extending our implementation in several
ways.

The Notion of Projection In our current ap-
proach, the verb is never at the basis of the pro-
jection, it has always been removed into a new
location. This may seem unmotivated in certain
cases, such as German verb-final sentences. We
are looking into using the XMG unification to ac-
tually place the verb at the bottom of the projection
in these cases.

Generating Top and Bottom FeaturesThe
generated TAG grammar currently does not have
top and bottom feature sets, as one would expect
in a feature-based TAG. These are important for
us so we can force adjunction in adjunct-initial V2
sentences (where the element in clause-initial po-
sition is not an argument of the verb). We intend
to follow the approach laid out in Crabbé (2005) in
order to generate top and bottom feature structures
on the nodes of the TAG grammar.

Generating test-suites to document our
grammars Since XMG offers more complex
object-oriented functionalities, including in-
stances, and therefore recursion, it is now
straightforward to directly generate parallel mul-
tilingual sentences directly from XMG, without
any intermediate grammar generation step. The
only obstacle remains the explicit encoding of
Hypertags into XMG.

Acknowledgments

We thank Yannick Parmentier, Joseph Leroux,
Bertrand Gaiffe, Benoit Crabbé, the LORIA XMG
team, and Julia Hockenmaier for their invaluable
help; Eric de la Clergerie, Carlos Prolo and the
Xtag group for their helpful feedback, comments
and suggestions on different aspects of this work;
and Marie-Hélène Candito for her insights. This
work was supported by NSF Grant 0414409 to the
University of Pennsylvania.

References
Candito, M. H. 1998. Building parallel LTAG for French and

Italian. InProc. ACL-98. Montreal.

Candito, M.H. 1996. A principle-based hierarchical repre-
sentation of LTAGs. InProc. COLING-96. Copenhagen.

Candito, M.H. 1999. Représentation modulaire et
paramétrable de grammaires électroniques lexicalisées.
Doctoral Dissertation, Univ. Paris 7.

Clément, L., and A. Kinyon. 2003. Generating parallel mul-
tilingual LFG-TAG grammars using a MetaGrammar. In
Proc. ACL-03. Sapporo.

Clergerie, E. De La. 2005. From metagrammars to factorized
TAG/TIG parsers. InIWPT-05. Trento.

Crabbé, B. 2005. Représentation informatique de grammaires
fortement lexicalisées. Doctoral Dissertation, Univ. Nancy
2.

Evans, R., G. Gazdar, and D. Weir. 2000. Lexical rules
are just lexical rules. InTree Adjoining Grammars, ed.
A. Abeillé and O. Rambow. CSLI.

Gerdes, K. 2002. DTAG. attempt to generate a useful TAG for
German using a metagrammar. InProc. TAG+6. Venice.

Kameyama, M. 1986. Characterising LFG in terms of TAG.
In Unpublished report. Univ. of Pennsylvania.

Kinyon, A. 2000. Hypertags. InProc. COLING-00. Sar-
rebrucken.

Kinyon, A., and O. Rambow. 2003. Generating cross-
language and cross-framework annotated test-suites using
a MetaGrammar. InProc. LINC-EACL-03. Budapest.

Prolo, C. 2006. Handling unlike coordinated phrases in TAG
by mixing Syntactic Category and Grammatical Function.
In Proc. TAG+8. Sidney.

Rambow, Owen, and Beatrice Santorini. 1995. Incremental
phrase structure generation and a universal theory of V2.
In Proceedings of NELS 25, ed. J.N. Beckman, 373–387.
Amherst, MA: GSLA.

Srinivas, B. 1997. Complexity of lexical descriptions and its
relevance for partial parsing. Doctoral Dissertation, Univ.
of Pennsylvania.

Xia, F. 2001. Automatic grammar generation from two per-
spectives. Doctoral Dissertation, Univ. of Pennsylvania.

XTAG Research Group. 2001. A lexicalized tree adjoin-
ing grammar for English. Technical Report IRCS-01-03,
IRCS, University of Pennsylvania.

22

�
�
�
��
CAT V
I �
TOP +
black

�
�
��

NP������ �
�
�
��
CAT V
I �
TOP +
white

�
�
��

�
�
�
�
�
�
�
�
��

CAT V
I +
TOP +
M +
C �

black

�
�
�
�
�
�
�
��

v
�
�
�
�
�
�
�
�
��

CAT V
I +
TOP �

M �

C �

white

�
�
�
�
�
�
�
��

�
�
�
��
CAT V
I +
TOP �

black

�
�
��

NP���� �
�
�
��
CAT V
I +
TOP �

white

�
�
��

�
�
�
�
�
�
�
�
��

CAT V
I +
TOP �

M �

C �

black

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

CAT V
I �

TOP �

M �

C �

white

�
�
�
�
�
�
�
��

�
CAT V
white �
�
�
�
�
�
�
�
�
��

CAT V
I �

TOP �

M �

C �

black

�
�
�
�
�
�
�
��

Object-Topicalized + Head 3 + Subject-Non-Topicalized + Head 1 + Projection

(White and Black nodes next to each other are unified.)

Figure 7: Derivation of the German elementary tree NP��� V NP���� (2d).

23

�
�
�
�
�
�
�
�
��

CAT V
I +
TOP �
M +
C +
black

�
�
�
�
�
�
�
��

comp
�
�
�
�
�
�
�
�
��

CAT V
I +
TOP �
M +
C �

white

�
�
�
�
�
�
�
��

�
�
�
��
CAT V
I +
TOP +
black

�
�
��

NP���� �
�
�
��
CAT V
I +
TOP +
white

�
�
��

�
�
�
�
�
�
�
�
��

CAT V
I +
TOP +
M +
C �

black

�
�
�
�
�
�
�
��

v
�
�
�
�
�
�
�
�
��

CAT V
I �

TOP �

M �

C �

white

�
�
�
�
�
�
�
��

�
�
�
��
CAT V
I �
TOP �

black

�
�
��

NP������ �
�
�
��
CAT V
I �
TOP �

white

�
�
��

�
CAT V
white �
�
�
�
�
�
�
�
�
��

CAT V
I �

TOP �

M �

C �

black

�
�
�
�
�
�
�
��

Head 4 (Comp) + Subject-Topicalized + Head 2 + Object-Non-Topicalized + Projection

Figure 8: Derivation of the Yiddish elementary tree Comp NP���� V NP��� (3c).

24

Proceedings of the 8th International Workshop on Tree Adjoining Grammar and Related Formalisms, pages 25–32,
Sydney, July 2006.c©2006 Association for Computational Linguistics

The weak generative capacity of linear tree-adjoining grammars

David Chiang∗

Information Sciences Institute
University of Southern California
4676 Admiralty Way, Suite 1001
Marina del Rey, CA 90292, USA

chiang@isi.edu

1 Introduction

Linear tree-adjoining grammars (TAGs), by anal-
ogy with linear context-free grammars, are tree-
adjoining grammars in which at most one sym-
bol in each elementary tree can be rewritten (ad-
joined or substituted at). Uemura et al. (1999),
calling these grammars simple linear TAGs (SL-
TAGs), show that they generate a class of lan-
guages incommensurate with the context-free lan-
guages, and can be recognized in O(n4) time.

Working within the application domain of mod-
eling of RNA secondary structures, they find
that SL-TAGs are too restrictive—they can model
RNA pseudoknots but because they cannot gen-
erate all the context-free languages, they cannot
model even some very simple RNA secondary
structures. Therefore they propose a more power-
ful version of linear TAGs, extended simple linear
TAGs (ESL-TAGs), which generate a class of lan-
guages that include the context-free languages and
can be recognized in O(n5) time.

Satta and Schuler (1998), working within the
application domain of natural language syntax, de-
fine another restriction on TAG which is also rec-
ognizable in O(n5) time. Despite being less pow-
erful than full TAG, it is still able to generate lan-
guages like the copy language {ww} and Dutch
cross-serial dependencies (Joshi, 1985). Kato et
al. (2004) conjecture that this restricted TAG is in
fact equivalent to ESL-TAG.

In this paper we prove their conjecture, and also
prove that adding substitution to ESL-TAG does
not increase its weak generative capacity, whereas
adding substitution to SL-TAG makes it weakly
equivalent to ESL-TAG. Thus these four for-

∗This research was primarily carried out while the author
was at the University of Pennsylvania.

malisms converge to the same weak-equivalence
class, the intuition being that the “hardest” oper-
ation in TAG, namely, adjunction of a wrapping
auxiliary tree in the middle of the spine of an-
other wrapping auxiliary tree, is subjected to the
linearity constraint, but most other operations are
unrestricted.1 Kato et al. (2004) show that these
formalisms are more powerful than SL-TAG or
general CFG or their union and conjecture, on the
other hand, that they are less powerful than TAG.
We prove this conjecture as well.

2 Definitions

We assume a standard definition of TAG, with or
without substitution, in which adjunction is not al-
lowed at foot nodes, and other nodes can have no-
adjunction (NA) constraints, obligatory-adjunction
(OA), or selective-adjunction constraints. We use
the symbols η, η1, η2, etc. to range over nodes of
elementary trees or derived trees, although some-
times we use the label of a node to refer to the
node itself. The spine of an auxiliary tree is the
path from its root node to its foot node, inclusive.
The subtree of a node η is the set of all nodes
dominated by η, including η itself. The segment
of a tree from η1 to η2 (where η1 dominates η2)
is the set of all nodes in the subtree of η1 but not
in the subtree of η2. A segment can be excised,
which means removing the nodes of the segment
and making η2 replace η1 as the child of its parent.

We also assume a standard definition of TAG
derivation trees. We use the symbols h, h1, h2, etc.
to range over nodes of derivation trees. The sub-

1Adjunction at root and foot nodes is another operation
that by itself will not take a formalism beyond context-free
power, a fact which is exploited in Rogers’ regular-form TAG
(Rogers, 1994). But allowing this in a linear TAG would cir-
cumvent the linearity constraint.

25

derivation of h is the subtree of h in the deriva-
tion tree. When we cut up derivations into sub-
derivations or segments and recombine them, the
edge labels (indicating addresses of adjunctions
and substitutions) stay with the node above, not
the node below.

Now we define various versions of linear TAG.
Definition 1. A right (left) auxiliary tree is one in
which the leftmost (rightmost) frontier node is the
foot node, and the spine contains only the root and
foot nodes. A wrapping auxiliary tree is one which
is neither a left or a right auxiliary tree.
Definition 2. We say that a node of an elementary
tree is active if adjunction is allowed to occur at
it, and that a node is w-active if adjunction of a
wrapping auxiliary tree is allowed to occur at it.
Definition 3. A Satta-Schuler linear tree-
adjoining grammar (SSL-TAG) is a TAG with
substitution in which:

1. In the spine of each wrapping auxiliary tree,
there is at most one w-active node.

2. In the spine of each left or right auxiliary tree,
there are no w-active nodes, nor are there any
other adjoining constraints.

Definition 4. A simple linear tree-adjoining
grammar (SL-TAG), with or without substitution,
is a TAG, with or without substitution, respec-
tively, in which every initial tree has exactly one
active node, and every auxiliary tree has exactly
one active node on its spine and no active nodes
elsewhere.
Definition 5. An extended simple linear tree-
adjoining grammar (ESL-TAG), with or without
substitution, is a TAG, with or without substitu-
tion, respectively, in which every initial tree has
exactly one active node, and every auxiliary tree
has exactly one active node on its spine and at
most one active node elsewhere.

3 Properties

We now review several old results and prove a few
new results relating the weak generative capacity
of these formalisms to one another and to (linear)
CFG and TAG. These results are summarized in
Figure 1.

3.1 Previous results

Proposition 1 (Uemura et al. 1999).

Linear CFL (SL-TAL

Linear CFL

SL-TAL CFL

SL-TAL∪ CFL

SSL-TAL = ESL-TAL = (E)SL-TAL + subst

TAL

Figure 1: Summary of results: an edge indicates
that the higher formalism has strictly greater weak
generative capacity than the lower.

Proposition 2 (Uemura et al. 1999).

CFL (ESL-TAL

Proposition 3 (Kato et al. 2004).

CFL ∪ SL-TAL (ESL-TAL

Proposition 4 (Satta and Schuler 1998; Ue-
mura et al. 1999). SSL-TAG and ESL-TAG can
be parsed in O(n5) time.

3.2 Weak equivalence

Proposition 5. The following formalisms are
weakly equivalent:

(i) ESL-TAG

(ii) SL-TAG with substitution

(iii) ESL-TAG with substitution

(iv) SSL-TAG

Proof. We prove this by proving four inclusions.

L(ESL-TAG) ⊆ L(ESL-TAG + substitution):
Trivial.

L(ESL-TAG + substitution) ⊆ L(SSL-TAG):
Trivial.

L(SSL-TAG) ⊆ L(SL-TAG + substitution): We
deal first with the left and right auxiliary trees, and
then with off-spine adjunction.

First, we eliminate the left and right auxiliary
trees. Since these only insert material to the left or
right of a node, just as in tree-insertion grammars
(TIGs), we may apply the conversion from TIGs to
tree-substitution grammars (Schabes and Waters,
1995), used in the proof of the context-freeness of

26

(Step 1a)
...
X
...

⇒

...
X
...

...
XNA

LX↓ XNA
...

...
XNA

XNA
...

RX↓

...
XNA

LX↓ XNA
...

RX↓

(Step 1b)

X

X∗ Y ⇒

RX

Y

RX

Y RX↓

X

Y X∗ ⇒

LX

Y

LX

LX↓ Y

Figure 2: Elimination of left/right auxiliary trees.

TIG.2 (Step 1a) For each active node X that is not
the root of a left or right auxiliary tree, we create
four copies of the containing elementary tree with
X altered in the following ways: first, leave X un-
changed; then, add a copy of X above it, making
both nodes no-adjunction nodes, and add a new
left sister substitution node labeled LX or a new
right sister substitution node labeled RX , or both.
See Figure 2. (Step 1b) For each β that was origi-
nally a left (right) auxiliary tree with root/foot la-
bel X , relabel the root node as LX (RX) and delete
the foot node, and create two copies of the contain-
ing elementary tree, one unchanged, and one with
a new left (right) sister substitution node. See Fig-
ure 2. When the modified β substitutes at one of
the new children of an η, the substitution clearly
results in the same string that would have resulted
from adjoining the original β to η.

This construction might appear incorrect in two
ways. First, the new grammar has trees with both
an LX and an RX node corresponding to the same
original node, which would correspond to adjunc-
tion of two auxiliary trees βL and βR at the same
node X in the original grammar. But this new
derivation generates a string that was generable in
the original grammar, namely by adjoining βL at

2This corresponds to Steps 1–4 of that proof (Schabes and
Waters, 1995, p. 486). Since that proof uses a more relaxed
definition of left and right auxiliary trees, it is probable that
SSL-TAG could also be relaxed in the same way.

X , then adjoining βR at the root of βL, which is
allowed because the definition of SSL-TAG pro-
hibits adjunction constraints at the root of βL.

Thus the first apparent problem is really the so-
lution to the second problem: in the original gram-
mar, a left auxiliary tree βL could adjoin at the root
of a right auxiliary tree βR, which in turn adjoined
at a node η, whereas in the new grammar, βR does
not have an LX substitution node to allow this pos-
sibility. But the same string can be generated by
substituting both trees under η in the new gram-
mar. In the case of a whole chain of adjunctions
of left/right auxiliary trees at the root of left/right
auxiliary trees, we can generate the same string by
rearranging the chain into a chain of left auxiliary
trees and a chain of right auxiliary trees (which is
allowed because adjunction constraints are prohib-
ited at all the roots), and substituting both at η.

(Step 2) Next, we eliminate the case of a wrap-
ping auxiliary tree β that can adjoin at an off-spine
node η. (Step 2a) For each active off-spine node η,
we relabel η with a unique identifier η̂ and split the
containing elementary tree at η:

...
η̂
...

⇒

...
Tη̂↓

Bη̂

...

27

(Step 2b) After step 2a has been completed for all
nodes η, we revisit each η, and for every wrapping
β that could adjoin at η, create a copy of β with
root relabeled to Tη̂ and foot relabeled to Bη̂ .

X

X∗

⇒

Tη̂

Bη̂↓

Then the original β is discarded. Substituting one
of these copies of β at a Tη̂ node and then sub-
stituting a Bη̂ tree at the former foot node has the
same effect as adjoining β at η. Finally, unless η
had an obligatory-adjunction constraint, simulate
the lack of adjunction at η by adding the initial
tree

Tη̂

Bη̂↓

L(SL-TAG + substitution) ⊆ L(ESL-TAG): This
construction is related to Lang’s normal form
which ensures binary-branching derivation trees
(Lang, 1994), but guarantees that one adjunction
site is on the spine and one is off the spine.

(Step 0a) Ensure that the elementary trees are
binary-branching. (Step 0b) Add a new root and
foot node to every elementary tree:

X
⇒

XNA

X

X

X∗

⇒

XNA

X

XNA

X∗

(Step 1) We transform the grammar so that no
auxiliary tree has more than one substitution node.
For any auxiliary tree with spine longer than four
nodes, we apply the following transformation: tar-
get either the active node or its parent, and call
it Y . Let Z1 be the child that dominates the foot
node; let V1 be a fresh nonterminal symbol and
insert V1 nodes above Y and below Z1, and ex-
cise the segment between the two V nodes, leav-
ing behind an active obligatory-adjunction node.

If Y has another child, call it Z2; let V2 be a fresh
nonterminal symbol and insert a V2 node above
Z2, and break off the subtree rooted in V2, leav-
ing behind a substitution node. See Figure 3. This
transformation reduces the spine of the auxiliary
tree by one node, and creates two new trees that
satisfy the desired form. We repeat this until the
entire grammar is in the desired form.

(Step 2) Next, we transform the grammar so
that no initial tree has more than one substitution
node, while maintaining the form acquired in step
1. For any initial tree with height greater than three
nodes, we apply the same transformation as in step
1, except that Y is the child of the root node, Z1

is its left child, and Z2 is its other child if it ex-
ists and is not already a substitution node. See Fig-
ure 3. This transformation replaces an initial tree
with at most two shorter initial trees, and one aux-
iliary tree in the desired form. Again we repeat this
until the entire grammar is in the desired form.

(Step 3) Finally, we convert each substitution
node into an adjunction node (Schabes, 1990). For
each substitution node η, let X be the label of η.
Relabel η to SX with obligatory adjunction and
place an empty terminal beneath η.

...

X↓

⇒

...

SX OA

ε

For each initial tree with root label X , convert it
into an auxiliary tree by adding a new root node
labeled SX whose children are the old root node
and a new foot node.

X
⇒

SX NA

X SX∗

3.3 Relation to tree-adjoining languages

Our second result, also conjectured by Kato et
al., is that the weak equivalence class established
above is a proper subset of TAL.
Proposition 6. The language

L = {ar
1b

p
1b

p
2c

q
1c

q
2a

r
2a

r
3c

q
3c

q
4b

p
3b

p
4a

r
4}

is in TAL but not ESL-TAL.

28

(Step 1)

X
...
Y

Z1

...
X∗

Z2NA
...

⇒

X
...

V1

Y

Z1

V1

...
X∗

V2

Z2NA
...

⇒

X
...

V1OA
...
X∗

V1NA

Y

Z1

V1∗

V2↓

V2

Z2NA
...

(Step 2)

X

Y

Z1

...

Z2

...

⇒

X

V1

Y

Z1

V1

...

V2

Z2

...

⇒

X

V1OA
...

V1NA

Y

Z1

V1∗

V2↓

V2

Z2

...

Figure 3: Separation of substitution nodes. Some adjunction constraints are omitted to avoid clutter.

Proof (L ∈ TAL). The language is generated by
the following TAG:

X

ε

XNA

a1 X

a2 X∗ a3

a4

XNA

Y

Z

X∗

YNA

b1 Y

b2 Y∗ b3

b4

ZNA

c1 Z

c2 Z∗ c3

c4

Before proceeding to the other half of the proof,
we define a few useful notions. A marked string
(as in Ogden’s Lemma) over an alphabet Σ is a
string over Σ × {0, 1}, where a symbol 〈σ, 1〉 is
marked and a symbol 〈σ, 0〉 is not. Marked strings
over Σ can be projected into Σ∗ in the obvious way
and we will talk about marked strings and their
projections interchangeably.

A decomposed string over Σ is a sequence
of strings over Σ, which can be projected into
Σ∗ by concatenating their members in order, and
again we will talk about decomposed strings and
their projections interchangeably. In particular,
we will often simply write a decomposed string
〈w1, . . . , wn〉 as w1 · · ·wn. Moreover, we may use
the symbol wi to refer to the occurrence of the ith
member of the decomposition in w; for example, if
w is a marked string, we may say that a symbol in
wi is marked, or if w is generated by a TAG deriva-
tion, we may say that wi is generated by some set
of nodes in the derivation tree.

The second half of the proof requires a double-
decker pumping lemma.
Condition 1 (cf. Vijay-Shanker (1987), Theo-
rem 4.7). Given a language L and a decom-
posed string x1zx2 ∈ L with some symbols in
z marked, there exists a decomposition of z into
u1v1w1v2u2v3w2v4u3 such that one of the vi con-
tains a mark, and L contains, for all k ≥ 1,

x1(u1v
k
1w1v

k
2u2v

k
3w2v

k
4u3)x2

Condition 2 (cf. Uemura et al. (1999), Lemma

29

1). Given a language L and a decomposed string
x1z1z2x2z3z4x3 ∈ L with some symbols in one of
the zi marked, there exist decompositions of the zi

into uiviwi such that one of the vi contains a mark,
and L contains, for all k ≥ 1,

x1(u1v
k
1w1)(u2v

k
2w2)x2(u3v

k
3w3)(u4v

k
4w4)x3

Lemma 7. If L is an ESL-TAL, then there exists
a constant n such that for any z ∈ L with n sym-
bols marked, Condition 1 holds of ε · z · ε. More-
over, it holds such that the w1 and w2 it provides
can be further decomposed into z1z2 and z3z4, re-
spectively, such that for any marking of n sym-
bols of any of the zj , either Condition 1 holds
of z = x1zjx2 (where x1 and x2 are the sur-
rounding context of zj) or Condition 2 holds of
z = x1z1z2x2z3z4x3 (where x1, x2, and x3 are
the surrounding context of z1z2 and z3z4).

Proof. Since L is an ESL-TAL, it is generated by
some ESL-TAG G. Let k be the number of ele-
mentary trees in G and t be the maximum number
of terminal symbols in any elementary tree of G.
Then set n = 2k+1t.

The first invocation of Condition 1 is the TAG
version of Ogden’s lemma (Hopcroft and Ullman,
1979). To show that it holds, we need to find a
path P in the derivation tree of z that has a cy-
cle that generates at least one marked symbol. De-
fine a branch point to be a node h in the derivation
tree such that the marked nodes generated by the
subderivation of h are not all generated by the sub-
derivation of a single child of h. We seek a P that
has at least k + 1 branch points. Start by adding
the root of the derivation tree to P . Thereafter let
h be the last node in P . If h is a leaf, stop; other-
wise, add to P the child of h whose subderivation
generates the most marked symbols. Note that if
a branch point in P generates m marked symbols,
the next branch point generates at least m−t

2
. Our

choice of n then guarantees that P has at least k+1
branch points, at least two of which must corre-
spond to the same auxiliary tree. Call these nodes
h1 and h2.

These two nodes divide the derivation up into
three phases: first, the derivation segment from the
root to h1, which we call α (because it can be
thought of as the derived initial tree it generates);
then the segment from h1 to h2, which we call β1

(because it can be thought of as the derived aux-
iliary tree it generates); then subderivation of h2,

which we call β2. Note that we can form new valid
derivations of G by repeating β2: that is, in terms
of derivation trees, stacking α on top of one or
more copies of β1, on top of β2—or in terms of
derived trees, repeatedly adjoining β1 into α and
then adjoining β2.

If β2 adjoins into the spine of β1, then let
〈u1, u2, u3〉 be the parts of z generated by α,
〈v1, v2, v3, v4〉 the parts generated by β1, and
〈w1, w2〉 the parts generated by β2 (see Figure 4a).
Then these new derivations generate the strings
u1v

k
1w1v

k
2u2v

k
3w2v

k
4u3.

But if β2 adjoins at a node to the left of the spine
of β1, then let 〈u1, v42, u3〉 be the parts of the z
generated by α, 〈v1, u2, v41, v43〉 the parts gener-
ated by β1, and 〈w1, w2〉 the parts generated by
β2 (see Figure 4b). Then let v2 = v3 = ε and
v4 = v41v42v43; the new derivations will gener-
ate the strings u1v

k
1w1v

k
2u2v

k
3w2v

k
4u3. The case

where β2 adjoins to the right of the spine.
Now we focus attention on β2. Let S be the

longest path of the derivation of β2 containing
the root of the derivation and auxiliary trees ad-
joined at spine nodes. This S is unique because
each spine can only have one active node. Let h3

be the last node in S, which divides the deriva-
tion of β2 into two phases: the segment from the
root to h3, which we call β21, and the subderiva-
tion of h3, which we call β22. This gives a decom-
position 〈w1, w2〉 = 〈z1z21z22, z31z32z4〉, where
β22 generates z21 and z32 (see Figure 5). Note
that the derivation nodes in S are the only ones
that can generate symbols in z1, z22, z31, and z4

at once; the other derivation nodes only gener-
ate symbols in a single zi. We let z2 = z21z22

and z3 = z31z32 and hand off the decomposition
〈w1, w2〉 = 〈z1z2, z3z4〉 to our adversary, who
may choose a zj and mark n symbols in it.

Then we recapitulate the reasoning above to get
a path P ′ starting from the root of the deriva-
tion of β2 and containing at least k + 1 branch
points, two of which correspond to the same aux-
iliary tree. Call these nodes h4 and h5 and the seg-
ment between them β3, and let 〈v1, v2, v3, v4〉 now
stand for the parts of 〈w1, w2〉 generated by β3.
Once again, we are going to repeat β3 to gener-
ate new derivations, pumping copies of the vi into
〈w1, w2〉. But the location of the vi depends on h5:
if h5 is in S, then the vi will appear inside each of
the zi, satisfying Condition 2. Otherwise, they will
all appear inside zj .

30

(a)
α

β1

β2

β1

α
u1 v1 w1 v2 u2 v3 w2 v4 u3

(b)
α

β1

β2

αβ1

u1 v1 w1 v2 w2 v41 v42 v43 u3

Figure 4: Anatomy of derived tree in proof of Lemma 7.

β21

β22

β21

∗

z1 z21 z22 z31 z32 z4

Figure 5: Anatomy of β2 in proof of Lemma 7.

31

Finally we complete the proof of Proposition 6.

Proof of Proposition 6 (L /∈ ESL-TAL). Suppose
L is an ESL-TAL. Let z be the string obtained by
setting p = q = r = n, and mark the a1s. Then
Lemma 7 must hold. The first invocation of Con-
dition 1 must give a w1 of the form a∗1b

n
1 bn

2 cn
1 cn

2a∗2
and a w2 of the form a∗3c

n
3 cn

4 bn
3 bn

4a∗4. Lemma 7
must further decompose w1 into z1z2. Obviously,
either z1 contains all the bjs or z2 contains all
the cjs. Supposing the former, we can obtain a
contradiction by marking the b1s: Condition 2
is impossible because it would give unequal
numbers of b1s and b2s; Condition 1 is impossible
because it would give unequal numbers of b1s and
b3s. On the other hand, if z2 contains all the cjs,
we mark the c1s, and both Conditions are again
rendered impossible.

4 Conclusion

The weak equivalence of the previously proposed
ESL-TAG and SSL-TAG, along with the fact that
SL-TAG with substitution and ESL-TAG with
substitution belong to the same class, suggests
that they represent a useful compromise between
CFGs and TAGs. In the two-dimensional language
hierarchy of Rambow and Satta (1999), where the
two dimensions are rank (how many substructures
does a rule combine) and fanout (how many dis-
continuous spans of the input does a substructure
cover), CFGs comprise the fanout-1 grammars and
TAGs are a subset of the the fanout-2 grammars;
both have arbitrary rank, whereas linear CFGs
and linear TAGs are rank-1. The grammars dis-
cussed here are mixed: a rule can combine one
fanout-2 substructure and an arbitrary number of
fanout-1 substructures. A related example would
be a version of synchronous CFG that allows only
one pair of linked nonterminals and any number
of unlinked nonterminals, which could be bitext-
parsed in O(n5) time, whereas inversion transduc-
tion grammar (Wu, 1997) takes O(n6). It may be
of interest to make a more general exploration of
other formalisms that are mixed in this sense.

Acknowledgements

Thanks to Hiroyuki Seki for discussions that led to
this paper, and to Anoop Sarkar, Giorgio Satta, and
William Schuler. This research was partially sup-
ported by NSF grant ITR EIA-02-05456. S. D. G.

References

John E. Hopcroft and Jeffrey D. Ullman. 1979. Intro-
duction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Reading, MA.

Aravind K. Joshi. 1985. Tree adjoining grammars:
How much context-sensitivity is necessary for as-
signing structural descriptions? In David Dowty,
Lauri Karttunen, and Arnold Zwicky, editors, Nat-
ural Language Parsing, pages 206–250. Cambridge
University Press, Cambridge.

Yuki Kato, Hiroyuki Seki, and Tadao Kasami. 2004.
Subclasses of tree adjoining grammar for RNA sec-
ondary structure. In Proc. Seventh International
Workshop on TAG and Related Formalisms (TAG+),
pages 48–55.

Bernard Lang. 1994. Recognition can be harder than
parsing. Computational Intelligence, 10(4):484–
494. Special Issue on Tree Adjoining Grammars.

Owen Rambow and Giorgio Satta. 1999. Independent
parallelism in finite copying parallel rewriting sys-
tems. Theoretical Computer Science, 223:87–120.

James Rogers. 1994. Capturing CFLs with tree adjoin-
ing grammars. In Proc. 32nd Annual Meeting of the
ACL, pages 155–162.

Giorgio Satta and William Schuler. 1998. Restrictions
on tree adjoining languages. In Proc. COLING-
ACL, pages 1176–1182.

Yves Schabes and Richard C. Waters. 1995. Tree
insertion grammar: a cubic-time parsable formal-
ism that lexicalizes context-free grammar without
changing the trees produced. Computational Lin-
guistics, 21:479–513.

Yves Schabes. 1990. Mathematical and Computa-
tional Aspects of Lexicalized Grammars. Ph.D. the-
sis, University of Pennsylvania. Available as techni-
cal report MS-CIS-90-48.

Yasuo Uemura, Aki Hasegawa, Satoshi Kobayashi, and
Takashi Yokomori. 1999. Tree adjoining grammars
for RNA structure prediction. Theoretical Computer
Science, 210:277–303.

K Vijayashanker. 1987. A study of tree adjoining
grammars. Ph.D. thesis, University of Pennsylva-
nia. Available as technical report MS-CIS-88-03.

Dekai Wu. 1997. Stochastic inversion transduction
grammars and bilingual parsing of parallel corpora.
Computational Linguistics, 23:377–404.

32

Proceedings of the 8th International Workshop on Tree Adjoining Grammar and Related Formalisms, pages 33–40,
Sydney, July 2006.c©2006 Association for Computational Linguistics

A Tree Adjoining Grammar Analysis of the Syntax and Semantics of
It-Clefts

Chung-hye Han
Department of Linguistics
Simon Fraser University
chunghye@sfu.ca

Nancy Hedberg
Department of Linguistics
Simon Fraser University
hedberg@sfu.ca

Abstract

In this paper, we argue that init-clefts as
in It was Ohno who won, the cleft pronoun
(it) and the cleft clause (who won) form
a discontinuous syntactic constituent, and
a semantic unit as a definite description,
presenting arguments from Percus (1997)
and Hedberg (2000). We propose a syn-
tax of it-clefts using Tree-Local Multi-
Component Tree Adjoining Grammar and
a compositional semantics on the pro-
posed syntax using Synchronous Tree Ad-
joining Grammar.

1 Introduction

The extant literature on the syntax ofit-clefts, as
in (1), can be classified into two main approaches.
First, the cleft pronounit is an expletive, and the
cleft clause bears a direct syntactic or semantic
relation to the clefted constituent, such as one
of predication (Jesperson, 1937; Chomsky, 1977;
Williams, 1980; Delin, 1989; Delahunty, 1982;
Rochemont, 1986; Heggie, 1988;É. Kiss, 1998).
Second, the cleft clause bears a direct syntactic
or semantic relation to the cleft pronoun and is
spelled-out after the clefted constituent through
extraposition or by forming a discontinuous con-
stituent with the cleft pronoun from the base-
generated position at the end of the sentence (Jes-
person, 1927; Akmajian, 1970; Emonds, 1976;
Gundel, 1977; Wirth, 1978; Percus, 1997; Hed-
berg, 2000). Under this second approach, the cleft
pronoun is not necessarily expletive but rather has
a semantic function such as that of a definite arti-
cle.

(1) It
cleft pronoun +

was
copula +

OHNO
clefted constituent +

[who
cleft

won].
clause

In this paper, we argue for a particular version of
the second approach, in which the cleft pronoun
and the cleft clause form a discontinuous syntac-
tic constituent, and a semantic unit as a definite
description. We propose a syntax ofit-clefts us-
ing Tree-Local Multi-Component Tree Adjoining
Grammar (MCTAG), and a compositional seman-
tics on the proposed syntax using Synchronous
Tree Adjoining Grammar (STAG). In section 2, we
present arguments against the expletive approach,
and in section 3, we provide arguments supporting
the discontinuous constituent analysis. We present
our TAG analysis in section 4 and extend our pro-
posal to grammatical variations onit-clefts in sec-
tion 5.

2 Arguments against the expletive
approach

It has been shown in Hedberg (2000) that the cleft
pronoun can be replaced withthis or that, as in
(2), depending on the discourse contextual inter-
pretation of the cleft clause. The fact that the
choice of the cleft pronoun is subject to pragmatic
constraints indicates that the cleft pronoun cannot
simply be an expletive element devoid of any se-
mantic content.

(2) a. This is not Iowa we’re talking about.
(Hedberg 2000, ex. 17)

b. That’s the French flag you see flying
over there. (Hedberg 2000, ex. 20)

Although the details are different, many exple-
tive analyses advocate for the position that the
clefted constituent is syntactically associated with
the gap in the cleft clause either directly through
movement, or indirectly through co-indexation
with an operator in the cleft clause. One thing that
is common in all these analyses is that the cleft
clause is not considered to have the internal struc-
ture of a restrictive relative clause. We point out

33

that the initial element in the cleft clause may be
realized either as awh-word (1) or asthat (3a), or
it may be absent altogether when the gap is not in
the subject position (2, 3b). It may even be in the
form of a genitivewh-word as in (3c). The cleft
clause is thus a restrictive relative clause.

(3) a. It was Ohno that won.

b. It was Ohno Ahn beat.

c. It was Ohno whose Dad cheered.

The cleft clause, however, does not relate to the
clefted constituent in the way that a restrictive rel-
ative clause relates to its head noun, as first noted
in Jespersen (1927). This is because the clefted
constituent can be a proper noun, unlike a head
noun modified by a restrictive relative clause, as
illustrated in (4). This suggests that there is no
syntactic link between the clefted constituent and
the gap in the cleft clause.

(4) * Ohno that won is an American.

3 A discontinuous constituent analysis

As pointed out in Percus (1997) and Hedberg
(2000), it-clefts have existential and exhaustive
presuppositions, just as definite descriptions do.
The inference in (5c) associated with (5a) survives
in the negative counterpart in (5b). This is ex-
actly the way the presupposition associated with
the definite descriptionthe king of France behaves:
the presupposition spelled-out in (6c) survives in
both the affirmative (6a) and the negative counter-
part in (6b). Both authors argue that this paral-
lelism between definite descriptions andit-clefts
can be accounted for if the cleft pronoun and the
cleft clause form a semantic unit, withit playing
the role of the definite article and the cleft clause
the descriptive component. What this translates
to syntactically is that the cleft clause is a restric-
tive relative clause which is situated at the end of
the sentence, forming a discontinuous constituent
with the cleft pronoun.

(5) a. It was Ohno who won.

b. It was not Ohno who won.

c. Someone won, and only one person
won.

(6) a. The king of France is bald.

b. The king of France is not bald.

c. There is one and only one king of
France.

Percus (1997) further points out thatit-clefts
pattern with copular sentences containing definite
description subjects with regard to anaphor bind-
ing. In the absence of c-command, an anaphor in
the clefted constituent position can be bound by
an antecedent inside the cleft clause, as shown in
(7a). While we don’t yet have an explanation for
how this type of binding takes place, we follow
Percus in noting that since copular sentences with
definite description subjects also exhibit this pat-
tern of binding, as shown in (7b), a uniform expla-
nation for the two cases can be sought if the cleft
pronoun and the cleft clause together form a defi-
nite description.

(7) a. It was herself that Mary saw first.

b. The one that Mary saw first was herself.

Under the discontinuous constituent analysis,it-
clefts reduce to copular sentences, and therefore
the observation that they can have equative and
predicational interpretations (Ball 1978, DeClerck
1988, Hedberg 2000), the readings attested in cop-
ular sentences, follows. For instance, (5a) (re-
peated as (8a)) can be paraphrased as (8b), and
corresponds to a typical equative sentence. And
(9a) can be paraphrased as (9b), and corresponds
to a typical predicational sentence. According to
our analysis, (8a) will be assigned the semantic
representation in (8c), and (9a) will be assigned
the semantic representation in (9c).

(8) a. It was Ohno who won.

b. The one who won was Ohno.

c. THEz [won(z)] [z = Ohno′]

(9) a. It was a kid who beat John.

b. The one who beat John was a kid.

c. THEz [beat(z, John′)] [kid(z)]

4 Our TAG analysis

Inspired by work of Kroch and Joshi (1987) and
Abeillé (1994) on discontinuous constituents re-
sulting from extraposition, we propose a tree-local
MCTAG analysis for the syntax ofit-clefts. Cru-
cially, we propose that the elementary trees for
cleft pronoun and the cleft clause form a multi-
component set, as in{(αit), (βwho won)} in Fig-
ure 1 and{(αit), (βwho beat)} in Figure 4.

34

〈(αOhno) DP

D

Ohno

(α′Ohno) T

Ohno′

〉

〈(αwas) TP

DP0i↓ 1 T′

T

wask

CopP

Cop

tk

FP1

DP0

ti

F′

F

ε

DP1↓ 2

(α′was) F 1

R

λxλy.x = y

T↓ 1 T↓ 2

〉

〈

{ (αit) DP

D

it

(βwho won) FP

FP* CP

DPl

D

who

C′

C TP

DP

tl

T′

T

[past]

VP

DP

tl

V

won

}

{ (α′it) T

z

(β′who won) F

THEz F

R

λx.won(x)

T

z

F*

}

〉

Figure 1: Syntactic and semantic elementary trees forIt was Ohno who won

〈(δ8a) (αwas)

(αOhno)

DP1

(αit)

DP0

(βwho won)

FP

(δ′8a) (α′was)

(α′Ohno) (α′it) (β′who won)

〉

Figure 2: Syntactic and semantic derivation trees
for It was Ohno who won

For the derivation of equativeit-clefts as in (8a),
we adopt the copular tree in (αwas), a tree simi-
lar to the one proposed in Frank (2002) for copu-
lar sentences. In this tree, FP is a small clause of
the copula from which the two DPs being equated
originate. (8a) is derived by substituting (αit) into
DP0 in (αwas), adjoining (βwho won) into FP
in (αwas), and substituting (αOhno) into DP1 in
(αwas). The syntactic derivation tree and the de-
rived tree for (8a) are given in (δ8a) in Figure 2
and (γ8a) in Figure 3 respectively.

Postulating separate projections for the copula
and the small clause can account for the fact that
the clefted constituent and the cleft clause seem
to form a constituent, as in (10ab) (from Hedberg
2000), and yet they can be separated by an adver-
bial phrase, as in (10c). In our analysis, (10ab)
are possible because the bracketed parts are FPs.
(10c) is possible because an adverbial phrase can
adjoin onto FP or F′, separating the clefted con-
stituent and the cleft clause.

(10) a. I said it should have been [Bill who ne-
gotiated the new contract], and it should
have been.

b. It must have been [Fred that kissed
Mary] but [Bill that left with her].

c. It was Kim, in my opinion, who won
the race.

We propose to do compositional semantics us-
ing STAG as defined in Shieber (1994). In STAG,
each syntactic elementary tree is paired with one
or more semantic tree with links between match-
ing nodes. A synchronous derivation proceeds by
mapping a derivation tree from the syntax side
to an isomorphic derivation tree in the semantics
side, and is synchronized by the links specified in
the elementary tree pairs. In the tree pairs given
in Figure 1, the trees on the left side are syntactic
elementary trees and the ones on the right side are
semantic trees. In the semantic trees, F stands for
formulas, R for predicates and T for terms. (α′it)
and (β′who won) in the multi-component set in
Figure 1 together define semantics of quantifica-
tion, where the former contributes the argument
variable and the latter the restriction and scope,
and (α′was) represents the semantics of equative
sentences. The derivation tree for the semantics of
(8a) is given in (δ′8a) in Figure 2, and the seman-

35

〈(γ8a) TP

DPi

D

it

T′

T

wask

CopP

Cop

tk

FP

FP

DP

ti

F′

F

ε

DP

D

Ohno

CP

DPl

D

who

C′

C TP

DP

tl

T′

T

[past]

VP

DP

tl

V

won

(γ′8a) F

THEz F

R

λx.won(x)

T

z

F

R

λxλy.x = y

T

z

T

Ohno′

〉

Figure 3: Syntactic and semantic derived trees forIt was Ohno who won

tic derived tree is given in (γ′8a) in Figure 3. Note
that the semantic derivation tree in (δ′8a) is iso-
morphic to the syntactic one in (δ8a). The seman-
tic derived tree in (γ′8a) can be reduced to the for-
mula in (11) after the application ofλ-conversion.

(11) THEz [won(z)] [z = Ohno′]

For the derivation of predicationalit-clefts as
in (9a), we use the tree pairs in<(αwas kid),
(α′waskid)>, <(αJohn), (α′John)>, and
<{(αit), (βwho beat)}, {(α′it), (β′who beat)}>
in Figure 4. The elementary tree in (αwaskid)
which represents a predicational copular sentence
is similar to the one in (αwas) in that in both
trees, the copula combines with a small clause FP.
The important difference is that in (αwas kid) the
subject DP is an argument substitution site and the
predicative DP (a kid) is lexicalized, whereas in
(αwas) both the subject and the non-subject DPs
are argument substitution sites. This difference is
reflected in the semantic trees, as seen in (α′was)
in Figure 1 with two term nodes and (α′waskid)
in Figure 4 with one term node. The syntactic and
semantic derivation trees, which are isomorphic,
are given in<(δ9a), (δ′9a)> in Figure 5, and the
corresponding derived trees are given in<(γ9a),
(γ′9a)> in Figure 6. The semantic derived tree in
(γ′9a) can be reduced to the formula in (12) after
the application ofλ-conversion.

(12) THEz [beat(z, John′)] [kid(z)]

〈(δ9a) (αwas kid)

(αit)

DP0

(βwho beat)

FP

(αJohn)

DP

(δ′9a) (α′waskid)

(α′it) (β′who beat)

(α′John)

〉

Figure 5: Syntactic and semantic derivation trees
for It was a kid who beat John

5 Extensions

In this section, we extend the proposed syntactic
analysis to grammatical variations onit-clefts: wh-
extraction of the clefted constituent as in (13), un-
bounded dependency between the relative pronoun
and its gap in the cleft clause as in (14), and coor-
dination of the constituent containing the clefted
constituent and the cleft clause as in (15).

(13) Whoj was it tj who won?

(14) It was Ohno whol the judges said tl won.

(15) It was [Ohno who won] and [Kim who lost].

For the derivation of (13), the elementary trees
in Figure 7 are required in addition to{(αit),
(βwho won)} in Figure 1. (αwho was) represents
the structure with thewh-extraction of the clefted
constituent. Substituting (αwho) into DP1 and
(αit) into DP0, and adjoining (βwho won) onto FP
in (αwho was), as in the derivation tree in (δ13),
produces the derived tree in (γ13) in Figure 8.

For the derivation of (14), the elementary trees
in Figure 9 are required in addition to{(αit),

36

〈(αwas kid) TP

DP0i↓ 1 T′

T

wask

CopP

Cop

tk

FP1

DP0

ti

F′

F

ε

DP

D

a

NP

N

kid

(α′waskid) F 1

R

λx.kid(x)

T↓ 1

〉

〈(αJohn) DP

D

John

(α′John) T

John′

〉

〈

{(αit) DP

D

it

(βwho beat) FP

FP* CP

DPl

D

who

C′

C TP

DP

tl

T′

T

[past]

VP

DP

tl

V′

V

beat

DP↓

}

{ (α′it) T

z

(β′who beat) F

THEz F

R

R

λxλy.beat(y, x)

T↓

T

z

F*

}

〉

Figure 4: Syntactic and semantic elementary trees forIt was a kid who beat John

〈(γ9a) TP

DPi

D

it

T′

T

wask

CopP

Cop

tk

FP

FP

DP

ti

F′

F

ε

DP

D

a

NP

N

kid

CP

DPl

D

who

C′

C TP

DP

tl

T′

T

[past]

VP

DP

tl

V′

V

beat

DP

D

John

(γ′9a) F

THEz F

R

R

λxλy.beat(y, x)

T

John′

T

z

F

R

λx.kid(x)

T

z

〉

Figure 6: Syntactic and semantic derived trees forIt was a kid who beat John

37

(αwho) DP

D

who

(αwho was) CP

DP1j↓ C′

C

wask

TP

DP0i↓ T′

T

tk

CopP

Cop

tk

FP

DP0

ti

F′

F

ε

DP1

tj

Figure 7: Syntactic elementary trees forWho was
it who won?

(δ13) (αwho was)

(αwho)

DP1

(αit)

DP0

(βwho won)

FP

(γ13) CP

DPj

D

who

C′

C

wask

TP

DPi

D

it

T′

T

tk

CopP

Cop

tk

FP

FP

DP

ti

F′

F

ε

DP

tj

CP

DPl

D

who

C′

C TP

DP

tl

T′

T

[past]

VP

DP

tl

V

won

Figure 8: Derivation and derived trees forWho
was it who won?

(αthe judges) DP

D

the

NP

N

judges

(βsaid) C′

C TP

DPm↓ T′

T

[past]

VP

DP

tm

V′

V

said

C′

Figure 9: Syntactic elementary trees forIt was
Ohno who the judges said won

(βwho won)} in Figure 1. Adjoining (βsaid)
onto the C′ node in (βwho won) has the effect
of stretching the dependency between the relative
pronounwho and its gap in the cleft clause. The
derivation and the derived trees for (14) are given
in Figure 10.

To handle the coordination of the constituent
containing the clefted constituent and the cleft
clause, as illustrated in (15), we propose to use
Node Contraction and Conjoin proposed in Sarkar
and Joshi (1996). Informally, Node Contraction
takes two nodes of like categories and collapses
them into a single node, and Conjoin coordinates
the least nodes dominating the two contiguous
strings. We use the conjunction tree in Figure 11
to apply Conjoin at FP.

Figure 12 contains the elementary tree anchor-
ing equativewas. We mark the nodes to be con-
tracted with a box, and augment the name of the
elementary tree with a set listing these contrac-
tion nodes. Thus, (αwas){DP i,T,Cop} means that
DPi, T and Cop nodes are marked for contraction
in (αwas) elementary tree.

Composition of (αwas){DP i,T,Cop} tree in
Figure 12 and another (αwas){DP i,T,Cop} tree
with the conjunction tree in Figure 11, along
with the substitution and adjoining of (αOhno)
and an equivalent tree (αKim) anchoring Kim,
(βwho won) and an equivalent tree (βwho lost)
anchoring lost, and (αit) in appropriate places,
yields the derived structure in Figure 13, where the
contracted nodes get identified. In this structure,
the DP hostingit is dominated by two TP nodes,
T is dominated by two T′ nodes and Cop is domi-
nated by two CopP nodes. Thus, the derived struc-
ture produced by Conjoin and Node Contraction is
a directed graph, not a tree.

38

(γ15)

 i

TP

FP CP

DP F’

F DP

D

TP

 Cop FP

FP CP

DP F’

F DP

who won

D

D

it

T CopP

T’

CopP

 FP

who lost

Kim

FP

Conj

and

DP T’

t

was

 t

Ohno

 ε ε

i

i

k

k

 t

Figure 13: Derived structure forIt was Ohno who won and Kim who lost

(δ14) (αwas)

(αOhno)

DP1

(αit)

DP0

(βwho won)

FP

(βsaid)

C′

(αthe judges)

DP

(γ14) TP

DPi

D

it

T′

T

wask

CopP

Cop

tk

FP

FP

DP

ti

F′

F

ε

DP

D

Ohno

CP

DPl

D

who

C′

C TP

DPm

D

the

NP

N

judges

T′

T

[past]

VP

DP

tm

V′

V

said

C′

C TP

DP

tl

T′

T

[past]

VP

DP

tl

V

won

Figure 10: Derivation and derived trees forIt was
Ohno who the judges said won

Conj(and) FP

FP Conj

and

FP

Figure 11: Elementary tree for conjunction

(αwas){DP i,T,Cop} TP

DP0i ↓ T′

T

wask

CopP

Cop

tk

FP

DP

ti

F′

F

ε

DP1↓

Figure 12: Elementary tree anchoring equative
was with contraction nodes

(δ15)

 it)

Conj(and)

FP FP

FP FPDP1 DP0 DP0 DP1

{DP0,T,Cop} (α was)

(αOhno)

 (α was) {DP0,T,Cop}

who−won)(β (βwho−lost) (αKim)(α

Figure 14: Derivation structure forIt was Ohno
who won and Kim who lost

The derivation structure for (15) is also a di-
rected graph, as shown in Figure 14. (αit)
is dominated by two (αwas){DP i,T,Cop} trees,
indicating that it is being shared by the two
(αwas){DP i,T,Cop} trees.

6 Conclusion

We have proposed a syntax and semantics ofit-
clefts, using tree-local MCTAG and STAG, and
shown that the proposed syntactic analysis is ex-

39

tendable to handle various grammatical variations
on it-clefts such aswh-extraction of the clefted
constituent, unbounded dependency between the
relative pronoun and its gap in the cleft clause
and coordination of the constituent containing the
clefted constituent and the cleft clause. In our
TAG analysis ofit-clefts, the cleft pronoun and
the cleft clause bear a direct syntactic relation be-
cause the elementary trees for the two parts belong
to a single multi-component set. They do not ac-
tually form a syntactic constituent in the derived
tree, but as the elementary trees for the two belong
to the same multi-component set, the intuition that
they form a discontinuous constituent is captured.
Further, the semantics of the two trees is defined
as a definite quantified phrase, capturing the intu-
ition that they form a semantic unit as a definite
description.

Acknowledgment

We thank Anoop Sarkar and the three anonymous
reviewers for their insightful comments.

References

Ann Abeillé. 1994. Syntax or semantics? han-
dling nonlocal dependencies with MCTAGs or Syn-
chronous tags.Computational Intelligence, 10:471–
485.

Adrian Akmajian. 1970. On deriving cleft sentences
from pseudo-cleft sentences.Linguistic Inquiry,
1:149–168.

Noam Chomsky. 1977. On wh-movement. In P. W.
Culicover, T. Wasow, and A. Akmajian, editors,For-
mal Syntax, pages 71–132. Academic Press, New
York.

Gerald P. Delahunty. 1982.Topics in the syntax and
semantics of English cleft sentences. Indiana Uni-
versity Linguistics Club, Bloomington.

Judy L. Delin. 1989.Cleft constructions in discourse.
Ph.D. thesis, University of Edinburgh.

Katalin É. Kiss. 1998. Identificatinoal focus versus
information focus.Language, 74(245-273).

Joseph E. Emonds. 1976.A Transformational Ap-
proach to English Syntax. Academic Press, New
York.

Robert Frank. 2002. Phrase Structure Composi-
tion and Syntactic Dependencies. MIT Press, Cam-
bridge, MA.

Jeanette K. Gundel. 1977. Where do cleft sentences
come from?Language, 53:53–59.

Nancy Hedberg. 2000. The referential status of clefts.
Language, 76(4):891–920.

Lorie A. Heggie. 1988.The syntax of copular struc-
tures. Ph.D. thesis, University of Southern Califor-
nia, Los Angeles.

Otto Jesperson. 1927.A Modern English Grammar,
volume 3. Allen and Unwin, London.

Otto Jesperson. 1937.Analytic Syntax. Allen and Un-
win, London.

Anthony S. Kroch and Aravind K. Joshi. 1987. Ana-
lyzing extraposition in a Tree Adjoining Grammar.
In G. Huck and A. Ojeda, editors,Discontinuous
Constituents, volume 20 ofSyntax and Semantics.
Academic Press.

Orin Percus. 1997. Prying open the cleft. In
K. Kusumoto, editor,Proceedings of the 27th An-
nual Meeting of the North East Linguistics Society,
pages 337–351. GLSA.

Michael Rochemont. 1986. Focus in Generative
Grammar. John Benjamins, Amsterdam.

Anoop Sarkar and Aravind Joshi. 1996. Coordination
in tree adjoining grammars: formalization and im-
plementation. InProceedings of COLING’96, pages
610–615, Copenhagen.

Stuart Shieber. 1994. Restricting the weak-generative
capacity of synchronous tree-adjoining grammars.
Computational Intelligence, 10(4).

Edwin Williams. 1980. Predication.Linguistic In-
quiry, 11:203–238.

Jessica R. Wirth. 1978. The derivation of cleft sen-
tences in English.Glossa, 12(58-81).

40

Proceedings of the 8th International Workshop on Tree Adjoining Grammar and Related Formalisms, pages 41–48,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Pied-Piping in Relative Clauses: Syntax and Compositional Semantics
based on Synchronous Tree Adjoining Grammar

Chung-hye Han
Department of Linguistics
Simon Fraser University
chunghye@sfu.ca

Abstract

In relative clauses, thewh relative pro-
noun can be embedded in a larger phrase,
as in a boy [whose brother] Mary hit.
In such examples, we say that the larger
phrase has pied-piped along with thewh-
word. In this paper, using a similar syntac-
tic analysis forwh pied-piping as in Han
(2002) and further developed in Kallmeyer
and Scheffler (2004), I propose a composi-
tional semantics for relative clauses based
on Synchronous Tree Adjoining Gram-
mar. It will be shown that (i) the elemen-
tary tree representing the logical form of
a wh-word provides a generalized quanti-
fier, and (ii) the semantic composition of
the pied-piped material and thewh-word is
achieved through adjoining in the seman-
tics of the former onto the latter.

1 Introduction

In relative clauses, thewh relative pronoun can be
embedded in a larger phrase, as in (1) and (2). In
such examples, we say that the larger phrase con-
taining thewh-word hasPIED-PIPED along with
thewh-word.

(1) a boy [[whose brother]i Mary hit ti]

(2) a boy [[whose brother’s friend]i Mary hit ti]

In this paper, using a similar syntactic analysis for
whpied-piping as in Han (2002) and further devel-
oped in Kallmeyer and Scheffler (2004), I propose
a compositional semantics for relative clauses of
the sort illustrated in (1) and (2), based on Syn-
chronous Tree Adjoining Grammar (STAG). The
two main components of my proposal are that (i)
the semantic tree representing the logical form of a
wh relative pronoun provides a generalized quan-
tifier, and (ii) the semantic composition of the
pied-piped material and thewh-word is achieved

through adjoining of the former onto the latter in
the semantics. Although TAG semantics for rel-
ative clauses based on flat semantics have been
proposed before (Han, 2002; Kallmeyer, 2003), no
STAG-based analysis exists, as far as I know.

In section 2, I introduce the framework of
STAG and STAG-based compositional semantics
and clarify my assumptions. In section 3, I present
my analysis of relative clauses and pied-piping. I
extend the proposed analysis to relative clauses in
which wh-word is in a PP and those in which no
pied-piping has taken place in section 4.

2 STAG-based Compositional Semantics

Before presenting my analysis of relative clauses, I
first illustrate the framework of STAG-based com-
positional semantics and clarify my assumptions,
using a simple sentence that contains an existential
quantifier and an attributive adjective in (3).

(3) John saw a good movie.

I use STAG as defined in Shieber (1994). In an
STAG, each syntactic elementary tree is paired
with one or more semantic trees that represent its
logical form with links between matching nodes.
A synchronous derivation proceeds by mapping a
derivation tree from the syntax side to an isomor-
phic derivation tree in the semantics side, and is
synchronized by the links specified in the elemen-
tary tree pairs. In the tree pairs given in Figure 1,
the trees in the left side are syntactic elementary
trees and the ones in the right side are semantic
trees. In the semantic trees, F stands for formulas,
R for predicates and T for terms. I assume that
these nodes are typed and I represent predicates
as unreducedλ-expressions. The linked nodes are
shown with boxed numbers. For sake of simplic-
ity, in the elementary tree pairs, I only include
links that are relevant for the derivation of given
examples.

Figure 1 contains elementary trees required to
generate the syntactic structure and the logical

41

〈(αjohn) DP

D

John

(α′john) T

John′

〉

〈

(αa movie) DP

D

a

NP 1

N

movie

{(α′a movie)T

x

(β′a movie) F

∃x F

R 1

λx.movie(x)

T

x

F*

}

〉

〈(βgood) NP

AdjP

Adj

good

NP*

(β′good) R

R

λx.good(x)

R*

〉

〈(αsaw) TP

DPi↓ 1 T′

T VP

DP

ti

V′

V

saw

DP↓ 2

(α′saw) F 2

R

λxλy.saw(y, x)

T↓ 2 T↓ 1

〉

Figure 1: Elementary trees forJohn saw a good movie.

form of (3). All the syntactic elementary trees sat-
isfy Frank’s (2002) Condition on Elementary Tree
Minimality (CETM), which states that “the syn-
tactic heads in an elementary tree and their projec-
tions must form an extended projection of a sin-
gle lexical head” (Frank 2002, p. 54). Particu-
larly, (αa movie) is a valid elementary tree, as a
noun can form an extended projection with a DP,
in line with the DP Hypothesis. The proper name
tree in (αJohn) is paired with a tree representing
a term in the semantics, and the attributive adjec-
tive tree in (βgood) is paired with an auxiliary tree
in the semantics that represents a one-place predi-
cate to be adjoined to another one-place predicate.
As for the syntax-semantics pairing of elementary
trees for quantified DPs, I follow Shieber and Sch-
abes (1990), and use Tree Local Multi-Component
TAG (as defined in Weir (1988)) in the seman-
tics. Thus, the DP in (αa movie) is paired with a
multi-component set{(α′a movie), (β′a movie)}
in the semantics: (α′a movie) provides an argu-
ment variable, and (β′a movie) provides the ex-
istential quantifier with the restriction and scope.
The transitive tree in (αsaw) is paired with a se-
mantic tree representing a formula that consists of
a two-place predicate and two term nodes. The
links, shown with boxed numbers, guarantee that
whatever substitutes into DPi, the corresponding
semantic tree will substitute into the term node
marked with 1 , and whatever substitutes into DP
is paired up with a multi-component set in the se-

mantics where one of the components will substi-
tute into the term node marked with2 and the
other will adjoin onto the F node marked with
2 . The syntactic and semantic derivation trees

are given in Figure 2, and the derived trees are
given in Figure 3. I leave out the tree addresses
in the semantic derivation tree, as these are deter-
mined by the links between the syntactic and se-
mantic elementary trees.1

〈(δ3) (αsaw)

(αa movie)

DP

(βgood)

NP

(αJohn)

DPi

(δ′3) (α′saw)

{(β′a movie), (α′a movie)}

(β′good)

(α′John)

〉

Figure 2: Derivation trees forJohn saw a good
movie.

The semantic derived trees can be reduced by
applying λ-conversion, as the nodes dominate
typedλ-expressions and terms. When reducing se-
mantic derived trees, in addition toλ-conversion, I
propose to use Predicate Modification, as defined
in Heim and Kratzer (1998) in (4).

(4) Predicate Modification
If α has the form α

β γ

,

1In sentences with more than one quantified DPs, I as-
sume multiple adjoining (as defined in Schabes and Shieber
(1994)) of quantifier trees at the same F node, leaving the
order unspecified. This provides an underspecified represen-
tation and accounts for scope ambiguity.

42

〈(γ3) TP

DPi

D

John

T′

T VP

DP

ti

V′

V

saw

DP

D

a

NP

AdjP

Adj

good

NP

N

movie

(γ′3) F

∃x F

R

R

λx.good(x)

R

λx.movie(x)

T

x

F

R

λxλy.saw(y, x)

T

x

T

John′

〉

Figure 3: Derived trees forJohn saw a good movie.

and[[β]]s and[[γ]]s are both inD<e,t>, then
[[α]]s = λxe[[β]]s(x) ∧ [[γ]]s(x).

The application of Predicate Modification andλ-
conversion to (γ′3) reduces it to the formula in (5).

(5) ∃x[good(x) ∧ movie(x)] [saw(John′, x)]

3 An STAG analysis of pied-piping in
relative clauses

I propose the elementary tree pairs in Figure 4
for the syntactic derivation and semantic compo-
sition of the relative clause in (1). In the syntax
side, (αwho) substitutes into DPj in (βhit), and the
pied-piping of the rest of the DP is achieved by ad-
joining (β’s brother) onto (αwho). The tree in (β’s
brother) is a widely-accepted genitive structure ac-
cording to the DP hypothesis, where the genitive’s
heads the DP tree. This satisfies CETM, as a DP
is an extended projection of a noun. Substituting
(αmary) into DPi in (βhit) completes the deriva-
tion of the relative clause.

The derivation tree for the relative clause is in
(δ1) in Figure 5 and the derived tree is in (γ1) in
Figure 6.

〈(δ1) (βhit)

(αwho)

DPj

(β’s brother)

DP

(αMary)

DPi

(δ′1) (β′hit)

(β′who)

(β′’s brother)

(α′Mary)

〉

Figure 5: Derivation trees forwhose brother Mary
hit

Semantically, we must make sure that the vari-
able coming from thewh-word is also the one be-
ing predicated of the head noun (boy in (1)), and

yet the same variable does not serve as an argu-
ment of the predicate (hit in (1)) in the relative
clause. I argue that the introduction of a gener-
alized quantifier (GQ) node in the semantic tree in
(β′who) and adjoining of (β′’s brother) onto the
GQ node guarantee this. I define the logical form
of awh relative pronoun as an auxiliary tree given
in (β′who). In (β′who), λx binds x in the gen-
eralized quantifier,λP.P (x). Adjoining (β′who)
onto the relative clause elementary tree in (β′hit)
essentially has the effect of abstracting over the
variable coming from thewh-word in the relative
clause, turning it into a one-place predicate. This
therefore ensures that the relative clause and the
head noun are predicating over the same variable,
deriving the interpretation of the relative clause
as a modifier of the head noun. The meaning of
the pied-piped material’s brother is added onto
the meaning ofwho by adjoining the auxiliary
tree defined in (β′’s brother) onto the GQ node
in (β′who). In (β′’s brother),λy ensures that the
variable coming from the DP* (who) is in some
relation with the variable coming from the head
of the pied-piped DP (whose brother), andλQ, by
turningwhose brotherinto a GQ, ensures that the
variable coming from the head of the pied-piped
DP is the argument of the predicate that the DP
combines with. The derivation tree and the de-
rived tree in the semantics side are given in (δ′1)
in Figure 5 and (γ′1) in Figure 6. After all theλ-
conversions have applied, (γ′1) can be reduced to
the expression in (6).

(6) λx.THEz[brother(z) ∧
Rel(x, z)] [hit(Mary′, z)]

43

〈(αmary) DP

D

Mary

(α′mary) T

Mary′

〉

〈(β’s brother) DP

DP* D′

D

’s

NP

N

brother

(β′’s brother) GQ

λQ F

GQ* R

λy F

THEz F

F

brother(z)

F

Rel(y, z)

F

Q(z)

〉

〈(βhit) NP

NP* CP

DPj↓ 1 C′

C TP

DPi↓ 2 T′

T VP

DP

ti

V′

V

hit

DP

tj

(β′hit) R

R* R 1

R

λxλy.hit(x, y)

T↓ 2

〉

〈(αwho) DP

D

who

(β′who) R

λx F

GQ

λP.P (x)

R*

〉

Figure 4: Elementary trees forwhose brother Mary hit

〈(γ1) NP

NP* CP

DPj

DP

D

who

D′

D

’s

NP

N

brother

C′

C TP

DPi

D

Mary

T′

T VP

DP

ti

V′

V

hit

DP

tj

(γ′1) R

R* R

λx F

GQ

λQ F

GQ

λP.P (x)

R

λy F

THEz F

F

brother(z)

F

Rel(y, z)

F

Q(z)

R

R

λxλy.hit(x, y)

T

Mary′

〉

Figure 6: Derived trees forwhose brother Mary hit

44

The expression in (6) is a one-place predicate
which can be paraphrased as a set of allx’s such
that there is a unique brotherz andx is in some
relation withz and Mary hitz. As the seman-
tics of relative clauses is defined to be a one-place
predicate, it is analogous to attributive adjectives.
This means that the semantic tree resulting from
the adjoining of (γ′1) onto the logical form of the
head nounboycan be reduced to the expression in
(7) through Predication Modification.

(7) λx.boy(x) ∧ THEz[brother(z) ∧
Rel(x, z)] [hit(Mary′, z)]

The derivation of a sentence containing (1),a
boy whose brother Mary hit, as the object, as in
(8), proceeds in a similar fashion as in (3), yielding
the semantic derived tree which is reducible to the
formula in (9).

(8) John saw a boy whose brother Mary hit.

(9) ∃x[boy(x) ∧ THEz[brother(z) ∧
Rel(x, z)] [hit(Mary′, z)]] [saw(John′, x)]

For the syntactic derivation and the composi-
tional semantics of the relative clause in (2), all we
need to do is add the tree pair in Figure 7 to the set
of elementary tree pairs in Figure 4. In the syntax
side, (β’s friend) adjoins onto (β’s brother) and
in the semantics side, (β′’s friend) adjoins onto
(β′’s brother), as shown in the derivation trees in
Figure 8. The derived trees are given in Figure 9.
The semantic derived tree (γ′2) can be reduced to
the expression in (10) throughλ-conversions.

〈(β’s friend) DP

DP* D′

D

’s

NP

N

friend

(β′’s friend) GQ

λQ F

GQ* R

λy F

THEz F

F

friend(z)

F

Rel(y, z)

F

Q(z)

〉

Figure 7: Elementary trees for’s friend

(10) λx.THEz[brother(z) ∧
Rel(x, z)] [THEz[friend(z) ∧
Rel(z, z)] [hit(Mary′, z)]]

〈(δ2) (βhit)

(αwho)

DPj

(β’s brother)

DP

(β’s friend)

DP

(αMary)

DPi

(δ′2) (β′hit)

(β′who)

(β′’s brother)

(β′’s friend)

(α′Mary)

〉

Figure 8: Derivation trees forwhose brother’s
friend Mary hit

4 Extensions

The proposed syntax and the semantics of pied-
piping can straightforwardly be extended to cases
in which thewh-word is embedded in a PP, as in
(11).

(11) a boy [[DP the brother of whom]i Mary hit
ti]

For the derivation of (11), we need to change two
of the elementary tree pairs in Figure 4 slightly.
The elementary tree pairs<(αwho), (β′who)>
and<(β’s brother),β′’s brother)> need to be re-
placed with the pairs in Figure 10. Since the rel-
ative pronoun in (11) iswhom, we use a DP tree
anchoringwhomin (αwhom). The corresponding
semantic tree (β′whom) remains exactly the same
as before. (βthe brotherof) represents the pied-
piped material in DP. It is a well-formed elemen-
tary tree according to CETM as it has a single lexi-
cal headbrotherand DP is an extended projection
of this head, and PP is not subject to CETM be-
cause P is a functional head, not a lexical head.
Moreover, DP* is licensed as it is an argument
of the lexical headbrother, as argued in Kroch
(1989). The semantics ofthe brother of whomis
equivalent towhose brother, and therefore, we pair
up (βthe brotherof) with the exact same semantic
tree as (β′’s brother).

The derivation trees for the relative clause in
(11) are given in Figure 11. They look exactly the
same as the ones for the relative clause in (1), ex-
cept for names of the elementary trees in a few
nodes. The derived trees are given in Figure 12.
While the syntactic derived tree (γ11) is different
from (γ1) in Figure 6 in the structure of DP con-
taining the pied-piped material, the semantic de-
rived tree (γ′11) looks exactly the same as (γ′1)
in Figure 6. This is as it should be given that the
meaning of (1) and the meaning of (11) are equiv-
alent.

45

〈(γ2) NP

NP* CP

DPj

DP

DP

D

who

D′

D

’s

NP

N

brother

D′

D

’s

NP

N

friend

C′

C TP

DPi

D

Mary

T′

T VP

DP

ti

V′

V

hit

DP

tj

(γ′2) R

R* R

λx F

GQ

λQ F

GQ

λQ F

GQ

λP.P (x)

R

λy F

THEz F

F

brother(z)

F

Rel(y, z)

F

Q(z)

R

λy F

THEz F

F

friend(z)

F

Rel(y, z)

F

Q(z)

R

R

λxλy.hit(x, y)

T

Mary′

〉

Figure 9: Derived trees forwhose brother’s friend Mary hit

〈(αwhom) DP

D

whom

(β′whom)R

λx F

GQ

λP.P (x)

R*

〉

〈(βthe brotherof) DP

D

the

NP

N

brother

PP

P

of

DP*

(β′the brotherof) GQ

λQ F

GQ* R

λy F

THEz F

F

brother(z)

F

Rel(y, z)

F

Q(z)

〉

Figure 10: Elementary trees forwhomandthe brother of

〈(γ11) NP

NP* CP

DPj

D

the

NP

N

brother

PP

P

of

DP

D

whom

C′

C TP

DPi

D

Mary

T′

T VP

DP

ti

V′

V

hit

DP

tj

(γ′11) R

R* R

λx F

GQ

λQ F

GQ

λP.P (x)

R

λy F

THEz F

F

brother(z)

F

Rel(y, z)

F

Q(z)

R

R

λxλy.hit(x, y)

T

Mary′

〉

Figure 12: Derived trees forthe brother of whom Mary hit

46

〈(δ11) (βhit)

(αwhom)

DPj

(βthe brotherof)

DP

(αMary)

DPi

(δ′11) (β′hit)

(β′whom)

(β′the brotherof)

(α′Mary)

〉

Figure 11: Derivation trees forthe brother of
whom Mary hit

〈(βa brotherof) DP

D

a

NP

N

brother

PP

P

of

DP*

(β′a brotherof) GQ

λQ F

GQ* R

λy F

∃z F

F

brother(z)

F

Rel(y, z)

F

Q(z)

〉

Figure 13: Elementary trees forwhom and a
brother of

The proposed analysis can also be extended to
relative clauses in which no pied-piping has taken
place. When the larger DP containing the relative
pronoun is indefinite or non-specific, the DP can
be stranded, as in (12). This gives us a configura-
tion where awh-word has extracted out of a DP.

(12) a boy [whomi Mary hit [DP a brother of ti]]

Since we now have a DP with an indefinite
article, a tree pair in Figure 13 is needed, for
the derivation of (12). Using the semantic tree
(β′a brotherof), the semantic composition of the
relative clause in (12) can proceed as before: the
semantic tree (β′a brotherof) adjoins onto the se-
mantic tree (β′whom) in Figure 10, which then
adjoins onto (β′hit) in Figure 4. In the syntax,
however, we must make sure that (βa brotherof)
does not adjoin onto the relative pronounwhom,
because if it did, we would end up with the string
a brother of whom. Instead, what we need is
for (βa brotherof) to adjoin onto the DP domi-
nating the trace of the extracted object in (βhit).
This however is not a valid derivation in STAG,
as elementary trees in a single pair are composing
with two trees from two different pairs. A slight
modification in the syntactic elementary tree for
(αwhom) in Figure 14 can fix this problem. I pro-
pose to do this by turning (αwhom) into a multi-
component set{(αwhom), (βwhom)} as in Fig-
ure 14. An auxiliary tree like (βwhom), which

〈

{(αwhom) DP

D

whom

(βwhom) DP*}

(β′whom)R

λx F

GQ

λP.P (x)

R*

〉

Figure 14: Elementary trees forwhom

〈(δ12) (βhit)

{(αwhom), (βwhom)}

DPj ,DP

(βa brotherof)

DP

(αMary)

DPi

(δ′12) (β′hit)

(β′whom)

(β′a brotherof)

(α′Mary)

〉

Figure 15: Derivation trees forwhom Mary hit a
brother of

does not dominate any other nodes, is a degenerate
tree, and has been used in Kroch (1989) and Frank
(2002) to handle extraction from awh-island, as in
[Which car]i does Sally wonder how to fix ti?

In syntax, to derive the relative clause in (12),
(αwhom) substitutes into DPj in (βhit) as be-
fore, and (βwhom) adjoins onto the DP domi-
nating the trace of the extracted object in (βhit),
as shown in the derivation tree (δ12) in Figure
15. And in semantics, (β′whom) adjoins onto
(β′hit) as before, as shown in (δ′12) in Figure
15. Subsequently, in syntax (βa brotherof) ad-
joins onto (βwhom) giving us the DPa brother of
tj, and in semantics (β′a brotherof) adjoins onto
(β′whom). Thus, by using the multi-component
set {(αwhom), (βwhom)}, we now have a situ-
ation where two elementary trees in a single pair
are composing with two trees belonging to another
pair. The syntactic and the semantic derived trees
are given in Figure 16. Afterλ-conversions, (γ′12)
can be reduced to the expression in (13).2

(13) λx.∃z[brother(z) ∧
Rel(x, z)] [hit(Mary′, z)]

5 Conclusion

I have shown that STAG-based compositional se-
mantics for relative clauses with pied-piping is

2Partial stranding as ina boy [a picture of whom]i Mary
made a copy of ti can be handled by composing a multi-
component set forwhomcontaining a degenerate DP tree and
another multi-component set fora picture ofcontaining a de-
generate DP tree. Further, the impossibility of the stranding
of subject DP, as in*a boy whomi [a brother of ti] hit Mary,
can be handled by placing an NA constraint on the subject
DP dominating a trace in the relative clause tree.

47

〈(γ12) NP

NP* CP

DPj

D

whom

C′

C TP

DPi

D

Mary

T′

T VP

DP

ti

V′

V

hit

DP

D

a

NP

N

brother

PP

P

of

DP

tj

(γ′12) R

R* R

λx F

GQ

λQ F

GQ

λP.P (x)

R

λy F

∃z F

F

brother(z)

F

Rel(y, z)

F

Q(z)

R

R

λxλy.hit(x, y)

T

Mary′

〉

Figure 16: Derived trees forwhom Mary hit a brother of

possible using examples in which thewh-word
is embedded in a genitive DP, and shown that
the proposed analysis can straightforwardly be ex-
tended to cases in which thewh-word is embed-
ded in a PP. The main ingredients of the proposed
analysis are: in syntax, the pied-piped material ad-
joins to thewh-word, and in semantics, thewh-
word provides a GQ to which the meaning of the
pied-piped material adjoins. I have also shown
that similar analysis can handle cases in which the
wh-word alone has moved to [Spec,CP], strand-
ing the rest of the DP in situ, if we use a multi-
component set containing a degenerate DP for the
syntax of the relative pronoun. The proposed anal-
ysis utilizes composition operations in semantics
that are already available in syntax, substitution
and adjoining, thereby making syntax-semantics
mapping in TAG simple and straightforward.

Acknowledgment

I thank Anoop Sarkar and the three anonymous re-
viewers for their insightful comments.

References

Robert Frank. 2002. Phrase Structure Composi-
tion and Syntactic Dependencies. MIT Press, Cam-
bridge, MA.

Chung-hye Han. 2002. Compositional semantics
for relative clauses in Lexicalized Tree Adjoining

Grammar. A talk presented at TAG+6, Venice, Italy,
www.sfu.ca/∼chunghye/papers/tag6-rc-slides.pdf.

Irene Heim and Angelika Kratzer. 1998.Semantics in
Generative Grammar. Blackwell, Oxford.

Laura Kallmeyer and Tatjana Scheffler. 2004. LTAG
analysis for pied-piping and stranding of wh-
phrases. InProceedings of TAG+7, pages 32–39,
Vancouver, Canada.

Laura Kallmeyer. 2003. LTAG semantics for relative
clauses. InProceedings of the Fifth International
Workshop on Computational Semantics (IWCS-5),
Tilburg.

Anthony Kroch. 1989. Asymmetries in long-distance
extraction in a Tree Adjoining Grammar. In Mark
Baltin and Anthony Kroch, editors,Alternative Con-
ceptions of Phrase Structure, pages 66–98. Univer-
sity of Chicago Press, Chicago.

Yves Schabes and Stuart M. Shieber. 1994. An al-
ternative conception of Tree-Adjoining derivation.
Computational Linguistics, pages 167–176.

Stuart Shieber and Yves Schabes. 1990. Synchronous
Tree Adjoining Grammars. InProceedings of COL-
ING’90, Helsinki, Finland.

Stuart Shieber. 1994. Restricting the weak-generative
capacity of Synchronous Tree-Adjoining Gram-
mars.Computational Intelligence, 10(4).

David Weir. 1988. Characterizing Mildly Context-
Sensitive Grammar Formalisms. Ph.D. thesis, Uni-
versity of Pennsylvania.

48

Proceedings of the 8th International Workshop on Tree Adjoining Grammar and Related Formalisms, pages 49–56,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Negative Concord and Restructuring in Palestinian Arabic:
A Comparison of TAG and CCG Analyses

Frederick M. Hoyt

Linguistics Department
University of Texas at Austin
1 University Station B5100

Austin, TX, USA 78712-0198
fmhoyt@mail.texas.edu

Abstract

This paper discusses interactions between

negative concord and restructuring/clause

union in Palestinian Arabic. Analyses

formulated in Tree Adjoining Grammar

and Combinatorial Categorial Grammar

are compared, with the conclusion that a

perspicuous analysis of the the intricacies

of the data requires aspects of both for-

malisms; in particular, the TAG notion of

the extended domain of locality and the

CCG notion of flexible constituency.

1 Palestinian Arabic Negative Concord

In Palestinian Arabic (PA), negative concord oc-

curs with the determiner wEla “(not) even one,”

where negative concord describes the failure of an

expression which expresses negation in some sen-

tences to do so in others. Phrases formed with

wEla (“wEla-phrases”) are interpreted either as

negative quantifiers (“NQ-wEla)” or as polarity-

sensitive indefinites (“NPI-wEla”). wEla-phrases

have an NQ-interpretation preceding the finite

verb or verb complex in a clause (1-2) or in frag-

ment answers (3-4):

(1) wEla
not.even

h
˙
ada

one.MS
fi:-hUm
in-them

šæ:f-ni.
saw.3ms-me

“Not even ONE of them saw me!”

(2) wEla
not.even

yo:m
day

Qaǧabni
pleased.3ms-me

l-Ekıl.
the-food

“There wasn’t even one day the food pleased me!”

(3) Q: šu
what

k
˙
al-l-ak?

said.3ms-to-you
A: wEla

not.even
iši.
thing

“What did he say to you? Nothing at all.”

(4) Q: mi:n
who

šUfti?
saw.2fs

A: wEla
not.even

s
˙
u:s

˙chick
ıbn
son

yome:n.
two-days

“Who did you see? Not even a two-day old chick!”

A preverbal wEla-phrase preceding a sentential

negation marker causes the sentence to have a

double-negation reading (5: compare with 2):

(5) wEla
not.even

yo:m
day

ma-Qaǧabni
not-pleased.3ms-me

l-Ekıl.
the-food

“There wasn’t one day the food didn’t please me!”
“The food pleased me every day.”

NQ-wEla never occurs within the scope of nega-

tion but does occur in post-verbal positions which

are not “thematically entailed” by the verb (6-7)1:

(6) huwwa
he

wEla
not.even

iši!
thing

“He is NOTHING!”

(7) hiyya
she

maġru:ra
conceited.fs

Qala
upon

wEla
not.even

iši.
thing

“She is conceited for absolutely NO reason!”

The NPI-interpretation is only available within the

scope of antimorphic operators (Zwarts, 1993),

like sentential negation or bıdu:n “without” (8-9):

(8) tılıQti
left.2fs

bıdu:n-ma
without-that

tk
˙
u:li

say.2fs
wEla
even

iši.
thing

“You left without saying even one thing!”

(9) la-s-sEnna
to-the-year

ma-baQt
˙
i:-hUm

not-give.1s-them
wElla
even

lUk
˙
mi

bite
Ekl.
food

“Up to a year I don’t give them even a bite of
[solid] food.”

More than one wEla-phrase can have the NPI-

interpretation at a time:

(10) ma-k
˙
Ult

not-said.1s
wEla
even

iši
thing

wEla
to-even

la-h
˙
ada

one
fi:-hUm.
in-them

“I didn’t give anything at all to even one of them.”

It follows from the distributions of NQ- and NPI-

wEla that wEla-phrases are blocked from post-

verbal argument positions which are thematically

entailed and which are not within the scope of an

antimorphic operator.

1Following (Herburger, 2001), “thematically entailed”
means that the meaning of the verb entails the existence of
an entity filling the thematic role in question.

49

1.1 Negative Concord and Locality

PA negative concord is generally subject to strict

locality constraints: a wEla-phrase must be con-

tained within the smallest inflected clause contain-

ing its licensor. It cannot be separated from its li-

censor by the boundary of either an indicative (11)

or a subjunctive/irrealis (12) complement:

(11) * ma-waQatt
not-promised.1s

[Eh
˙
ki

talk
wEla
even

maQ
with

h
˙
ada

one
fi:-hUm
in-them

].

(12) * batwak
˙
k
˙
aQ-ıš

believe.1s-neg
[ınnhæ

that.3fs
bıth

˙
ıbb

likes.3fs
wEla
even

h
˙
ada

one
].

Similar sentences with weaker polarity items such

as h
˙
ada or Paiy h

˙
ada “anyone” are acceptable:

(13) ma-waQatt
not-promised.1s

Eh
˙
ki

talk
maQ
with

(Paiy
any

) h
˙
ada

one
fi:-hUm.
in-them

“I didn’t promise to talk with any of them.”

(14) batwak
˙
k
˙
aQ-ıš

believe.1s-neg
ınnhæ
that.3fs

bıth
˙
ıbb

likes.3fs
(Paiy

any
) h

˙
ada.

one

“I don’t think that she likes ANY one.”

This suggests that negative concord is a strictly

bounded dependency like agreement marking, ar-

gument realization, or reflexive binding.

However, there are exceptions to this general-

ization. “Long-distance” negative concord is pos-

sible between a matrix negation morpheme and

wEla-phrases inside the complements of a small

class of verbs, including bıdd- “want” (15), Xalla

“to allow” (16), h
˙
a:wal “to try” (17, 25 below) or

Qırıf “to know how to, to be able to” (18 below):

(15) ma-bıddna
not-want.1s

nXalli
leave.1p

wEla
even

zElami.
fellow

“We don’t want to leave even one man.”

(16) ma-Xallu:-ni:-š
not-allowed.3mp-me-neg

æ:kOl
eat.1s

wEla
even

lUk
˙
mi

bite

“They wouldn’t let me eat even one bite!”

The embedding can be recursive, provided that

only verbs in this class are used (17).

(17) bıddi:-š
want.1s-neg

ah
˙
a:wıl

try.1s
Eh

˙
ki

speak.1s
wEla
even

maQ
with

h
˙
ada.

one

“I don’t want try to talk with anyone at all.”

These verbs correspond to verbs found in many

other languages which trigger a process often re-

ferred to as restructuring or clause union. I fol-

low (Aissen and Perlmutter, 1983) in calling them

trigger verbs. Restructuring involves the “stretch-

ing” of the domain of locality for certain kinds of

bounded dependencies from the complement of a

trigger verb to include the clause that it heads.

At present no other phenomena have been iden-

tified in PA which independently confirm that it

has restructuring. However, long-distance nega-

tive concord is identified as a restructuring phe-

nomenon in several languages such as West Flem-

ish (Haegeman and Zanuttini, 1996), Polish (Dzi-

wirek, 1998), and Serbian (Progovac, 2000). As

such, I assume for now that long-distance negative

concord in PA is a form of restructuring as well.

2 A TAG Analysis

Restructuring involves a seeming paradox involv-

ing a dependency which is non-local in the hier-

archical structure of a sentence but local in its se-

mantics. Tree Adjoining Grammars are well suited

for analyzing restructuring because the distinction

between a derived tree and the derivation tree asso-

ciated with it provides two notions of locality. Re-

structuring phenomena which have been analyzed

with TAGs include clitic-climbing in Spanish and

Italian (Bleam, 2000; Kulick, 2000), long-distance

scrambling in German (Rambow, 1994), and long-

distance agreement in Tsez (Frank, 2006). It there-

fore is natural to explore a TAG analysis for long-

distance negative concord in PA.

To illustrate with a simple example, the nega-

tive concord dependency in (18) is licensed within

an initial tree headed by Ektıb “write,” and is

then “stretched” by adjunction of the auxiliary tree

headed by Qırıft “I was able to” (19):

(18) ma-Qırıft
not-knew.1s

Ektıb
write.1s

wEla
even

kılmi.
word

“I wasn’t able to write even one word.”

(19) β:IP00

δ:IP

ma:- IP*

β:IP00

γ:IP

Qırıft IP*

β:IP00

Ektıb NP↓02

α:NP

wEla kılmi

The locality constraint on negative concord can

then be expressed as a generalization about the

derivation tree (20): a wEla-phrase and its licen-

sor must be sisters:

(20) β

α(02) γ(00) δ(00)

However, several properties of negative concord

in PA preclude a simple analysis like this.

50

2.1 Clause-local Dependencies

The first property is the domain of locality of the

negative concord dependency. In a simple TAG,

syntactic dependencies are licensed within an ele-

mentary tree: they are tree-local. However, nega-

tive concord in PA is clause-local, because wEla-

phrases are not licensed within the immediate tree

to which they are attached, but instead within the

immediate clausal tree containing them. For ex-

ample, wEla-phrases can be inside prepositional

phrases attached to a negative clause (21-22):

(21) ma-kaQatt
not-sat.1s

[PP ǧanıb
next.to

wEla
even

h
˙
ada

one
fi:-hUm
in-them

]

“I didn’t sit next to even one of them.”

(22) bıtXallıfu:-š
disagree.2mp-neg

Qan-na
from-us

[PP bi-wEla
with-even

iši
thing

].

“You don’t disagree with us about even one thing.”

In a simple TAG analysis, the wEla-phrase first

substitutes into the initial tree headed by the

preposition, which is then attached to the clausal

tree. The relationship between the wEla-phrase

and its licensor would therefore not be tree-local.

Clause-locality can be modeled with what I

refer to as “Scope TAG” (Kallmeyer and Joshi,

2003), a multi-component TAG (MC-TAG) in

which quantificational NPs are tree sets containing

two parts: a “defective” auxiliary tree IP* which

specifies the scope of the quantifier, and an NP-

tree which specifies its restriction. I refer to such

tree sets as “scope sets.”

While Kallmeyer & Joshi’s proposal is intended

to capture the semantic scope of quantifiers, it can

also be used to express clause locality by assigning

PPs to scope sets as well, and by stipulating that

scope sets can combine with each other by means

of set-local adjunction. The IP*-node in the scope-

set of a wEla-phrase can then adjoin to the IP*-

node in the PP scope set, which in turn adjoins to

the IP-node of the initial tree.

For example, (21) above can be analyzed with

the elementary trees in (23) (trees are in abbrevi-

ated form), producing the derivation tree in (24):

(23) a. α :

{

α1 : IP* , α2 : NP

wEla h
˙
ada

}

b. γ :

{

γ1 : IP*00 , γ2 : PP

ǧænıb NP↓02

}

c. δ: IP

ma:- IP*

β: IP00

I

kaQatt

PP↓02

(24) β

γ1(00)

α1(00)

δ(00) γ2(02)

α2(02)

However, given (24) it is still not possible to state

a generalization about negative concord locality in

terms of sisterhood in the derivation tree.

This can be remedied by adopting the “node-

sharing” relation proposed by (Kallmeyer, 2005).

Informally, two nodes α and β are in a node-

sharing relation in a derivation tree T iff they

are either in a mother-daughter relation in T at

a node address A, or there is a sequence S of

nodes N1 . . . Nn which is the transitive closure of

a mother-daughter relation in T in which the node

pairs are related in terms of the root node or foot

node in an auxiliary tree.

On this basis, the negative concord locality gen-

eralization is that a wEla-phrase and its licensor

are “shared-node sisters” in the derivation tree,

where shared-node sisters are two nodes A and B

which are each in a shared-node relation with a

single node C . For example, in (24) β is a shared-

node parent of both α1 and δ. Accordingly, α1

and δ are shared-node sisters with respect to β.

2.2 Trigger Verbs and Complement Type

The second property of PA long-distance negative

concord that complicates a TAG analysis has to

do with the kinds of complement that they take.

TAG approaches to restructuring exploit “reduced

complement” analyses in which trigger verbs take

“smaller” complements than other kinds of sub-

ordinating verbs do (Bleam, 2000; Kulick, 2000).

However, PA trigger verbs are mixed in terms of

the types of complements they take: h
˙
a:wal “try

to” or k
˙
ıdır “be able to” optionally allow a com-

plementizer Pınn- (25-26), while bıdd- “want” or

Qırıf “know to, be able to” exclude it (27-28):

(25) ma-h
˙
a:walt

not-tried.1s
(ınni

that.1s
) Eh

˙
ki

speak.1s
wEla
even

maQ
with

h
˙
ada.

one

“I didn’t try to talk with even one of them.”

(26) ma-k
˙
ıdırt

not-could.1s
(ınni

that.1s
) Eh

˙
ki

speak.1s
wEla
even

maQ
with

h
˙
ada.

one

“I wasn’t able to speak with even one of them.”

(27) ma-bıdd-i:-ıš
not-want.1s-neg

(*ınni
that.1s

) ašu:f
see.1s

wEla
even

h
˙
ada.

one

“I don’t want to see even ONE of them.”

(28) ma-Qırıft
not-knww.1s

(*ınni
that.1s

) Ektıb
write.1s

wEla
even

kılmi.
word

“I wan’t able to write even one word.”

51

Assuming that the presence of a complementizer

indicates a CP category, and that the presence of

agreement marking on the verb indicates an IP cat-

egory, what these data show is that some trigger

verbs allow either CP or IP complements, while

others allow only IP complements. It follows that

complement category cannot be exploited as a way

to distinguish trigger verbs from non-trigger verbs.

This is an essential distinction because restruc-

turing is not the only phenomenon which in-

volves adjunction. For example, long-distance A-

dependencies are analyzed in TAG as involving

adjunction of auxiliary trees. (29-30) show that

the same verbs which block long-distance nega-

tive concord allow long-distance A-dependencies,

indicating that they must also be analyzed as auxil-

iary trees. Moreover, (30) can include the comple-

mentizer Pınn-, indicating that it takes the same

kinds of complements as do trigger verbs like

k
˙
ıdır “be able” and h

˙
a:wal “try”:

(29) mi:n
who

bıtıtwak
˙
k
˙
aQ

believe.2ms
yah

˙
sal

get.3ms
Qala
upon

kæ:s
cup

ıl-Qæ:lım?
the-world

“Who do you think will get the World Cup?”

(30) šu
what

waQatt
promised.2ms

(ınnak
that.2ms

) taQt
˙
i:-hæ?

give.2ms-her

“What did you promise to give her?”

A failure to distinguish between trigger verbs and

non-trigger verbs will over-predict the availability

of long-distance negative concord.

To make this distinction, I use Dowty’s (Dowty,

1994) analysis of negative concord licensing.

Dowty models negative concord with a “polarity”

feature which takes “+” or “-” values. When a neg-

ative concord item combines with a clausal cate-

gory it specifies (by unification) the clause as hav-

ing a negative value for this feature. In addition,

Dowty assumes that root clauses must have a pos-

itive value for the feature: I refer to this as the root

clause polarity constraint. Negation morphemes

(as well as bıdu:n “without”) take a complement

specified as POL- and return a constituent with a

POL+ feature. A root clause containing a negative

concord item and lacking a negation morpheme

will have a POL- feature for its root node and vio-

late the root clause polarity constraint. This de-

rives the requirement that wEla phrases in root

clauses be “roofed” by a negation morpheme.

Turning to long-distance negative concord, trig-

ger verbs can be distinguished from non-trigger

verbs by stipulating that non-trigger verbs take

POL+ complements, while trigger verbs (and aux-

iliary verbs) impose no polarity specification and

instead inherit the polarity feature with which their

complement is specified2. An analysis of this kind

applied to (18) would result in a derived tree (32)

which satisfies the root clause polarity constraint.

(31) β:IP

IPPOL+

ma:- IP*POL-

γ:IP

Qırıft IP*

α1 :IP*POL-

β:IP

Ektıb NP↓

α2 :NP

wEla kılmi

(32) IPPOL+

ma:- IPPOL-

Qırıft IP*POL-

Ektıb NP↓

wEla kılmi

2.3 Negation Morphology

The last property of long-distance negative con-

cord sentences to be dealt with has to do with

negation morphology in PA. Negation is expressed

with some combination of the proclitic ma:- and

the enclitic -š. -š appears to be a second-position

attaching to the first word-sized constituent in the

string produced by an IP-constituent, provided that

the word contains a morpheme expressing person

features (Awwad, 1987; Eid, 1993).

The most frequent distribution has -š attached

to the leftmost verb stem in a clause, which may

be the main verb in a mono-verbal predicate (33),

or to the leftmost auxiliary in a clause with com-

pound tense-aspect-mood marking (34-35):

(33) ma-nımt-ıš
not-slept.1s-neg

fi-l-le:l.
in-the-night

“I didn’t sleep last night.”

(34) ma-kUnt-ıš
not-was.1s-neg

Qa:rıf
know.actpart.ms

we:n
where

ah
˙
Ut

˙
t
˙
-u.

put.1s-it

“I didn’t know where to put it.”

(35) ma-Qad-š
not-returned.3ms-neg

k
˙
al-l-i

said.3ms-to-me
Pınnu
that.3ms

štara
bought.3ms

sayya:ra.
car

“He didn’t tell me anymore that he bought a car.”

2This is similar to Frank’s (Frank, 2006) proposal for an-
alyzing long-distance agreement in Tsez.

52

In other kinds of sentences, -š attaches to a variety

of non-verbal expressions, including the indefinite

pronoun h
˙
ada “(any)one” (36), the existential par-

ticle fi: (37), inflected prepositions (38), and the

adverb QUmr “ever” (39):

(36) ma-h
˙
ada:-š

not-one.ms-neg
kæ:n
was.3ms

yıQǧır-na.
rent.3ms-us

“No one would rent to us.”

(37) ma-fıš-š
not-exist-neg

fi-d-dınya
in-the-word

mıþıl-hın.
like-them.fp

“There isn’t [anything] in the world like them.”

(38) bæk
˙
i:-l-E

was.3ms-to-him
faras
mare

ma-lhæ:-š
not-to-her-neg

UXt.
sister

“He had a mare [that was] without compare.”

(39) fi:
exist

næ:s
people.3fs

ma-QUmr-hæ:-š
not-age-3fs-neg

h
˙
at
˙
t
˙
at

put.3fs
mawd

˙
u:Q

subject

fi-l-mUntada.
in-the-club

“There are people who have never posted a thread
on almontada.com.”

What these expressions all have in common with

verb stems is that they occur as the first constituent

in the clause and that they all contain a morpheme

expressing person features. It follows that -š is

constrained to occur in the second position at-

tached to a word that is inflected for person.

The cases in which -š attaches to a verb can be

modeled by assuming that ma:- and -š are part of

a tree set and that -š adjoins to right of an I-node:

(40)

{

δ1 : IP

ma:- IP*

, δ2 : I

I -š

}

(41) IP

IP

ma:- IP*

IP

I PP

fi-l-le:l

I

I* -š

I

nımt

The cases with -š attached to a non-verbal expres-

sion require a second analysis. One possibility is

to assume a second tree for -š like the first, except

with -š preceding the foot node. This requires stip-

ulating a morphological output filter that affixes -š

to the preceding word and blocks use of δ2 in (40):

(42)

{

δ1 : IP

ma:- IP*

, δ2 : I

-š I

}

(43) IP

IP

ma:- IP*

IP

NP

h
˙
ada

I

I VP

yıQǧırna

I

-š I*

I

kæ:n

This is still not adaquate for (35), in which -š is

attached to a “serial auxiliary” (Hussein, 1990),

one of a small set of verb stems which function

as aspectual adverbs and which “agree” with the

main verb in aspectual form and agreement mark-

ing. Serial auxiliaries are plausibly analyzed as

adverbial IP-auxiliary trees as in (44):

(44) IP

I

Qad

IP*

IP

IP

I

k
˙
al-l-i

CP↓

The structure resulting from (44) has two I-nodes,

and another constraint would have to be stipulated

forcing -š to adjoin to the leftmost of the two.

To sum up, a TAG analysis can be formulated

for PA long-distance negative concord which al-

lows the locality of negative concord licensing to

be stated as a generalization about shared-node

derivation trees. However, the analysis requires

brute force stipulations to capture the morpholog-

ical expression of negation in PA negative sen-

tences. Moreover, the TAG analysis does not pro-

vide a way to express the simple morphological

generalization that -š falls in the second position

in the string generated by the clause.

3 A CCG Analysis

The TAG analysis has difficulty accommodating

the distribution of -š because TAG trees are phrase

structures, making it difficult to state constraints

on strings of words rather than on hierarchical

structure. Categorial Grammar, on the other hand,

is a string calculus, and its operations result in

string concatenation rather than structure expan-

sion. For this reason, a CG can be constrained to

not generate particular kinds of strings, rather than

53

particular trees. A CG therefore provides a way to

state constraints on the distribution of -š more di-

rectly than a phrase-structure grammar does.

I assume a Combinatory Categorial Gram-

mar (Steedman, 1996; Steedman, 2000b;

Baldridge, 2002). The basis of the CCG analysis

is that npI-wEla-phrases are treated as type-raised

categories which look for an s category to their

left. I continue following Dowty in assuming the

root clause polarity principle and in assuming

that wEla-phrases specify a POL- feature on

the s-headed category that they combine with.

NQ-wEla phrases, on the other hand, are treated as

negative quantifiers which look for their s-headed

argument to the right:

(45) NQ-wEla :- (Spol+$/(Spol+\$/NP))/NP :
λPλQ.∃x[P (x) & Q(x)]

(46) NPI-wEla :- (Spol−$\(Spol−$/NP))/NP :
λPλQ.¬∃x[P (x) & Q(x)]

The negation morphemes are treated as follows (-š

is semantically vacuous):

(47) ma:- :- Spol+$/Spol−$: λP st .¬P (e)

(48) -š :- Spol−$\×Spol±$

Verbs have the following types3:

(49) šUft :- S\NP/NP : λy.λx.[x saw y]

(50) h
˙
a:walt :- S\NP/(s\NP) : λx.λP st .[x tries P (x)]

The -š morpheme fixes a clause with a POL-

feature, while ma:- takes the POL- clausal cate-

gory and changes its value for the polarity feature

to POL+, satisfying the root clause polarity con-

straint. This works much as the TAG analysis did.

The slash in the type for -š is marked with the

“crossed composition” modality. This allows -š to

combine with a preceding s-headed category while

returning a category looking for its arguments to

the right (Figures 1-2)4.

Turning to long-distance negative concord, a

CCG analysis, like the TAG analysis above, has

to account for the distinction between trigger

verbs and non-trigger verbs. The CCG analog of

auxiliary-tree adjunction is function composition.

The long-distance negative concord dependency

therefore involves a specific kind of composition

subject to stricter constraints than is the more gen-

eral kind which produces A-dependencies.

In order to model this, I adapt Hepple’s (Hep-

ple, 1990) approach to modeling island constraints

3The type assignments ignore the representation of VS
word order and pro-drop sentences.

4Logical forms are surpressed in the derivations.

in Categorial Type Logic. In brief, Hepple’s ap-

proach is to assign unary modalities to the argu-

ments of clausal categories (such as subordinat-

ing verbs or relative pronouns) as well as to the

nominal argument of a type-raised extracted cate-

gory (such as a question word or topicalized noun

phrase). The former are referred to as “bounding

modalities,” and the latter as “penetrative modal-

ities.” Interaction axioms require the penetrative

modality of an extraction category to be compati-

ble with the bounding category of its argument in

terms of a type hierarchy defined over modalities.

The unary modalities in CTL can be duplicated

in CCG as features on category labels, so to ap-

proximate Hepple’s proposal, I define a feature hi-

erarchy as follows:

(51) h

g c

Each pair of sisters in the hierarchy consists of a

“penetrative feature” and the “bounding feature”

which blocks it (following Hepple’s terminology).

The feature c is an penetrative feature which is

blocked by the g feature, and h is the most gen-

eral or permissive bounding feature.

The idea is that categories which participate in

restructuring dependencies are marked with the c

penetrative feature, which is spread across all the

arguments of a complex type:

(52) wEla h
˙
ada :- Sc$\(Sc$/NPc)

Trigger verbs impose the h bounding feature on

their complements, while non-trigger embedding

verbs impose the g feature:

(53) bıdd- “want,” Qırıf “be able to,” h
˙
a:wal “try to” :-

S\NP/(Sh\NPh)

(54) waQad-yu:Qıd “promise to” :- S\NP/(Sg\NPg)

According to (51), categories marked with fea-

ture h are compatible with categories marked with

feature c, while categories marked with feature g

clash with it. The clash between g and c expresses

the restriction on restructuring dependencies.

For example, in an analysis of (18), wEla kılmi

applies to the composed constituent, Qırıft Ektıb.

This is possible because the penetrative feature

c on the wEla-phrase is compatible with the h

bounding feature which Qırıft passes to its com-

plement (Figure 3).

Long-distance negative concord is blocked in

two ways. A wide-scope derivation (in which the

wEla-phrase combines with the composition of the

54

matrix and embedded verbs) is blocked by a fea-

ture clash between the g and c features (Figure

4). A narrow scope derivation (in which the wEla-

phrase combines with the embedded verb only)

is blocked because of a resulting clash in polar-

ity features between the embedded clause and the

matrix verb (Figure 5).

4 Comparison and Discussion

While the TAG analysis imposes certain limita-

tions on the ordering of morphemes, it does pro-

vide a very simple and intuitive way to describe

restructuring verbs as a natural class that includes

auxiliary verbs, the other kinds of verb stems

which are “transparent” to negative concord. In

contrast, The CCG analysis has a technical flavor,

and it is not clear to what extent it reflects a lin-

guistic intuition. The CCG analysis does, how-

ever, capture the distribution of the negation mor-

phemes in PA. It would therefore be interesting

to explore further whether the Hepple-style fea-

ture/modality approach could be associated with

some linguistic phenomenon.

One interesting possibility would be to use

Steedman’s theory of intonation (Steedman,

2000a) to explore the prosodic properties of re-

structuring sentences in Arabic (and in other lan-

guages) to see whether the availability of restruc-

turing correlates with certain prosodic properties.

There has been very little study of sentential into-

nation in Arabic, and so very little empirical ba-

sis for an investigation. However, should such an

investigation bear fruit, it might suggest that Hep-

ple’s approach to extraction constraints could be

recast as a theory of intonation. This would allow

powerful generalizations to be stated relating the

prosodic properties of sentences in PA and other

languages to their syntactic properties.

References

Judith Aissen and David Perlmutter. 1983. Clause reduction
in spanish. In Studies in Relational Grammar. University
of Chicago Press.

Mohammad Amin Awwad. 1987. Free and bound pronouns
as verbs in rural palestinian colloquial arabic. Journal of
Arabic Linguistics, 16:108–118.

Jason Baldridge. 2002. Lexically Specified Derivational
Control in Combinatory Categorial Grammar. Ph.D. the-
sis, University of Edinburgh.

Tonia Bleam. 2000. Clitic climbing and the power of tree
adjoining grammar. In Anne Abeillé and Owen Rambow,

editors, Tree Adjoining Grammar: Formalism, Implemen-
tation, and Linguistic Analysis. CSLI (Stanford).

David Dowty. 1994. The role of negative polarity and con-
cord marking in natural language reasoning. In Mandy
Harvey and Lynn Santelmann, editors, Proceedings from
Semantics and Linguistic Theory IV, pages 114–144,
Ithaca, New York. Cornell University.

Katarzyna Dziwirek. 1998. Reduced constructions in uni-
versal grammar: Evidence from the polish object control
construction. Natural Language and Linguistic Theory,
16:53–99.

Mushira Eid. 1993. Negation and predicate heads in ara-
bic. In Mushira Eid and Gregory Iverson, editors, Princi-
ples and Predication: The Analysis of Natural Language,
pages 135–152. John Benjamins (Philadelphia).

Robert Frank. 2006. Phase theory and tree adjoining gram-
mar. Lingua, 116:145–202.

Liliane Haegeman and Raffaella Zanuttini. 1996. Negative
concord in west flemish. In Adriana Belleti and Luigi
Rizzi, editors, Parameters and Functional Heads, pages
117–179. Oxford University Press.

Mark Hepple. 1990. The Grammar and Processing of Order
and Dependency: A Categorial Approach. Phd, Univer-
sity of Edinburgh.

Elena Herburger. 2001. Negative concord revisited. Natural
Language Semantics, pages 289–333.

Lutfi Hussein. 1990. Serial verbs in colloquial arabic. In
B. D. Joseph and A. M. Zwicky, editors, When Verbs Col-
lide: Papers from the 1990 Ohio State Mini-Conference on
Serial Verbs, pages 340–354. The Ohio State University.

Laura Kallmeyer and Aravind Joshi. 2003. Factoring pred-
icate argumenta and scope semantics: Underspecified se-
mantics with ltag. Research on Language and Computa-
tion, 1:3–58.

Laura Kallmeyer. 2005. Tree-local multicomponent tree ad-
joining grammars with shared nodes. Computational Lin-
guistics, 31(2):187–225.

Seth Kulick. 2000. Constraining Non-Local Dependencies
in Tree Adjoining Grammar: Computational and Linguis-
tic Perspectives. Ph.D. thesis, University of Pennsylvania.

Ljiljana Progovac. 2000. Coordination, c-command and ‘lo-
gophoric’ n-words. In Laurence Horn and Yasuhiko Kato,
editors, Negation and Polarity: Syntactic and Semantic
Perspectives, pages 88–114. Oxford University Press (Ox-
ford).

Owen Rambow. 1994. Formal and Computational Aspects
of Natural Language Syntax. Ph.D. thesis, University of
Pennsylvania.

Mark Steedman. 1996. Surface Structure and Interpretation.
MIT Press.

Mark Steedman. 2000a. Information structure and the
syntax-phonology interface. Linguistic Inquiry, 31:649–
689.

Mark Steedman. 2000b. The Syntactic Process. MIT Press.

Frans Zwarts. 1993. Three types of polarity items. In
F. Hamm and E. Hinrichs, editors, Semantics.

55

ma:− šUft −ıš wEla h
˙
ada

Spol+$/Spol−$ S\NP /NP Spol−$\×Spol−$ (Spol−\NP)\((Spol−\NP)/NP)
<B×

Spol−\NP /NP
<

Spol−\NP
>B×

Spol+\NP

Figure 1:

ma:− h
˙
ada: −š šæ:f-ni

Spol+$/Spol−$ S/(S\NP) Spol−$\×Spol−$ S\NP
<B×

Spol−/(S\NP)
>B

Spol+/(S\NP)
>

Spol+

Figure 2:

ma:− Qırıft −ıš Ektıb wEla kılmi

Spol+$/Spol−$ Sh\NP h/(Sh\NP h) Spol−$\×Spol−$ Sh\NP h/NP h (Sh,pol−\NP h)\((Sc,pol−\NP c)/NP c)
<B×

Sh,pol−\NP h/(Sh\NP h)
>B

Sh,pol−\NP h/NP h
<

Sh,pol−\NP h
>B

Sh,pol+\NP h

Figure 3:

ma:− waQatt −ıš Eh
˙
ki wEla maQ h

˙
ada

Spol+$/Spol−$ Sh\NP h/(Sh,pol+\NP h) Spol−$\×Spol−$ Sh\NP h/pph (Sh,pol−\NP h)\((Sc,pol−\NP c)/ppc)
<B×

Sh,pol−\NP h/(Sh,pol+\NP h)
>B

Sh,pol−\NP h/NP h
∗

Figure 4:

ma:− waQatt −ıš Eh
˙
ki wEla maQ h

˙
ada

Spol+$/Spol−$ Sh\NP h/(Sh,pol+\NP h) Spol−$\×Spol−$ Sh\NP h/pph (Sh,pol−\NP h)\((Sc,pol−\NP c)/ppc)
<B×

Sh,pol−\NP h/(Sh,pol+\NP h)
<

Sh,pol−\NP h
∗

Figure 5:

56

Proceedings of the 8th International Workshop on Tree Adjoining Grammar and Related Formalisms, pages 57–64,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Stochastic Multiple Context-Free Grammar
for RNA Pseudoknot Modeling

Yuki Kato
Graduate School of

Information Science,
Nara Institute of

Science and Technology
8916-5 Takayama, Ikoma,

Nara 630-0192, Japan
yuuki-ka@is.naist.jp

Hiroyuki Seki
Graduate School of

Information Science,
Nara Institute of

Science and Technology
8916-5 Takayama, Ikoma,

Nara 630-0192, Japan
seki@is.naist.jp

Tadao Kasami
Graduate School of

Information Science,
Nara Institute of

Science and Technology
8916-5 Takayama, Ikoma,

Nara 630-0192, Japan
kasami@naist.jp

Abstract

Several grammars have been proposed
for modeling RNA pseudoknotted struc-
ture. In this paper, we focus on multiple
context-free grammars (MCFGs), which
are natural extension of context-free gram-
mars and can represent pseudoknots, and
extend a specific subclass of MCFGs to
a probabilistic model called SMCFG. We
present a polynomial time parsing algo-
rithm for finding the most probable deriva-
tion tree and a probability parameter esti-
mation algorithm. Furthermore, we show
some experimental results of pseudoknot
prediction using SMCFG algorithm.

1 Introduction

Non-coding RNAs fold into characteristic struc-
tures determined by interactions between mostly
Watson-Crick complementary base pairs. Such a
base paired structure is called thesecondary struc-
ture. Pseudoknot(Figure 1 (a)) is one of the typi-
cal substructures found in the secondary structures
of several RNAs, including rRNAs, tmRNAs and
viral RNAs. An alternative graphic representation
of a pseudoknot is arc depiction where arcs con-
nect base pairs (Figure 1 (b)). It has been rec-
ognized that pseudoknots play an important role
in RNA functions such as ribosomal frameshifting
and regulation of translation.

Many attempts have so far been made at mod-
eling RNA secondary structure by formal gram-
mars. In a grammatical approach, secondary struc-
ture prediction can be viewed as parsing problem.
However, there may be many different derivation
trees for an input sequence. Thus, it is necessary to
have a method of extracting biologically realistic

5’−C A G G
 • • •
 U C C A G U
 • • •
 U C A G−3’

C

G

C

(a) Pseudoknot

c a g g c u g a c c u g c u c a g

(b) Arc depiction of (a)

Figure 1: Example of RNA secondary structure

derivation trees among them. One solution to this
problem is to extend a grammar to a probabilistic
model and find the most likely derivation tree, and
another is to take free energy minimization into ac-
count. Eddy and Durbin (1994), and Sakakibara et
al. (1994) modeled RNA secondary structure with-
out pseudoknots by using stochastic context-free
grammars (stochastic CFGs or SCFGs). For pseu-
doknotted structure (Figure 1 (a)), however, an-
other approach has to be taken since a single CFG
cannot represent crossing dependencies of base
pairs in pseudoknots (Figure 1 (b)) for the lack of
generative power. Brown and Wilson (1996) pro-
posed a model based on intersections of SCFGs
to describe RNA pseudoknots. Cai et al. (2003)
introduced a model based on parallel communi-
cation grammar systems using a single CFG syn-
chronized with a number of regular grammars.
Akutsu (2000) provided dynamic programming al-
gorithms for RNA pseudoknot prediction without
using grammars. On the other hand, several gram-
mars have been proposed where the grammar itself
can fully describe pseudoknots. Rivas and Eddy
(1999, 2000) provided a dynamic programming

57

algorithm for predicting RNA secondary structure
including pseudoknots, and introduced a new class
of grammars called RNA pseudoknot grammars
(RPGs) for deriving sequences with gap. Ue-
mura et al. (1999) defined specific subclasses of
tree adjoining grammars (TAGs) named SL-TAGs
and extended SL-TAGs (ESL-TAGs) respectively,
and predicted RNA pseudoknots by using pars-
ing algorithm of ESL-TAG. Matsui et al. (2005)
proposed pair stochastic tree adjoining grammars
(PSTAGs) based on ESL-TAGs and tree automata
for aligning and predicting pseudoknots, which
showed good prediction accuracy. These gram-
mars have generative power stronger than CFGs
and polynomial time algorithms for parsing prob-
lem.

In our previous work (Kato et al., 2005),
we identified RPGs, SL-TAGs and ESL-TAGs
as subclasses ofmultiple context-free grammars
(MCFGs) (Kasami et al., 1988; Seki et al., 1991),
which can model RNA pseudoknots, and showed a
candidate subclass of the minimum grammars for
representing pseudoknots. The generative power
of MCFGs is stronger than that of CFGs and
MCFGs have a polynomial time parsing algo-
rithm like the CYK (Cocke-Younger-Kasami) al-
gorithm for CFGs. In this paper, we extend the
above candidate subclass of MCFGs to a prob-
abilistic model called a stochastic MCFG (SM-
CFG). We present a polynomial time parsing algo-
rithm for finding the most probable derivation tree,
which is applicable to RNA pseudoknot predic-
tion. In addition, we mention a probability param-
eter estimation method based on the EM (expec-
tation maximization) algorithm. Finally, we show
some experimental results on pseudoknot predic-
tion for three RNA families using SMCFG algo-
rithm, which show good prediction accuracy.

2 Stochastic Multiple Context-Free
Grammar

A stochastic multiple context-free grammar
(stochastic MCFG, or SMCFG) is a probabilistic
extension of MCFG (Kasami et al., 1988; Seki et
al., 1991) orlinear context-free rewriting system
(Vijay-Shanker et al., 1987). An SMCFG is a 5-
tupleG = (N,T, F, P, S) whereN is a finite set
of nonterminals,T is a finite set of terminals,F is
a finite set of functions,P is a finite set of (pro-
duction) rules andS ∈ N is the start symbol. For
eachA ∈ N , a positive integer denoted bydim(A)

is given andA derivesdim(A)-tuples of terminal
sequences. For the start symbolS, dim(S) = 1.
For eachf ∈ F , positive integersdi (0 ≤ i ≤ k)
are given andf is a total function from(T ∗)d1 ×
· · · × (T ∗)dk to (T ∗)d0 where each component of
f is defined as the concatenation of some compo-
nents of arguments and constant sequences. Note
that each component of an argument should oc-
cur in the function value at most once (linear-
ity). For example,f [(x11, x12), (x21, x22)] =
(x11x21, x12x22). Each rule inP has the form
of A0

p→ f [A1, . . . , Ak] whereAi ∈ N (0 ≤
i ≤ k), f : (T ∗)dim(A1) × · · · × (T ∗)dim(Ak) →
(T ∗)dim(A0) ∈ F andp is a real number with0 ≤
p ≤ 1 called theprobabilityof this rule. The sum-
mation of the probabilities of the rules with the
same left-hand side should be one. If we are not
interested inp, we just writeA0 → f [A1, . . . , Ak].
If k ≥ 1, then the rule is called anonterminat-
ing rule, and if k = 0, then it is called atermi-
nating rule. A terminating ruleA0 → f [] with
f [h][] = βh (1 ≤ h ≤ dim(A0)) is simply written
asA0 → (β1, . . . , βdim(A0)).

We recursively define the relation
∗⇒ by the fol-

lowing (L1) and (L2): (L1) if A
p→ α ∈ P (α ∈

(T ∗)dim(A)), then we writeA
∗⇒ α with proba-

bility p, and (L2) if A
p→ f [A1, . . . , Ak] ∈ P

and Ai
∗⇒ αi ∈ (T ∗)dim(Ai) (1 ≤ i ≤ k)

with probabilities p1, . . . , pk, respectively, then
we write A

∗⇒ f [α1, . . . , αk] with probability
p ·

∏k
i=1 pi. In parallel with the relation

∗⇒, we

define derivation trees as follows:(D1) if A
p→

α ∈ P (α ∈ (T ∗)dim(A)), then the ordered tree
with the root labeledA which hasα as the only
one child is a derivation tree forα with proba-
bility p, and (D2) if A

p→ f [A1, . . . , Ak] ∈ P ,
Ai

∗⇒ αi ∈ (T ∗)dim(Ai) (1 ≤ i ≤ k) and
t1, . . . , tk are derivation trees forα1, . . . , αk with
probabilitiesp1, . . . , pk, respectively, then the or-
dered tree with the root labeledA (or A : f
if necessary) which hast1, . . . , tk as (immediate)
subtrees from left to right is a derivation tree for
f [α1, . . . , αk] with probability p ·

∏k
i=1 pi. Ex-

ample rules areA
0.3→ f [A] wheref [(x1, x2)] =

(ax1b, cx2d) and A
0.7→ (ab, cd). Then, A

∗⇒
(ab, cd) by the second rule, which is followed
by A

∗⇒ f [(ab, cd)] = (aabb, ccdd) by the first
rule. The probability of the latter derivation is
0.3 · 0.7 = 0.21. The language generated by an
SMCFGG is defined asL(G) = {w ∈ T ∗ | S ∗⇒

58

Table 1: SMCFGGs
Type Rule set Function Transition probability Emission probability
E Wv → (ε, ε) 1 1
S Wv → J [Wy] J [(x1, x2)] = x1x2 tv(y) 1
D Wv → SK[Wy] SK[(x1, x2)] = (x1, x2) tv(y) 1
B1 Wv → C1[Wy, Wz] C1[x1, (x21, x22)] = (x1x21, x22) 1 1
B2 Wv → C2[Wy, Wz] C2[x1, (x21, x22)] = (x21x1, x22) 1 1
B3 Wv → C3[Wy, Wz] C3[x1, (x21, x22)] = (x21, x1x22) 1 1
B4 Wv → C4[Wy, Wz] C4[x1, (x21, x22)] = (x21, x22x1) 1 1
U1L Wv → UP ai

1L[Wy] UP ai
1L[(x1, x2)] = (aix1, x2) tv(y) ev(ai)

U1R Wv → UP
aj

1R[Wy] UP
aj

1R[(x1, x2)] = (x1aj , x2) tv(y) ev(aj)
U2L Wv → UP

ak
2L [Wy] UP

ak
2L [(x1, x2)] = (x1, akx2) tv(y) ev(ak)

U2R Wv → UP
al
2R[Wy] UP

al
2R[(x1, x2)] = (x1, x2al) tv(y) ev(al)

P Wv → BP aial [Wy] BP aial [(x1, x2)] = (aix1, x2al) tv(y) ev(ai, al)

w with probability greater than0}.
In this paper, we focus on an SMCFGGs =

(N,T, F, P, S) that satisfies the following condi-
tions: Gs hasm different nonterminals denoted
by W1, . . . ,Wm, each of which uses the only one
type of a rule denoted byE, S, D, B1, B2, B3, B4,
U1L, U1R, U2L, U2R or P 1 (see Table 1). The
type of Wv is denoted by type(v) and we prede-
fine type(1) = S, that is,W1 is the start symbol.
Consider a sample rule setWv → UPα

1L[Wy] |
UPα

1L[Wz] where UPα
1L[(x1, x2)] = (αx1, x2)

and α ∈ T . For each ruler, two real values
calledtransition probabilityp1 andemission prob-
ability p2 are specified in Table 1. The probability
of r is simply defined asp1 · p2. In application,
p1 = tv(y) andp2 = ev(ai), . . . in Table 1 are the
parameters of the grammar, which are set by hand
or by a training algorithm (Section 3.3) depending
on the set of possible sequences to be analyzed.

3 Algorithms for SMCFG

In RNA structure analysis using stochastic gram-
mars, we have to deal with the following three
problems:(1) calculate the optimal alignment of
a sequence to a stochastic grammar (alignment
problem), (2) calculate the probability of a se-
quence given a stochastic grammar (scoring prob-
lem), and(3) estimate optimal probability param-
eters for a stochastic grammar given a set of exam-
ple sequences (training problem). In this section,
we give solutions to each problem for the specific
SMCFGGs = (N,T, F, P, S).

3.1 Alignment Problem

The alignment problem forGs is to find the
most probable derivation tree for a given input se-

1These types stand for END, START, DELETE, BIFURCA-
TION, UNPAIR and PAIR respectively.

quence. This problem can be solved by a dynamic
programming algorithm similar to the CYK algo-
rithm for SCFGs (Durbin et al., 1998), and in this
paper, we also call the parsing algorithm forGs

the CYK algorithm. We fix an input sequencew =
a1 · · · an (|w| = n). Let γv(i, j) andγy(i, j, k, l)
be the logarithm of maximum probabilities of a
derivation subtree rooted at a nonterminalWv for
a terminal subsequenceai · · · aj and of a deriva-
tion subtree rooted at a nonterminalWy for a tuple
of terminal subsequences(ai · · · aj , ak · · · al) re-
spectively. The variablesγv(i, i− 1) andγy(i, i−
1, j, j − 1) are the logarithm of maximum prob-
abilities for an empty sequenceε and a pair ofε.
Let τv(i, j) andτy(i, j, k, l) be traceback variables
for constructing a derivation tree, which are calcu-
lated together withγv(i, j) andγy(i, j, k, l). We
defineCv = {y | Wv → f [Wy] ∈ P, f ∈ F}.
To avoid non-emitting cycles, we assume that the
nonterminals are numbered such thatv < y for
all y ∈ Cv. The CYK algorithm uses five dimen-
sional dynamic programming matrix to calculate
γ, which leads tolog P (w, π̂ | θ) whereπ̂ is the
most probable derivation tree andθ is an entire set
of probability parameters. The detailed descrip-
tion of the CYK algorithm is as follows:

Algorithm 1 (CYK).
Initialization:
for i ← 1 to n + 1, j ← i to n + 1, v ← 1 to m

do if type(v) = E
then γv(i, i− 1, j, j − 1) ← 0

elseγv(i, i− 1, j, j − 1) ← −∞
Iteration:
for i ← n downto 1, j ← i − 1 to n, k ← n + 1
downto j + 1, l ← k − 1 to n, v ← 1 to m

do if type(v) = E
then if j = i− 1 and l = k − 1

then skip

59

elseγv(i, j, k, l) ← −∞
if type(v) = S

then γv(i, j)
← max

y∈Cv

max
h=i−1,...,j

[log tv(y)

+γy(i, h, h + 1, j)]
τv(i, j)
← arg max

(y,h)
[log tv(y)+γy(i, h, h+1, j)]

if type(v) = B1 and Wv → C1[Wy,Wz]
then γv(i, j, k, l)

← max
h=i−1,...,j

[γy(i, h)+γz(h+1, j, k, l)]

τv(i, j, k, l)
← arg max

(y,z,h)
[γy(i, h)+γz(h+1, j, k, l)]

if type(v) = B2 and Wv → C2[Wy,Wz]
then γv(i, j, k, l)

← max
h=i−1,...,j

[γy(h+1, j)+γz(i, h, k, l)]

τv(i, j, k, l)
← arg max

(y,z,h)
[γy(h+1, j)+γz(i, h, k, l)]

if type(v) = B3 and Wv → C3[Wy,Wz]
then γv(i, j, k, l)

← max
h=k−1,...,l

[γz(i, j, h+1, l)+γy(k, h)]

τv(i, j, k, l)
← arg max

(y,z,h)
[γz(i, j, h+1, l)+γy(k, h)]

if type(v) = B4 and Wv → C4[Wy,Wz]
then γv(i, j, k, l)

← max
h=k−1,...,l

[γz(i, j, k, h)+γy(h+1, l)]

τv(i, j, k, l)
← arg max

(y,z,h)
[γz(i, j, k, h)+γy(h+1, l)]

if type(v) = P
then if j = i− 1 or l = k − 1

then γv(i, j, k, l) ← −∞
elseγv(i, j, k, l)

← max
y∈Cv

[log ev(ai, al) + log tv(y)

+γy(i + 1, j, k, l − 1)]
τv(i, j, k, l)
← arg max

y
[log ev(ai, al) + log tv(y)

+γy(i + 1, j, k, l − 1)]
elseγv(i, j, k, l)

← max
y∈Cv

[log ev(ai, aj , ak, al) + log tv(y)

+γy(i + ∆1L
v , j −∆1R

v , k + ∆2L
v ,

l −∆2R
v)]

τv(i, j, k, l)
← arg max

y
[log ev(ai, aj , ak, al)

+ log tv(y) + γy(i + ∆1L
v , j −∆1R

v ,
k + ∆2L

v , l −∆2R
v)]

Note: ev(ai, aj , ak, al) = ev(ai) for type(v) =

U1L, ev(ai, aj , ak, al) = ev(aj) for type(v) =
U1R, ev(ai, aj , ak, al) = ev(ak) for type(v) =
U2L, ev(ai, aj , ak, al) = ev(al) for type(v) =
U2R, ev(ai, aj , ak, al) = 1 for the other types
exceptP. Also, ∆1L

v = 1 for type(v) = U1L,
∆1R

v = 1 for type(v) = U1R, ∆2L
v = 1 for

type(v) = U2L, ∆2R
v = 1 for type(v) = U2R,

and∆1L
v , . . . ∆2R

v are set to0 for the other types
exceptP.

When the calculation terminates, we obtain
log P (w, π̂ | θ) = γ1(1, n). If there areb BI-
FURCATION nonterminals anda other nontermi-
nals, the time and space complexities of the CYK
algorithm areO(amn4 + bn5) andO(mn4), re-
spectively. To recover the optimal derivation tree,
we use the traceback variablesτ . Due to limitation
of the space, the full description of the traceback
algorithm is omitted (see (Kato and Seki, 2006)).

3.2 Scoring Problem

As in SCFGs (Durbin et al., 1998), the scor-
ing problem forGs can be solved by the inside
algorithm. The inside algorithm calculates the
summed probabilitiesαv(i, j) andαy(i, j, k, l) of
all derivation subtrees rooted at a nonterminalWv

for a subsequenceai · · · aj and of all derivation
subtrees rooted at a nonterminalWy for a tuple
of subsequences(ai · · · aj , ak · · · al) respectively.
The variablesαv(i, i−1) andαy(i, i−1, j, j−1)
are defined for empty sequences in a similar way
to the CYK algorithm. Therefore, we can easily
obtain the inside algorithm by replacing max op-
erations with summations in the CYK algorithm.
When the calculation terminates, we obtain the
probability P (w | θ) = α1(1, n). The time and
space complexities of the algorithm are identical
with those of the CYK algorithm.

In order to re-estimate the probability parame-
ters of Gs, we need the outside algorithm. The
outside algorithm calculates the summed prob-
ability βv(i, j) of all derivation trees excluding
subtrees rooted at a nonterminalWv generat-
ing a subsequenceai · · · aj . Also, it calculates
βy(i, j, k, l), the summed probability of all deriva-
tion trees excluding subtrees rooted at a non-
terminal Wy generating a tuple of subsequences
(ai · · · aj , ak · · · al). In the algorithm, we will use
Pv = {y | Wy → f [Wv] ∈ P, f ∈ F}. Note
that calculating the outside variablesβ requires
the inside variablesα. Unlike CYK and inside al-
gorithms, the outside algorithm recursively works

60

its way inward. The time and space complexities
of the outside algorithm are the same as those of
CYK and inside algorithms. Formally, the outside
algorithm is as follows:

Algorithm 2 (Outside).
Initialization:
β1(1, n) ← 1
Iteration:
for i ← 1 to n+1, j ← n downto i−1, k ← j+1
to n + 1, l ← n downto k − 1, v ← 1 to m

do if type(v) = S and Wy → C1[Wv,Wz]
then βv(i, j)

←
n∑

h=j

n+1∑
k′=h+1

n∑
l′=k′−1

βy(i, h, k′, l′)

αz(j + 1, h, k′, l′)
if type(v) = S and Wy → C2[Wv,Wz]

then βv(i, j)

←
i∑

h=1

n+1∑
k′=j+1

n∑
l′=k′−1

βy(h, j, k′, l′)

αz(h, i− 1, k′, l′)
if type(v) = S and Wy → C3[Wv,Wz]

then βv(i, j)

←
i∑

h=1

i−1∑
k′=h−1

n∑
l′=j

βy(h, k′, i, l′)

αz(h, k′, j + 1, l′)
if type(v) = S and Wy → C4[Wv,Wz]

then βv(i, j)

←
i∑

h=1

i−1∑
k′=h−1

i∑
l′=k′+1

βy(h, k′, l′, j)

αz(h, k′, l′, i− 1)
if type(v) ̸= S and Wy → C1[Wz,Wv]

then βv(i, j, k, l)

←
i∑

h=1

βy(h, j, k, l)αz(h, i− 1)

if type(v) ̸= S and Wy → C2[Wz,Wv]
then βv(i, j, k, l)

←
k−1∑
h=j

βy(i, h, k, l)αz(j + 1, h)

if type(v) ̸= S and Wy → C3[Wz,Wv]
then βv(i, j, k, l)

←
k∑

h=j+1

βy(i, j, h, l)αz(h, k − 1)

if type(v) ̸= S and Wy → C4[Wz,Wv]
then βv(i, j, k, l)

←
n∑

h=l

βy(i, j, k, h)αz(l + 1, h)

elseβv(i, j, k, l)

←
∑
y∈Pv

βy(i−∆1L
y , j + ∆1R

y , k −∆2L
y ,

l+∆2R
y)ey(ai−∆1L

y
, aj+∆1R

y
, ak−∆2L

y
,

al+∆2R
y

)ty(v)

3.3 Training Problem

The training problem forGs can be solved by the
EM algorithm called the inside-outside algorithm
where the inside variablesα and outside variables
β are used to re-estimate probability parameters.

First, we consider the probability that a nonter-
minal Wv is used at positionsi, j, k and l in a
derivation of a single sequencew. If type(v) =
S, the probability is 1

P (w|θ)αv(i, j)βv(i, j), other-

wise 1
P (w|θ)αv(i, j, k, l)βv(i, j, k, l). By summing

these over all positions in the sequence, we can ob-
tain the expected number of times thatWv is used
for w as follows: for type(v) = S, the expected
count is

1
P (w | θ)

n+1∑
i=1

n∑
j=i−1

αv(i, j)βv(i, j),

otherwise

1
P (w | θ)

n+1∑
i=1

n∑
j=i−1

n+1∑
k=j+1

n∑
l=k−1

αv(i, j, k, l)

βv(i, j, k, l).

Next, we extend these expected values from a sin-
gle sequencew to multiple independent sequences
w(r) (1 ≤ r ≤ N). Let α(r) andβ(r) be the in-
side and outside variables calculated for each in-
put sequencew(r). Then we can obtain the ex-
pected number of times that a nonterminalWv is
used for training sequencesw(r) (1 ≤ r ≤ N) by
summing the above terms over all sequences: for
type(v) = S,

E(v) =
N∑

r=1

n+1∑
i=1

n∑
j=i−1

1
P (w(r) | θ)

α(r)
v (i, j)

β(r)
v (i, j),

otherwise

E(v) =
N∑

r=1

n+1∑
i=1

n∑
j=i−1

n+1∑
k=j+1

n∑
l=k−1

1
P (w(r) | θ)

α(r)
v (i, j, k, l)β(r)

v (i, j, k, l).

Similarly, for a givenWy, the expected number of
times that a ruleWv → f [Wy] is applied can be

61

obtained as follows: for type(v) = S,

E(v → y) =
N∑

r=1

n+1∑
i=1

n∑
j=i−1

j∑
h=i−1

1
P (w(r) | θ)

β(r)
v (i, j)tv(y)α(r)

y (i, h, h + 1, j),

otherwise

E(v → y) =
N∑

r=1

n+1∑
i=1

n∑
j=i−1

n+1∑
k=j+1

n∑
l=k−1

1
P (w(r) | θ)

β(r)
v (i, j, k, l)ev(ai, aj , ak, al)tv(y)

α(r)
y (i + ∆1L

v , j −∆1R
v , k + ∆2L

v ,

l −∆2R
v).

For a given terminala or a pair of terminals(a, b),
the expected number of times that a rule contain-
ing a (or a andb) is applied is as shown below: for
type(v) = U1L,

E(v → a) =
N∑

r=1

n∑
i=1

n∑
j=i

n+1∑
k=j+1

n∑
l=k−1

1
P (w(r) | θ)

δ(a(r)
i = a)β(r)

v (i, j, k, l)

α(r)
v (i, j, k, l),

for type(v) = U1R,

E(v → a) =
N∑

r=1

n∑
i=1

n∑
j=i

n+1∑
k=j+1

n∑
l=k−1

1
P (w(r) | θ)

δ(a(r)
j = a)β(r)

v (i, j, k, l)

α(r)
v (i, j, k, l),

for type(v) = U2L,

E(v → a) =
N∑

r=1

n−1∑
i=1

n−1∑
j=i−1

n∑
k=j+1

n∑
l=k

1
P (w(r) | θ)

δ(a(r)
k = a)β(r)

v (i, j, k, l)

α(r)
v (i, j, k, l),

for type(v) = U2R,

E(v → a) =
N∑

r=1

n−1∑
i=1

n−1∑
j=i−1

n∑
k=j+1

n∑
l=k

1
P (w(r) | θ)

δ(a(r)
l = a)β(r)

v (i, j, k, l)

α(r)
v (i, j, k, l),

and for type(v) = P,

E(v → ab) =
N∑

r=1

n−1∑
i=1

n−1∑
j=i

n∑
k=j+1

n∑
l=k

1
P (w(r) | θ)

δ(a(r)
i = a, a

(r)
l = b)β(r)

v (i, j, k, l)

α(r)
v (i, j, k, l),

whereδ(C) is 1 if the conditionC in the parenthe-
sis is ture, and0 if C is false.

Now, we re-estimate probability parameters by
using the above expected counts. Lett̂v(y) be re-
estimated transition probabilities fromWv to Wy.
Also, let êv(a) andêv(a, b) be re-estimated emis-
sion probabilities thatWv emits a symbola and
two symbolsa and b respectively. We can ob-
tain each re-estimated probability by the following
equations:

t̂v(y) =
E(v → y)

E(v)
, êv(a) =

E(v → a)
E(v)

,

êv(a, b) =
E(v → ab)

E(v)
.

(3.1)

Note that the expected count correctly correspond-
ing to its nonterminal type must be substituted
for the above equations. In summary, the inside-
outside algorithm is as follows:

Algorithm 3 (Inside-Outside).
Initialization: Pick arbitrary probability parame-
ters of the model.

Iteration: Calculate the new probability parame-
ters using (3.1). Calculate the new log likelihood∑N

r=1 log P (w(r) | θ) of the model.

Termination: Stop if the change in log likelihood
is less than predefined threshold.

4 Experimental Results

4.1 Data for Experiments

The dataset for experiments was taken from an
RNA family database called “Rfam” (version 7.0)
(Griffiths-Jones et al., 2003) which is a database
of multiple sequence alignment and covariance
models (Eddy and Durbin, 1994) representing
non-coding RNA families. We selected three vi-
ral RNA families with pseudoknot annotations
named Coronapk 3 (Corona), HDVribozyme
(HDV) and Tombus3 IV (Tombus) (see Table 2).
Coronapk 3 has a simple pseudoknotted struc-
ture, whereas HDVribozyme and Tombus3 IV
have more complicated structures with pseudo-
knot.

62

Table 2: Three RNA families from Rfam ver. 7.0
Family Range of length # of annotated sequences# of test sequences

Coronapk 3 62–64 14 10
HDV ribozyme 87–91 15 10
Tombus3 IV 89–92 18 12

Table 3: Prediction results
Family Precision [%] Recall [%] CPU time [sec]

Average Min Max Average Min Max Average Min Max
Coronapk 3 99.4 94.4 100.0 99.4 94.4 100.0 27.8 26.0 30.4
HDV ribozyme 100.0 100.0 100.0 100.0 100.0 100.0 252.1 219.0 278.4
Tombus3 IV 100.0 100.0 100.0 100.0 100.0 100.0 244.8 215.2 257.5

4.2 Implementation

We specified a particular SMCFGGs by utiliz-
ing secondary structure annotation of each fam-
ily. Rules were determined by considering con-
sensus secondary structure. Probability parame-
ters were estimated in a few selected sequences by
the simplest pseudocounting method known as the
Laplace’s rule (Durbin et al., 1998): to add one ex-
tra count to the true counts for each base configu-
ration observed in a few selected sequences. Note
that the inside-outside algorithm was not used in
the experiments. The other sequences in the align-
ment were used as the test sequences for predic-
tion (see Table 2). We implemented the CYK al-
gorithm with traceback in ANSI C on a machine
with Intel Pentium D CPU 2.80 GHz and 2.00 GB
RAM. Straightforward implementation gives rise
to a serious problem of lack of memory space due
to the higher order dynamic programming matrix
(remember that the space complexity of the CYK
algorithm is O(mn4)). The dynamic program-
ming matrix in our specified model is sparse, and
therefore, we successfully implemented the matrix
as a hash table storing only nonzero probability
values (equivalently, finite values of the logarithm
of probabilities).

4.3 Tests

We tested prediction accuracy by calculating pre-
cision and recall (sensitivity), which are the ratio
of the number of correct base pairs predicted by
the algorithm to the total number of predicted base
pairs, and the ratio of the number of correct base
pairs predicted by the algorithm to the total num-
ber of base pairs specified by the trusted annota-
tion, respectively. The results are shown in Table
3. A nearly correct prediction (94.4% precision
and recall) for Coronapk 3 is shown in Figure

2 where underlined base pairs agree with trusted
ones. The secondary structures predicted by our
algorithm agree very well with the trusted struc-
tures.

4.4 Comparison with PSTAG

We compared the prediction accuracy of our SM-
CFG algorithm with that of PSTAG algorithm
(Matsui et al., 2005) (see Table 4). PSTAGs,
as we have mentioned before, are proposed for
modeling pairwise alignment of RNA sequences
with pseudoknots and assign a probability to each
alignment of TAG derivation trees. PSTAG al-
gorithm, based on dynamic programming, calcu-
lates the most likely alignment for the pair of
TAG derivation trees where one of them is in the
form of an unfolded sequence and the other is a
TAG derivation tree for known structure. SMCFG
method shows better performance in accuracy than
PSTAG method in the same test sets.

5 Conclusion

In this paper, we have proposed a probabilistic
model named SMCFG, and designed a polyno-
mial time parsing and a parameter estimation al-
gorithm for SMCFG. Moreover, we have demon-
strated computational experiments of RNA sec-
ondary structure prediction with pseudoknots us-
ing SMCFG parsing algorithm, which show good
performance in accuracy.

Acknowledgments

This work is supported in part by Grant-in-Aid
for Scientific Research from Japan Society for the
Promotion of Science (JSPS). We also wish to
thank JSPS Research Fellowships for Young Sci-
entists for their generous financial assistance. The
authors thank Dr. Yoshiaki Takata for his useful

63

CUAGUCUUAUACACAAUGGUAAGCCAGUGGUAGUAAAGGUAUAAGAAAUUUGCUACUAUGUUA
 [[[[[[[[((((((((((]]]]]]]]))))))))))

CUAGUCUUAUACACAAUGGUAAGCCAGUGGUAGUAAAGGUAUAAGAAAUUUGCUACUAUGUUA
 [[[[[[[[((((((((((]]]]]]]]))))))))))

[Trusted structure in Rfam]

[Prediction by SMCFG]

Corona_pk3 (EMBL accession #: X51325.1)

Figure 2: Comparison of a prediction result with a trusted structure in Rfam

Table 4: Comparison between SMCFG and PSTAG
Model Average precision [%] Average recall [%]

Corona HDV Tombus Corona HDV Tombus
SMCFG 99.4 100.0 100.0 99.4 100.0 100.0
PSTAG 95.5 95.6 97.4 94.6 94.1 97.4

comments on implementation of high dimensional
dynamic programming.

References

Tatsuya Akutsu. 2000. Dynamic programming al-
gorithms for RNA secondary structure prediction
with pseudoknots.Discrete Applied Mathematics,
104:45–62.

Michael Brown and Charles Wilson. 1996. RNA pseu-
doknot modeling using intersections of stochastic
context free grammars with applications to database
search.Proc. Pacific Symposium on Biocomputing,
109–125.

Liming Cai, Russell L. Malmberg, and Yunzhou Wu.
2003. Stochastic modeling of RNA pseudoknotted
structures: a grammatical approach.Bioinformatics,
19(1):i66–i73.

Richard Durbin, Sean R. Eddy, Anders Krogh, and
Graeme Mitchison. 1998. Biological Sequence
Analysis, Cambridge University Press.

Sean R. Eddy and Richard Durbin. 1994. RNA
sequence analysis using covariance models.Nuc.
Acids Res., 22(11):2079–2088.

Sam Griffiths-Jones, Alex Bateman, Mhairi Marshall,
Ajay Khanna, and Sean R. Eddy. 2003. Rfam: an
RNA family database.Nuc. Acids Res., 31(1):439–
441.

Tadao Kasami, Hiroyuki Seki, and Mamoru Fujii.
1988. Generalized context-free grammar and multi-
ple context-free grammar.IEICE Trans. Inf. & Syst.,
J71-D(5):758–765 (in Japanese).

Yuki Kato, Hiroyuki Seki, and Tadao Kasami. 2005.
On the generative power of grammars for RNA sec-
ondary structure.IEICE Trans. Inf. & Syst., E88-
D(1):53–64.

Yuki Kato and Hiroyuki Seki. 2006. Stochastic
multiple context-free grammar for RNA pseudoknot
modeling. NAIST Info. Sci. Tech. Rep. (NAIST-IS-
TR2006002).

Hiroshi Matsui, Kengo Sato, and Yasubumi Sakak-
ibara. 2005. Pair stochastic tree adjoining gram-
mars for aligning and predicting pseudoknot RNA
structures.Bioinformatics, 21(11):2611–2617.

Elena Rivas and Sean R. Eddy. 1999. A dynamic pro-
gramming algorithm for RNA structure prediction
including pseudoknots.J. Mol. Biol., 285:2053–
2068.

Elena Rivas and Sean R. Eddy. 2000. The language of
RNA: A formal grammar that includes pseudoknots.
Bioinformatics, 16(4):334–340.

Yasubumi Sakakibara, Michael Brown, Richard
Hughey, I. Saira Mian, Kimmen Sjölander, Rebecca
C. Underwood, and David Haussler. 1994. Stochas-
tic context-free grammars for tRNA modeling.Nuc.
Acids Res., 22:5112–5120.

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and
Tadao Kasami. 1991. On multiple context-free
grammars.Theor. Comput. Sci., 88:191–229.

Yasuo Uemura, Aki Hasegawa, Satoshi Kobayashi, and
Takashi Yokomori. 1999. Tree adjoining grammars
for RNA structure prediction.Theor. Comput. Sci.,
210:277–303.

K. Vijay-Shanker, David J. Weir, and Aravind K. Joshi.
1987. Characterizing structural descriptions pro-
duced by various grammatical formalisms.Proc.
25th Annual Meeting of Association for Computa-
tional Linguistics (ACL87), 104–111.

64

Proceedings of the 8th International Workshop on Tree Adjoining Grammar and Related Formalisms, pages 65–72,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Binding of Anaphors in LTAG

Neville Ryant
Department of Linguistics

619 Williams Hall
University of Pennsylvania

Philadelphia, PA, 19104-6305
nryant@ling.upenn.edu

Tatjana Scheffler
Department of Linguistics

619 Williams Hall
University of Pennsylvania

Philadelphia, PA, 19104-6305
tatjana@ling.upenn.edu

Abstract

This paper presents an LTAG account
for binding of reflexives and recipro-
cals in English. For these anaphors,
a multi-component lexical entry is pro-
posed, whose first component is a degener-
ate NP-tree that adjoins into the anaphor’s
binder. This establishes the local structural
relationship needed to ensure coreference
and agreement. The analysis also allows
a parallel treatment of reflexives and re-
ciprocals, which is desirable because their
behavior is very similar.

In order to account for non-local bind-
ing phenomena, as in raising and ECM
cases, we employ flexible composition,
constrained by a subject intervention con-
straint between the two components of the
anaphor’s lexical entry. Finally, the paper
discusses further data such as extraction
and picture-NP examples.

1 Introduction

Binding Theory (Büring, 2005; Reuland and Ev-
eraert, 2001) is an issue at the interface of syntax
and semantics which has previously been avoided
in the LTAG literature. While LTAGs were ini-
tially concerned only with the syntax of natural
languages, recent accounts of semantic computa-
tion in the LTAG framework (Kallmeyer and Joshi,
2003; Kallmeyer and Romero, 2004) allow us now
to tackle interface phenomena. An appropriate
formulation of Binding Theory (BT) is needed to
explain the pattern exhibited in (1–3).

(1) Johni likes himselfi.

(2) * Johni likes herselfi.

(3) * Himselfi likes himselfi / Johni.

Due to the incredible complexity of the data in
question, we will focus here on English reflex-
ives (himself, herself) and reciprocals (each other),
typically subsumed under Condition A (Chomsky,
1981).

This paper proposes a new two-component lex-
ical entry for reflexive pronouns that takes care of
the syntactic and semantic dependencies involved
in binding (agreement and coreference). In this ap-
proach, different binding options (e.g., in a ditran-
sitive sentence) follow from different derivations.

In section 3, we show how our analysis ex-
tends straightforwardly to reciprocals. Section 4
presents the extension of our account to anaphors
with nonlocal antecedents, such as the experi-
encers of raising verbs, and ECM subjects. Fur-
ther issues, including extraction, are discussed in
section 5. Section 6 concludes.

2 Basic Anaphor Binding

In traditional accounts, binding is defined rep-
resentationally: an antecedent binds an anaphor
iff they are are coindexed and in a certain struc-
tural relationship. In an LTAG, binding cannot be
viewed in this way as the notion of coindexation is
foreign to the formalism. An LTAG analysis can
therefore not be a mere translation of a previous
account.

Although the phenomenon is very complex, the
basic properties of binding are quite well under-
stood. Binding of an anaphor by an antecedent
consists of coreference and agreement between the
two items. Furthermore, it is well known that
binding of English anaphors is an asymmetrical,
local, structural relationship. The asymmetry of
binding can be easily observed in examples (1)

65

versus (3). Locality is reflected by the fact that
(1) is grammatical, but not (4).

(4) * Johni knows that Mary likes himselfi.

Finally, the binding relationship is known to be
structural because the positions of binder and
anaphor play a crucial role. This is discussed in
more detail below.

2.1 Lexical Entry

The domain of locality that LTAG provides en-
ables us to encode a local structural relationship,
such as the one between the anaphor and its an-
tecedent, very directly. We understand binding as
a lexical requirement of the anaphor: that it must
be bound. Thus, we propose the lexical entry in
Figure 1 for reflexives. It is a multicomponent set
whose second component is the anaphor. The first
component is a degenerate auxiliary tree which ad-
joins into the elementary tree of the antecedent.

In LTAG, elementary trees encode both syn-
tax and semantics. Thus, the two components of
binding, coreference and agreement, are simulta-
neously guaranteed by the coindexations between
the feature structures of binder and anaphor. Fur-
thermore, since the derivation must be tree-local,
locality is also ensured. A c-command constraint
between the two components accounts for the
asymmetry between the antecedent and anaphor as
shown in examples (1) and (3). This constraint is
checked when the two components are composed
into an elementary tree (by tree-locality).

2.2 Example Derivation

Consider (5), wherehimself has two possible an-
tecedents,John andBill. Our analysis derives both
readings, given a standard tree inventory as in Fig-
ure 2.

(5) Johni showed Billj himselfi/j .

Sentence (5) is syntactically ambiguous under
this analysis, since two different derivations lead
to distinct readings. This seems to reflect our in-
tuitions about this sentence well, although it con-
trasts with the traditional vew of BT, where the
coindexation between binder and anaphor is part
of the syntactic structure for the sentence, and thus
no ambiguity arises.

2.3 Flexible Composition

Tree-locality requires the first component ofhim-
self to adjoin into a higher NP substitution node.

ts: S
PPPP
����

NP↓ VP
aaa
!!!

V

showed

VP
Q
Q

�
�

NP↓ VP
@@��

ε VP

NP↓

tj: NP

John

tb: NP

Bill

Figure 2: Tree inventory.

However, adjunction into substitution nodes is
generally disallowed. Adjunction of the first com-
ponent ofhimself into the root node of theJohn-
treetj or theBill-treetb is, however, not tree-local.
Therefore, we employ flexible composition (Joshi
et al., 2003) to composetj with the first compo-
nent of th (t1h), yielding a derived multicompo-
nent set. Composition ofth with ts is then tree-
local. This yields the reading whereJohn is the
antecedent ofhimself.

Alternatively, tb composes withth first, which
derives the other reading. The two derivation trees
representing these readings are shown in Figure 3.

ts

tb

<ts,221>

th

<<ts,1>,<ts,2222>>

tj

<t
1

h,0>

ts

tj

<ts,1>

th

<<ts,221>,<ts,2222>>

tb

<t
1

h,0>

Figure 3: Derivation trees for “John showed Bill
himself.”

66

th:

NP* syn:h
AGR 1

i

sem:2

4NP

»

T
h

I 2

i
–

3

5

,

NP

himself

syn:2

6

6

4

AGR 1

2

6

4

PERS 3
NUM sg
GEN masc

3

7

5

3

7

7

5

sem:2

4NP

»

T
h

I 2

i
–

3

5

c-command

Figure 1: Lexical entry forhimself.

2.4 Advantages

The different binding options (e.g., in double-
object sentences) follow directly from the deriva-
tion and do not have to be hardcoded. Further-
more, the reflexive itself is responsible for agree-
ment and coreference with its antecedent.

2.5 Alternative Analysis

There is at least one obvious alternative analysis
for BT in LTAG. In this case, features are em-
ployed instead of a multicomponent set to derive
the binding relationship. Features on each verbal
elementary tree would encode whether an argu-
ment is an anaphor, and if so, what it is bound
to. Just like in our analysis introduced above, a
certain locality necessary for binding can be en-
sured under this approach. However, this approach
is very stipulative. It is merely an accident that
agreement and coreference go hand in hand: Two
separate feature equations have to ensure agree-
ment between the binder and anaphor, and coref-
erence between them. Furthermore, a number of
verbal trees is added; and the reflexive itself be-
comes syntactically and semanticially vacuous.

3 Reciprocals

Another advantage of the proposed account is that
it allows an analogous treatment of reciprocals like
each other in (6).

(6) [John and Mary]i like each otheri.

This is desirable given that the syntactic behavior
of reciprocals resembles reflexives. Semantically,
though, reciprocals are very complex (Dimitriadis,
2000). The meaning of “each other” roughly cor-
responds to its parts, “each”, and “other”. That

is, “John and Mary love each other” means some-
thing like “Of John and Mary, each loves the
other”.1

These properties are neatly accounted for with
our analysis ofeach other that is syntactically
analogous tohimself, but contributes additional
operators in the semantics2. The proposed lexical
entry is spelled out in Figure 4.

The fact thateach other contributes two dis-
tinct quantifiers corresponds directly to its syntac-
tic analysis as a two-part multicomponent set.

4 Nonlocal Antecedents

The discussion of anaphoric pronoun binding dis-
cussed in the previous section demonstrated how
certain locality (7) and configurational restrictions
(8) on anaphoric pronouns follow from TAG’s
constrained mechanisms of structural composition
coupled with a multicomponent analysis of reflex-

1It is sometimes claimed that “long-distance” reciprocals
require non-local adjunction of “each”:

(i) The boxers thought they would defeat each other.
X each # each

The LTAG analysis proposed here does not allow this. This
may constitute independent evidence for Dimitriadis’ (2000)
analysis of reciprocals in which “each” is not as high as it
seems in these kinds of examples.

2The exact semantics ofeach other is a matter of ongoing
discussion. We assume for simplicity thateach other corre-
sponds toeach+the other, as reflected in the lexical entry.

3
vA= “is an atomic part of”.

In the absence of a complete analysis of plural semantics
in LTAG, we assume here that plural noun phrases like “John
and Mary” or “the boys” contribute at least a group (G) vari-
able. This variable is used by certain collective predicates, for
example in “The boys surrounded the castle.” It corresponds
to the plural individual contributed by the NP.

The semantics given here predicts strongly distributive
“each other”. Some adjustment is needed to account for lesser
forms of distributivity.

67

tea:

NP* syn:h
AGR 1

i

sem:
2

6

6

6

6

6

4

NP

2

6

6

6

6

4

T

"

I x
G 2

#

B
h

G 2

i

3

7

7

7

7

5

3

7

7

7

7

7

5

,

NP

each other

syn:h
AGR 1

i

sem:
2

6

4

NP

2

4T

"

I y
P 3

#
3

5

3

7

5

l1 : ∀(x, x vA 2 , l2)
l2 : ∀(y, y vA 2 ∧ y 6= x, h2),
h2 ≥ 3

c-command

Figure 4: Lexical entry foreach other.3

ives and reciprocals.

(7) a. Johni likes himselfi.

b. *Johni thinks that Mary believes that
Kate likes himselfi.

(8) a. John believes Maryi to like herselfi.

b. *John believes herselfi to like Maryi.

A significant problem with this analysis as
stands, however, is that it works too well, denying
the grammaticality of certain raising (9) and ECM
constructions (10) and constructions in which the
anaphor is embedded within a subject (11). Un-
der current assumptions, the antecedent-anaphor
dependency must be established within an ele-
mentary tree (by adjunction of a single multi-
component set). However, for both of these con-
structions the anaphor and its antecedent lie in dif-
ferent elementary trees. In (9) the auxiliary tree
of the raising verbseems contains no local argu-
ment for the degenerate NP* component to com-
bine with. In (10)himself occurs as an argument
of like while its antecedent occurs in another ele-
mentary tree,believe. In each case, generating the
examples requires that we relax some of our cur-
rent assumptions.

(9) Johni seems to himselfi to be a decent guy.

(10) Johni believes himselfi to be a decent guy.

(11) Johni thought that the pictures of himselfi

were wonderful.

4.1 Raising

We see from (9) that anaphors can occur as ex-
periencer arguments of raising verbs providing

they are c-commanded by a possible antecedent.
Though predicted to be ungrammatical under the
current proposal, (9) can be generated if we relax
the requirement that the two parts of the multicom-
ponent set of the anaphor attach to the same ele-
mentary tree. This relaxation could take the form
of simply allowing non-local adjunction for spe-
cific classes of multicomponent sets, those with
a degenerate components. Alternately, we retain
the restriction to tree-local MC-TAG but achieve
nonlocality through more extensive use of flexible
composition, already adopted for independent rea-
sons.

Under a flexible composition analysis (Figure
6), the John-tree composes with the degenerate
NP* member of the reflexive set as before. This
yields a derived multicomponent set consisting of
one derived part,John, and one underived part,
himself. The seems-tree then composes with the
himself component of the reflexive set, yielding a
derived set (Figure 5) containing the components
John and seems to himself. Finally, this derived
multicomponent set combines with thelike-tree,
theJohn component substituting into the open NP
slot and theseems to himself component adjoining
at VP.

4.2 ECM

In ECM constructions such as (10) the anaphor ap-
pears as the subject of the embeddedto be a decent
guy-tree while its antecedent appears as subject of
the matrixbelieves-tree. A derivation for this sen-
tence under our account is shown in Figure 7. As
before, theJohn-tree first composes with the de-
generate NP* component of the reflexive tree, fol-
lowed by the the substitution of thehimself-tree

68

Saaa
!!!

NP↓ VP
QQ��

believes S*

S
aaaa
!!!!

NP↓ VP
PPPP
����

to be a decent guy

NP* NP

himself

NP

John

Derivation tree:

tbelieves

th

tj

<t
1

h,0>

tdg

<t
2

h,0>

Figure 7: Derivation of “John believes himself to be a decentguy.”

NP

John
,

VP
PPP
���

seems VP
aaa!!!

PP
QQ��

to NP

himself

VP*

Figure 5: Derived multicomponent set for (9).

into the to be a decent guy-tree, yielding the de-
rived multicomponent set containingJohn andbe-
lieves himself, which locally composes with theto
be a decent guy-tree.

4.3 Subject Embedding

Anaphors contained within embedded subjects4

(12) cause the binding domain to be minimally ex-
panded. Again, it is transparent that these cases
can be derived successfully from the lexical entry
in Figure 1 and repeated use of flexible composi-
tion.

(12) a. The meni knew that pictures of each
otheri were on sale.

b. The meni felt that the pictures of
themselvesi were horrid.

c. The meni knew that each otheri’s
pictures were on sale.

4The absence of nonlocal binding of reflexive subjects
(e.g. John thinks that himself is grand.) is assumed to de-
rive from an inability of reflexives to take nominative case.

tdg: S
PPP
���

NP↓ VP̀
```

    
to be a decent guy

tseems : VP
PPP���

seems VP
HH��

PP

to NP↓

VP*

Derivation tree: tdg

th

<<tdg ,1>,<tdg,2>>

tj

<t
1

h,0>

tseems

<t
2

h,0>

Figure 6: Derivation of “John seems to himself to
be a decent guy.”

69



4.4 Constraints on Flexible Composition

The use of flexible composition with tree-local
MC-TAG is very powerful, thus able to account
for the non-local binding in (9), (10), and (12).
However, it is too powerful if unconstrained as it
will also generate (13). It is necessary to constrain
the derivation such that in the derived tree no sub-
ject node intervenes between the antecedent and
anaphor (Chomsky’s Subject Intervention Con-
straint). This is obtained by strengthening the
link between NP andhimself in the lexical en-
try s.t. when the two trees connected by the link
are adjoined, a requirement that NP* c-command
himself and no subject NP intervenes between the
two (c-commandinghimself and c-commanded by
NP* ) is checked. This constraint formalizes the
descriptive account given in the linguistic litera-
ture. Note that a similar account may be active
in other places in the grammar as well, due to the
pervasiveness of left-edge phenomena (see section
5.4).

Computationally, this constraint can be checked
as soon as the multicomponent set which con-
tains it attaches into another elementary tree. C-
command as well as subject intervention cannot
be disturbed by later operations on the outer tree,
if they are valid at the time of composition.

(13) * Johni believes me to like himselfi.

5 Further Issues

5.1 Exempt Pronouns

As it currently stands, the proposal follows heav-
ily in the footsteps of traditional configurational
approaches to BT. As such, it mirrors the more tra-
ditional BT of Chomsky in it’s inability to license
such examples as (17b), where the antecedent does
not c-command the anaphor and (14) and (15),
where binding is possible despite presence of an
intervening subject along the c-command path.

(14) a. I spoke to [John and Bill]i about each
otheri.

b. Pictures of myselfi frighten mei.

c. Johni’s greatest problem is a fear of
himselfi.

(15) [John and Mary]i are letting the honey drip
on each otheri’s feet.

(16) Clones of each other annoy the children.

The examples in (14) can be accommodated by
having the prepositions appearing before the ar-
guments be surface case markers rather than real
prepositions (as suggested in (Jackendoff, 1972)).
Even so, (15) and (16) remain and seem to present
an intractable problem for an LTAG account, as
well as traditional accounts of English binding
phenomena. This may in fact be the case and
prove firm support for claims by numerous authors
(Pollard and Sag, 1994; Postal, 1971; Kuroda,
1965) that at least part of the data subsumed un-
der BT (the “exempt pronouns”) is governed by
pragmatic constraints such as point-of-view rather
than purely structural constraints. In fact, the
LTAG analysis proposed here is a relatively clean
structural account of English binding data. The
(un)availability of a derivation for certain exam-
ples may thus point to their classification into “ex-
empt” and regular anaphora. These considerations
are left for further work.

5.2 Extraction

A potential problem for the proposed analysis is
presented by extraction phenomena, as in wh-
movement or topicalization. Extraction of a
phrase containing an anaphor, whether topicaliza-
tion or (17) or wh-movement (18), does not induce
a Condition A violation. The current proposal
predicts the grammaticality of (17a) and (18a)
given that in each case the reflexive is locally c-
commanded by its antecedent. However, in (17b)
and (18b) the reflexive fails to be c-commanded by
its antecedent, hence these examples are predicted
to be ungrammatical although they are clearly ac-
ceptable.

(17) a. Johni saw himselfi.

b. Himselfi John saw ti.

(18) a. Johni liked the color pictures of
himselfi.

b. [Which pictures of himselfi] did Johni
like ε?

A classical solution to these facts involves re-
construction of the A′-moved element to its origi-
nal site for the purposes of binding. Clearly, syn-
tactic reconstruction is untenable in LTAG. How-
ever, it is possible to emulate it through an en-
try akin to that in Figure 8, which is capable
of deriving the topicalization examples in (17).
The first component is the extracted reflexive

70



th2:






































NP

himself

syn:"
AGR 1

EXTRACTED +

#

sem:2

4NP

»

T
h

I 2

i
–

3

5

,

NP* syn:h
AGR 1

i

sem:2

4NP

»

T
h

I 2

i
–

3

5

,

NP*







































c-command

Figure 8: Lexical entry for extracted reflexivehimself.

(A′-moved constituents are marked by extraction-
features (XTAG Group, 2001)), the second com-
ponent is the binder, and the third component is
the position that the reflexive has been extracted
from. The requirement that the antecedent locally
c-command the trace of movement has the effect
of emulating reconstruction.

Note, furthermore, that even if some manner of
reconstruction operation were to be implemented
in LTAG, we are faced with the reality of cases
such as (19), which demonstrate that extraction
of an element can alter its set of possible binders.
GB accounts (van Riemsdijk and Williams, 1986;
Clark, 1982) have explained the opposition in (19)
by allowing partial reconstruction to an interme-
diate trace from which the matrix subject is an ac-
cessible binder of the anaphor. The LTAG analysis
of wh-movement, though, neither exploits inter-
mediate traces nor allows transformational move-
ment over domains larger than an elementary tree,
meaning that such intermediate traces are simply
unavailable to us.

(19) a. *Marshai thought that I painted a
picture of herselfi.

b. [Which pictures of herselfi] did
Marshai think that I paintedε?

Instead, we suggest that Spec,IP subjects of
clauses are able to bind into Spec,CP of the same
clause as proposed by Reinhart (1991) and Frank
and Kroch (1995). Rather than being a disadvan-
tage, though, this seems to be a strength, predict-
ing as it does that (20) is bad where reconstruction
to a posited intermediate trace would predict ac-
ceptability.

(20) *[Which pictures of himselfi] did Mary
think that Johni believed that Sally wanted?

Future work should attempt to determine the
correct form of this lexical entry as well as
whether or not it is possible to collapse it with the
previously proposed Figure 8.

5.3 Conditions B,C

It is often assumed that the analyses for anaphors
and regular pronouns should be related, because of
a certain complementarity in distribution: While
anaphors must be locally bound, pronouns must be
locally free. In English, however, this complemen-
tarity is not absolute (cf. 21–22). Furthermore, a
negative locality constraint seems to be discour-
aged by the LTAG framework. This suggests that
the analysis of pronouns is independent of our ac-
count of anaphors. We leave pronouns, as well as
r-expressions (Mary, the man) for further work.

(21) Johni pulled the blanket over himi /
himselfi.

(22) a. Theyi saw each otheri’s friends.

b. Theyi saw theiri friends.

5.4 Importance of the Left Edge

Examination of language exposes the left edge to
be special with regards to certain phenomena. In
Binding Theory, this is revealed in the guise of a
Subject Intervention Constraint. Case assignment
represents a similar case. We see that verbs can as-
sign accusative case to objects, and subjects of the
next lowest clause (ECM), but no further. Ideally,
a new analysis of left-edge effects would clarify
the relationship between the two components of
the lexical entry proposed above.

5.5 Inherent Reflexives

English has a small number of inherently reflexive
verbs, such asbehave:

(23) John behaves himself.5

Note that this verb requires its object to be a
reflexive pronoun which is coreferent with its sub-
ject:

5We would like to thank one anonymous reviewer for
bringing this example to our attention.

71



(24) * John behaves her.

We conclude from this thatbehave has a specific
lexical constraint, namely that its object should be
[+ reflexive]. Since there can be no other binder
for this reflexive pronoun, it must be bound by the
subject of the sentence.

6 Conclusion

In conclusion, we have presented an account of
the syntax and semantics of anaphoric expres-
sions that covers basic binding as well as raising,
ECM, and extraction data. Our analysis employs a
multicomponent lexical entry whose first compo-
nent corresponds to the anaphor’s binder, thus es-
tablishing a local relationship between antecedent
and anaphor. A structural constraint that links the
two components accounts for the basic asymmetry
that is observed in the binding of reflexives and re-
ciprocals in English.

7 Acknowledgements

We would like to thank the members of the XTAG
group, as well as the CIS 630 class of Spring 2006
at Penn for comments and discussion.

References

Büring, Daniel. 2005.Binding Theory. Cambridge:
Cambridge University Press.

Chomsky, Noam. 1981.Lectures on Government and
Binding. Dordrecht: Foris.

Clark, Robin. 1982. Scope assignment and modifica-
tion. Linguistic Inquiry 23: 1-28.

Copestake, Ann, Dan Flickinger, Ivan A. Sag, and Carl
Pollard. 1999. Minimal Recursion Semantics: An
introduction. Manuscript, Stanford University

Dalrymple, M., M. Kanazawa, Y. Kim, S.A. Mehombo,
and S. Peters. 1998. Reciprocal expressions and the
concept of reciprocity.Linguistics and Philosophy
21:159–210

Dimitriadis, Alexis. 2000. Syntactic locality and
tree adjoining grammar: Grammatical, acquisition,
and processing perspectives. Doctoral Dissertation,
University of Pennsylvania.

Frank, Robert. 1992. Beyond Identity: Topics in
Pronominal and Reciprocal Anaphora. Doctoral
Dissertation, University of Pennsylvania.

Frank, Robert and Anthony Kroch. 1995. Generalized
transformations and the theory of grammar.Studia
Linguistica 49(2): 103-151.

Jackendoff, Ray. 1972.Semantic Interpretation in
Generative Grammar. Cambridge, MA: MIT Press

Joshi, Aravind K., Laura Kallmeyer, and Maribel
Romero. 2003. Flexible Composition in LTAG:
Quantifier Scope and Inverse Linking. InProceed-
ings of the International Workshop on Composi-
tional Semantics. Tilburg, The Netherlands

Joshi, Aravind K. and K. Vijay-Shanker. 1999.
Compositional Semantics with Lexicalized Tree-
Adjoining Grammar (LTAG): How Much Under-
specification is Necessary? In H.C. Blunt and
E.G.C. Thijsse, editors.Proceedings of the Third In-
ternational Workshop on Computational Semantics
(IWCS-3), pp. 131-145. Tilburg, The Netherlands

Kallmeyer, Laura and Aravind K. Joshi. 2003. Factor-
ing predicate argument and scope semantics: Under-
specified semantics with LTAG.Research on Lan-
guage and Computation 1:3–58

Kallmeyer, Laura and Maribel Romero. 2004. LTAG
semantics with semantic unification. InProceedings
of TAG+7. Vancouver, Canada

Kuroda, S.Y.. 1965.Generative Gramamtical Studies
in the Japanese Language. MIT: PhD. dissertation.

Pollard, Carl and Ivan Sag. 1994.Head-driven Phrase
Structure Grammar. Chicago, Il: University of
Chicago Press.

Postal, Paul. 1971.Crossover Phenomena. New York:
Holt.

Reinhart, Tanya. 1991. Definite NP anaphora and c-
command domains.Linguistic Inquiry 12(4): 605-
635.

Reuland, Eric and Martin Everaert. 2001. Decon-
structing Binding. In M. Baltin and C. Collins, edi-
tors.The Handbook of Contemporary Syntactic The-
ory. Oxford

van Riemsdijk, Henk and Edwin Williams. 1986.In-
troduction to the Theory of Grammar. Cambridge,
MA: MIT Press

XTAG Group. 2001. A Lexicalized Tree Adjoining
Grammar for English. IRCS Technical Report, Uni-
versity of Pennsylvania

72



Proceedings of the 8th International Workshop on Tree Adjoining Grammar and Related Formalisms, pages 73–80,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Quantifier Scope in German: An MCTAG Analysis

Laura Kallmeyer
University of Tübingen

Collaborative Research Center 441
lk@sfs.uni-tuebingen.de

Maribel Romero
University of Pennsylvania
Department of Linguistics

romero@ling.upenn.edu

Abstract

Relative quantifier scope in German de-
pends, in contrast to English, very much
on word order. The scope possibilities of a
quantifier are determined by its surface po-
sition, its base position and the type of the
quantifier. In this paper we propose a mul-
ticomponent analysis for German quanti-
fiers computing the scope of the quantifier,
in particular its minimal nuclear scope, de-
pending on the syntactic configuration it
occurs in.

1 Introduction: The data

(1) A man loves every woman.
∃ > ∀, ∀ > ∃

In English, in sentences with several quantifica-
tional NPs, in principle all scope orders are pos-
sible independent from word order. (1) for exam-
ple has two readings, the∃ > ∀ reading and the
inverse scope∀ > ∃ reading. This is different in
German where word order is crucial for scope pos-
sibilities.

(2) a. Viele Männer haben mindestens eine
many mennom have at least one
Frau hofiert.
womanacc flattered.
‘Many men have flattered at least one woman.’

viele > eine, ∗eine > viele

b. Mindestens eine Frau haben viele
at least one womanacc have many
Männer hofiert.
mennom flattered.
‘Many men have flattered at least one woman.’

viele > eine, eine > viele

In German, for quantifiers in base order, the sur-
face order determines scope.1 (2a) has only the
scope orderviele > eine corresponding to sur-
face order, that is, the inverse ordereine > viele

is not available. In contrast to this, if the word
order differs from the base order, ambiguities are
possible. (2b) for example displays both scope or-
ders,viele > eine andeine > viele.

In the literature, the following generalizations
have been noticed for German: For two quantifiers
Q1, Q2 with Q1 precedingQ2 in the surface order
of a sentence, the scope orderQ1 > Q2 is always
possible. Furthermore, the inverse readingQ2 >

Q1 is possible if

(Q1) Q1 has been moved so thatQ2 c-commands
the trace ofQ1 ((Frey, 1993)), and

(Q2) Q1 is a weak quantifier (e.g.,irgendein
‘some’, viele ‘many’, cardinals) ((Lechner,
1998)).

Evidence for (Q2) –and further evidence for
(Q1)– are the examples in (3)–(4). In (3), the (a)-
example is in base order and thus has only surface
scope, but moving the weak quantifier over the da-
tive quantifier in the (b)-version results in scope
ambiguity. This contrasts with (4). In (4), the (a)-
version with base order has only surface scope, as
before. But now we move the strong quantifier
over the dative quantifier, and this does not yield
ambiguity. That is, even though the dative quan-
tifier c-commands the trace of the moved quanti-
fier both in (3b) and in (4b), only when the moved

1Throughout the paper we assume an unmarked intona-
tion. With a different intonation, other scope orders become
available because of the change in information structure. But
this lies outside the scope of this paper.
The base order depends on the verb; in most cases it is Sub-
ject - (Indirect Object) - Direct Object.

73



element is a weak quantifier do we obtain scope
ambiguity.

(3) a. . . . dass er[fast jedem Verlag]
. . . that he almost every publisher
[mindestens ein Gedicht] anbot.
at least one poem proposed_to.
‘ . . . that he proposed some poem to almost every
publisher.’
jedem > ein, ∗ein > jedem

b. . . . dass er[mindestens ein Gedicht]1
. . . that he some poem
[fast jedem Verlag] t1 anbot.
almost every publisher proposed_to.
jedem > ein, ein > jedem

(4) a. . . . dass er[mindestens einem Verleger]
. . . that he at least one publisher
[fast jedes Gedicht] anbot.
almost every poem proposed_to
‘ . . . that he proposed almost every poem to at least
one publisher.’
jedes > einem, ∗einem > jedes

b. . . . dass er[fast jedes Gedicht]1
. . . that he almost every poem
[mindestens einem Verleger] t1
at least one publisher
anbot.
proposed_to.
jedes > einem, ∗einem > jedes

(Kiss, 2000) claims that if two quantifiers have
been moved such that among themselves they re-
main in base order, inverse scope is not possible
between them. Because of this, he argues for a
non-movement-based theory of German quantifier
scope. However, Kiss’ claim is not true as can be
seen with the example (5) from (Frey, 1993):

(5) a. weil der freundliche Museumsdirektor
because the friendly curatornom

[mindestens einer Frau]1
at least one womandat

[fast jedes Gemälde]2 gezeigt hat
almost every paintingacc has shown
‘because the friendly curator has shown almost ev-
ery painting to at least one woman’
Q1 > Q2, ∗Q2 > Q1

b. weil [mindestens einer Frau]1 [fast jedes
Gemälde]2 der freundliche Museumsdi-
rektort1 t2 gezeigt hat
Q1 > Q2, Q2 > Q1

In both cases, (5a) and (5b), the two quanti-
fiers are in base order. According to Kiss there
should be, contrary to fact, no ambiguity in (5b).
The difference between the two is that in (5a) the
quantifiers are in base position while in (5b) both
of them have been scrambled with the result that
Q2 c-commands the trace ofQ1. We assume with
(Frey, 1993) that this is why the inverse scope or-
der becomes available.

We therefore stick to the above-mentioned gen-
eralizations (Q1) and (Q2) and try to capture them
in our LTAG analysis. This means that, in order to
capture (Q1), we need a syntactic analysis of Ger-
man NPs that takes into account movement and
base positions.

2 English quantifier scope in LTAG

We use the LTAG semantics framework from
(Kallmeyer and Romero, 2004; Kallmeyer and
Romero, 2005). Semantic computation is done on
the derivation tree. Each elementary tree is linked
to a semantic representation (a set of Ty2 formu-
las and scope constraints). Ty2 formulas (Gallin,
1975) are typedλ-terms with individuals and situ-
ations as basic types. The scope constraints of the
form x ≥ y specify subordination relations be-
tween Ty2 expressions. In other words,x ≥ y

indicates thaty is a component ofx.
A semantic representation is equipped with a

semantic feature structure description. Semantic
computation consists of certain feature value iden-
tifications between mother and daughter nodes in
the derivation tree. The feature structure descrip-
tions do not encode the semantic expressions one
is interested in. They only encode their contribu-
tions to functional applications by restricting the
argument slots of certain predicates in the seman-
tic representations: They state which elements are
contributed as possible arguments for other se-
mantic expressions and which arguments need to
be filled. They thereby simulate lambda abstrac-
tion and functional application. A sample feature
for this simulation of functional application is the
feature I that serves to pass the individual con-
tributed by an NP to the predicate taking it as an
argument. Besides this functional application as-
pects, the feature structure descriptions also con-
tain features that determine the scope semantics,
i.e., features specifying boundaries for the scope
of different operators. Sample features for scope
are MINS and MAXS encoding the minimal and

74



maximal scope of attaching quantifiers.
Features can be global (featureGLOBAL, here

abbreviated withGL) or they can be linked to spe-
cific node positions (featuresS, VP, . . . ). The latter
are divided into top (T) and bottom (B) features.
The equations of top and bottom features linked
to specific node positions in the elementary trees
are parallel to the syntactic unifications in FTAG
(Vijay-Shanker and Joshi, 1988). The global fea-
tures that are not linked to specific nodes can be
passed from mothers to daughters and vice versa
in the derivation tree.

(6) Everybody laughs.

As a sample derivation let us sketch the anal-
ysis of quantificational NPs in English from
(Kallmeyer, 2005). Fig. 1 shows the LTAG anal-
ysis of (6). More precisely, it shows the deriva-
tion tree with the semantic representations and fea-
ture structure descriptions oflaughs and every-
body as node labels. The feature identifications
are depicted by dotted lines. The semantic repre-
sentation of the NPeverybodycontains the gen-
eralized quantifierevery that binds the variablex
and that has a restrictive scope4 and a nuclear
scope 5 . Furthermore, it contains the proposi-
tion person(x) that must be part of the restrictive
scope (constraint4 ≥ l3). Concerning functional
application, the NP provides the individual vari-
ablex in the global featureI as a possible argu-
ment for the verb predicatelaugh.

l1 : laugh( 1 ),
2 ≥ 3

























GL

[

MINS l1

MAXS 2

]

S

[

B
[

P 3

]

]

VP

[

T
[

P 3

]

B
[

P l1
]

]

NP

[

GL
[

I 1

]

]
























np

l2 : every(x, 4 , 5 ),
l3 : person(x),
4 ≥ l3,
6 ≥ 5 , 5 ≥ 7









GL
[

I x
]

NP

[

GL

[

MINS 7

MAXS 6

]

]









Figure 1: LTAG analysis of (6)everybody laughs

Quantificational NPs in English can in princi-
ple scope freely; an analysis of quantifier scope
must guarantee only two things: 1. the proposition
corresponding to the predicate to which a quanti-
fier attaches must be in its nuclear scope, and 2. a
quantifier cannot scope higher than the first finite

clause. (Kallmeyer and Romero, 2005) model this
by defining a scope window delimited by some
maximal scope (global featureMAXS and some
minimal scope (global featureMINS) for a quanti-
fier. In Fig. 1, the nuclear scope5 of the quantifier
is delimited by the maximal and minimal scope
boundaries provided by the verb the quantifier at-
taches to (constraints6 ≥ 5 , 5 ≥ 7 ). The feature
identifications in Fig. 1 lead then to the constraints
2 ≥ 5 , 5 ≥ l1.

Applying the assignments following from the
feature identifications and building the union of
the semantic representations leads to the under-
specified representation (7):

(7)

l1 : laugh(x),
l2 : every(x, 4 , 5 ), l3 : person(x)
2 ≥ l1,
4 ≥ l3, 2 ≥ 5 , 5 ≥ l1

As the only possible disambiguation, we obtain
2 → l2, 4 → l3, 5 → l1 which yields the seman-
tics every(x, person(x), laugh(x)).

3 Syntax of German quantificational NPs

Recall that, according to criterion (Q1), not only
the position of an NP but also -if the NP was
moved- the position of its trace are crucial for the
scope properties. In order to capture this, our anal-
ysis needs to take into account movements (scram-
bling, topicalization, etc.) of NPs including traces
at base positions. We therefore cannot adopt the
analyses proposed by (Rambow, 1994) in V-TAG
where the slot for the NP is generated at the sur-
face position and there is only one initial tree for
NPs, whether moved or not.2

(8) a. . . . dass jeder/irgendeiner
. . . that everybody/someone
irgendein Buch/jedes Buch liest
some book/every book reads
‘ . . . that everybody/someone reads some
book/every book’
SUBJ> DOBJ

b. . . . dass[jedes Buch]1 irgendeinert1 liest
. . . that every book someone reads
DOBJ> SUBJ

2To avoid misunderstandings, let us emphasize that in
LTAG, there is no movement outside the lexicon. Therefore,
either the NP or the slot of the NP must be localized together
with the corresponding trace inside one elementary structure.
This elementary structure can be a tree or, in MCTAG, a set
of trees.

75



c. . . . dass[irgendein Buch]1 jedert1 liest
. . . that some book everybody reads
SUBJ> DOBJ, DOBJ> SUBJ

To illustrate our analysis, in this and the follow-
ing section, we restrict ourselves to the sentences
in (8). For the syntax, we adopt a multicompo-
nent analysis for NPs that have been moved con-
sisting of an auxiliary tree for the moved mate-
rial and an initial tree for the trace. Our analysis
can be adopted using V-TAG (Rambow, 1994) or
something in the style of SN-MCTAG (Kallmeyer,
2005). Note that, in order to account for scram-
bling, we need some type of MCTAG anyway, in-
dependent from quantifier scope.

VP

NP VP

NP V

liest

for each NP, e.g.,irgendein Buch:

α1

NP

irgendein Buch







































β VP

NP VP∗

irgendein Buch

α2 NP

ǫ







































Figure 2: Elementary trees for (8)

The elementary trees for (8) are in Fig. 2.α1

is used for NPs in base position, while the set
{α2, β} is used for moved NPs. We assume that,
if possible,α1 is used. I.e., starting from the verb,
trees of typeα1 are substituted to its left as long
as possible.{α2, β} sets are used whenα1 could
not possibly yield the desired surface word order.
Fig. 3 shows a derivation of a sentence of type (8a)
(with no movement). Fig. 4 shows the derivation
of (8b). ((8c) is similar to (8b).)

NP

irgendeiner

NP

jedes Buch

VP

NP VP

NP V

liest

derivation liest
tree: np1 np2

irgendeiner jedes_Buch

Figure 3: Derivation for (8a)

VP

NP VP

NP V

liest
NP

irgendeiner



































VP

NP VP∗

jedes Buch

NP

ǫ



































derivation liest
tree: np1 np2 vp1

irgendeiner tjedes_Buch jedes_Buch

Figure 4: Derivation for (8b)

Note that, in the derivation trees, each node rep-
resents a single elementary tree, not a set of el-
ementary trees from the grammar. An MCTAG
derivation tree as defined in (Weir, 1988) with each
node representing a set is available only for tree-
local or set-local MCTAG, not for the MCTAG
variants we need (SN-MCTAG or V-TAG). There-
fore we take the undelying TAG derivation tree
as the derivation structure semantics will be com-
puted on.

4 Semantics of German quantificational
NPs

Because of the generalizations above, the fol-
lowing must be guaranteed: i) Strong quantifiers
scope over the next element in surface order (take
scope where they attach).3 ii) The minimal nu-
clear scope of a weak quantifier is the closest “un-
moved” element following its base position. Con-
sequently, we need different lexical entries for
weak and strong quantifiers.

We characterize the scope possibilities of a
quantifier in terms of its minimal scope. Consider
first the verb tree forliest ’read’ in Fig. 5. In con-
trast to English,MINS is not a global feature since,
depending on the position where the quantifier at-
taches, its minimal scope is different. In theliest-
tree,MINS appears in the feature structure of dif-
ferent nodes, with eachMINS value determined in
the following way: the value ofMINS at the NP2
address is the labell1 of the verb; the value of
MINS at the NP1 address depends on what is at-
tached at NP2 (see variables4 and 0 , which in
this case will be identified with each other); and
the value ofMINS at the top VP address depends
on what is attached at NP1 ( 5 ).

3But see section 5, where more complex examples show
that this generalization needs to be refined.

76



VP

NP1 VP

NP2 V

liest

l1 : read( 1 , 2 )
3 ≥ l1





































GL
[

MAXS 3

]

VP1
[

B
[

MINS 5

]

]

NP1

[

T

[

MINS 0

NEXT 5

]

]

VP2

[

T
[

MINS 0

]

B
[

MINS 4

]

]

NP2

[

T

[

MINS l1

NEXT 4

]

]





































Figure 5: Semantics forliest

NP

l2 : quant(x, 6 , 7 )
l3 : restriction(x)
6 ≥ l3,
8 ≥ 7 , 7 ≥ 9







NP







GL
[

MAXS 8

]

B

[

MINS 9

NEXT l2

]













Figure 6: Quantifiers in base position

The idea is that, when an NP (part) is attached
at a given address, the label of that NP is the new
MINS to be passed up the verb tree; when a trace
(part) is attached instead, theMINS of the verb ad-
dress is passed up unmodified. This feature pass-
ing is technically achieved by articulating the VP
spine with the featureMINS (much like the use
of the P feature in English for adverbial scope in
Kallmeyer and Romero, 2005), and by adding the
featureNEXT for passing between NP substitution
nodes (since substitution nodes do not haveT and
B features that allow feature percolations between
mothers and daughters).

The lexical entries for the three types of quanti-
fiers we must distinguish (non-moved quantifiers,
weak moved quantifiers and strong moved quanti-
fiers) are shown in Fig. 6–8. Quantificational NPs
that have not been moved (Fig. 6) receive their
MINS boundary (variable9 ) simply from their at-
tachment position. Weak and strong quantifiers
that have been moved differ in how their own
MINS is determined: Strong quantifiers (see Fig. 7)
get theirMINS from the VP node they attach to,
i.e., from their surface position (see variable13 ).
In contrast to this, weak quantifiers (see Fig. 8) get
their MINS from the base order position, i.e., from

their trace position (see variable18 ).


















































































VP

NP VP∗
NP

ǫ



















































































l4 : quant(x, 10 , 11 )
l5 : restriction(x)
10 ≥ l5,
12 ≥ 11 , 11 ≥ 13







NP







GL
[

MAXS 12

]

B

[

MINS 14

NEXT 14

]



















VPr

[

B
[

MINS l4
]

]

VPf

[

B
[

MINS 13

]

]







Figure 7: Strong quantifiers that have been moved

As sample analyses consider Fig. 9 and Fig. 10
showing the analyses of (8b) and (8c) where the
accusative object quantifier has been moved. (The
features of the internal VP node are omitted since
they are not relevant here.) In the first case, it is a
strong quantifier, in the second case a weak quanti-
fier. For Fig. 9, we obtain the identifications12 =
l1 = 4 = 8 , 5 = l2 = 11 (depicted with dotted
lines). Consequently, the only scope order is wide
scope ofjedes Buch: l4 > 10 ≥ l2 > 7 ≥ l1.
In Fig. 10, we obtain11 = l1 = 4 = 8 , 5 = l2
which leads to the scope constraintsl2 > 7 ≥ l1
and l4 > 10 ≥ l1. Consequently, we have
an underspecified representation allowing for both
scope orders.

The analysis proposed in this section has
demonstrated that some features –in this case
MINS– are global in some languages (e.g. English)
while being local in other languages (e.g. Ger-
man). We take this as further evidence that the
distinction between the two kinds of features, ad-
vocated in (Kallmeyer and Romero, 2005) is em-



















































































VP

NP VP∗
NP

ǫ



















































































l6 : quant(x, 15 , 16 )
l7 : restriction(x)
15 ≥ l7,
17 ≥ 16 , 16 ≥ 18







NP







GL
[

MAXS 17

]

B

[

MINS 18

NEXT 18

]













[

VPr

[

B
[

MINS l6
]

]

]

Figure 8: Weak quantifiers that have been moved

77



l1 : read( 1 , 2 )





















VP

[

B
[

MINS 5

]

]

NP1

[

T

[

MINS 4

NEXT 5

]

]

NP2

[

T

[

MINS l1

NEXT 4

]

]





















vp np1 np2

l4 : every(x, 9 , 10 )
l5 : book(x)
9 ≥ l5, 10 ≥ 11

l2 : some(x, 6 , 7 )
l3 : person(x)
6 ≥ l3, 7 ≥ 8







VPr

[

B
[

MINS l4
]

]

VPf

[

B
[

MINS 11

]

]







[

NP

[

B

[

MINS 8

NEXT l2

]

]] [

NP

[

B

[

MINS 12

NEXT 12

]

]]

Figure 9: Analysis ofdass[jedes Buch]1 irgendeinert1 liest

l1 : read( 1 , 2 )





















VP

[

B
[

MINS 5

]

]

NP1

[

T

[

MINS 4

NEXT 5

]

]

NP2

[

T

[

MINS l1

NEXT 4

]

]





















vp np1 np2

l4 : some(x, 9 , 10 )
l5 : book(x)
9 ≥ l5, 10 ≥ 11

l2 : every(x, 6 , 7 )
l3 : person(x)
6 ≥ l3, 7 ≥ 8

[

VPr

[

B
[

MINS l4
]

]

]

[

NP

[

B

[

MINS 8

NEXT l2

]

]] [

NP

[

B

[

MINS 11

NEXT 11

]

]]

Figure 10: Semantic analysis ofdass[irgendein Buch]1 jedert1 liest

pirically justified.

5 Long-distance scrambling and
quantifier scope

So far we have examined cases where local scram-
bling affects quantifier scope order. In this section,
we will demonstrate how our analysis carries over
to long-distance scrambling.

(9) . . . dass[irgendein Lied]1 Maria
. . . that some songacc Marianom

[fast jedem]2 [ t1 zu singen]
almost everybodydat to sing
versprochen hat
promised has
‘that Maria has promised almost everybody to sing
some song’
Q1 > Q2, Q2 > Q1

In (9) both scope orders are possible.

Fig. 11 shows the syntactic analysis for (9). Ac-
cording to the treatment of weak quantifiers pro-
posed above, the minimal nuclear scope ofirgen-
dein Lied is determined by the position of the
trace; it is therefore the proposition ofsingen. As
for fast jedem, its minimal nuclear scope is re-
quired to include the proposition ofversprochen
hat. Nothing else is required, and consequently
irgendeincan scope over or underfast jedem.

A problematic configuration that can occur with
scrambling concerns cases where two weak quan-
tifiers Q2 andQ3 have been moved with a third
quantifierQ1 preceding them whereQ1 is either a
strong quantifier or a weak quantifier in base posi-
tion. ThenQ1 has scope overQ2 andQ3 but the
scope order betweenQ2 andQ3 is unspecified. An
example is (10):

78

















































VP

NP VP∗

irgendein Lied

NP

ǫ















































VP

NP VP

NP VP

VP∗ V

versprochen hat

NP

Maria

NP

fast jedem

VP

PRO VP

NP V

zu singen
Figure 11: Derivation for (9)

(10) . . . dass[jeder Mitarbeiter]1
. . . that [every colleague]
[vielen Besuchern]2 [mindestens ein Bild]3
[many visitors]dat [at least one picture]acc

gerne[t2 t3 zu zeigen] bereit war
with pleasure to show willing was
’ . . . that every colleague is happy to show at
least one picture to many visitors.’
Q1 > Q2 > Q3, Q1 > Q3 > Q2

The syntactic derivation is shown in Fig. 12.
Such examples are problematic for our analysis:
our approach predicts thatQ2 and Q3 have the
same minimal scope, namely thezeigenproposi-
tion, and that the minimal scope ofQ1 is the quan-
tifier it precedes, namelyQ2. But nothing in the
analysis preventsQ3 from having scope overQ1,
contrary to fact.

This example indicates that the generalization
(i) in section 4 -that the minimal scope of a strong
quantifier is the proposition of the next quantifier
in surface order- needs to be refined. More accu-
rately, the minimal scope of a strong quantifier is
the highest proposition following in surface order.
We propose to model this using the featureNEXT

also in VP nodes. HereNEXT stands for the max-
imal scope of all quantifiers following in surface
order. An attaching weak quantifier has to do two
things: 1. equate the currentNEXT feature with
the newMINS that provides the minimal scope for
higher strong quantifiers, and 2. state thatNEXT

is its own maximal scope. The corresponding re-
vised lexical entry for moved weak quantifiers is
shown in Fig. 13.

Fig. 14 shows the way the minimal scope for
the unmoved quantifier in (10) is computed from
combining the auxiliary trees of the moved weak
quantifiers withbereit. (The adverb is left aside.)
In the tree of a verb and also in the auxiliary trees
of moved strong quantifiers, an additional feature



















































































VP

NP VP∗
NP

ǫ



















































































l6 : quant(x, 15 , 16 )
l7 : restriction(x)
15 ≥ l7,
17 ≥ 16 , 16 ≥ 18

[

NP

[

B

[

MINS 18

NEXT 18

]

]]









VPr

[

B

[

MINS 17

NEXT 17

]

]

VPf

[

T
[

NEXT 17

]

]









Figure 13: Moved weak quantifiers (revised)

NEXT is added, linked to the bottom of VP nodes.
The value of this feature is required to be higher
than the value of the bottomMINS at that position.
Whenever a moved strong quantifier adjoins, noth-
ing happens with thisNEXT feature. Moved weak
quantifiers take theNEXT feature as their maximal
scope and pass it as the newMINS. This is how
in Fig. 14, the finalMINS at the top of the root
of the leftmost moved weak quantifier contains all
moved quantifiers and is passed to the NP node
as newMINS limit. A (weak or strong) quantifier
substituting into the NP slot takes this newMINS

as its minimal scope. Consequently, it scopes over
both moved weak quantifiers.

6 Conclusion

It has been shown that, although quantifier scope
is usually read off surface word order in German,
ambiguities can arise from movement of weak
quantifiers. We have developed an MCTAG anal-
ysis using traces. In our approach, the scope pos-
sibilities of a quantifier are characterized in terms
of its minimal scope. In contrast to English,MINS

in German is not global but depends on the po-

79



NP

jeder Mitarbeiter

VP

gerne VP∗

VP

NP VP

VP∗ V

bereit war

VP

PRO VP

NP VP

NP V

zu zeigen










VP

NP VP∗

mindestens ein Bild

NP

ǫ





















VP

NP VP∗

vielen Besuchern

NP

ǫ











Figure 12: Derivation for (10)

l1 : willing( 1 , 2 )
4 ≥ 3 , 7 ≥ 6

































VPr

[

B

[

MINS 3

NEXT 4

]

]

NP1

[

T

[

MINS 5

NEXT 3

]

]

VP







T
[

MINS 5

]

B

[

MINS 6

NEXT 7

]







VPf

[

T . . .
]

































vp

l2 : q3(x, 9 , 10 )
l3 : picture(x)
9 ≥ l3,
12 ≥ 10 , 10 ≥ 11









VPr

[

B

[

MINS 12

NEXT 12

]

]

VPf

[

T
[

NEXT 12

]

]









vpr

l4 : q2(y, 13 , 14 )
l5 : visitor(y)
13 ≥ l5,
16 ≥ 14 , 14 ≥ 15









VPr

[

B

[

MINS 16

NEXT 16

]

]

VPf

[

T
[

NEXT 16

]

]









q2 = many, q3 = at_least_one

Figure 14: Attaching the moved weak quantifiers
in (10)

sition of the quantifier. The minimal scope of
weak and strong quantifiers is determined differ-
ently: The minimal scope of a moved weak quan-
tifier depends on its trace; the minimal scope of a
moved strong quantifier depends on the position of
the moved material.

Acknowledgments

For fruitful discussions of the work presented in
this paper, we want to thank Timm Lichte and
Wolfgang Maier. Furthermore, we are grateful to
three anonymous reviewers for helpful comments.

References

Tilman Becker, Aravind K. Joshi, and Owen Rambow.
1991. Long-distance scrambling and tree adjoining
grammars. InProceedings of ACL-Europe.

Werner Frey. 1993. Syntaktische Bedingungen für
die semantische Interpretation: Über Bindung, im-
plizite Argumente und Skopus. studia grammatica.
Akademie Verlag, Berlin.

Daniel Gallin. 1975. Intensional and Higher-Order
Modal Logic with Applications to Montague Seman-
tics. North Holland mathematics studies 19. North-
Holland Publ. Co., Amsterdam.

Laura Kallmeyer and Maribel Romero. 2004. LTAG
Semantics with Semantic Unification. InProceed-
ings of TAG+7, pages 155–162, Vancouver.

Laura Kallmeyer and Maribel Romero. 2005. Scope
and Situation Binding in LTAG using Semantic Uni-
fication. Submitted toResearch on Language and
Computation. 57 pages., December.

Laura Kallmeyer. 2005. Tree-local multicomponent
tree adjoining grammars with shared nodes.Com-
putational Linguistics, 31(2):187–225.

Tibor Kiss. 2000. Configurational and Relational
Scope Determination in German. In Tibor Kiss
and Detmar Meurers, editors,Constraint-Based
Approaches to Germanic Syntax, pages 141–176.
CSLI.

Winfried Lechner. 1998. Two Kinds of Reconstruc-
tion. Studia Linguistica, 52(3):276–310.

Owen Rambow. 1994.Formal and Computational
Aspects of Natural Language Syntax. Ph.D. thesis,
University of Pennsylvania.

K. Vijay-Shanker and Aravind K. Joshi. 1988. Feature
structures based tree adjoining grammar. InPro-
ceedings of COLING, pages 714–719, Budapest.

David J. Weir. 1988.Characterizing mildly context-
sensitive grammar formalisms. Ph.D. thesis, Uni-
versity of Pennsylvania.

80



Proceedings of the 8th International Workshop on Tree Adjoining Grammar and Related Formalisms, pages 81–90,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Licensing German Negative Polarity Items in LTAG

Timm Lichte
University of Tübingen

Collaborative Research Center 441
timm.lichte@uni-tuebingen.de

Laura Kallmeyer
University of Tübingen

Collaborative Research Center 441
lk@sfs.uni-tuebingen.de

Abstract

Our paper aims at capturing the distri-
bution of negative polarity items (NPIs)
within lexicalized Tree Adjoining Gram-
mar (LTAG). The condition under which
an NPI can occur in a sentence is for it to
be in the scope of a negation with no quan-
tifiers scopally intervening. We model this
restriction within a recent framework for
LTAG semantics based on semantic uni-
fication. The proposed analysis provides
features that signal the presence of a nega-
tion in the semantics and that specify its
scope. We extend our analysis to mod-
elling the interaction of NPI licensing and
neg raising constructions.

1 Introduction

1.1 Negative Polarity Items

NPIs are distributionally restricted to linguistic en-
vironments that exhibit a trigger for negativity (see
e.g., Ladusaw, 1980; Linebarger, 1987; Zwarts,
1997). More precisely, NPIs seek to be placed
within the scope of a negative operator at the level
of semantics. We say that the NPI has to beli-
censedby an exponent of negativity, thelicenser.
Examples in German can be found in (1)–(5) (the
NPI is underlined while the licenser is in bold
face).

(1) a. Hans
Hans

war
was

nicht
not

sonderlich
very

zufrieden
happy

mit
with

seiner
his

Arbeit
work

b.*Hans war sonderlichzufrieden mit seiner
Arbeit

(2) a. Er
he

hat
has

es
it

nicht
not

wahrhaben
acceptto be true

wollen
want

(‘He did not want to accept it to be true’)
b.*Er hat es wahrhabenwollen.

(3) a. Es
it

schert
bothers

ihn
him

nicht
not

(‘He does not give a damn about it’)
b.*Es schertihn.

(4) a. Du
you

brauchst
need

diese
these

Bücher
books

nicht
not

zu
to

lesen
read

(‘You need not read these books’)
b.*Du brauchstdiese Bücher zu lesen.

(5) a. Niemand
nobody

hat
has

auch nur einen Cent
even one cent

gespendet.
donated
(‘Nobody has donated any cent at all.’)

b.*Auch nur einen Cent hat niemand
gespendet.

We will mainly be concerned with verbal NPIs
such aswahrhaben wollen(‘accept to be true’) and
scheren(‘to give a damn about’). Another group
of NPIs we will pay closer attention to aremin-
imizers, here exemplified byauch nur ein Cent
(‘any Cent at all’). They are quantifiers denot-
ing the bottom line of a scale and therefore show
affinity with negation due to pragmatic reasons.
Furthermore, minimizers as quantifiers are subject
to particular position restrictions with respect to
negation (see next section). A group of NPIs we
will leave aside in this paper, however, is that of
adjectival NPIs such assonderlich(‘very’).

1.2 NPI Licensers

Various items and constructions can license NPIs.
Besides the more obvious ones such asnot, no-
body and never, also (among others)few, re-

81



strictors of universal quantifiers, conditional ante-
cendents and questions can license at least some
of the NPIs. There has been much controversy
about what the characterizing logical property of
licensers is. One proposal is based on the notion
of downward entailment(DE, Ladusaw, 1980),
which holds for operators whose truth value is per-
sistent over specification. While the DE property
can be found in most of the licensers, there are
some, such as questions, where it is hard to detect
(see van der Wouden, 1997 for an overview).1

In our proposal we don’t make use of DE as an
NPI licensing criterion. Instead we only require
the negation operator (¬) in the semantic represen-
tation as licensing feature. We thereby restrict our-
selves to triggers of ‘classic’ negation; we go even
further and only implementnon-contrastivenega-
tion. We use this term after Jacobs (1982) where
non-contrastive negation(NCN) andcontrastive
negation(CN) are examined for German. They
differ in that sentences with CN can be extended
by a but-phrase (Sondern-Phrase) while adding a
but-phrase to sentences with NCN gives odd re-
sults. Put differently, CN focuses on parts of a
sentence while NCN does not.2 Whether CN or
NCN is available, is indicated by intonation and
position of the negative element. However, am-
biguous indications are possible. In our analysis,
we leave aside intonation and stick to unambigu-
ous NCN as far as possible.

1.3 Semantic Scope and Range of Licensing

It is not sufficient for an NPI to just co-occur
with a licenser in the same sentence; it has to be
in the licenser’s scope. Furthermore, additional
constraints have been proposed in the literature.
One of the most extensively discussed requires the
NPI to be c-commanded by the licenser on sur-
face structure (c-command constraint, Ladusaw,
1980). As Hoeksema (2000) points out, the c-
command constraint is too restrictive when ap-
plied to languages with a considerably freer word
order than English, e.g. Dutch and German (see
(4) for an example that does not respect the c-
command constraint). He also points out that
the need for the c-command constraint only arises

1Giannakidou (1997) therefore proposes the idea ofnon-
veridicality as being the basic logical property of NPI-
licensers - eventually facing the problem of being less restric-
itive than required.

2If CN is available NPIs can only be licensed in the part
focused by CN.

from capturing the distribution of minimizers. All
other NPIs obey a simple scope constraint in terms
of Linebarger’s immediate scope constraint (ISC,
Linebarger, 1980; Linebarger, 1987), namely that
no other propositional operators (i.e. “logical ele-
ments” that are capable of entering into scope am-
biguities) may intervene between the licenser and
the NPI on LF.

While the ISC seems to hold for quantifiers,
quantificational adverbs and operators that con-
join propositions such asbecause, there are in
fact some operators that may scopally intervene.
Among them are non-quantificational adverbs,
minimizers and modals, as in (6):

(6) Peter
Peter

hat
has

keinen
no

Finger
finger

rühren
move

müssen.
must

(‘Peter didn’t need to lift a finger.’)

In (6), the negation always has wide scope with
respect to the modalmüssen(must), hencemüssen
intervenes between negation and NPI, but still the
sentence is grammatical.

Thus, our criterion for an NPI to be licensed is
1. to be in the scope of a negation that is seman-
tically interpreted in the same finite clause, and
2. not to allow regular quantifiers to scopally in-
tervene between negation and NPI. In this paper,
we will also refer to these criterions asimmedi-
ate scope.3 Minimizers seem to add a third crite-
rion, namely that the licenser has to syntactically
c-command the minimizer.

Independently from the ISC, one has to keep in
mind that negative elements in German are able to
cancel each other out, that is to constitute double
negation. We will come back to this briefly in sec-
tion 3.

1.4 Neg Raising Constructions

We extend our analysis to so-calledneg raising
(NR, cf. Horn, 1978) constructions because there
are interesting interactions between NPI licensing
and neg raising.

3Note that with this approach, one negation can even li-
cense several NPIs as in (i):

(i) Kein
no

Schüler
pupil

hat
has

jemals
ever

in
in

den
the

Ferien
holidays

sonderlich
particularly

viel
much

gelernt.
learned

(‘No pupil has ever learned very much during the hol-
idays.’)

82



An example of a NR-verb isglauben(‘believe’)
in (7).

(7) Hans
Hans

glaubt
believes

nicht,
not

dass
that

Peter
Peter

kommt.
comes

(‘Hans does not believe that Peter is com-
ing.’)

The negation can either take scope at its surface
position, i.e., scope overglauben, or it can scope
within the embedded sentence. Hence, two inter-
pretations are generally available: (a)¬believe(p)
and (b)believe(¬p). The second reading is possi-
ble only with NR-verbs.

In LTAG, lexical material is generated at its sur-
face structure position, there is no movement out-
side the lexicon. Therefore it is natural to assume
with respect to sentences as (7), that the negation
is syntactically generated in the matrix clause and
that neg raising attitude verbs such asglaubenal-
low for semantic lowering of an attached negation.
This negation then receives wide scope within the
sentential complement. In this, we follow the
HPSG analysis proposed in Sailer (to appear).

The presence of an NPI in the embedded sen-
tence as in (8) forces the negation to scope un-
der the bridge verb, that is the (b)-interpretation
is chosen.

(8) Hans
Hans

glaubt
believes

nicht,
not

dass
that

Peter
Peter

sonderlich
very

glücklich
happy

sein
be

wird.
will

(‘Hans does not believe that Peter will be
very happy.’)

2 The LTAG Semantics Framework

We use the Kallmeyer and Romero (2005) frame-
work for semantics. Each elementary tree is linked
to a semantic representation containing Ty2 terms
and scope constraints. Ty2 terms are typedλ-
terms providing individuals and situations as basic
types. The terms can be labeled, and they can con-
tain meta-variables. The scope constraints are sub-
ordination constraints of the formx ≥ y (‘y is a
component ofx’) with x andy being either propo-
sitional labels or propositional meta-variables.

The semantic representations are equipped with
feature structure descriptions. Semantic compu-
tation is done on the derivation tree and consists
of certain feature value equations between mother
and daughter nodes of edges in the derivation tree.

l1 : laugh( 1 )







NP

[

GLOBAL
[

I 1
]

]

VP

[

B
[

P l1
]

]







np vp

john(x)
l2 : always( 3 ),
3 ≥ 4

[

GLOBAL
[

I x
]

] 





VPr

[

B
[

P l2
]

]

VPf

[

B
[

P 4
]

]







Figure 1: LTAG semantics of (9)

The meta-variables from the semantic representa-
tions can occur in the feature structure descrip-
tions. In this case they can receive values follow-
ing from the feature value equations performed on
the derivation tree.

As an example see Fig. 1 showing the deriva-
tion tree for (9) with semantic representations and
semantic feature structure descriptions as node la-
bels.

(9) John always laughs

The additional feature equations in this example
are depicted with dotted links. They arise from
top-bottom feature identifications parallel to the
unifications performed in FTAG (Vijay-Shanker
and Joshi, 1988) and from identifications of global
features. They yield1 = x and 4 = l1. Apply-
ing these identities to the semantic representations
after having built their union leads to (10). The
constraint 3 ≥ l1 states thatl1 : laugh(x) is a
component of3 .

(10)
john(x), l2 : always( 3 ),
l1 : laugh(x),
3 ≥ l1

We assume a scope window for quantifiers
specifying an upper boundaryMAXS (‘maximal
scope’) and a lower boundaryMINS (‘minimal
scope’) for the nuclear scope. In this we follow
Kallmeyer and Romero (2005). In addition, how-
ever, we make use of the featureMINP (‘minimal
proposition’). In their analysis, which was devel-
oped for English,MINS andMINP are the same, in
other words, there is no separateMINP feature. In
German, the minimal scope of a quantifier seems
to depend not only on the verb the quantifier at-
taches to but also on other factors (see Kallmeyer

83



and Romero, 2006 in this volume for the influ-
ence of word order on quantifier scope in Ger-
man). This justifies the assumption that German
MINS if different from EnglishMINS. The scope
order is of course such thatMAXS is higher than
MINS which is in turn higher thanMINP.

In order to deal with NPI-licensing we intro-
duce three new features: a global and a localNEG-
feature and the global featureN-SCOPE. Not sur-
prisingly, the latter represents the scope of a nega-
tive operator, while the former is needed to check
the presence of a negative operator. The next sec-
tion offers detailed examples.

3 The Analysis of Licensers

In this section we give the elementary trees for
non-contrastivenicht (not) andniemand(nobody).

A strong trigger for NCN isnicht attached to
the verb. Based on the topological field theory
for German the attachment takes place at the right
satzklammer, a position that together with the left
satzklammer contains the verbal expression.4 As
an example see the derivation for (11) in Fig. 2.

(11) Peter
Peter

ruft
calls

Hans
Hans

nicht
not

an
PART

(‘Peter does not call Hans’)

Similar to Gerdes (2002), the VP nodes carry fea-
tures VF (‘Vorfeld’), LK (‘Linke Satzklammer’),
MF (‘Mittelfeld’), and RK (‘Rechte Satzklammer’)
for the topological fields. In German, the vorfeld,
the position preceding the left satzklammer, must
be filled by exactly one constituent. We guaran-
tee this with the featureVF: The differentVF fea-
tures at the highest VP node in the tree forruft an
make sure that adjunction to the vorfeld is obliga-
tory. At the same time, elements adjoining to any
of the topological fields (see the tree forPeter)
have a foot node featureVF = − and have equal
top and bottom featuresVF at their root. When

4Exceptions to this generalization are found with verbs
that express movement:

(i) a. Peter
Peter

geht
goes

nicht
not

ins
to the

Kino.
movies

(‘Peter does not go to the movies’)
b. *...

...
dass
that

Peter
Peter

ins
to the

Kino
movies

nicht
not

geht.
goes

(‘... that Peter does not go to the movies’)

Here the NC-nicht is always attached to the adverb that ex-
presses the direction or target of the movement, thus not to the
second satzklammer directly. For this paper, we leave these
cases aside.

VP
[V F+]

[V F−]

V
[LK+, RK−]

VP
[V F−, MF+]

ruft NPnom VP
[V F−, MF+]

NPacc V
[LK−, RK+]

an

NPacc

Hans

V

nicht V [RK+]
∗































VP
[V F 10 ]

[V F 10 ]

NP VP[V F−]∗

Peter
NPnom

ǫ































Figure 2: Syntactic analysis for (11)

adjoining to the vorfeld, these receive values+.
Consequently, further adjunctions of similar ele-
ments at the new root node are not possible. An
adjunction at the foot node of the auxiliary tree of
the vorfeld element can be excluded by some other
feature. This guarantees that exactly one element
gets adjoined into the vorfeld.

Note that we consider the base position of the
subject NP being in the mittelfeld and consider the
subject as being moved into the vorfeld. Alterna-
tively, any other element could be moved in to the
vorfeld instead.

The semantic combination ofnicht andruft an
is shown in Fig. 3.

TheMINP feature fromruft indicates the propo-
sition contributed by the verb which is the mini-
mal proposition of the whole elementary tree. It is
included in the scope of all operators (quantifiers,
negation, modals, . . . ) attaching to this verb (An
exception is of course neg raising where the scope
of the negation does not include theMINP value of
the NR-verb.).

The unifications between the two feature struc-
tures in Fig. 3 are depicted with dotted lines. They
yield in particular 9 = 7 , therefore, with con-
straint 7 ≥ l1, l1 is in the scope of the negation.

The presence of a negation is indicated by a
global NEG = yes. In case there is no negation,
we have to make sure we obtainNEG = no and not
just an unspecifiedNEG value. Therefore, the VP
spine is articulated with non-globalNEG features
that switch fromno to yes once a negation occurs.
Here this is the case at node positionV, conse-
quently 6 = 5 = 4 = 3 = yes. The topmost

84



l1 : call( 1 , 2 )
7 ≥ l1





























































GLOBAL





N-SCOPE 7

MINP l1

NEG 3





VPǫ

[

T
[

NEG 3
]

B
[

NEG 4
]

]

VP2

[

T
[

NEG 4
]

B
[

NEG 5
]

]

VP22

[

T
[

NEG 5
]

B
[

NEG 6
]

]

V

[

T
[

NEG 6
]

B
[

NEG no
]

]

NPnom

[

GLOBAL
[

I 1
]

]

NPacc

[

GLOBAL
[

I 2
]

]





























































v

l2 : ¬ 9







Vr

[

B
[

NEG yes
]

]

Vf

[

GLOBAL
[

N-SCOPE 9
]

]







Figure 3: Semantic computation for... ruft ...
nicht an

NEG then becomes the globalNEG.
Cases of double negation, though not consid-

ered here, could be captured by assuming that each
negation on the verbal spine makes the value of
the localNEG feature switch (fromno to yesor, if
there was already negation, fromyesto no). This
way, double negation would lead to a globalNEG

feature with valueno.
The negative quantifierniemandhas the distri-

bution of an NP. The elementary trees in Fig. 4
for niemandreflect the∀¬ reading which is pre-
ferred by an analysis assuming that the NPI must
be in the scope of a negation with no quantifiers in-
tervening. The featuresNEG, MINP andN-SCOPE

work in the same way as in the case ofnicht. The
global I feature linked to the initial tree with the
trace passes the argument variable to the verb.

Note that this is an analysis for the case where
niemandis ‘moved’. If niemandis in base posi-
tion, the lexical item comes with an initial tree that
is substituted at the corresponding NP slot. How-
ever, since theNEG-feature can only be switched
to yes by adjoining an auxiliary tree carrying
negation to a VP node, even in these cases we
need an additional VP auxiliary tree contributing
the sentential negation.5

5Another option would be to let the initial tree ofniemand
directly access the semantic features of a VP node.















VP
[V F 20 ]

[V F 20 ]

NP VP
[V F−]

∗

niemand

NPnom

ǫ















Semantics:

VP
[V F 20 ]

[V F 20 ]

NP VP
[V F−]

∗

niemand

l2 : forall(x, 7 , 8 ),
l3 : person(x),
l4 : ¬ 9 ,
7 ≥ l3, 8 ≥ l4







VPr

[

B
[

NEG yes
]

]

VPf

[

GLOBAL
[

N-SCOPE 9
]

]







NPnom

ǫ [

GLOBAL
[

I x
]

]

Figure 4: Lexical entry forniemand

4 The Analysis of NPIs

For this paper we restrict ourselves to verbal NPIs
and minimizers.

As an example for a verbal NPI consider
scheren(‘to give a damn about sth.’) in (3). Its
lexical entry is shown in Fig. 5. As in the case of
ruft, the verbal spine is articulated with theNEG

feature. Furthermore,GLOBAL contains the re-
quirement of a negation (NEG = yes). In partic-
ular, the topmostNEG feature on the verbal spine
is yes while the value of the lowestNEG feature is
no. This means that at some point on the verbal
spine a negation must be added that switches the
value fromno to yes.

Concerning the scope relation between NPI and
negation, the following should hold: 1. the NPI
must be in the scope of the negation, and 2. quan-
tifiers must not intervene between negation and
NPI.

The first condition is guaranteed with constraint
9 ≥ l1.

In order to capture the second restriction, the
distinction betweenMINS and MINP allows us
to draw a border line between the domain where
quantifiers can take scope and the domain where
the negation and the NPI are positioned. Other
scope taking operators (modals, adverbs, . . . )
are not concerned by this limit. This border line
is the MINS value, and the crucial NPI-specific
constraint is8 ≥ 9 stating that the negation must

85



VP
[V F+]

[V F−]

V
[LK+, RK−]

VP
[V F−, MF+]

schert NPnom VP
[V F−, MF+]

NPacc V
[LK−, RK+]

ǫ

l1 : scheren( 1 , 2 )
7 ≥ 8 , 8 ≥ l1,
8 ≥ 9 , 9 ≥ l1





































































GLOBAL













MINP l1

MINS 8

MAXS 7

N-SCOPE 9

NEG yes













VPǫ

[

T
[

NEG yes
]

B
[

NEG 4
]

]

VP2

[

T
[

NEG 4
]

B
[

NEG 5
]

]

VP22

[

T
[

NEG 5
]

B
[

NEG 6
]

]

V

[

T
[

NEG 6
]

B
[

NEG no
]

]

NPnom

[

GLOBAL
[

I 1
]

]

NPacc

[

GLOBAL
[

I 2
]

]





































































Figure 5: Lexical entry forschert

scope under the minimal scope of all quantifiers.
The scope relations then can be summarised as in
Fig. 6.

no NPI involved:

MAXS

MINS ¬

MINP

NPI involved:

MAXS

MINS

¬

NPI

MINP

Figure 6: Scope relations ofMAXS, MINS and¬
with and without the involvement of an NPI.

As mentioned in 1.3 minimizers show a more
restrictive distribution than verbal NPIs. In addi-
tion to the two licensing conditions of verbal NPIs
stated above minimizers also obey a third licensing
condition in German: the negation must precede
the minimizer in the same clause or the negation

must have wide scope with respect to the sentence
containing the minimizer, such as in NR construc-
tions. Consider the minimizerauch nur einen Cent
(‘any cent at all’) in example (5) and its proposed
lexical entry in Fig. 7.















VP

NP VP∗

auch nur einen Cent

NPnom

ǫ















l1 : exists(x, 1 , 2 )
l2 : Cent(x)
1 ≥ l2, 2 ≥ 6 , 4 ≥ l1,
5 ≥ 4





















VPf



















GLOBAL









N-SCOPE 4

MINS 5

MINP 6

NEG yes









T
[

NEG no
]

B
[

NEG no
]







































[

GLOBAL
[

I x
]

]

Figure 7: Lexical entry forauch nur einen Cent

We propose a multicomponent lexical entry for
minimizers here, since they have to access the se-
mantic feature structure of the VP spine, and there-
fore have to be adjoined. This is different from
verbal NPIs (that are part of the VP spine by def-
inition), but similar to the negative quantifiernie-
mand. As for verbal NPIs the presence of a nega-
tion is ensured by the globalNEG feature, that is
required to beyes. The scope condition is satis-
fied by the constraints4 ≥ l1 and 5 ≥ 4 : the for-
mer one ensures that the semantic contribution of
auch nur einen Centis part ofN-SCOPE, while the
latter one prohibits any intervening regular quanti-
fier (by requiringN-SCOPEto be a subexpression
of MINS).6

In order to meet the third condition we have to
make sure that the negation appears somewhere to
the left of the minimizer. In other words, the nega-
tion is not attached between the right satzklammer
and the minimizer, but somewhere else (as ensured
by the globalNEG feature). Remember that the
position of a negation is signaled by the localNEG

feature on the VP spine and its switch fromno to
yes. One way to exploit this is to let the mini-
mizer semantically specify the VP node to which

6Note that, though being quantifiers, minimizers are not
concerned by theMAXS-MINS scope window. Instead, their
scope window is specified byN-SCOPEas upper limit and
MINP as lower limit (the latter results from constraint2 ≥ 6 .

86



it can be attached. This is accomplished by the
VPf feature in the lexical entry forauch nur einen
Cent, where the localNEG is required to beno,
while the globalNEG is yes. Thereby it is guaran-
teed that somewhere between the position where
the adjunction of the minimizer takes place and the
maximal projection of the VP theNEG feature has
to switch toyes with the aid of a negative item.

5 The Analysis of Neg Raising

Now let us turn to the neg raising examples from
section 1.4. Attitude verbs that optionally offer
neg raising are mapped onto two lexical entries
representing a non-NR- and a NR-reading. In
the latter, the negation takes wide scope within
the embedded clause. In other words, quantifiers
cannot scopally intervene between the embedding
verb and the negation. This is exemplified in (12).

(12) Peter
Peter

glaubt
believes

nicht,
not

dass
that

jeder
each

seiner
of his

Freunde
friends

kommen
come

wird.
will.

(‘Peter does not believe that each of his
friends will come’)

The NR-reading (believes(p, · · · ¬ · · ·) does not
exclude that Peter believes that some of his friends
will come. A reading where Peter believes that
none of his friends will come is not available. In
other words, the quantifier has to scope under the
negation.

The lexical entry for glaubt with the NR-
reading is shown in Fig. 8. In the syntax we as-
sume a substitution node for the sentential com-
plement. Long-distance dependencies are then
analysed with multicomponents. This choice was
motivated because in German, taking into ac-
count scrambling, more movement-based word or-
der variations are possible than in English. For
these we need multicomponents anyway (see the
elementary tree set forniemand), and then senten-
tial complements might be treated in parallel. The
S substitution node carries a syntactic featureNR

indicating that this is a neg raising construction.
The lowering of the negation is expressed as fol-

lows: theN-SCOPEof glaubt (variable 7 ), i.e., the
scope of the attaching negation, does not contain
the MINP of glaubt as in non-NR readings. In-
stead, it contains theMAXS (variable9 ) of the em-
bedded sentence (constraint7 ≥ 9 ). This MAXS

is usually contained in the propositional argument

VP
[V F+]

[V F−]

V
[LK+, RK−]

VP
[V F−, MF+]

glaubt NPnom VP
[V F−, MF+]

V
[LK−, RK+]

S
[nr+]

ǫ

l1 : believe( 1 , 8 )
8 ≥ 7

7 ≥ 9

































































GLOBAL





MINP l1

N-SCOPE 7

NEG no





VPǫ

[

T
[

NEG yes
]

B
[

NEG 4
]

]

VP1

[

T
[

NEG 4
]

B
[

NEG 5
]

]

VP12

[

T
[

NEG 5
]

B
[

NEG 6
]

]

V

[

T
[

NEG 6
]

B
[

NEG no
]

]

S

[

GLOBAL

[

N-SCOPE 7

MAXS 9

]

]

NPnom

[

GLOBAL
[

I 1
]

]

































































Figure 8: Lexical entry forglaubt

of believe (see Kallmeyer and Romero, 2005); in
this special neg raising entry we even require the
N-SCOPE to be contained in this argument (con-
straint 8 ≥ 7 ). The MAXS feature 9 marks the
upper limit for the scope of all quantifiers occur-
ring inside the embedded clause. Consequently,
wide scope of the lowered negation with respect
to the embedded sentence is ensured.

The lexical entry forglaubt with NR-reading
also has to make sure that a negative element is at-
tached to its verbal spine. In this respect its seman-
tic feature structure resembles the one of a ver-
bal NPI, that is theNEG value has to be switched
to yes by adjunction. However, semantically the
negation is interpreted in the embedded sentence
and NPIs cannot be licensed in the matrix clause.
Therefore, the value of the globalNEG feature is
no.

The complementizer of the embedded clause
takes care of setting the value of the embedded
global NEG to yes by identifying theNEG feature
of its S node with the topmostNEG feature on the

87



verbal spine of the embedded clause. In a non-NR-
reading, the complementizer only passes theNEG

value upwards, i.e., the globalNEG of the embed-
ded clause specifies whether a negation is present
in the embedded clause.

S
[nr+]

Comp VP
[V F+]

∗

dass

[

S

[

T
[

NEG yes
]

]

]

Figure 9: Complementizerdassin neg raising con-
struction

With this analysis, if a NR-verb embeds an NPI
as in (8), the NPI requires the NR-reading; oth-
erwise the globalNEG feature of the embedded
clause isno.

Next, we want to give an example derivation
of a sentence that contains anunlicensed NPI and
which amounts to contradicting scope constraints.
It concerns the following sentence:

(13) *Hans
Hans

glaubt
believes

nicht,
not,

dass
that

es
it

jeden
everybody

schert.
bothers
(‘Hans doesn’t believe that everybody
gives a damn about it.’)

The NPI schert is not licensed due to the inter-
vening quantifierjeden (every). The defective
dervation of (13) is shown in Fig. 10. Syntacti-
cally, theS leaf of theHans glaubt nicht tree
is substituted by thedass es schert tree and the
jeder tree is substituted into thedass es schert

tree. This works fine. In the semantic represen-
tation, however, we observe a clash of the scope
constraints. Remember that we analyse the ver-
bal NPIschertas requiring immediate scope, that
is MINS ≥ N-SCOPE. On the other side, the
NR-verb glaubendemands the negation to have
wide scope with respect to the embedded sentence,
henceN-SCOPE≥ MAXS (constraintl2 ≥ 3 ) . If
we put these two constraints together we obtain
the constraintMINS = MAXS, which means that
the area where quantifiers take scope (theMAXS-
MINS window) is empty and hence there cannot
be any quantifiers. A quantifer such asjeden is
then ruled out due to two semantic constraints it
contributes: its semantic content is a subexpres-
sion of MAXS (constraint 3 ≥ l3) and MINS is
a subexpression of its nuclear scope (constraint

6 ≥ l2). However, this can only hold ifMINS

6= MAXS which is not true for (13) as has been
shown.

Hansglaubt nicht

l1 : believe(Hans, 1 )
l5 : ¬l2
1 ≥ l2, l2 ≥ 3















GLOBAL





MINP l1

N-SCOPE 7

NEG no





Sf

[

GLOBAL

[

N-SCOPE 7

MAXS 3

]

]















dassesschert

l2 : es schert( 4 , es)
7 ≥ l2









GLOBAL









MINP l2

MINS 7

N-SCOPE 7

NEG yes

















jeden

l3 : every(x, 5 , 6 )
l4 : person(x)
5 ≥ l4, 3 ≥ 6 , 6 ≥ 7

3 ≥ l3








GLOBAL
[

I x
]

NP

[

GLOBAL

[

MINS 7

MAXS 3

]

]









Figure 10: Defective derivation tree forHans
glaubt nicht, dass es jeden schert

6 Conclusion and further research

We propose an LTAG analysis of the distribution
of German NPIs. The crucial criterion for an NPI
is the requirement to be in the scope of a nega-
tion that is semantically in the same finite clause
such that no quantifier can scopally intervene be-
tween negation and NPI. Technically we achieved
this using the featuresNEG andN-SCOPE, that sig-
nal the presence of a negation and make its imme-
diate scope available for the NPI.7 The specific
constraints for quantifiers when occurring with

7Note however, that, even though we have called the fea-
ture signalling the presence of a potential NPI licenserNEG,
we might as well call it differently and give it a different
meaning (for example, encoding downward entailment in-
stead of negation). The licensing mechanism and the way this
feature is used could stay the same. In this sense our analysis
is independent from the concrete logical characterizationof
NPI licensers.

88



NPI licensing negations are obtained by a distinc-
tion between the featureMINS characterizing the
lower boundary of quantifier scope and the mini-
mal proposition contributed by a verb that charac-
terizes the lower boundary for the scope of nega-
tions.

We think LTAG is particularly well suited to de-
scribe this phenomenon since the relation between
licenser and licensee can be localized within sin-
gle elementary trees.8 The only exception are neg
raising constructions where the licensing property
needs to be passed down to the embedded clause.
This is not non-local either and can be easily mod-
elled in LTAG. This shows that LTAG’s extended
domain of locality has advantages not only for
syntax (see Kroch, 1987) but also for semantics.

The analyses discussed in this paper have
demonstrated the usefulness of semantic feature
structure descriptions that specify the combination
possibilities of semantic representations and that
are separated from the semantic representations
themselves. On the one hand the semantic features
encode the contributions of the semantic represen-
tations to functional applications. I.e., they state
which elments are contributed as possible argu-
ments for other semantic expressions and which
arguments need to be filled. They thereby simu-
late lambda abstraction and functional application.
On the other hand they also serve to model the
scopal behaviour of different operators and to cap-
ture the different boundaries for scope. The com-
bination of LTAG’s extended domain of locality
with a semantics using feature structure unifica-
tion enables us to capture these constraints within
a mildly context-sensitive framework: The struc-
tures underlying the computation of syntax and se-
mantics are the context-free derivation trees.

One line of further research we want to pursue is
an extension of the proposed analysis to adjectival
and adverbial NPIs. We already started working
on this. But for reasons of space we left this out in
this paper.

Acknowledgements

For many inspiring discussions of the topics
treated in this paper, we are grateful to our col-
leagues Wolfgang Maier, Frank Richter, Manfred

8In the HPSG analysis from Soehn (2006) for example,
where we do not have an extended domain of locality, one
has to specify explicitely that the licenser of an NPI must be
found within the next complete clause containing the NPI.

Sailer and Jan-Philipp Söhn. Furthermore, the pa-
per benefitted a lot from the useful comments of
three anonymous reviewers.

References

Kim Gerdes. 2002. DTAG? InProceedings of TAG+6
Workshop, pages 242–251. Venice.

Anastasia Giannakidou. 1997.The Landscape of Po-
larity Items. Ph.D. thesis, Rijksuniversiteit Gronin-
gen.

Jack Hoeksema. 2000. Negative Polarity Items: Trig-
gering, Scope and C-Command. In Laurence Horn
and Yasuhiko Kato, editors,Negation and Polarity,
pages 115–146. Oxford University Press, Oxford.

Laurence R. Horn. 1978. Remarks on Neg-Raising.
In Peter Cole, editor,Pragmatics, pages 129–220.
Academic Press, New York, San Francisco, London.

Joachim Jacobs. 1982.Syntax und Semantik der Nega-
tion im Deutschen. Wilhelm Fink Verlag, München.

Laura Kallmeyer and Maribel Romero. 2005. Scope
and Situation Binding in LTAG using Semantic Uni-
fication. Research on Language and Computation.
57 pages, submitted.

Laura Kallmeyer and Maribel Romero. 2006. Quan-
tifier Scope in German: An MCTAG Analysis.
In Proceedings of The Eighth International Work-
shop on Tree Adjoining Grammar and Related For-
malisms (TAG+8), Sydney, Australia, July.

Anthony S. Kroch. 1987. Unbounded Dependen-
cies and Subjacency in a Tree Adjoining Grammar.
In A. Manaster-Ramer, editor,Mathematics of Lan-
guage, pages 143–172. John Benjamins, Amster-
dam.

William Ladusaw. 1980.Polarity Sensitivity as Inher-
ent Scope relations. Garland Press, New York.

Marcia Linebarger. 1980.The Grammar of Negative
Polarity. Ph.D. thesis, MIT. cited after the repro-
duction by the Indiana University Linguistics Club,
Indiana, 1981.

Marcia Linebarger. 1987. Negative Polarity and
Grammatical Representation.Linguistics and Phi-
losophy, 10:325–387.

Manfred Sailer. to appear. “Don’t Believe” in Under-
specified Semantics. an LRS Analysis of Neg Rais-
ing. Empirical Issues in Formal Syntax and Seman-
tics 6.

Jan-Philipp Soehn. 2006.̈Uber Bärendienste und er-
staunte Baukl̈otze - Idiome ohne freie Lesart in der
HPSG. Ph.D. thesis, Fiedrich-Schiller Universität
Jena.

89



Ton van der Wouden. 1997.Negative Contexts. Collo-
cation, Polarity and Multiple Negation. Routledge,
London.

K. Vijay-Shanker and Aravind K. Joshi. 1988. Fea-
ture Structures Based Tree Adjoining Grammar. In
Proceedings of COLING, pages 714–719, Budapest.

Frans Zwarts. 1997. Three Types of Polarity. In
Fritz Hamm and Erhard W. Hinrichs, editors,Plu-
rality and Quantification, pages 177–237. Kluwer
Academic Publishers, Dordrecht.

90



Proceedings of the 8th International Workshop on Tree Adjoining Grammar and Related Formalisms, pages 91–96,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Semantic Interpretation of Unrealized Syntactic Material in LTAG 
 

Olga Babko-Malaya 
University of Pennsylvania 

malayao@ldc.upenn.edu 

 

 

  

 

Abstract 

This paper presents a LTAG-based 

analysis of gapping and VP ellipsis, 

which proposes that resolution of the 

elided material is part of a general dis-

ambiguation procedure, which is also re-

sponsible for resolution of underspecified 

representations of scope.  

1  Introduction 

The problem of ellipsis resolution is to recover 

the interpretation of the elided material. For ex-

ample, in (1), the elided VP is interpreted as be-

ing identical to the verb in the preceding sen-

tence. Likewise, in the gapping structures, as 

shown in (2), the interpretation of a gap is being 

identified with the interpretation of the preceding 

verb.   

  

(1) Mary likes Bill.  Jane does too.  

(2) Mary ate beans and others -- rice.  

 

Whereas some approaches assume syntactic 

identity between the antecedent and the elided 

material (e.g. Fiengo and May 1994),  others 

suggest that VP ellipsises are proforms, semanti-

cally identified with their antecedents (see Dal-

rymple et al 1991, Shieber et al 1996, Hardt 1993, 

1999).   

This paper follows semantic approaches to el-

lipsis resolution. It adopts the LTAG semantics 

of Kallmeyer and Romero 2004 and proposes 

that resolution of ellipsises and gaps is part of a 

general disambiguation procedure, which is also 

responsible for resolution of underspecified rep-

resentations of scope. 

2 LTAG Semantics with Semantic Uni-

fication 

In LTAG framework (Joshi and Schabes 1997), 

the basic units are (elementary) trees, which can 

be combined into bigger trees by substitution or 

adjunction. LTAG derivations are represented by 

derivation trees that record the history of how the 

elementary trees are put together. Given that 

derivation steps in LTAG correspond to predi-

cate-argument applications, it is usually assumed 

that LTAG semantics is based on the derivation 

tree, rather than the derived tree (Kallmeyer and 

Joshi 2003).  

Semantic composition which we adopt is 

based on LTAG semantics with semantic unifica-

tion (Kallmeyer and Romero 2004). In the deri-

vation tree, elementary trees are replaced by their 

semantic representations and corresponding fea-

ture structures.  Semantic representations are as 

defined in Kallmeyer and Joshi 2003, except that 

they do not have argument variables. These rep-

resentations consist of a set of formulas (typed λ-

expressions with labels) and a set of scope con-

straints.  

Each semantic representation is linked to a 

feature structure. Feature structures, as illustrated 

by different examples below, include a feature i 

whose values are individual variables and fea-

tures p and MaxS, whose values are proposi-

tional labels. Semantic composition consists of 

feature unification. After having performed all 

unifications, the union of all semantic representa-

tions is built.  

Consider, for example, the semantic represen-

tations and feature structures associated with the 

elementary trees of the sentence shown in (3).    

 

(3)  Mary dates Bill 
            S                         

                            l1: date(v1, v2 ) 

    NP      VP             

[i:v1]             

       date             NP    [i: v2]          

 

   NP                            NP           

          Mary(x)                     Bill (y) 

 

  Mary                       Bill            

  [i: x]                        [i: y]  

 

 

91



Derivation tree:      date 

                            1       2 

                       mary            bill 

 

Semantic composition proceeds on the derivation 

tree and consists of feature unification:  

 

(4)      l1: date(v1, v2 )                                                               

              1 [i: v1]                                                                      

              2 [i: v2 ]                                               

              1             2                                                                                 

                                                                  

    mary(x)               bill(y) 

     [i: x]                      [i: y]    

                   

Performing two unifications,  v1=x, v2=y, we ar-

rive at the final interpretation of this sentence: 

l1: date(x, y), bill(y), mary(x). This representa-

tion is interpreted conjunctively, with free vari-

ables being existentially bound.    

Quantificational NPs are analyzed as multi-

component TAGs, where the scope part of the 

quantifier introduces the proposition containing 

the quantifier, and the predicate-argument part 

introduces the restrictive clause (see Kallmeyer 

and Joshi 2003).  

 

(5) Every student likes some course 
.       S*                                                      S 

                                                                                                  

                                       

         NP [i: x, p: P1]                       NP           VP                          

                                        [p: l1, i: v1]                                 

every  student                                      likes      NP                     

                                              l1: like(v1, v2)   [p:l1, i:v2]                                  

                                                   

                                       

 

.       S*                                               

                                                                                                  

                                       

         NP [i: y, p: P2]                  

                                         

    Some course 

 

      

 

 

Final representation   

 

 
 

 

 

 

 

The final representation of this sentence is un-

derspecified for scope, given that there are no 

constraints which restrict the relative scope of 

every and some. In order to obtain one of the 

readings, a disambiguation mapping is needed: 

Disambiguations:                                                           

1. R2 ->l4, R3 ->l5, N2 ->l1, N3 -> l2:   

some(y,course(y), every(x,student(x), like(x, y))) 

2. R2->l4, R3->l5, N3->l1, N2->l3:                                                     

every(x, student(x), some(y, course(y), like(x, y)) 

 

Disambiguations are functions from proposi-

tional variables to propositional labels that re-

spect the scope constraints, such that after having 

applied this mapping, the transitive closure of the 

resulting scope is a partial order.  

3 The Problem of Ellipsis Resolution in 

LTAG semantics 

Given LTAG semantics, there are two possible 

approaches to resolution of the elided material: 

reconstruction can be done as part of the unifica-

tion process or as part of the disambiguation pro-

cedure. If reconstruction was done as unification, 

the semantic representation of the elided material 

would be disambiguated in the final representa-

tion. On the other hand, it is well known that 

resolution of ellipsises and gaps can be ambigu-

ous. For example, the sentence in (6), discussed 

in Siegel 1987 and Johnson 2003 among others, 

has 2 interpretations:1 

 

(6) Ward can’t eat caviar and his guests -- dried 

beans 

Can’t (eat (ward, caviar)) & eat (his guests, dried 

beans)) 

Can’t (eat(ward, caviar)) & can’t (eat(his guests, 

dried beans))                                                                              

 

As this example shows, the gap in (6) can be re-

constructed by selecting either the verb or the 

negated modal as its antecedent. The two inter-

pretations represent different scope readings be-

tween the conjunction and negation, which 

should be analyzed as underspecified in LTAG 

semantics. Resolution of gaps, therefore, cannot 

be done as part of unification, since it depends on 

the disambiguated interpretation. The question is 

whether it is possible to define an underspecified 

representation of these two readings, and what 

kind of resolution mechanism can be used to dis-

ambiguate these interpretations? 

                                                
1 Other cases of ambiguous interpretations of the elided 

material are discussed in section 7. 

l2: every(x, R2, N2) 

l3: some(y, R3, N3) 

l4: student(x) 

l4 ≤ R2, P1 ≤ N2 

l5: course(y) 

l5 ≤ R3, P2 ≤ N3 

  l2: every(x, R2, N2) 

l4: student(x)  l4 ≤R2 

l3: some(y, R3, N3) 

l5: course(y)  l5 ≤ R3 

l1: like(x, y)   l1 ≤N2   l1 ≤N3 

 

92



4 LTAG Semantics of Gapping  

In LTAG semantics, semantic representations are 

introduced by lexicalized trees. In order to ac-

count for the analysis of gapping and VP ellipsis, 

this paper proposes that semantics should be de-

fined on both lexicalized and non-lexicalized 

trees. Specifically, we propose that  

Interpretation of a gap (or elided VP) is the se-

mantic interpretation of a non-lexicalized S tree. 

The semantic representations of lexicalized S 

trees under this new approach are derived com-

positionally, given the meaning of a nonlexical-

ized S tree and the meaning of a verb.  

(7)      S                                       

  

 NP[i:v1]  VP          V [Ag: v3, Pat: v4, MaxS: C1]             

                                      

                               date        l0: date(v3, v4), l0≤C1                                                                             

        V            NP [i:v2] 

[Ag: v, Pat: u, MaxS: C]     

l2: λuλv.C (v2)(v1)  
 

Non-lexicalized trees introduce a propositional 

label and a propositional variable, illustrated by 

l2 and C above.  If a tree is a transitive S-tree, 

there are two lambda bound variables, which cor-

respond to the Agent and Patient features of the 

verb. Performing feature unifications (v3=v, 

v4=u,C1=C) and scope constraint disambigua-

tions (C->l0), the proposition l2 will be reduced to: 

λu.λv.date(v, u)(v2)(v1)= date(v1, v2).  

Given this proposal, we suggest that the se-

mantics of gaps, VPE and other types of elided 

material is introduced by non-lexicalized trees. 

For example, the analysis of the sentence in (2) is 

shown in (7). Performing feature unifications 

(l2=P1, l3=P2, v=v1=v2, u=u1=u2, C=C1=C2) yields 

the final representation, where l2 and l3 are un-

derspecified. There is only one disambiguation 

of the variable C in this sentence: C -> l0, which 

gives us the desired interpretation of the sen-

tence: 

 

l2: λuλv.eat(v, u) (y)(x) = eat(x, y) 

l3: λuλv.eat(v, u) (w)(z) = eat(z, w) 

 

Resolution of the gap in this sentence is en-

forced by the feature structure of ‘and’, which 

unifies MaxS as well as Agent and Patient fea-

tures. This analysis therefore accounts for the 

fact that gapping “is intimately entangled with 

the syntax of coordination (as opposed to VP 

ellipsis)” (Johnson 2003). On the other hand, as 

the next example illustrates, it is crucial that pro-

positional variables introduced by non-

lexicalized trees are not unified during semantic 

composition, but rather are identified with their 

antecedents as part of the disambiguation proce-

dure.  

 

(7) Mary ate beans and others -- rice.  
 

          S   [p: l2, Ag: v1, Pat: u1, MaxS:C1]      

                

  Mary    VP 

                                                                                                              

        V         beans 

      eat           

          S 

 

 

  S   [p: P1, Ag: v, Pat: u, MaxS:C]             

 

      and          S   [p: P2, Ag: v, Pat: u, MaxS:C]      

  l1: P1 ∧ P2 

 

          S    [p:l3, Ag:v2, Pat:u2, MaxS:C2]          

                   

others      VP 

 

                          rice 

 

Final Representation: 

 
 

 

 

 

The sentence in (8), shown below, differs from 

the previous one in the presence of a negated 

modal. The interpretation of this modal intro-

duces a proposition l9: can’t(N9) and a constraint 

P3 ≤ N9 . After P3 is unified with the proposition 

l0, the final representation has two constraints on 

the variable l0: l0≤ C and l0≤ N9, and therefore 

two possible disambiguations. In the disambigua-

tion 1, C is mapped to l0, introduced by the verb 

‘eat’, and propositions l2 and l3 are reduced to 

eat(x, y) and eat(z, w). In the disambiguation 2, 

the variable C is mapped to l9, introduced by the 

modal, and l2 and l3 are reduced to can’t(eat(x, 

y)) and can’t(eat(z, w)). These disambiguations 

yield the desired interpretations of this sentence.  

 

 (8) Ward can’t eat caviar and his guests -- dried 

beans  

l3: λu2λv2.C2 (w)(z) 

others(z), rice(w) 

l2: λu1 λv1.C1 (y)(x)  

l0:  eat(v1, u1), l0≤ C1 

Mary(x), beans(y)  
 

l1: l2 ∧ l3                     

l2: λuλv.C (y)(x)            l3: λuλv.C (w)(z) 

l0: eat(v, u)   l0 ≤ C  

mary(x), beans(y), others(z), rice(w) 
 

93



          S   [p: l2, Ag: v1, Pat: u1, MaxS:C1]      

                

  Ward    VP [p: l0] 

                                                                                                                            

        V          caviar 

      eat                                       

 

                                VP [p: P3] 

                                           

        S             Can’t      VP   l9: can’t(N9)  P3 ≤ N9     

 

  S   [p: P1, Ag: v, Pat: u, MaxS:C]             

 

      and          S   [p: P2, Ag: v, Pat: u, MaxS:C]      

l1: P1 ∧ P2 

 

          S    [p:l3, Ag:v2, Pat:u2, MaxS:C2]          

                   

guests      VP 

 

                          beans 

Final Representation 

 

 

 

 

Disambiguation 1:  C->l0, N9 ->l1:     

can’t (eat(x, y) ∧ eat(z, w)) 

             l2                  l3 

 

Disambiguation 2:  C->l9, N9->l0:     

can’t(eat(x, y))  ∧  can’t (eat(z, w))  

        l2                               l3 

 

Resolution of gaps under this analysis is done as 

part of the scope resolution procedure on under-

specified representations. A crucial feature of 

this analysis is that the propositions l2 and l3 are 

‘underspecified’ in the final representation and 

the variable C is computed during the 

disambiguation, i.e. when all scope ambiguities 

are being resolved.  In this respect this analysis 

differs from previous approaches, where the final 

representation did not include any variables, ex-

cept for the arguments of quantifiers or other 

scopal elements.
2
 

                                                
2  However, see Babko-Malaya 2004, where a similar 

analysis is proposed to account for the semantics of coor-

dinated structures with quantified NPs.  

5 LTAG Analysis of VP Ellipsis 

The analysis of gapping presented above can be 

easily extended to the analysis of VP ellipsis. 

VPE differs from gapping in that it is not re-

stricted to coordinated structures. Whereas in the 

examples above resolution of gaps was enforced 

by the feature structure of ‘and’, in the case of 

VPE, a similar unification, forced by pragmatic 

constraints, results in recovering the elided mate-

rial.  

As the example in (9) illustrates, our analysis 

of VPE assumes the following modification of 

the semantics of non-lexicalized trees: proposi-

tions introduced by non-lexicalized trees have 

one lambda-bound variable, so that each argu-

ment is introduced by a separate proposition. For 

example, the interpretation of a transitive tree 

below has two propositions l1 and l2, and two 

propositional variables C1 and C2. The proposi-

tion l2 corresponds to the meaning of a VP, 

which is missing in the standard TAG-based 

analyses. This decomposition of the meaning of a 

nonlexicalized tree, therefore, can be independ-

ently motivated by the existence of modifiers 

which predicate of VPs. We further assume that 

the MaxS feature of the S tree corresponds to the 

variable introduced by the agent (or the highest-

ranked argument). 

 

(9)    Mary likes Bill. Jane does too.                                                     
 

                S  [Ag: v, Pat: u, MaxS: C1]                                             

 

[i:v3] NP       VP                                                                              

                               

NP [i:x]   V           NP  [i: v4]                                                

mary(x)      [Ag: v, Pat: u, MaxS: C2]                                   

   

                                   NP[i: y]  bill(y           

               V [Ag: v3, Pat: v4, MaxS: C]             

                                                                                        

               like      l0: like(v3, v4) l0≤C                      

   

Final 

Representation: 

 

 

 

Applying disambiguations C2 -> l0, C1 -> l2 , we 

derive the following propositions: 

 

l2: λu.like(v, u) (y)=like(v, y) 

l1: λv.like(v, y) (x)=like(x, y) 

 

l3: λu2λv2.C2 (w)(z) 

guests(z), beans(w) 

l2: λu1 λv1.C1 (y)(x)  

l0:  eat(v1, u1), l0≤ C1 

ward(x), caviar(y)  
 

l1: l2 ∧ l3           l0:  eat(v, u)   

l9: can’t(N9)       l0≤ N9     l0≤ C  

l2: λuλv C (y)(x)     l3: λuλv C (w)(z)       

guests(z), beans(w), caviar(y), ward(x)  
 

l1: λv C1 (v3)  

l2: λu C2 (v4)    l2 ≤ C1 

 

l1: λv C1 (x)  

l2: λu C2 (y)    l2 ≤ C1 

l0:  like(v, u),  l0≤ C2 

Mary(x), Bill(y)  
 

94



Now consider the second sentence: Jane does 

too: 

          S   [Ag: v3,  MaxS: C3]                                                            

 

NP[i:v5]  VP        l3: λv3.C3 (v5)                                

                

 

NP [i: r]     V                                                                                           

  jane(r) 

 

Final 

Representation: 

 

This sentence introduces an intransitive tree and 

one propositional variable C3. This variable is 

not constrained within the sentence, and parallel 

to other pro-forms, it gets its interpretation from 

the previous discourse. Specifically, the interpre-

tation of the second sentence is derived by unifi-

cation of the S features of the second and the first 

S-trees in (9):  C3=C1, v3=v. Given that C1 is 

mapped to l2 above, it corresponds to the propo-

sition being reconstructed:  C3(=C1) -> l2 

l3: λv.like(v, u) (r) = like(r, u) 

6 Scope Parallelism 

Many previous approaches impose parallelism 

constraints on the interpretation of the elided ma-

terial (e.g. Fox 2000, Asher et al 2001 among 

others). Under the present analysis, scope paral-

lelism comes for free. Consider, for example, the 

following sentence discussed in Dalrymple et al 

1991, among others, where ambiguity is resolved 

in the same way in both the antecedent and at the 

ellipsis site: John gave every student a test, and 

Bill did too. The final interpretation of the first 

sentence is given in (10) and has 2 possible dis-

ambiguations.  

 

 (10) John gave every student a test. 
 

 

 

 

 

 

 

 

The surface reading (every >> some) is derived 

by the following mapping:  C3->l0, C2->l3, R7->l8, 

N5 -> l2,  C1-> l7,  R5->l9, N7 -> l5  

l2: give(v, y, z) 

l5: some(x, test(x), give(v, y, z)) 

l7:every(y,student(y),some(x,test(x),give(v,y, z))) 

l1:every(y,student(y),some(x,test(x),give(x, y, z))) 

The interpretation of the second sentence is 

derived by unifying the S-features of the S-trees 

(as shown in the previous section). As the result, 

the variables C3 and v3 are unified with the vari-

ables C1 and v. Given that C1 is being mapped to 

the proposition l7 above, C3 is being recon-

structed as the proposition every(y, student(y), 

some(x, test(x), give(v, y, z)) and l3 corresponds 

to the desired reading of this sentence:   

  

(11) Bill did too.  

 

C3 (=C1) -> l7  
                                        v3=v 

l3: λv. every(y, student(y),some(x, test(x), give(v, 

y, z))) (r) = every(y, student(y), some(x, test(x), 

give(r, y, z)))    

The inverse reading (where some>>every) can 

be obtained by the following mapping C3->l0,  

C2->l3, R7->l8, N7 -> l2,  C1-> l5,  R5->l9, N5 -> l7  

l2: give(v, y, z) 

l7: every(y, student(y), give(v, y, z)) 

l5:some(x,test(x),every(y,student(y),give(v,y, z))) 

l1: some(x,test(x),every(y,student(y),give(x, y, z))) 

 Now, when the second sentence is interpreted, 

C3 is unified with C1, which is being mapped to 

l5: C3(=C1) -> l5. The proposition l3, then, is re-

duced to: λv.some(x, test(x), every(y, student(y), 

give(v, y, z))) (r) = some(x, test(x), every(y, stu-

dent(y), give(r, y, z))) 

As this example illustrates, scope parallelism 

follows from the present analysis, given that C3 

is unified with a disambiguated interpretation of 

a VP. It can also be shown that the wide scope 

puzzle (Sag 1980), shown in (12) is not unex-

pected under this approach, however, the analy-

sis of this phenomenon is beyond the scope of 

this paper.
 3
  

 

(12) A nurse saw every patient. Dr.Smith did too. 

some(x, nurse(x), every(y, patient(y), see(x, y))) 

*every(y, patient(y), some(x, nurse(x), see(x, y))) 

 

                                                
3 As Hirschbuhler 1982, Fox 2000 among others noted,  

there are constructions where subjects of VPE  can have 

narrow scope relative to nonsubjects.  For example, the 

sentence A Canadian flag was hanging in front of every 

building. An American flag was too  has a reading in which 

each building has both an American and a Canadian flag 

standing in front of it.  The existence of such readings does 

not present a problem for the present analysis, if we adopt 

an analysis of quantificational NPs  proposed in Babko-

Malaya 2004.   

 

l3: λv3 C3 (r)  

Jane(r) 
 l4:  Bill(r) 

l3:  λv3.C3 (r) 
 

l0:  give(v, u, w) 

l1: λv.C1 (x)      l2: λu.C2 (y)    l2 ≤ C1 

l3: λw.C3 (z)           l3 ≤ C2 

l7:  every(y, R7, N7)     l5: some(z, R5, N5) 

l8:  student(y)     l9: test(z)    john(x) 

l0≤ C3 l0≤ N5 l0≤ N7 l8≤ R7 l9≤ R5  

95



7 Antecedent Contained Deletion(ACD) 

Further evidence for the proposed analysis comes 

from sentences with ACD, discussed in Sag 

1980, Egg and Erk 2001, Asher et al 2001, Ja-

cobson (to appear), and illustrated in (13): 

 

(13) John wants Mary to read every book Bill 

does.  

 

The elided material in this sentence is under-

stood as either “Bill reads” or “Bill wants Mary 

to read”. Given that ‘want’ and ‘every’ can take 

different scope, four possible readings are ex-

pected. However, puzzling in this case is the un-

availability of one of these readings: *John wants 

that for every book that Bill wants Mary to read, 

she reads it. Let us consider the final interpreta-

tion of this sentence: 

 

 
 

 

 

 

 

 

 

The non-lexicalized S tree introduces a proposi-

tion l3 and variables C and v3. These variables 

can be unified with either S features of the 

‘read’-tree (i.e. C1 and v), or S features of the 

‘want’-tree (i.e. C2 and v0).  In the first case, the 

small ellipsis interpretation is derived, and both 

scope readings are available: C = C1, v3 = v   

C/C1 -> l6, C4-> l1  

 l2: read(x, y),   l3: read(z, y) 

every >> want:   

N5 -> lo, C2 -> l4, N4 -> l2, R5 ->l8 

l5:every(y, book(y)&read(z, y),want(r, read(x, y)) 

                                      l3                                            l2 

want >> every: 

C2 -> l4,  N4 -> l5, N5 -> l2, R5 ->l8 

l0:want(r,every(y,book(y)&read(z,y), read(x, y)))  

                                                      l3                      l2 

If C and v3 are unified with S features of the 

‘want’-tree, then the large ellipsis interpretation 

is derived: C = C2, v3 = v0, C/C2 -> l4, N4 -> l2, C4 

-> l1, C1 -> l6 

l0: want(r, read(x, y)),     l3: want(z, read(x, y)) 

 

The reading where every >> want is derived by 

the following constraints: N5-> l0, C1-> l1, R5 ->l8  

l5: every(y, book(y) & want(z, read(x,y)),  

want(r, read(x, y))                     l3 

           l0 

The fourth possible reading, where want >> 

every, however, is predicted to be unavailable 

under the present assumptions. This reading, 

want(r, every(y, book(y) & want(z, read(x, y)), 

read(x, y)),  cannot be derived, since it requires 

the proposition l3 to be ‘inserted’ within the 

proposition l0. 

References 

Asher N., D. Hardt and J.Busquets. 2001. Discourse 

Parallelism, Scope, and Ellipsis”, Journal of Se-

mantics, 18(1), pp. 1-25.   

Babko-Malaya O. 2004 “LTAG Semantics of NP-

Coordination” in Proc. of TAG+7, Vancouver  

Dalrymple M., S.Shieber and F.Pereira 1991. Ellipsis 

and Higher-Order Unification. In Linguistics and 

Philosophy 14. 

Egg, M. and K.Erk 2001. A compositional approach 

to VP ellipsis 8th International Conference on 

HPSG,Trondheim, Norway 

Fiengo R. and R. May 1994. Indices and Identity. 

MIT Press, Cambridge 

Fox, D. 2000 Economy and Semantic Intepretation, 

MIT Press  

Hardt, D. 1993. VP Ellipsis: Form, Meaning and 

Processing. PhD Diss. Univ. of PA  

Hardt, D. 1999. Dynamic Interpretation of VP Ellip-

sis. Linguistics and Philosophy. 22.2. Heim, I. 

2001 

Jacobson, P. (to appear) Direct Compositionality and 

Variable-Free Semantics: The Case of Antecedent 

Contained Deletion”, in K. Johnson (ed.), Topics in 

Ellipsis, Oxford University Press. 

Johnson, K. 2003. In search of the Middle Field. Ms. 

Univ. of Mass.  

Joshi A. and Y. Schabes 1997. Tree-Adjoining 

Grammars, in G. Rozenberg and A. Salomaa (eds.) 

Handbook of Formal Languages, Springer, Berlin  

Kallmeyer, L. and A.K Joshi 2003. Factoring Predi-

cate Argument and Scope Semantics:  Underspeci-

fied Semantics with LTAG. Research on Language 

and Computation 1(1-2), 358. 

Kallmeyer, L. and M. Romero. 2004. LTAG Seman-

tics with Semantic Unification. In Proceedings of  

TAG+7, Vancouver, Canada  

Sag, Ivan 1980 Deletion and Logical Form. Garland 

Press: New York 

Shieber, S., F.Pereira, and M.Dalrymple 1996. Inter-

actions of Scope and Ellipsis. In Linguistics and 

Philosophy 19, pp.527-552. 

l4: want(v0, N4)    l0: λv0.C2 (want) (r) 

l1: read(v, u)   l2: λv.C1 (read) (x)  

l6: λu.C4 (read) (y)     l6 ≤ C1    l8: book(y) ∧ l3 

l5: every(y, R5, N5)     l3: λv3.C (z) 

mary(x),  john(r), bill(z) 

l1≤ C1, l4≤ C2, l1≤ N5, l8≤ R5, l1≤N4 

 

96



Proceedings of the 8th International Workshop on Tree Adjoining Grammar and Related Formalisms, pages 97–102,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Three reasons to adopt TAG-based surface realisation

Claire Gardent
CNRS / LORIA

615, rue du Jardin Botanique
F-54 600 Villers-Lès-Nancy
gardent@loria.fr

Eric Kow
INRIA / LORIA

Université Henri Poincaré
615, rue du Jardin Botanique
F-54 600 Villers-Lès-Nancy

kow@loria.fr

Abstract

Surface realisation from flat semantic for-
mulae is known to be exponential in the
length of the input. In this paper, we argue
that TAG naturally supports the integration
of three main ways of reducing complex-
ity: polarity filtering, delayed adjunction
and empty semantic items elimination. We
support these claims by presenting some
preliminary results of the TAG-based sur-
face realiserGenI.

1 Introduction

Surface realisation consists in producing all the
sentences associated by a grammar with a given
semantic formula. For lexicalist grammars such
as LTAG (Lexicalised Tree Adjoining Grammar),
surface realisation usually proceeds bottom-up
from a set of flat semantic literals1. However,
surface realisation from flat semantic formulae is
known to be exponential in the length of the input
(Kay96; Bre92; KS02). In this paper, we abstract
from the TAG based surface realiser for French
GenI, (GK05) and argue that TAG naturally sup-
ports the integration of various proposals made to
help reduce either surface realisation or parsing
complexity into a TAG based, lexically driven sur-
face realiser. Specifically, we show:

1. that TAG elementary trees naturally support
the implementation of a technique calledpo-
larity filtering used to reduce the exponen-
tial factor introduced bylexical ambiguity
(Per03),

1See e.g., (CCFP99) for a discussion summarising the rea-
sons for this choice.

2. that TAG two operations of substitution and
adjunction provides a natural framework for
implementing a delayed adjunction mecha-
nism capable of reducing the complexity due
to thelack of ordering informationand

3. that TAG extended domain of locality helps
reduce the potential complexity increment in-
troduced bysemantically empty itemssuch as
infinitival “to” or complementiser“that” .

2 Surface realisation, flat semantics and
computational complexity

Why is surface realisation exponential in the
length of the input? As shown in (Kay96), one
reason for this is thelack of ordering information.
Contrary to parsing where the input is a string i.e.,
an ordered list of words, the input to surface re-
alisation is a set of literals. Supposing each lit-
eral selects exactly one constituent in the lexicon,
then the number of possible combinations between
these constituents will be 2n (the number of sub-
sets obtainable from a set of sizen).

In practice of course, there are possible restric-
tions on constituent combination. In particular,
most existing realisers impose the constraint that
only constituents with non overlapping semantics
and compatible indices can be combined. Be-
cause of this restriction, the core of the complex-
ity stems in practice fromintersective modifiers
(Bre92; Kay96). Given a set ofn modifiers all
modifying the same structure, all possible inter-
mediate structures will be constructed i.e. 2n+1.

A second reason for the exponential complexity
of surface realisation islexical ambiguity. As for
bottom-up parsing, in surface realisation from flat
semantics, the input is used to select a set of lexi-
cal entries namely all lexical entries whose seman-

97



tics subsumes one or more of the input literals. In
a realistic grammar, one literal will be associated
with more than one lexical entries. So ifLexi is the
number of lexical entries associated with literalli,
then for an input semantics comprisingn literals,
the number of sets of lexical constituents covering
the input semantics is:

∏
i=n

i=1
Lexi

The two sources of complexity interact by mul-
tiplying out so that the potential number of combi-
nations of constituents is:

2n ×
i=n∏

i=1

Lexi

In what follows, we show that TAG naturally
supports various optimisations that have been pro-
posed to reduce the search space.

3 Polarity filtering

To restrict the impact of lexical ambiguity on pars-
ing efficiency, (Per03) introduces a method called
Polarity filtering. This method is based on the ob-
servation that many of the combinations of lexi-
cal entries which cover the input semantics are in
fact syntactically invalid either because a syntactic
requirement is not fulfilled or because a syntactic
resource is not used. Accordingly, polarity based
filtering eliminates such combinations by:

• assigning each lexical entry with a set of po-
larities reflecting its syntactic requirements
and resources,

• computing for each possible combination of
lexical entries the sum of its polarities and

• only allowing surface realisation on combi-
nations which have a net sum of zero (all re-
quirements are satisfied and all resources are
used).

By filtering the initial search space before the
tree combination phase, polarity filtering in effect
reduces the impact of lexical ambiguity i.e. de-
creases

∏
i=n

i=1
Lexi.

The definitory properties of TAG elementary
trees provide a natural way to assign polarities to
a TAG lexical entries: each elementary tree can be
associated with a polarity+C, whereC is the cat-
egory of its root node and each substitution or foot
node in that tree, a polarity−C is added, whereC
is the category of that node.

We implemented polarity filtering inGenI
based on this way of associating lexical entries
with polarities2. We then measured the impact of
this filtering on the initial search space (the num-
ber of sets of lexical items actually explored by
the realiser), on space (measured by the number
of chart items created) and on time.

Table 1 summarises the impact of polarity fil-
tering on the initial search space3. possibleindi-
cates the number of combinations of lexical entries
which cover the input semantics and thus can po-
tentially lead to a valid syntactic tree realising the
input semantics andexplored gives the number of
combinations actually explored by the surface re-
aliser after polarity filtering has ruled out combi-
nations which cannot possibly lead to a valid syn-
tactic tree).

As is to be expected, the impact increases with
the number of input literals so that while polarity
filtering divides the initial search space by 35.6 for
an input ranging between 1 and 6 literals, it divides
it by 441.6 for an input size ranging between 14
and 16 literals

literals possible explored (×)

1-6 199.10 5.60 35.6
7-9 6460.88 40.06 161.3

10-13 43028.25 137.06 313.9
14-16 292747.64 662.91 441.6

Figure 1: Polarity filtering and initial space
(Sets of initial trees covering the input semantics)

Table 2 gives the impact of polarity filtering on
space as measured by the number of created chart
items (or constituents). The first column (w/o pol.)
gives the number of created charted items when
polarity filtering is switched off and the second,
(with pol.) when polarity filtering is on. As can
be seen, the effect is particularly pronounced when
the input exceeds 10 literals.

Finally, Figure 3 shows that the overhead intro-
duced by the construction of the polarity automa-
ton means that formulae under 10 literals are re-
alised in roughly the same time with or without po-
larity filtering. However, for larger sentences, po-
larity filtering is increasingly important in keeping
realisation times reasonable. For instance, given
an input ranging between 14 and 16 literals, polar-

2See (GK05) for more details.
3For each group of input (1-6 literals, 7-9, etc.), measures

are based on an average of 15 cases.

98



literals w/o pol. with pol. (×)
1-6 146.40 83.60 1.8
7-9 3273.50 1281.25 2.6

10-13 7468.06 702.50 10.6
14-16 17502.36 1613.91 10.8

Figure 2: With and without Polarity filtering
(Chart items)

ity filtering divides realisation time by 5, that is,
yields a realisation time of 2.21 seconds instead of
11.61.

literals w/o pol. with pol. (×)

1-6 0.81 0.79 1.0
7-9 1.68 1.35 1.2

10-13 3.56 1.88 1.9
14-16 11.61 2.21 5.3

Figure 3: With and without Polarity filtering (CPU
times)

4 Substitution/adjunction distinction

One important specificity of TAG is that it includes
two combination operations namely, adjunction
and substitution. We now show that this feature
of TAG is particularly useful in improving surface
realisation performance.

4.1 Reducing the impact of intersective
modifiers

To restrict the combinatorics induced by modi-
fiers, (CCFP99; CO05) proposes either to han-
dle modifiers after a complete syntactic tree is
built (i.e., after all syntactic requirements are ful-
filled) or before the modifiee is combined with
other items (e.g., before the head noun has com-
bined with a determiner). Although the number of
intermediate structures generated is still 2n for n
modifiers, both strategies have the effect of block-
ing these 2n structures from multiplying out with
other structures in the chart. More precisely, given
an input semantics of sizen wherek of its liter-
als are to be realised as modifiers, the number of
intermediate structures possible in the two phase
approach is2k + 2n−k, which can be considerably
smaller than2n, depending on the size ofk.

In TAG, we can make use of the fact that substi-
tution and adjunction apply independently of each
other to implement a two-phase generation strat-
egy where modifiers are handled only after a com-

plete syntactic tree is built. In the first phase,
only substitutions are performed and in the sec-
ond, only adjunctions. Additionally, before ad-
junction starts, all unsaturated trees (trees with
unfilled substitution sites) are discarded from the
chart thereby ensuring that modifiers do not com-
bine with structures that cannot possibly lead to a
valid result (since no constituent could be found to
fill the unsaturated substitution sites).

Since in TAG, modifiers always involve the use
of adjunction, modifiers will always be handled by
the second phase of the algorithm and thereby ad-
joined into “saturated trees” i.e., trees devoid of
unfilled substitutions sites. In this way, the prolif-
eration of structures induced by the modifiers can
be restricted.

The substitution-before-adjunction strategy was
integrated inGenI yielding the improvements in-
dicated in Figures 4 and 5.

literals 1 phase 2 phase (×)

≤ 3 0.73 0.73 1.0
4 0.74 0.75 1.0
5 0.97 0.93 1.0
6 2.91 0.89 3.3
7 4.24 1.30 3.3

≥ 8 Time out
Figure 4: With and without SBA (CPU times)

literals 1 phase 2 phase (×)

≤ 3 47.00 44.33 1.1
4 107.00 108.00 1.0
5 310.00 263.00 1.2
6 1387.33 883.00 1.6
7 2293.50 761.33 3.0

Figure 5: With and without SBA (Chart items)

As table 4 shows, when there is more than 7 lit-
erals in the input, the one-phase algorithm times
out. More in general, for the data shown, the two
phase strategy leads to an average decrease in time
ranging between 1 and 3.3% and a decrease in
space varying between 1.1% and 3% respectively.

Although the poor performance of the 1 phase
algorithm is in part due to a very large and strongly
overgenerating grammar4 , the data clearly shows
that SBA is essential in supporting large scale TAG
based surface realisation.

4The grammar used is a grammar for French which con-
tains roughly 3 400 initial trees (CD04).

99



4.2 Substitution-before-adjunction combined
with Polarity Filtering

The substitution-before-adjunction strategy limits
the impact of intersective modifiers by restricting
the number of constituents the modifiers can com-
bine withwithin one set of lexical items. Because
polarity filtering reduces the number of sets of lex-
ical items to be considered, it trivially also reduces
the number of sets of lexical items involving ad-
junctions.

The space improvement provided by combining
the substitution-before-adjunction (SBA) strategy
with polarity filtering is illustrated in Figures 6
and 7 which show the space reduction associated
with cases ordered either according to their num-
ber of literals or according to their number of foot
nodes (i.e., adjunction cases). As should be ex-
pected, the number of foot nodes is more highly
correlated with a space reduction. Specifically,
a combined SBA/polarity strategy divides by 3.4
the space used for cases involving between 1 and
12 auxiliary trees; and by 18.8 the space used for
cases involving between 14 and 16 auxiliary trees.

literals w/o pol. with pol. (×)
1-6 367.90 109.50 3.4
7-9 6192.69 1550.19 4.0

10-13 11211.06 711.06 15.8
14-16 30660.27 1631.64 18.8

Figure 6: SBA + Polarity (Chart items)

# aux trees w/o pol. with pol. (×)

1-12 2124.27 620.82 3.4
13-120 8751.53 1786.47 4.9

121-190 11528.43 611.50 18.9
191-350 25279.75 1085.75 23.3

Figure 7: SBA + Polarity (Chart items)

4.3 Filtering out unusable trees

Another interesting aspect of TAG’s use of two
combination operations and more specifically of
the substitution-before-adjunction strategy is that
it naturally supports the inclusion of a third phase
to filter out unusable trees that is, trees which can
be determined not to be integrable in any valid
derivation. Specifically, this third phase occurs be-
tween substitution and adjunction and filters out:

• all trees with an unfilled substitution site

• all saturated trees whose root node is not la-
belled with an S category

The first filter (elimination of unsaturated trees)
is required, as indicated above, to restrict the im-
pact of intersective modifiers: by discarding them,
we restrict adjunction to saturated trees. The sec-
ond, makes use of the property of auxiliary trees
which insists that root and foot node be labelled
with the same category. Because of this property,
adjunction cannot affect the category of the tree it
adjoins to. In particular, a tree which after all pos-
sible substitutions have been performed, has root
labelC with C 6= S can never lead to the creation
by adjunction of a tree with root labelS. Hence it
can be discarded (provided of course, the genera-
tor is seeking to build sentences).

Figures 8 and 9 illustrate the impact of this sec-
ond filter (called theRoot Node Filter, RNF) on
the chart size when polarity filtering is switched
off. As for SAB, the figures show a higher correla-
tion between the RNF and the number of adjunc-
tion nodes than with the number of literals. In-
triguingly, the impact of the filter is proportionally
higher on sentences with fewer foot nodes. Al-
though this needs to be checked more thoroughly,
the explanation for this could be the following.
The trees removed by the Root Node Filter are sat-
urated tree not rooted in S hence essentially sat-
urated NP trees. Examination of the data reveals
that the number of these trees removed by the RNF
remains almost constant (though this might be an
ad hoc property of the specific testsuite used).
Hence in proportion, the effect of the RNF dimin-
ishes.

Note however that in absolute terms, the num-
ber of trees whose derivation is avoided by the
RNF remains quite high thus contributing to an
overall better performance.

literals w/o RNF with RNF (×)
1-6 367.90 146.40 2.5
7-9 6192.69 3273.50 1.9

10-13 11211.06 7468.06 1.5
14-16 30660.27 17502.36 1.8

Figure 8: Root node filter w/o Pol (Chart Items).

As Figures 10 and 11 show, combining the Root
Node Filter with polarity filtering simply rein-
forces the biases noted above: Root Node Filtering
is proportionally more effective for short input but
can remain useful in absolute terms. A more thor-

100



# aux trees w/o RNF with RNF (×)
1-12 2124.27 527.36 4.0

13-120 8751.53 5570.33 1.6
121-190 11528.43 6490.14 1.8
191-350 25279.75 15469.17 1.6

Figure 9: Root node filter w/o Pol (Chart Items).

ough investigation of the data and further exper-
iments are needed however to determine whether
such behaviour is not tied to some ad hoc property
of our (still too limited) testsuite.

literals w/o RNF with RNF (×)
1-6 109.50 83.60 1.3
7-9 1550.19 1281.25 1.2

10-13 711.06 702.50 1.0
14-16 1631.64 1613.91 1.0

Figure 10: Root node filter + Pol (Chart Items).

# aux trees w/o RNF with RNF (×)
1-12 422 621 1.5

13-120 1627 1786 1.1
121-190 600 612 1.0
191-350 1073 1086 1.0

Figure 11: Root Node Filter + Pol (Chart Items).

5 TAG extended domain of locality

Arguably there are words such as complementiser
that or infinitival to whose semantics is empty.
These words are to surface realisation what gaps
(or empty categories) are to parsing. In a naive ap-
proach, they require that all trees with an empty
semantics be considered as potential constituent
candidate at each combining step. In terms of ef-
ficiency, this roughly means increasing the size of
the inputn (just like postulating gaps at all po-
sition in an input string increases the size of that
string).

To avoid this shortcoming, a common practice
(CCFP99) consists in specifying a set of rules
which selects empty semantic items on the basis
of the input literals. However these rules fail to re-
flect the fact that empty semantic items are usually
functional words and hence governed by syntactic
rather than semantic constraints.

By contrast, in a TAG based surface realiser,
TAG elementary trees provide a natural way to
specify the syntactic environment in which empty

semantic items can occur. For instance, comple-
mentiserthatoccurs with verbs taking a sentential
argument which is generally captured by includ-
ing the complementiser as a co-anchor in the trees
of these verbs.

More in general, the extended domain of local-
ity provided by TAG elementary trees, together
with the possibility of specifying co-anchors
means that empty semantic items can be avoided
altogether. Hence they do not require specific
treatment and have no impact on efficiency.

6 Discussion

We have argued that TAG presents several fea-
tures that makes it particularly amenable to the
development of an optimised surface realiser. We
now summarise these features and briefly compare
TAG with CCG (Combinatory Categorial Gram-
mar) and HPSG (Head Driven Phrase Structure
Grammar) based surface realisation.

6.1 Using tree node types

Thedifferent types of tree nodesidentified by TAG
can be used to support polarity filtering whereby
substitution nodes can be associated with negative
polarities (requirements) and root nodes with pos-
itive polarities (resources). As our preliminary ex-
periments show, polarity filtering has a significant
impact on the initial search space, on the space
used and on CPU times.

So far, this particular type of global filtering
on the initial search space has been used neither
in the HPSG (CCFP99; CO05) nor in the CCG
(Whi04) approach. Although it could presumably
be adapted to fit these grammars, such an adapta-
tion is in essence less straightforward than in TAG.

In CCG, the several combination rules mean
that a subcategory can function either as a re-
source or as a requirement depending on the rule
that applies. For instance, in the verbal category
(S\NP )/NP , the subcategoryS\NP functions
as a resource when NPs are type raised (it satisfies
the requirement of a type raised NP with category
S/(S\NP )). However it will need to be further
decomposed into a resource and a requirement if
they are not. More in general, polarity specifica-
tion in CCG would need to take into account the
several combination rules in addition to the cate-
gory structure. In HPSG, it is the interaction of
lexical categories with lexical and phrasal rules
that will need to be taken into consideration.

101



6.2 Using rule types

The two types of tree combining operationsper-
mitted by TAG can be used to structure the sur-
face realisation algorithm. As we’ve shown, per-
forming all substitutions before allowing for ad-
junction greatly reduces the exponential impact of
intersective modifiers. Moreover, combining such
a substitution-before-adjunction strategy with po-
larity filtering further improves performance.

In comparison, the HPSG and the CCG ap-
proach do not support such a natural structuring
of the algorithm and intersective modifiers induce
either a pre- or a post-processing.

In HPSG, intersective modifiers are discarded
during the chart generation phase and adjoined
into the generated structures at a later stage. This
is inelegant in that (i) intersective modifiers are ar-
tificially treated separately and (ii) structures sub-
ject to adjunction have to be non monotonically
recomputed to reflect the impact of the adjunction
in that part of the tree dominating the adjunction.

In CCG, the input logical form is chunked into
subtrees each corresponding to a separate gen-
eration subproblem to be solved independently.
Again the approach is ad hoc in that it does not
rely on a given grammatical or linguistic property.
As a result, e.g., negation needs special treatment
to avoid incompleteness (if the heuristic applies,
negated sentences cannot be generated). Similarly,
it is unclear how long distance dependencies in-
volving modifiers (e.g.,Which office did you say
that Peter work in ?) are handled.

6.3 Using TAG extended domain of locality

TAG extended domain of locality means that
empty semantic items need no special treatment.
In contrast, both the HPSG and the CCG approach
resort to ad hoc filtering rules which, based on
a scan of the input semantics, add semantically
empty items to the chart.

7 Further research

Although the results presented give strong evi-
dence for the claim that TAG naturally supports
the development of an optimised surface based re-
aliser, they are based on a limited testsuite and on
a core grammar for French that heavily overgen-
erates. Hence they do not truly reflect the poten-
tial of the proposed optimisations on the perfor-
mance of a large scale surface realiser. Current
work concentrates on remedying these shortcom-

ings. In particular, we are working on develop-
ing a structured test suite which permits a pre-
cise measure of the impact of different factors both
on complexity and on the optimisations used. In
this testsuite for instance, each item is associated
with a series of indicators concerning its potential
complexity: number of literals in the correspond-
ing input semantics, number of trees, number of
nodes, number of substitutions nodes and number
of foot nodes in the corresponding selection of ini-
tial trees.

Further work also includes restricting overgen-
eration and exploring in how far, polarity filtering
can be used to select one among the many para-
phrases

References

C. Brew. Letting the cat out of the bag: Generation
for shake-and-bake MT. InProceedings of COLING
’92, Nantes, France, 1992.

J. Carroll, A. Copestake, D. Flickinger, and
V. Paznański. An efficient chart generator for
(semi-)lexicalist grammars. InProceedings of
EWNLG ’99, 1999.

B. Crabbé and D. Duchier. Metagrammar redux. In
International Workshop on Constraint Solving and
Language Processing - CSLP 2004, Copenhagen,
2004.

J. Carroll and S. Oepen. High efficiency realization for
a wide-coverage unification grammar. In R. Dale
and K-F. Wong, editors,Proceedings of the Sec-
ond International Joint Conference on Natural Lan-
guage Processing, volume 3651 ofSpringer Lec-
ture Notes in Artificial Intelligence, pages 165–176,
2005.

C. Gardent and E. Kow. Generating and select-
ing grammatical paraphrases. InProceedings of
the 10th European Workshop on Natural Language
Generation, Aberdeen, Scotland, 2005.

M. Kay. Chart Generation. In34th ACL, pages 200–
204, Santa Cruz, California, 1996.

A. Koller and K. Striegnitz. Generation as dependency
parsing. InProceedings of the 40th ACL, Philadel-
phia, 2002.

G. Perrier. Les grammaires d’interaction, 2003. Ha-
bilitation à diriger les recherches en informatique,
université Nancy 2.

M. White. Reining in CCG chart realization. InINLG,
pages 182–191, 2004.

102



Proceedings of the 8th International Workshop on Tree Adjoining Grammar and Related Formalisms, pages 103–108,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Generating XTAG Parsers from Algebraic Specifications∗

Carlos Gómez-Rodŕıguez and Miguel A. Alonso
Departamento de Computación

Universidade da Corũna
Campus de Elvĩna, s/n
15071 A Corũna, Spain

{cgomezr, alonso}@udc.es

Manuel Vilares
E. S. de Ingenierı́a Informática

Universidad de Vigo
Campus As Lagoas, s/n
32004 Ourense, Spain
vilares@uvigo.es

Abstract

In this paper, a generic system that gener-
ates parsers from parsing schemata is ap-
plied to the particular case of the XTAG
English grammar. In order to be able to
generate XTAG parsers, some transforma-
tions are made to the grammar, and TAG
parsing schemata are extended with fea-
ture structure unification support and a
simple tree filtering mechanism. The gen-
erated implementations allow us to study
the performance of different TAG parsers
when working with a large-scale, wide-
coverage grammar.

1 Introduction

Since Tree Adjoining Grammars (TAG) were in-
troduced, several different parsing algorithms for
these grammars have been developed, each with
its peculiar characteristics. Identifying the advan-
tages and disadvantages of each of them is not
trivial, and there are no comparative studies be-
tween them in the literature that work with real-
life, wide coverage grammars. In this paper, we
use a generic tool based on parsing schemata to
generate implementations of several TAG parsers
and compare them by parsing with the XTAG En-
glish Grammar (XTAG, 2001).

The parsing schemata formalism (Sikkel, 1997)
is a framework that allows us to describe parsers in
a simple and declarative way. A parsing schema

∗ Partially supported by Ministerio de Educación y Cien-
cia and FEDER (TIN2004-07246-C03-01, TIN2004-07246-
C03-02), Xunta de Galicia (PGIDIT05PXIC30501PN,
PGIDIT05PXIC10501PN, PGIDIT05SIN044E and
PGIDIT05SIN059E), and Programa de becas FPU (Mi-
nisterio de Educación y Ciencia). We are grateful to Eric
Villemonte de la Clergerie and François Barthelemy for their
help in converting the XTAG grammar to XML.

is a representation of a parsing algorithm as a
set of inference rules which are used to perform
deductions on intermediate results called items.
These items represent sets of incomplete parse
trees which the algorithm can generate. An input
sentence to be analyzed produces an initial set of
items. Additionally, a parsing schema must de-
fine a criterion to determine which items are final,
i.e. which items correspond to complete parses of
the input sentence. If it is possible to obtain a fi-
nal item from the set of initial items by using the
schema’s inference rules (called deductive steps),
then the input sentence belongs to the language de-
fined by the grammar. The parse forest can then be
retrieved from the intermediate items used to infer
the final items, as in (Billot and Lang, 1989).

As an example, we introduce a CYK-based
algorithm (Vijay-Shanker and Joshi, 1985) for
TAG. Given a tree adjoining grammarG =
(VT , VN , S, I, A)1 and a sentence of lengthn
which we denote bya1 a2 . . . an

2, we de-
note by P (G) the set of productions{Nγ →
N

γ
1 N

γ
2 . . . Nγ

r } such thatNγ is an inner node of
a treeγ ∈ (I ∪ A), andN

γ
1 N

γ
2 . . . Nγ

r is the or-
dered sequence of direct children ofNγ .

The parsing schema for the TAG CYK-based
algorithm (Alonso et al., 1999) is a function that
maps such a grammar G to a deduction system
whose domain is the set of items
{[Nγ , i, j, p, q, adj]}

verifying thatNγ is a tree node in an elementary

1WhereVT denotes the set of terminal symbols,VN the
set of nonterminal symbols,S the axiom,I the set of initial
trees andA the set of auxiliary trees.

2From now on, we will follow the usual conventions by
which nonterminal symbols are represented by uppercase let-
ters (A, B . . .), and terminals by lowercase letters (a, b . . .).
Greek letters (α, β...) will be used to represent trees,Nγ a
node in the treeγ, andRγ the root node of the treeγ.

103



treeγ ∈ (I ∪ A), i andj (0 ≤ i ≤ j) are string
positions,p and q may be undefined or instanti-
ated to positionsi ≤ p ≤ q ≤ j (the latter only
when γ ∈ A), and adj ∈ {true, false} indi-
cates whether an adjunction has been performed
on nodeNγ .

The positionsi and j indicate that a substring
ai+1 . . . aj of the string is being recognized, and
positionsp andq denote the substring dominated
by γ’s foot node. The final item set would be

{[Rα, 0, n,−,−, adj] | α ∈ I}

for the presence of such an item would indicate
that there exists a valid parse tree with yielda1 a2

. . . an and rooted atRα, the root of an initial tree;
and therefore there exists a complete parse tree for
the sentence.

A deductive stepη1...ηm

ξ
Φ allows us to infer

the item specified by its consequentξ from those
in its antecedentsη1 . . . ηm. Side conditions(Φ)
specify the valid values for the variables appearing
in the antecedents and consequent, and may refer
to grammar rules or specify other constraints that
must be verified in order to infer the consequent.
The deductive steps for our CYK-based parser are
shown in figure 1. The stepsDScan

CYK andDε
CYK are

used to start the bottom-up parsing process by rec-
ognizing a terminal symbol for the input string, or
none if we are using a tree with an epsilon node.
TheDBinary

CYK step (where the operationp ∪ p′ re-
turnsp if p is defined, andp′ otherwise) represents
the bottom-up parsing operation which joins two
subtrees into one, and is analogous to one of the
deductive steps of the CYK parser for CFG. The
DUnary

CYK step is used to handle unary branching pro-
ductions.DFoot

CYK andDAdj
CYK implement the adjunc-

tion operation, where a treeβ is adjoined into a
nodeNγ ; their side conditionβ ∈ adj(Nγ) means
thatβ must be adjoinable into the nodeNγ (which
involves checking thatNγ is an adjunction node,
comparing its label toRβ ’s and verifying that no
adjunction constraint disallows the operation). Fi-
nally, theDSubs

CYK step implements the substitution
operation in grammars supporting it.

As can be seen from the example, parsing
schemata are simple, high-level descriptions that
convey the fundamental semantics of parsing algo-
rithms while abstracting implementation details:
they define a set of possible intermediate results
and allowed operations on them, but they don’t
specify data structures for storing the results or an
order for the operations to be executed. This high

abstraction level makes schemata useful for defin-
ing, comparing and analyzing parsers in pencil and
paper without worrying about implementation de-
tails. However, if we want to actually execute
the parsers and analyze their results and perfor-
mance in a computer, they must be implemented
in a programming language, making it necessary
to lose the high level of abstraction in order to ob-
tain functional and efficient implementations.

In order to bridge this gap between theory and
practice, we have designed and implemented a
system able to automatically transform parsing
schemata into efficient Java implementations of
their corresponding algorithms. The input to this
system is a simple and declarative representation
of a parsing schema, which is practically equal to
the formal notation that we used previously. For
example, this is theDBinary

CYK deductive step shown
in figure 1 in a format readable by our compiler:
@step CYKBinary
[ Node1 , i , k , p , q , adj1 ]
[ Node2 , k , j , p’ , q’ , adj2 ]
-------------------------------- Node3 -> Node1 Node2
[ Node3 , i , j , Union(p;p’) , Union(q;q’) , false ]

The parsing schemata compilation technique
used by our system is based on the following fun-
damental ideas (Ǵomez-Rodŕıguez et al., 2006a):

• Each deductive step is compiled to a Java class
containing code to match and search for an-
tecedent items and generate the corresponding
conclusions from the consequent.

• The step classes are coordinated by a deduc-
tive parsing engine, as the one described in
(Shieber et al., 1995). This algorithm ensures
a sound and complete deduction process, guar-
anteeing that all items that can be generated
from the initial items will be obtained.

• To attain efficiency, an automatic analysis of
the schema is performed in order to create in-
dexes allowing fast access to items. As each
different parsing schema needs to perform dif-
ferent searches for antecedent items, the index
structures we generate are schema-specific. In
this way, we guarantee constant-time access to
items so that the computational complexity of
our generated implementations is never above
the theoretical complexity of the parsers.

• Since parsing schemata have an open notation,
for any mathematical object can potentially
appear inside items, the system includes an ex-
tensibility mechanism which can be used to
define new kinds of objects to use in schemata.

104



DScan
CYK =

[a, i, i + 1]

[Nγ , i, i + 1 | −,− | false]
a = label(Nγ) Dε

CYK =
[Nγ , i, i | −,− | false]

ε = label(Nγ)

DUnary
CYK =

[Mγ , i, j | p, q | adj]

[Nγ , i, j | p, q] | false]
Nγ → Mγ ∈ P(γ)

DBinary
CYK =

[Mγ , i, k | p, q | adj1],
[P γ , k, j | p′, q′ | adj2]

[Nγ , i, j | p ∪ p′, q ∪ q′ | false]
Nγ → MγP γ ∈ P(γ)

DFoot
CYK =

[Nγ , i, j | p, q | false]
[Fβ , i, j | i, j | false]

β ∈ adj(Nγ)
DAdj

CYK =

[Rβ , i′, j′ | i, j | adj],
[Nγ , i, j | p, q | false]

[Nγ , i′, j′ | p, q | true]
β ∈ adj(Nγ)

DSubs
CYK =

[Rα, i, j | −,− | adj]

[Nγ , i, j | −,− | false]
α ∈ subs(Nγ)

Figure 1: A CYK-based parser for TAG.

2 Generating parsers for the XTAG
grammar

By using parsing schemata as the ones in (Alonso
et al., 1999; Nederhof, 1999) as input to our sys-
tem, we can easily obtain efficient implementa-
tions of several TAG parsing algorithms. In this
section, we describe how we have dealt with the
particular characteristics of the XTAG grammar
in order to make it compatible with our generic
compilation technique; and we also provide em-
pirical results which allow us to compare the per-
formance of several different TAG parsing algo-
rithms in the practical case of the XTAG gram-
mar. It shall be noted that similar comparisons
have been made with smaller grammars, such as
simplified subsets of the XTAG grammar, but not
with the whole XTAG grammar with all its trees
and feature structures. Therefore, our compari-
son provides valuable information about the be-
havior of various parsers on a complete, large-
scale natural language grammar. This behavior
is very different from the one that can be ob-
served on small grammars, since grammar size be-
comes a dominant factor in computational com-
plexity when large grammars like the XTAG are
used to parse relatively small natural language sen-
tences (Ǵomez-Rodŕıguez et al., 2006b).

2.1 Grammar conversion

The first step we undertook in order to generate
parsers for the XTAG grammar was a full conver-
sion of the grammar to an XML-based format, a
variant of the TAG markup language (TAGML).
In this way we had the grammar in a well-defined
format, easy to parse and modify. During this con-
version, the trees’ anchor nodes were duplicated in

order to make our generic TAG parsers allow ad-
junctions on anchor nodes, which is allowed in the
XTAG grammar.

2.2 Feature structure unification

Two strategies may be used in order to take uni-
fication into account in parsing: feature structures
can be unified after parsing or during parsing. We
have compared the two approaches for the XTAG
grammar (see table 1), and the general conclusion
is that unification during parsing performs better
for most of the sentences, although its runtimes
have a larger variance and it performs much worse
for some particular cases.

In order to implement unification during parsing
in our parsing schemata based system, we must ex-
tend our schemata in order to perform unification.
This can be done in the following way:
• Items are extended so that they will hold a fea-

ture structure in addition to the rest of the infor-
mation they include.

• We need to define two operations on feature
structures: the unification operation and the
“keep variables” operation. The “keep vari-
ables” operation is a transformation on feature
structures that takes a feature structure as an
argument, which may contain features, values,
symbolic variables and associations between
them, and returns a feature structure contain-
ing only the variable-value associations related
to a given elementary tree, ignoring the vari-
ables and values not associated through these
relations, and completely ignoring features.

• During the process of parsing, feature structures
that refer to the same node, or to nodes that are
taking part in a substitution or adjunction and

105



Strategy Mean T. Mean 10% T. Mean 20% 1st Quart. Median 3rd Quart. Std. Dev. Wilcoxon
During 108,270 12,164 7,812 1,585 4,424 9,671 388,010 0.4545
After 412,793 10,710 10,019 2,123 9,043 19,073 14,235

Table 1: Runtimes in ms of an Earley-based parser using two different unification strategies: unification
during and after parsing. The following data are shown: mean, trimmed means(10 and 20%), quartiles,
standard deviation, and p-value for the Wilcoxon paired signed rank test(the p-value of 0.4545 indicates
that no statistically significant difference was found between the medians).

are going to collapse to a single node in the final
parse tree, must be unified. For this to be done,
the test that these nodes must unify is added as
a side condition to the steps that must handle
them, and the unification results are included
in the item generated by the consequent. Of
course, considerations about the different role
of the top and bottom feature structures in ad-
junction and substitution must be taken into ac-
count when determining which feature struc-
tures must be unified.

• Feature structures in items must only hold
variable-value associations for the symbolic
variables appearing in the tree to which the
structures refer, for these relationships hold the
information that we need in order to propa-
gate values according to the rules specified in
the unification equations. Variable-value asso-
ciations referring to different elementary trees
are irrelevant when parsing a given tree, and
feature-value and feature-variable associations
are local to a node and can’t be extrapolated to
other nodes, so we won’t propagate any of this
information in items. However, it must be used
locally for unification. Therefore, steps perform
unification by using the information in their an-
tecedent items and recovering complete feature
structures associated to nodes directly from the
grammar, and then use the “keep-variables” op-
eration to remove the information that we don’t
need in the consequent item.

• In some algorithms, such as CYK, a single de-
ductive step deals with several different elemen-
tary tree nodes that don’t collapse into one in the
final parse tree. In this case, several “keep vari-
ables” operations must be performed on each
step execution, one for each of these nodes. If
we just unified the information on all the nodes
and called “keep variables” at the end, we could
propagate information incorrectly.

• In Earley-type algorithms, we must take a de-
cision about how predictor steps handle fea-
ture structures. Two options are possible: one
is propagating the feature structure in the an-
tecedent item to the consequent, and the other is
discarding the feature structure and generating
a consequent whose associated feature structure
is empty. The first option has the advantage that
violations of unification constraints are detected
earlier, thus avoiding the generation of some
items. However, in scenarios where a predic-
tor is applied to several items differing only in
their associated feature structures, this approach
generates several different items while the dis-
carding approach collapses them into a single
consequent item. Moreover, the propagating
approach favors the appearance of items with
more complex feature structures, thus making
unification operations slower. In practice, for
XTAG we have found that these drawbacks of
propagating the structures overcome the advan-
tages, especially in complex sentences, where
the discarding approach performs much better.

2.3 Tree filtering

The full XTAG English grammar contains thou-
sands of elementary trees, so performance is not
good if we use the whole grammar to parse each
sentence. Tree selection filters (Schabes and Joshi,
1991) are used to select a subset of the grammar,
discarding the trees which are known not to be
useful given the words in the input sentence.

To emulate this functionality in our parsing
schema-based system, we have used its exten-
sibility mechanism to define a functionSelects-
tree(a,T)that returnstrue if the terminal symbola
selects the treeT. The implementation of this func-
tion is a Java method that looks for this informa-
tion in XTAG’s syntactic database. Then the func-
tion is inserted in a filtering step on our schemata:

106



[a, i, j]

[Selected, α]
alpha ∈ Trees/SELECTS-TREE(A ;α)

The presence of an item of the form
[Selected, α] indicates that the treeα has
been selected by the filter and can be used for
parsing. In order for the filter to take effect, we
add [Selected, α] as an antecedent to every step
in our schemata introducing a new treeα into the
parse (such as initters, substitution and adjoining
steps). In this way we guarantee that no trees that
don’t pass the filter will be used for parsing.

3 Comparing several parsers for the
XTAG grammar

In this section, we make a comparison of several
different TAG parsing algorithms — the CYK-
based algorithm described at (Vijay-Shanker
and Joshi, 1985), Earley-based algorithms with
(Alonso et al., 1999) and without (Schabes, 1994)
the valid prefix property (VPP), and Nederhof’s
algorithm (Nederhof, 1999) — on the XTAG En-
glish grammar (release 2.24.2001), by using our
system and the ideas we have explained. The
schemata for these algorithms without unification
support can be found at (Alonso et al., 1999).
These schemata were extended as described in the
previous sections, and used as input to our sys-
tem which generated their corresponding parsers.
These parsers were then run on the test sentences
shown in table 2, obtaining the performance mea-
sures (in terms of runtime and amount of items
generated) that can be seen in table 3. Note that
the sentences are ordered by minimal runtime.

As we can see, the execution times are not as
good as the ones we would obtain if we used
Sarkar’s XTAG distribution parser written in C
(Sarkar, 2000). This is not surprising, since our
parsers have been generated by a generic tool
without knowledge of the grammar, while the
XTAG parser has been designed specifically for
optimal performance in this grammar and uses ad-
ditional information (such as tree usage frequency
data from several corpora, see (XTAG, 2001)).

However, our comparison allows us to draw
conclusions about which parsing algorithms are
better suited for the XTAG grammar. In terms
of memory usage, CYK is the clear winner, since
it clearly generates less items than the other al-
gorithms, and a CYK item doesn’t take up more

memory than an Earley item.
On the other hand, if we compare execution

times, there is not a single best algorithm, since the
performance results depend on the size and com-
plexity of the sentences. The Earley-based algo-
rithm with the VPP is the fastest for the first, “eas-
ier” sentences, but CYK gives the best results for
the more complex sentences. In the middle of the
two, there are some sentences where the best per-
formance is achieved by the variant of Earley that
doesn’t verify the valid prefix property. Therefore,
in practical cases, we should take into account the
most likely kind of sentences that will be passed
to the parser in order to select the best algorithm.

Nederhof’s algorithm is always the one with the
slowest execution time, in spite of being an im-
provement of the VPP Earley parser that reduces
worst-case time complexity. This is probably be-
cause, when extending the Nederhof schema in
order to support feature structure unification, we
get a schema that needs more unification opera-
tions than Earley’s and has to use items that store
several feature structures. Nederhof’s algorithm
would probably perform better in relation to the
others if we had used the strategy of parsing with-
out feature structures and then performing unifica-
tion on the output parse forest.

4 Conclusions

A generic system that generates parsers from al-
gebraic specifications (parsing schemata) has been
applied to the particular case of the XTAG gram-
mar. In order to be able to generate XTAG parsers,
some transformations were made to the grammar,
and TAG parsing schemata were extended with
feature structure unification support and a simple
tree filtering mechanism.

The generated implementations allow us to
compare the performance of different TAG parsers
when working with a large-scale grammar, the
XTAG English grammar. In this paper, we have
shown the results for four algorithms: a CYK-
based algorithm, Earley-based algorithms with
and without the VPP, and Nederhof’s algorithm.
The result shows that the CYK-based parser is the
least memory-consuming algorithm. By measur-
ing execution time, we find that CYK is the fastest
algorithm for the most complex sentences, but the
Earley-based algorithm with the VPP is the fastest
for simpler cases. Therefore, when choosing a
parser for a practical application, we should take

107



1. He was a cow 9. He wanted to go to the city
2. He loved himself 10. That woman in the city contributed to this article
3. Go to your room 11. That people are not really amateurs at intelectualduelling
4. He is a real man 12. The index is intended to measure future economic performance
5. He was a real man 13. They expect him to cut costs throughout the organization
6. Who was at the door 14. He will continue to place a huge burden on the cityworkers
7. He loved all cows 15. He could have been simply being a jerk
8. He called up her 16. A few fast food outlets are giving it a try

Table 2: Test sentences.

Sentence Runtimes in milliseconds Items generated
Parser Parser

CYK Ear. no VPP Ear. VPP Neder. CYK Ear. no VPP Ear. VPP Neder.
1 2985 750 750 2719 1341 1463 1162 1249
2 3109 1562 1219 6421 1834 2917 2183 2183
3 4078 1547 1406 6828 2149 2893 2298 2304
4 4266 1563 1407 4703 1864 1979 1534 2085
5 4234 1921 1421 4766 1855 1979 1534 2085
6 4485 1813 1562 7782 2581 3587 2734 2742
7 5469 2359 2344 11469 2658 3937 3311 3409
8 7828 4906 3563 15532 4128 8058 4711 4716
9 10047 4422 4016 18969 4931 6968 5259 5279
10 13641 6515 7172 31828 6087 8828 7734 8344
11 16500 7781 15235 56265 7246 12068 13221 13376
12 16875 17109 9985 39132 7123 10428 9810 10019
13 25859 12000 20828 63641 10408 12852 15417 15094
14 54578 35829 57422 178875 20760 31278 40248 47570
15 62157 113532 109062 133515 22115 37377 38824 59603
16 269187 3122860 3315359 68778 152430 173128

Table 3: Runtimes and amount of items generated by different XTAG parsers on several sentences. The
machine used for all the tests was an Intel Pentium 4 / 3.40 GHz, with 1 GB RAM and Sun Java Hotspot
virtual machine (version 1.4.201-b06) running on Windows XP. Best results for each sentence are shown
in boldface.

into account the kinds of sentences most likely to
be used as input in order to select the most suitable
algorithm.

References

M. A. Alonso, D. Cabrero, E. de la Clergerie, and M.
Vilares. 1999. Tabular algorithms for TAG parsing.
Proc. of EACL’99, pp. 150–157, Bergen, Norway.

S. Billot and B. Lang. 1989. The structure of shared
forest in ambiguous parsing.Proc. of ACL’89, pp.
143–151, Vancouver, Canada.

C. Gómez-Rodŕıguez, J. Vilares and M. A.
Alonso. 2006. Automatic Generation of
Natural Language Parsers from Declarative
Specifications. Proc. of STAIRS 2006, Riva
del Garda, Italy. Long version available at
http://www.grupocole.org/GomVilAlo2006along.pdf

C. Gómez-Rodŕıguez, M. A. Alonso and M. Vilares.
2006. On Theoretical and Practical Complexity of
TAG Parsers. Proc. of Formal Grammars 2006,
Malaga, Spain.

M.-J. Nederhof. 1999. The computational complexity

of the correct-prefix property for TAGs.Computa-
tional Linguistics, 25(3):345–360.

A. Sarkar. 2000. Practical experiments in parsing us-
ing tree adjoining grammars.Proc. of TAG+5, Paris.

Y. Schabes and A. K. Joshi. 1991. Parsing with lexi-
calized tree adjoining grammar. In Masaru Tomita,
editor, Current Issues in Parsing Technologies, pp.
25–47. Kluwer Academic Publishers, Norwell.

Y. Schabes. 1994. Left to right parsing of lexical-
ized tree-adjoining grammars.Computational Intel-
ligence, 10(4):506–515.

S. M. Shieber, Y. Schabes, and F. C. N. Pereira. 1995.
Principles and implementation of deductive parsing.
Journal of Logic Programming, 24(1–2):3–36.

K. Sikkel. 1997. Parsing Schemata — A Frame-
work for Specification and Analysis of Parsing Al-
gorithms. Springer-Verlag, Berlin.

K. Vijay-Shanker and A. K. Joshi. 1985. Some com-
putational properties of tree adjoining grammars.
Proc. of ACL’85, pp. 82–93, Chicago, USA.

XTAG Research Group. 2001. A lexicalized tree
adjoining grammar for english. Technical Report
IRCS-01-03, IRCS, University of Pennsylvania.

108



Proceedings of the 8th International Workshop on Tree Adjoining Grammar and Related Formalisms, pages 109–114,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Constraint-based Computational Semantics:
A Comparison between LTAG and LRS

Laura Kallmeyer
University of Tübingen

Collaborative Research Center 441
lk@sfs.uni-tuebingen.de

Frank Richter
University of Tübingen

Collaborative Research Center 441
fr@sfs.uni-tuebingen.de

Abstract

This paper compares two approaches to
computational semantics, namely seman-
tic unification in Lexicalized Tree Ad-
joining Grammars (LTAG) and Lexical
Resource Semantics (LRS) in HPSG.
There are striking similarities between the
frameworks that make them comparable in
many respects. We will exemplify the dif-
ferences and similarities by looking at sev-
eral phenomena. We will show, first of all,
that many intuitions about the mechanisms
of semantic computations can be imple-
mented in similar ways in both frame-
works. Secondly, we will identify some
aspects in which the frameworks intrin-
sically differ due to more general differ-
ences between the approaches to formal
grammar adopted by LTAG and HPSG.

1 Introduction

This paper contrasts two frameworks for compu-
tational semantics, the proposal for semantics in
LTAG described in (Kallmeyer and Romero, 2005)
and LRS (Richter and Sailer, 2004), a computa-
tional semantics framework formulated in Head-
Driven Phrase Structure Grammar (HPSG).

There are significant differences between LTAG
and HPSG. LTAG is a mildly context-sensitive
lexicalized formalism characterized by an ex-
tended domain of locality. HPSG is based on the
idea of a separation of the lexicon and syntactic
structure and on the strict locality of general gram-
mar principles that are formulated in an expres-
sive and very flexible logical description language.
These fundamental differences are reflected in the
respective architectures for semantics: LTAG as-
sumes a separate level of underspecified semantic

representations; LRS uses the description logic of
syntax for semantic specifications.

However, despite the different mathematical
structures, we find striking similarities between
LTAG semantics with unification and LRS. They
both show similar intuitions underlying specific
analyses, use the same higher order type-theoretic
language (Ty2, (Gallin, 1975)) as a means for
specifying the truth conditions of sentences, and
employ a feature logic in the combinatorial seman-
tics instead of the lambda calculus. Because of
these similarities, analyses using both approaches
are closely related and can benefit from each other.

The paper is structured as follows: Sections 2
and 3 will introduce the two frameworks. The
next three sections (4–6) will sketch analyses of
some phenomena in both frameworks that will re-
veal relevant relations between them. Section 7
presents a summary and conclusion.

2 LTAG semantics

In (Kallmeyer and Romero, 2005), each elemen-
tary tree is linked to a semantic representation (a
set of Ty2 formulas and scope constraints). Ty2
formulas (Gallin, 1975) are typed λ-terms with in-
dividuals and situations as basic types. The scope
constraints of the form x ≥ y specify subordina-
tion relations between Ty2 terms. In other words,
x ≥ y indicates that y is a component of x.

A semantic representation is equipped with a
semantic feature structure description. Semantic
computation is done on the derivation tree and
consists of certain feature value equations between
mother and daughter nodes in the derivation tree.

(1) John always laughs.

As an example, see Fig. 1 showing the deriva-
tion tree for (1) with semantic representations and

109



l1 : laugh( 1 )







NP

[

GLOBAL
[

I 1
]

]

VP

[

B
[

P l1
]

]







np vp

john(x)
l2 : always( 3 ),
3 ≥ 4

[

GLOBAL
[

I x
]

] 





VPr

[

B
[

P l2
]

]

VPf

[

B
[

P 4
]

]







Figure 1: LTAG semantics of (1)

semantic feature structure descriptions as node
labels. The additional feature equations in this
example are depicted using dotted lines. They
arise from top-bottom feature identifications par-
allel to the unifications performed in FTAG (Vijay-
Shanker and Joshi, 1988) and from identifications
of global features. They yield 1 = x and 4 = l1.
Applying these identities to the semantic represen-
tations after having built their union leads to (2).
The constraint 3 ≥ l1 states that l1 : laugh(x) is
a component of 3 .

(2)
john(x), l2 : always( 3 ), l1 : laugh(x),
3 ≥ l1

Note that the feature structure descriptions do
not encode the semantic expressions one is inter-
ested in. They only encode their contributions to
functional applications by restricting the argument
slots of certain predicates in the semantic repre-
sentations: They state which elements are con-
tributed as possible arguments for other seman-
tic expressions and which arguments need to be
filled. They thereby simulate lambda abstraction
and functional application while assembling the
semantic representations. To achieve this, a re-
stricted first order logic is sufficient.

Semantic computation is local on the derivation
tree: The new feature equations that are added de-
pend only on single edges in the derivation tree.
Because of this, even with the extension to seman-
tics, the formalism is still mildly context-sensitive.

3 LRS

In LRS the feature logic specifies the entire gram-
mar, including well-formed Ty2 terms as seman-
tic representations, and their mode of composi-
tion. Instead of the lambda calculus of tradi-
tional Montague Grammar, LRS crucially uses a

novel distinction between three aspects of the log-
ical representations of signs (external content, in-
ternal content, and parts). LRS constraints es-
tablish sub-term relationships between pieces of
semantic representations within and across signs,
thereby specifying the combinatorial properties of
the semantics. The subterm or component-of con-
ditions (symbolized as /) are imposed by gram-
mar principles. Since these principles are descrip-
tions of object-language expressions, they permit
the application of various underspecification tech-
niques of computational semantics, although an
LRS grammar does not employ underspecified se-
mantic representations, in contrast to LTAG se-
mantics.

Fig. 2 shows an HPSG description of the syn-
tactic tree and the LRS specifications of (1). The
syntactic trees in HPSG correspond to the derived
trees of LTAG. Since HPSG does not have deriva-
tion trees, the LRS principles refer to derived trees.

NP




exc 1

inc 1

p 〈 1 john〉





John

A




exc 5

inc 5 always( 3 )
p 〈 5 , 5a always〉





always

V




exc 4

inc 2 laugh( 1 )
p 〈 2 , 2a laugh〉





laughs

adj head

VP




exc 4

inc 2

p 〈 2 , 2a , 5 , 5a 〉





& 2 / 3 & 5 / 4

comp head

S




exc 4 always(laugh(john))

inc 2

p 〈 2 , 2a , 5 , 5a , 1 〉





Figure 2: LRS analysis of (1)

Each word lexically specifies its contribution to
the overall meaning of the sentence (P(ARTS)), the
part of its semantics which is outscoped by all
signs the word combines with (INC(ONT)), and
the overall semantic contribution of its maximal
projection (EXC(ONT)). Feature percolation prin-
ciples identify INC and EXC, respectively, along
head projections and collect the elements of the
PARTS lists of the daughters at each phrase. The
combination of the adjunct with a verbal pro-
jection introduces two component-of constraints:
The EXC of always must be within the EXC of
laughs, and the INC of laughs must be in the
scope of always. The semantic argument of

110



laughs (john) is identified by subcategorization
(not shown in Fig. 2). A closure condition requires
that the semantic representation of an utterance
use up all and only the PARTS contributions of all
signs, which yields 4 = always(laugh(john)).

4 Quantifier scope

4.1 Specifying a scope window

(3) Exactly one student admires every professor:
∃ > ∀,∀ > ∃

(4) John seems to have visited everybody:
seem > ∀,∀ > seem

Quantificational NPs in English can in princi-
ple scope freely (see (3) and (4)). An analysis of
quantifier scope must guarantee only two things:
1. the proposition to which a quantifier attaches
must be in its nuclear scope, and 2. a quantifier
cannot scope higher than the next finite clause.
One way to model this is to define a scope win-
dow delimited by a maximal scope and a minimal
scope for a quantifier. Both LTAG and LRS, spec-
ify such scope windows for quantifiers. We will
now outline the two analyses.

(5) Everybody laughs.

(Kallmeyer and Romero, 2005) use global fea-
tures MAXS and MINS for the limits of the scope
window. Fig. 3 shows the LTAG analysis of (5).
The feature identifications (indicated by dotted
lines) lead to the constraints 2 ≥ 5 , 5 ≥ l1.
These constraints specify an upper and a lower
boundary for the nuclear scope 5 . With the as-
signments following from the feature identifica-
tions we obtain the semantic representation (6):

(6)

l1 : laugh(x),
l2 : every(x, 4 , 5 ), l3 : person(x)
2 ≥ l1,
4 ≥ l3, 2 ≥ 5 , 5 ≥ l1

There is one possible disambiguation consis-
tent with the scope constraints, namely 2 → l2,
4 → l3, 5 → l1. This leads to the semantics
every(x, person(x), laugh(x)).

In LRS, the EXCONT value of the utterance is
the upper boundary while the INCONT value of the
syntactic head a quantifier depends on is the lower
boundary for scope, as illustrated in Fig. 4. The
upper boundary is obtained through the interaction
of 1) a PROJECTION PRINCIPLE stating that the

l1 : laugh( 1 ),
2 ≥ 3

np

l2 : every(x, 4 , 5 ),
l3 : person(x),
4 ≥ l3,
6 ≥ 5 , 5 ≥ 7









GLOBAL

[

MINS l1
MAXS 2

]

NP

[

GLOBAL
[

I 1
]

]

















GLOBAL
[

I x
]

NP

[

GLOBAL

[

MINS 7

MAXS 6

]

]









Figure 3: LTAG analysis of (5) Everybody laughs

PARTS list of a phrase contains all elements on the
PARTS lists of its daughters, and 2) the EXCONT

PRINCIPLE which states that a) the PARTS list of
each non-head contains its own EXCONT, and b)
in an utterance, everything on the PARTS list is a
component of the EXCONT. This leads to the con-
straint 4 � 6 in Fig. 4, among others. The lower
boundary is obtained from the SEMANTICS PRIN-
CIPLE which states that if the non-head of a headed
phrase is a quantifier, then the INCONT of the head
is a component of its nuclear scope. This yields
1 � β in Fig. 4.

S




EXC 6 ∀x
(

person
(

x
)

→ laugh
(

x
))

INC 1

P 〈x, 1 , 1a , 2 , 2a , 4 , 4a 〉





NP VP






EXC 4 ∀x (α → β)

INC 2 person
(

x
)

P 〈x, 2 , 2a person,
4 , 4a α → β〉











EXC 6

INC 1 laugh
(

x
)

P 〈 1 , 1a laugh〉





everybody laughs

Relevant subterm constraints: 2 � α (from the lexical entry
of everybody), 1 � β, 4 � 6

Figure 4: LRS analysis of (5) Everybody laughs

The striking similarity between the two anal-
yses shows that, despite the fundamental differ-
ences between the frameworks, central insights
can be modelled in parallel.

4.2 Nested quantifiers

The use of the upper limit of the scope windows is,
however, slightly different: EXCONT contains the
quantifier itself as a component while MAXS limits
only the nuclear scope, not the quantifier. Conse-
quently, in LTAG the quantifier can scope higher

111



than the MAXS limiting its nuclear scope but in
this case it takes immediate scope over the MAXS.

(7) Two policemen spy on someone from every
city: ∀ > ∃ > 2 (among others)

The LTAG analysis is motivated by nested quan-
tifiers. In sentences such as (7), the embedded
quantifier can take scope over the embedding one
but if so, this must be immediate scope. In other
words, other quantifiers cannot intervene. In (7),
the scope order ∀ > 2 > ∃ is therefore not pos-
sible.1 The LTAG analysis is such that the max-
imal nuclear scope of the embedded quantifier is
the propositional label of the embedding quanti-
fier.2

In LRS, the way the scope window is speci-
fied, a corresponding constraint using the EXCONT

of the embedded quantifier cannot be obtained.
The LRS principle governing the distribution of
embedded quantifiers in complex NPs states di-
rectly that in this syntactic environment, the em-
bedded quantifier may only take direct scope over
the quantifier of the matrix NP. This principle
does not refer to the notion of external content at
all. At this point it is an open question whether
LRS could learn from LTAG here and adapt the
scope window so that an analogous treatment of
nested quantifiers would be possible.

5 LTAG’s extended domain of locality

Whereas the treatment of quantification sketched
in the preceding section highlights the similarities
between LTAG semantics and LRS, this and the
following section will illustrate some fundamental
differences between the frameworks.

In spite of the parallels mentioned above, even
INCONT and MINS differ sometimes, namely in
sentences containing bridge verbs. This is related
to the fact that LTAG has an extended domain of
locality whereas HPSG does not. Let us illustrate
the difference with the example (8).

(8) Mary thinks John will come.
1(Joshi et al., 2003) propose an extra mechanism that

groups quantifiers into sets in order to derive these con-
straints. (Kallmeyer and Romero, 2005) however show that
these constraints can be derived even if the upper limit MAXS

for nuclear scope is used as sketched above.
2Note that this approach requires constraints of the form

l ≥ n with l being a label, n a variable. This goes
beyond the polynomially solvable normal dominance con-
straints (Althaus et al., 2003). This extension, though, is
probably still polynomially solvable (Alexander Koller, per-
sonal communication).

In LTAG, the two elementary verb trees (for
thinks and will come) have different global MINS

features. The one for thinks is the label of the think
proposition while the one for will come is the label
of the embedded proposition. As a consequence, a
quantifier which attaches to the matrix verb cannot
scope into the embedded clause. This distinction
of different MINS values for different verb trees is
natural in LTAG because of the extended domain
of locality.

In LRS, all verbal nodes in the constituent struc-
ture of (8) carry the same INCONT value, namely
the proposition of the embedded verb. Conse-
quently, the minimal scope of quantifiers attaching
either to the embedding or to the embedded verb
is always the proposition of the embedded verb.
However, due to the requirement that variables be
bound, a quantifier binding an argument of the em-
bedding verb cannot have narrow scope over the
embedded proposition.

How to implement the LTAG idea of different
INCONT values for the embedding and the embed-
ded verb in LRS is not obvious. One might intro-
duce a new principle changing the INCONT value
at a bridge verb, whereby the new INCONT would
get passed up, and the embedded INCONT would
no longer be available. This would be problem-
atic: Take a raising verb as in (9) (adjoining to the
VP node in LTAG) instead of a bridge verb:

(9) Most people seem to everybody to like the
film.

Here the minimal scope of most people should
be the like proposition while the minimal scope
of everybody is the seem proposition. In LTAG
this does not pose a problem since, due to the ex-
tended domain of locality, most people attaches to
the elementary tree of like even though the seem
tree is adjoined in between. If the INCONT treat-
ment of LRS were modified as outlined above and
seem had an INCONT value that differed from the
INCONT value of the embedded like proposition,
then the new INCONT value would be passed up
and incorrectly provide the minimal scope of most
people. LRS must identify the two INCONTs.

The difference between the two analyses illus-
trates the relevance of LTAG’s extended domain of
locality not only for syntax but also for semantics.

6 Negative Concord

The analysis of negative concord in Polish de-
scribed in this section highlights the differences

112



in the respective implementation of underspeci-
fication techniques in LTAG and LRS. Recall
that both LTAG and LRS use component-of con-
straints. But in LTAG, these constraints link ac-
tual Ty2-terms (i.e., objects) to each other, while
in LRS, these constraints are part of a description
of Ty2-terms.

(10) Janek nie pomaga ojcu.
Janek NM helps father
‘Janek doesn’t help his father.’

(11) a. Janek nie pomaga nikomu.
Janek NM helps nobody
‘Janek doesn’t help anybody.’

b. ∗Janek pomaga nikomu.

(12) Nikt nie przyszedł.
nobody NM came
‘Nobody came.’

The basic facts of sentential negation and nega-
tive concord in Polish are illustrated in (10)–(12):
The verbal prefix nie is obligatory for sentential
negation, and it can co-occur with any number
of n-words (such as nikt, ‘anybody’) without ever
leading to a double negation reading. As a conse-
quence, (12) expresses only one logical sentential
negation, although the negation prefix nie on the
verb and the n-word nikt can carry logical nega-
tion alone in other contexts. LRS takes advantage
of the fact that its specifications of semantic repre-
sentations are descriptions of logical expressions
which can, in principle, mention the same parts
of the expressions several times. Fig. 5 shows
that both nikt and the verb nie przyszedł introduce
descriptions of negations ( 4 and 2 , respectively).
The constraints of negative concord in Polish will
then conspire to force the negations contributed by
the two words to be the same in the overall logical
representation 6 of the sentence.

Such an analysis is not possible in LTAG. Each
negation in the interpretation corresponds to ex-
actly one negated term introduced in the seman-
tic representations. Therefore, the negative parti-
cle nie necessarily introduces the negation while
the n-word nikt requires a negation in the proposi-
tion it attaches to. An analysis along these lines is
sketched in Fig. 6 (“GL” stands for “GLOBAL”).
The requirement of a negation is checked with
a feature NEG indicating the presence of a nega-
tion. The scope of the negation (feature N-SCOPE)





EXC 6 ¬∃e∃x
(

person
(

x
)

∧ come
(

e, x
))

INC 1

P 〈e, x, 0 , 1 , 1a , 1b , 2 , 3 , 3a , 4 , 5 , 5a 〉





nikt nie przyszedł






EXC 5 ∃x (γ ∧ δ)

INC 3 person
(

x
)

P 〈x, 3 , 3a person,
4¬β, 5 , 5a γ ∧ δ〉

















EXC 6

INC 1 come
(

e, x
)

P 〈e, 1 , 1a come e,
1b come, 2¬α,
0 ∃eφ〉











1 � α, 2 � 6 , 5 � β, 3 � γ, 1 � δ, 1 � φ, 1 � α

Figure 5: LRS analysis of (12) Nikt nie przyszedł

marks the maximal scope of the existential quan-
tifier of the n-word nikt (constraint 7 ≥ 6 ).3

S

NP VP

V

NP nie V

nikt przyszedł

l1 : ¬ 1 ,
l2 : come( 2 , 3 )
1 ≥ l2, 4 ≥ l1

np

l3 : some(x, 5 , 6 ),
l4 : person(x)
5 ≥ l4,
7 ≥ 6 , 6 ≥ 8















GL







MAXS 4

N-SCOPE 1

MINS l2
NEG yes







NP

[

GL
[

I 2
]

]

























GL
[

I x
]

NP



GL

[

N-SCOPE 7

MINS 8

NEG yes

]















Figure 6: LTAG analysis of (12) Nikt nie przyszedł

This example illustrates that the two frame-
works differ substantially in their treatment of un-
derspecification: 1. LRS employs partial descrip-
tions of fully specified models, whereas LTAG
generates underspecified representations in the
style of (Bos, 1995) that require the definition of
a disambiguation (a “plugging” in the terminol-
ogy of Bos). 2. LRS constraints contain not Ty2
terms but descriptions of Ty2 terms. Therefore, in
contrast to LTAG, two descriptions can denote the
same formula. Here, LTAG is more limited com-
pared to LRS. On the other hand, the way seman-
tic representations are defined in LTAG guarantees

3See (Lichte and Kallmeyer, 2006) for a discussion of
NEG and N-SCOPE in the context of NPI-licensing.

113



that they almost correspond to normal dominance
constraints, which are known to be polynomially
parsable. The difference in the use of underspecifi-
cation techniques reflects the more general differ-
ence between a generative rewriting system such
as LTAG, in which the elements of the grammar
are objects, and a purely description-based for-
malism such as HPSG, in which token identities
between different components of linguistic struc-
tures are natural and frequently employed.

7 Summary and Conclusion

LTAG and LRS have several common characteris-
tics: They both 1. use a Ty2 language for seman-
tics; 2. allow underspecification (LTAG scope con-
straints ≥ versus LRS component-of constraints
�); 3. use logical descriptions for semantic com-
putation; 4. are designed for computational appli-
cations. Due to these similarities, some analyses
can be modelled in almost identical ways (e.g., the
quantifier scope analyses, and the identification of
arguments using attribute values rather than func-
tional application in the lambda calculus). We take
the existence of this clear correspondence as in-
dicative of deeper underlying insight into the func-
tioning of semantic composition in natural lan-
guages.

Additionally, the differences between the
frameworks that can be observed on the level of
syntax carry over to semantics: 1. LTAG’s ex-
tended domain of locality allows the localization
within elementary trees of syntactic and seman-
tic relations between elements far apart from each
other on the level of constituent structure. 2. LTAG
(both syntax and semantics) is a formalism with
restricted expressive power that guarantees good
formal properties. The restrictions, however, can
be problematic. Some phenomena can be more
easily described in a system such as HPSG and
LRS while their description is less straightfor-
ward, perhaps more difficult or even impossible
within LTAG. The concord phenomena described
in section 7 are an example of this.

A further noticable difference is that within the
(Kallmeyer and Romero, 2005) framework, the
derivation tree uniquely determines both syntac-
tic and semantic composition in a context-free
way. Therefore LTAG semantics is mildly context-
sensitive and can be said to be compositional.
As far as LRS is concerned, it is not yet known
whether it is compositional or not; compositional-

ity (if it holds at all) is at least less straightforward
to show than in LTAG.

In conclusion, we would like to say that the sim-
ilarities between these two frameworks permit a
detailed and direct comparison. Our comparative
study has shed some light on the impact of the dif-
ferent characteristic properties of our frameworks
on concrete semantic analyses.

Acknowledgments

For many long and fruitful discussions of various
aspects of LTAG semantics and LRS, we would
like to thank Timm Lichte, Wolfgang Maier, Mari-
bel Romero, Manfred Sailer and Jan-Philipp Söhn.
Furthermore, we are grateful to three anonymous
reviewers for helpful comments.

References
Ernst Althaus, Denys Duchier, Alexander Koller, Kurt

Mehlhorn, Joachim Niehren, and Sven Thiel. 2003.
An efficient graph algorithm for dominance con-
straints. Journal of Algorithms, 48(1):194–219.

Johan Bos. 1995. Predicate logic unplugged. In Paul
Dekker and Martin Stokhof, editors, Proceedings of
the 10th Amsterdam Colloquium, pages 133–142.

Daniel Gallin. 1975. Intensional and Higher-Order
Modal Logic with Applications to Montague Seman-
tics. North Holland mathematics studies 19. North-
Holland Publ. Co., Amsterdam.

Aravind K. Joshi, Laura Kallmeyer, and Maribel
Romero. 2003. Flexible Composition in LTAG:
Quantifier Scope and Inverse Linking. In Harry
Bunt, Ielka van der Sluis, and Roser Morante, ed-
itors, Proceedings of the Fifth International Work-
shop on Computational Semantics IWCS-5, pages
179–194, Tilburg.

Laura Kallmeyer and Maribel Romero. 2005. Scope
and Situation Binding in LTAG using Semantic Uni-
fication. Submitted to Research on Language and
Computation. 57 pages., December.

Timm Lichte and Laura Kallmeyer. 2006. Licensing
German Negative Polarity Items in LTAG. In Pro-
ceedings of The Eighth International Workshop on
Tree Adjoining Grammar and Related Formalisms
(TAG+8), Sydney, Australia, July.

Frank Richter and Manfred Sailer. 2004. Basic con-
cepts of lexical resource semantics. In Arnold Beck-
mann and Norbert Preining, editors, ESSLLI 2003 –
Course Material I, (= Collegium Logicum, 5), pages
87–143. Kurt Gödel Society, Wien.

K. Vijay-Shanker and Aravind K. Joshi. 1988. Feature
structures based tree adjoining grammar. In Pro-
ceedings of COLING, pages 714–719, Budapest.

114



Proceedings of the 8th International Workshop on Tree Adjoining Grammar and Related Formalisms, pages 115–120,
Sydney, July 2006.c©2006 Association for Computational Linguistics

SemTAG, the LORIA toolbox for TAG-based Parsing and Generation

Eric Kow
INRIA / LORIA

Université Henri Poincaré
615, rue du Jardin Botanique
F-54 600 Villers-Lès-Nancy

kow@loria.fr

Yannick Parmentier
INRIA / LORIA

Université Henri Poincaré
615, rue du Jardin Botanique
F-54 600 Villers-Lès-Nancy
parmenti@loria.fr

Claire Gardent
CNRS / LORIA

615, rue du Jardin Botanique
F-54 600 Villers-Lès-Nancy
gardent@loria.fr

Abstract

In this paper, we introduce SEMTAG, a
toolbox for TAG-based parsing and gen-
eration. This environment supports the
development of wide-coverage grammars
and differs from existing environments
for TAG such as XTAG, (XTAG-Research-
Group, 2001) in that it includes a semantic
dimension. SEMTAG is open-source and
freely available.

1 Introduction

In this paper we introduce a toolbox that allows for
both parsing and generation with TAG. This tool-
box combines existing software and aims at facili-
tating grammar development, More precisely, this
toolbox includes1:

• XMG: a grammar compiler which supports the
generation of a TAG from a factorised TAG

(Crabbé and Duchier, 2004),

• LLP2 and DyALog: two chart parsers, one
with a friendly user interface (Lopez, 2000)
and the other optimised for efficient parsing
(Villemonte de la Clergerie, 2005)2

• GenI: a chart generator which has been
tested on a middle size grammar for French
(Gardent and Kow, 2005)

1All these tools are freely available, more information and
links at http://trac.loria.fr/˜semtag.

2Note that DyALog refers in fact to a logic program-
ming language, and a tabular compiler for this language. The
DyALog system is well-adapted to the compilation of effi-
cient tabular parsers.

2 XMG, a grammar writing environment
for Tree Based Grammars

XMG provides a grammar writing environment for
tree based grammars3 with three distinctive fea-
tures. First, XMG supports a highly factorised and
fully declarative description of tree based gram-
mars. Second, XMG permits the integration in a
TAG of a semantic dimension. Third, XMG is based
on well understood and efficient logic program-
ming techniques. Moreover, it offers a graphical
interface for exploring the resulting grammar (see
Figure 1).

Factorising information. In the XMG frame-
work, a TAG is defined by a set of classes organised
in an inheritance hierarchy where classes define
tree fragments (using a tree logic) and tree frag-
ment combinations (by conjunction or disjunc-
tion). XMG furthermore integrates a sophisticated
treatment of names whereby variables scope can
be local, global or user defined (i.e., local to part
of the hierarchy).

In practice, the resulting framework supports a
very high degree of factorisation. For instance, a
first core grammar (FRAG) for French comprising
4 200 trees was produced from roughly 300 XMG
classes.

Integrating semantic information. In XMG,
classes can be multi-dimensional. That is, they
can be used to describe several levels of linguis-
tic knowledge such as for instance, syntax, seman-
tics or prosody. At present, XMG supports classes
including both a syntactic and a semantic dimen-
sion. As mentioned above, the syntactic dimen-

3Although in this paper we only mention TAG, the XMG
framework is also used to develop so called Interaction Gram-
mars i.e., grammars whose basic units are tree descriptions
rather than trees (Parmentier and Le Roux, 2005).

115



Figure 1: XMG’s graphical interface

sion is based on a tree logic and can be used to
describe (partial) tree fragments. The semantic di-
mension on the other hand, can be used to asso-
ciate with each tree a flat semantic formula. Such a
formula can furthermore include identifiers which
corefer with identifiers occurring in the associated
syntactic tree. In other words, XMG also provides
support for the interface between semantic formu-
lae and tree decorations. Note that the inclusion of
semantic information remains optional. That is, it
is possible to use XMG to define a purely syntactic
TAG.
XMG was used to develop a core grammar for

French (FRAG) which was evaluated to have 75%
coverage4 on the Test Suite for Natural Language
Processing (TSNLP, (Lehmann et al., 1996)). The
FRAG grammar was furthermore enriched with
semantic information using another 50 classes de-
scribing the semantic dimension (Gardent, 2006).
The resulting grammar (SEMFRAG) describes
both the syntax and the semantics of the French
core constructions.

Compiling an XMG specification. By build-
ing on efficient techniques from logic program-
ming and in particular, on the Warren’s Abstract

4This means that for 75 % of the sentences, a TAG parser
can build at least one derivation.

Figure 2: The LLP2 parser.

Machine idea (Ait-Kaci, 1991), the XMG com-
piler allows for very reasonable compilation times
(Duchier et al., 2004). For instance, the compila-
tion of a TAG containing 6 000 trees takes about 15
minutes with a Pentium 4 processor 2.6 GHz and
1 GB of RAM.

3 Two TAG parsers

The toolbox includes two parsing systems: the
LLP2 parser and the DyALog system. Both of
them can be used in conjunction with XMG. First
we will briefly introduce both of them, and then
show that they can be used with a semantic gram-
mar (e.g., SEMFRAG) to perform not only syntac-
tic parsing but also semantic construction.

LLP2 The LLP2 parser is based on a bottom-
up algorithm described in (Lopez, 1999). It has
relatively high parsing times but provides a user
friendly graphical parsing environment with much
statistical information (see Figure 2). It is well
suited for teaching or for small scale projects.

DyALog The DyALog system on the other
hand, is a highly optimised parsing system based
on tabulation and automata techniques (Ville-
monte de la Clergerie, 2005). It is implemented
using the DyALog programming language (i.e.,
it is bootstrapped) and is also used to compile
parsers for other types of grammars such as Tree
Insertion Grammars.

The DyALog system is coupled with a seman-
tic construction module whose aim is to associate
with each parsed string a semantic representation5.
This module assumes a TAG of the type described
in (Gardent and Kallmeyer, 2003; Gardent, 2006)

5The corresponding system is called SemConst (cf section
6).

116



Figure 3: The SemConst system

where initial trees are associated with semantic in-
formation and unification is used to combine se-
mantic representations. In such a grammar, the se-
mantic representation of a derived tree is the union
of the semantic representations of the trees enter-
ing in the derivation of that derived tree modulo
the unifications entailed by analysis. As detailed
in (Gardent and Parmentier, 2005), such grammars
support two strategies for semantic construction.

The first possible strategy is to use the full
grammar and to perform semantic construction
during derivation. In this case the parser must ma-
nipulate both syntactic trees and semantic repre-
sentations. The advantage is that the approach is
simple (the semantic representations can simply
be an added feature on the anchor node of each
tree). The drawback is that the presence of seman-
tic information might reduce chart sharing.

The second possibility involves extracting the
semantic information contained in the grammar
and storing it into a semantic lexicon. Parsing then
proceeds with a purely syntactic grammar and se-
mantic construction is done after parsing on the
basis of the parser output and of the extracted se-
mantic lexicon. This latter technique is more suit-
able for large scale semantic construction as it sup-
ports better sharing in the derivation forests. It
is implemented in the LORIA toolbox where a
module permits both extracting a semantic lexi-
con from a semantic TAG and constructing a se-
mantic representation based on this lexicon and on
the derivation forests output by DyALog (see Fig-
ure 3).

The integration of the DyALog system into the
toolbox is relatively new so that parsing evaluation

Figure 4: The GenI debugger

is still under progress. So far, evaluation has been
restricted to parsing the TSNLP with DyALog
with the following preliminary results. On sen-
tences ranging from 1 to 18 words, with an aver-
age of 7 words per sentence, and with a grammar
containing 5 069 trees, DyALog average parsing
time is of 0.38 sec with a P4 processor 2.6 GHz
and 1 GB of RAM6.

4 A TAG-based surface realiser

The surface realiser GenI takes a TAG and a flat
semantic logical form as input, and produces all
the sentences that are associated with that logi-
cal form by the grammar. It implements two bot-
tom up algorithms, one which manipulates derived
trees as items and one which is based on Earley for
TAG. Both of these algorithms integrate a number
of optimisations such as delayed adjunction and
polarity filtering (Kow, 2005; Gardent and Kow,
2005).
GenI is written in Haskell and includes a

graphical debugger to inspect the state of the gen-
erator at any point in the surface realisation pro-
cess (see Figure 4). It also integrates a test harness
for automated regression testing and benchmark-
ing of the surface realiser and the grammar. The
harness gtester is written in Python. It runs the
surface realiser on a test suite, outputting a single
document with a table of passes and failures and
various performance charts (see Figures 5 and 6).

Test suite and performance The test suite is
built with an emphasis on testing the surface re-

6These features only concern classic syntactic parsing as
the semantic construction module has not been tested on real
grammars yet.

117



test expected simple earley
t1 il le accepter pass pass

t32 il nous accepter pass pass
t83 le ingnieur le lui apprendre pass DIED

t114 le ingnieur nous le prsenter pass pass
t145 le ingnieur vous le apprendre pass pass
t180 vous venir pass pass

Figure 5: Fragment of test harness output - The
Earley algorithm timed out.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  20  40  60  80  100  120  140  160  180  200

ch
ar

t_
siz

e

lex_foot_nodes

chart_size for lex_foot_nodes

simple
earley

Figure 6: Automatically generated graph of per-
formance data by the test harness.

aliser’s performance in the face of increasing para-
phrastic power i.e., ambiguity. The suite consists
of semantic inputs that select for and combines
verbs with different valencies. For example, given
a hypothetical English grammar, a valency (2,1)
semantics might be realised in as Martin thinks
Faye drinks (thinks takes 2 arguments and drinks
takes 1), whereas a valency (2,3,2) one would be
Dora says that Martin tells Bob that Faye likes
music. The suite also adds a varying number of
intersective modifiers into the mix, giving us for
instance, The girl likes music, The pretty scary girl
likes indie music.

The sentences in the suite range from 2 to 15
words (8 average). Realisation times for the core
suite range from 0.7 to 2.84 seconds CPU time
(average 1.6 seconds).

We estimate the ambiguity for each test case
in two ways. The first is to count the number of
paraphrases. Given our current grammar, the test
cases in our suite have up to 669 paraphrases (av-
erage 41). The second estimate for ambiguity is
the number of combinations of lexical items cov-
ering the input semantics.

This second measure is based on optimisation

known as polarity filtering (Gardent and Kow,
2005). This optimisation detects and eliminates
combinations of lexical items that cannot be used
to build a result. It associates the syntactic re-
sources (root nodes) and requirements (substitu-
tion nodes) of the lexical items to polarities, which
are then used to build “polarity automata”. The
automata are minimised to eliminate lexical com-
binations where the polarities do not cancel out,
that is those for which the number of root and sub-
stitution nodes for any given category do not equal
each other.

Once built, the polarity automata can also serve
to estimate ambiguity. The number of paths in the
automaton represent the number of possible com-
binations of lexical items. To determine how ef-
fective polarity filtering with respect to ambiguity,
we compare the combinations before and after po-
larity filtering. Before filtering, we start with an
initial polarity automaton in which all items are
associated with a zero polarity. This gives us the
lexical ambiguity before filtering. The polarity fil-
ter then builds upon this to form a final automaton
where all polarities are taken into account. Count-
ing the paths on this automaton gives us the am-
biguity after filtering, and comparing this number
with the lexical initial ambiguity provides an es-
timate on the usefulness of the polarity filter. In
our suite, the initial automata for each case have
1 to 800 000 paths (76 000 average). The fi-
nal automata have 1 to 6000 paths (192 average).
This can represent quite a large reduction in search
space, 4000 times in the case of the largest au-
tomaton. The effect of this search space reduc-
tion is most pronounced on the larger sentences or
those with the most modifiers. Indeed, realisation
times with and without filtering are comparable for
most of the test suite, but for the most complicated
sentence in the core suite, polarity filtering makes
surface realisation 94% faster, producing a result
in 2.35 seconds instead of 37.38.

5 Benefits of an integrated toolset

As described above, the LORIA toolbox for TAG
based semantic processing includes a lexicon, a
grammar, a parser, a semantic construction mod-
ule and a surface realiser. Integrating these into
a single platform provides some accrued benefits
which we now discuss in more details.

Simplified resource management The first ad-
vantage of an integrated toolkit is that it facilitates

118



the management of the linguistic resources used
namely the grammar and the lexicon. Indeed it is
common that each NLP tool (parser or generator)
has its own representation format. Thus, manag-
ing the resources gets tiresome as one has to deal
with several versions of a single resource. When
one version is updated, the others have to be re-
computed. Using an integrated toolset avoid such
a drawback as the intermediate formats are hidden
and the user can focus on linguistic description.

Better support for grammar development
When developing parsers or surface realisers, it is
useful to test them out by running them on large,
realistic grammars. Such grammars can explore
nooks and crannies in our implementations that
would otherwise have been overlooked by a toy
grammar. For example, it was only when we ran
GenI on our French grammar that we realised our
implementation did not account for auxiliary trees
with substitution nodes (this has been rectified).
In this respect, one could argue that XMG could al-
most be seen as a parser/realiser debugging utility
because it helps us to build and extend the large
grammars that are crucial for testing.

This perspective can also be inverted; parsers
and surface realiser make for excellent grammar-
debugging devices. For example, one possible
regression test is to run the parser on a suite of
known sentences to make sure that the modified
grammar still parses them correctly. The exact
reverse is useful as well; we could also run the
surface realiser over a suite of known semantic
inputs and make sure that sentences are gener-
ated for each one. This is useful for two reasons.
First, reading surface realiser output (sentences)
is arguably easier for human beings than reading
parser output (semantic formulas). Second, the
surface realiser can tell us if the grammar overgen-
erates because it would output nonsense sentences.
Parsers, on the other hand, are much better adapted
for testing for undergeneration because it is easier
to write sentences than semantic formulas, which
makes it easier to test phenomena which might not
already be in the suite.

Towards a reversible grammar Another ad-
vantage of using such a toolset relies on the fact
that we can manage a common resource for both
parsing and generation, and thus avoid inconsis-
tency, redundancy and offer a better flexibility as
advocated in (Neumann, 1994).

On top of these practical questions, having a
unique reversible resource can lead us further.
For instance, (Neumann, 1994) proposes an inter-
leaved parsing/realisation architecture where the
parser is used to choose among a set of para-
phrases proposed by the generator; paraphrases
which are ambiguous (that have multiple parses)
are discarded in favour of those whose meaning is
most explicit. Concretely, we could do this with a
simple pipeline using GenI to produce the para-
phrases, DyALog to parse them, and a small shell
script to pick the best result. This would only be
a simulation, of course. (Neumann, 1994) goes
as far as to interleave the processes, keeping the
shared chart and using the parser to iteratively
prune the search space as it is being explored by
the generator. The version we propose would not
have such niceties as a shared chart, but the point
is that having all the tools at our disposable makes
such experimentation possible in the first place.

Moreover, there are several other interest-
ing applications of the combined toolbox. We
could use the surface realiser to build artifi-
cial corpora. These can in turn be parsed to
semi-automatically create rich treebanks contain-
ing syntactico-semantic analyses à la Redwoods
(Oepen et al., 2002).

Eventually, another use for the toolbox might be
in components of standard NLP applications such
as machine translation, questioning answering, or
interactive dialogue systems.

6 Availability

The toolbox presented here is open-source and
freely available under the terms of the GPL7. More
information about the requirements and installa-
tion procedure is available at http://trac.
loria.fr/˜semtag. Note that this toolbox is
made of two main components: the GenI8 sys-
tem and the SemConst9 system, which respec-
tively performs generation and parsing from com-
mon linguistic resources. The first is written in
Haskell (except the XMG part written in Oz) and is
multi-platform (Linux, Windows, Mac OS). The
latter is written in Oz (except the DyALog part
which is bootstrapped and contains some Intel as-
sembler code) and is available on Unix-like plat-

7Note that XMG is released under the terms of the
CeCILL license (http://www.cecill.info/index.
en.html), which is compatible with the GPL.

8http://trac.loria.fr/˜geni
9http://trac.loria.fr/˜semconst

119



forms only.

7 Conclusion

The LORIA toolbox provides an integrated envi-
ronment for TAG based semantic processing: ei-
ther to construct the semantic representation of a
given sentence (parsing) or to generate a sentence
verbalising a given semantic content (generation).

Importantly, both the generator and the parsers
use the same grammar (SEMFRAG) so that both
tools can be used jointly to improve grammar pre-
cision. All the sentences outputted by the surface
realiser should be parsed to have at least the se-
mantic representation given by the test suite, and
all parses of a sentence should be realised into at
least the same sentence.

Current and future work concentrates on de-
veloping an automated error mining environment
for both parsing and generation; on extending the
grammar coverage; on integrating further optimi-
sations both in the parser (through parsing with
factorised trees) and in the generator (through
packing and accessibility filtering cf. (Carroll and
Oepen, 2005); and on experimenting with differ-
ent semantic construction strategies (Gardent and
Parmentier, 2005).

References
H. Ait-Kaci. 1991. Warren’s Abstract Machine: A Tu-

torial Reconstruction. In K. Furukawa, editor, Proc.
of the Eighth International Conference of Logic Pro-
gramming. MIT Press, Cambridge, MA.

J. Carroll and S. Oepen. 2005. High efficiency re-
alization for a wide-coverage unification grammar.
In R. Dale and K-F. Wong, editors, Proceedings of
the Second International Joint Conference on Natu-
ral Language Processing, volume 3651 of Springer
Lecture Notes in Artificial Intelligence, pages 165–
176.

B. Crabbé and D. Duchier. 2004. Metagrammar Re-
dux. In Proceedings of CSLP 2004, Copenhagen.

D. Duchier, J. Le Roux, and Y. Parmentier. 2004. The
Metagrammar Compiler: An NLP Application with
a Multi-paradigm Architecture. In 2nd International
Mozart/Oz Conference (MOZ’2004), Charleroi.

C. Gardent and L. Kallmeyer. 2003. Semantic con-
struction in FTAG. In Proceedings of EACL’03, Bu-
dapest.

C. Gardent and E. Kow. 2005. Generating and select-
ing grammatical paraphrases. ENLG, Aberdeen.

C. Gardent and Y. Parmentier. 2005. Large scale
semantic construction for tree adjoining grammars.
In Proceedings of The Fifth International Confer-
ence on Logical Aspects of Computational Linguis-
tics (LACL05).

C. Gardent. 2006. Intégration d’une dimension
sémantique dans les grammaires d’arbres adjoints.
In Actes de la conférence TALN’2006 Leuven.

E. Kow. 2005. Adapting polarised disambiguation
to surface realisation. In 17th European Summer
School in Logic, Language and Information - ESS-
LLI’05, Edinburgh, UK, Aug.

S. Lehmann, S. Oepen, S. Regnier-Prost, K. Netter,
V. Lux, J. Klein, K. Falkedal, F. Fouvry, D. Estival,
E. Dauphin, H. Compagnion, J. Baur, L. Balkan, and
D. Arnold. 1996. TSNLP — Test Suites for Natural
Language Processing. In Proceedings of COLING
1996, Kopenhagen.

P. Lopez. 1999. Analyse d’énoncés oraux pour le dia-
logue homme-machine à l’aide de grammaires lex-
icalisées d’arbres. Ph.D. thesis, Université Henri
Poincaré – Nancy 1.

P. Lopez. 2000. Extended Partial Parsing for
Lexicalized Tree Grammars. In Proceedings of
the International Workshop on Parsing Technology
(IWPT2000), Trento, Italy.

G. Neumann. 1994. A Uniform Computational
Model for Natural Language Parsing and Gener-
ation. Ph.D. thesis, University of the Saarland,
Saarbrücken.

S. Oepen, E. Callahan, C. Manning, and K. Toutanova.
2002. Lingo redwoods—a rich and dynamic tree-
bank for hpsg.

Y. Parmentier and J. Le Roux. 2005. XMG: an Exten-
sible Metagrammatical Framework. In Proceedings
of the Student Session of the 17th European Summer
School in Logic, Language and Information, Edin-
burg, Great Britain, Aug.

E. Villemonte de la Clergerie. 2005. DyALog: a tabu-
lar logic programming based environment for NLP.
In Proceedings of CSLP’05, Barcelona.

XTAG-Research-Group. 2001. A lexical-
ized tree adjoining grammar for english.
Technical Report IRCS-01-03, IRCS, Uni-
versity of Pennsylvania. Available at
http://www.cis.upenn.edu/˜xtag/gramrelease.html.

120



Proceedings of the 8th International Workshop on Tree Adjoining Grammar and Related Formalisms, pages 121–126,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Extended cross-serial dependencies in Tree Adjoining Grammars

Marco Kuhlmann and Mathias Möhl
Programming Systems Lab

Saarland University
Saarbrücken, Germany

{kuhlmann|mmohl}@ps.uni-sb.de

Abstract
The ability to represent cross-serial depen-
dencies is one of the central features of
Tree Adjoining Grammar (TAG). The class
of dependency structures representable by
lexicalized TAG derivations can be captured
by two graph-theoretic properties: a bound
on the gap degree of the structures, and a
constraint called well-nestedness. In this
paper, we compare formalisms from two
strands of extensions to TAG in the context
of the question, how they behave with re-
spect to these constraints. In particular, we
show that multi-component TAG does not
necessarily retain the well-nestedness con-
straint, while this constraint is inherent to
Coupled Context-Free Grammar (Hotz and
Pitsch, 1996).

1 Introduction

The ability to assign ‘limited cross-serial depen-
dencies’ to the words in a sentence is a hallmark
of mildly context-sensitive grammar formalisms
(Joshi, 1985). In the case of TAG, an exact def-
inition of this ability can be given in terms of
two graph-theoretic properties of the dependency
structures induced by TAG derivations: the gap de-
gree restriction and the well-nestedness constraint
(Bodirsky et al., 2005).

Gap degree and well-nestedness can be seen as
the formal correspondents of what Joshi (1985)
refers to as ‘a limited amount of cross-serial depen-
dencies’ and ‘the nesting properties as in the case
of context-free grammars.’ More specifically, the
gap degree of a dependency structure counts the
number of discontinuities in a dependency subtree,
while well-nestedness constrains the positions of
disjoint subtrees relative to one another. The depen-
dency structures that correspond to the derivations
in a lexicalized TAG are well-nested, and their gap
degree is at most 1.

In the present paper, we compare formalisms
from two strands of extensions to TAG in the con-
text of the question, what classes of dependency
structures they are able to induce.

We are particularly interested in formalisms that
induce only well-nested dependency structures.
This interest is motivated by two observations:
First, well-nestedness is interesting as a generaliza-
tion of projectivity (Marcus, 1967)—while more
than 23% of the 73 088 dependency structures in
the Prague Dependency Treebank of Czech (Ha-
jič et al., 2001) are non-projective, only 0.11%
are not well-nested (Kuhlmann and Nivre, 2006).
Second, well-nestedness is interesting for process-
ing. Specifically, parsers for well-nested grammar
formalisms are not confronted with the ‘crossing
configurations’ that make the universal recogni-
tion problem of Linear Context-Free Rewriting Sys-
tems NP-complete (Satta, 1992). In summary, it
appears that well-nestedness can strike a successful
balance between empirical coverage and computa-
tional tractability. If this is true, then a formalism
that has the well-nestedness constraint hardwired
is preferable over one that has not.

The results of this paper can be summarized
as follows: Derivations in lexicalized multi-com-
ponent TAGs (Weir, 1988; Kallmeyer, 2005), in
which a single adjunction adds a set of elemen-
tary trees, either induce exactly the same depen-
dency structures as TAG, or induce all structures
of bounded gap degree, even non-well-nested ones.
This depends on the decision whether one takes
‘lexicalized’ to mean ‘one lexical anchor per tree’,
or ‘one lexical anchor per tree set’. In contrast,
multi-foot extensions of TAG (Abe, 1988; Hotz
and Pitsch, 1996), where a single elementary tree
may have more than one foot node, only induce
well-nested dependency structures of bounded gap
degree. Thus, from the dependency point of view,
they constitute the structurally more conservative
extension of TAG.

121



2 Dependency structures for TAG

We start with a presentation of the dependency
view on TAG that constitutes the basis for our work,
and introduce the relevant terminology. The main
objective of this section is to provide intuitions; for
the formal details, see Bodirsky et al. (2005).

2.1 The dependency view on TAG
Let s D w1 � � �wn be a sentence (a sequence of
tokens). By a dependency structure for s, we mean
a tuple .W;!;�/, where W D fw1; : : : ; wng, and

! D f .wi ; wj / 2 W �W j wj depends on wi g

� D f .wi ; wj / 2 W �W j i < j g

To interpret a grammar formalism as a specifica-
tion for a set of dependency structures, we need to
assign meaning to the relation ‘depends’ in terms
of this formalism. For TAG, this can be done based
on the Fundamental Hypothesis that ‘every syntac-
tic dependency is expressed locally within a single
elementary tree’ (Frank, 2002). More specifically,
a derivation in a (strongly) lexicalized TAG can
be viewed as a dependency structure as follows:
The set W contains the (occurences of) lexical an-
chors involved in the derivation. For two anchors
wi ; wj 2 W , wi ! wj if the elementary tree an-
chored at wj was substituted or adjoined into the
tree anchored at wi . We then have wi � wj if wi

precedes wj in the yield of the derived tree cor-
responding to the derivation. Notice that the rela-
tion ! in such a dependency structure is almost
exactly the derivation tree of the underlying TAG

derivation; the only difference is that elementary
trees have been replaced by their lexical anchors.

Figure 1 shows a TAG grammar together with a
dependency structure induced by a derivation of
this grammar. Tokens in the derived string are rep-
resented by labelled nodes; the solid arcs between
the nodes represent the dependencies.

2.2 Gap degree and well-nestedness
An interesting feature of the dependency structure
shown in Figure 1 is that it violates a standard
constraint on dependency structures known as pro-
jectivity (Marcus, 1967). We introduce some termi-
nology for non-projective dependency structures:

A set T � W is convex, if for no two tokens
w1; w2 2 T , there exists a token w from W � T

such that w1 � w � w2. The cover of T , C.T /,
is the smallest convex set that contains T . For
w 2 W , we write #w for the set of tokens in the

S;

a T D

B C

T ;

a T D

B ? C

B;

b

C ;

c

D;

d

.

a1 a2 b2 b1 c1 c2 d2 d1

Figure 1: TAG grammar for anbncndn, and a de-
pendency structure induced by this grammar

subtree rooted at w (including w itself). A gap in
#w is a largest convex set in C.#w/�#w. The gap
degree of w, gd.w/, is the number of gaps in #w.
The gaps in #w partition #w into gd.w/�1 largest
convex blocks; we write #iw to refer to the i-th
of these blocks, counted from left to right (with
respect to �). The gap degree of a dependency
structure is the maximum over the gap degrees of its
subtrees; we write Dg for the set of all dependency
structures with a gap degree of at most g.

The gap degree provides a quantitative measure
for the non-projectivity of dependency structures.
Well-nestedness is a qualitative property: it con-
strains the relative positions of disjoint subtrees.
Let w1; w2 2 W such that #w1 and #w2 are dis-
joint. Four tokens w1

1 ; w
2
1 2 #w1, w1

2 ; w
2
2 2 #w2

interleave, if w1
1 � w1

2 � w2
1 � w2

2 . A depen-
dency structure is well-nested, if it does not contain
interleaving tokens. We write Dwn for the set of all
well-nested dependency structures.

For illustration, consider again the dependency
structure shown in Figure 1. It has gap degree 1:
a2 is the only token w for which #w is not convex;
the set fb1; c1g forms a gap in #a2. The structure
is also well-nested. In contrast, the structure shown
in the right half of Figure 2 is not well-nested; the
tokens b; c; d; e interleave. Bodirsky et al. (2005)
show that TAG induces precisely the set Dwn \ D1.

3 Multi-component extensions

Multi-component TAG (MCTAG) extends TAG with
the ability to adjoin a whole set of elementary trees
(components) simultaneously. To answer the ques-
tion, whether this extension also leads to an ex-
tended class of dependency structures, we first need
to decide how we want to transfer the Fundamental
Hypothesis (Frank, 2002) to MCTAGs.

122



�

A;

a B1 C1 B2 C2

8

ˆ

ˆ

<

ˆ

ˆ

:

B;

1

b

B;

2

D

9

>

>

=

>

>

;

8

ˆ

ˆ

<

ˆ

ˆ

:

C ;

1

c

C ;

2

E

9

>

>

=

>

>

;

D;

d

E;

e
a b c d e

Figure 2: An MCTAG and a not well-nested dependency structure derived by it.

3.1 One anchor per component
If we commit to the view that each component of
a tree set introduces a separate lexical anchor and
its syntactic dependencies, the dependency struc-
tures induced by MCTAG are exactly the structures
induced by TAG. In particular, each node in the
derivation tree, and therefore each token in the
dependency tree, corresponds to a single elemen-
tary tree. As Kallmeyer (2005) puts it, one can
then consider an MCTAG as a TAG G ‘where cer-
tain derivation trees in G are disallowed since they
do not satisfy certain constraints.’ The ability of
MCTAG to perform multiple adjunctions simultane-
ously allows one to induce more complex sets of
dependency structures—each individual structure
is limited as in the case of standard TAG.

3.2 One anchor per tree set
If, on the other hand, we take a complete tree set
as the level on which syntactic dependencies are
specified, MCTAGs can induce a larger class of de-
pendency structures. Under this perspective, tokens
in the dependency structure correspond not to in-
dividual components, but to tree sets (Weir, 1988).
For each token w, #w then contains the lexical an-
chors of all the subderivations starting in the tree set
corresponding to w. As there can be a gap between
each two of these subderivations, the gap degree
of the induced dependency structures is bounded
only by the maximal number of components per
tree set. At the same time, even non-well-nested
structures can be induced; an example is shown in
Figure 2. Here, #b is distributed over the compo-
nents rooted at B1 and B2, and #c is distributed
over C1 and C2. The elementary tree rooted at A
arranges the substitution sites such that b; c; d; e in-
terleave. Note that the MCTAG used in this example
is heavily restricted: it is tree-local and does not
even use adjunction. This restricted form suffices
to induce non-well-nested dependency structures.

4 Multi-foot extensions

A second way to extend TAG, orthogonal to the
multi-component approach, is to allow a single el-

ementary tree to have more than one foot node.
For this kind of extension, the Fundamental Hy-
pothesis does not need to be re-interpreted. Prob-
ably the most prominent multi-foot extension of
TAG is Ranked Node Rewriting Grammar (RNRG)
(Abe, 1988); however, the properties that we are
interested in here can be easier investigated in a
notational variant of RNRG, Coupled Context-Free
Grammar (Hotz and Pitsch, 1996).

Terminology Multi-foot formalisms require a
means to specify which foot node gets what ma-
terial in an adjunction. To do so, they use ranked
symbols. A ranked alphabet is a pair ˘ D .˙; �/,
where ˙ is an alphabet, and � 2 ˙ ! N is a total
function that assigns every symbol � 2 ˙ a (pos-
itive) rank. Define ˘Œr� WD f � 2 ˙ j �.�/ D r g.
The components of � , comp.�/, are the elements
of the set f .�; i/ j 1 � i � �.�/ g. We write �i in-
stead of .�; i/. Let comp.˘/ WD

S
�2˘ comp.�/.

4.1 Coupled Context-Free Grammar
Coupled Context-Free Grammar (CCFG) is a gener-
alization of context-free grammar in which non-ter-
minals come from a ranked alphabet, and compo-
nents of a non-terminal can only be substituted si-
multaneously. The ‘TAG-ness’ of CCFG is reflected
in the requirement, that the RHS of productions
must be words from a bracket-like language, and
thus have the same hierarchical structure as ele-
mentary trees in a TAG. As an example, the second
elementary tree from Figure 1 can be linearized as

hT1aT1B1; C1T2D1T2i ;

where each pair .T1; T2/ of matching components
corresponds to an inner node in the tree, and the
boundary between the first and the second part of
the tuple marks the position of the foot node. The
required structure of the RHS can be formalized as
follows:

Definition 1 Let ˘ be a ranked alphabet, and
let ˙ be an unranked alphabet. The extended
semi-Dyck set over ˘ and ˙ , ESD.˘;˙/, is the
smallest set that satisfies the following properties:

123



(a) ˙� � ESD.˘;˙/; (b) ˘Œ1� � ESD.˘;˙/;
(c) if s1; : : : ; sk 2 ESD.˘;˙/ and � 2 ˘Œk C 1�,
then �1s1�2 � � ��ksk�kC1 2 ESD.˘;˙/; (d) if
s1; s2 2 ESD.˘;˙/, then s1s2 2 ESD.˘;˙/.

Definition 2 Let N be a ranked alphabet of non-
terminals, and let T be an (unranked) alphabet
of terminals. A ranked rewriting system over
ESD.N; T / is a finite, non-empty set of productions
of the form X ! h˛1; : : : ; ˛ri, where X 2 NŒr�,
and ˛ WD ˛1 � � �˛r 2 ESD.N; T /.

We write �.p/ to refer to the rank of the non-termi-
nal on the LHS of a production p.

RNRG and CCFG are notational variants because
each RNRG elementary tree with r � 1 foot nodes
can be linearized into the RHS of a production
X ! h˛1; : : : ; ˛ri in a ranked rewriting system,
as indicated by the example above.

Definition 3 A coupled context-free grammar is a
tuple G D .N; T; P; S/ where: N is a ranked al-
phabet of non-terminal symbols; T is an unranked
alphabet of terminal symbols; P is a ranked rewrit-
ing system over ESD.N; T /; S 2 NŒ1� is a start
symbol.

We say that a CCFG G is an r-CCFG, if the maximal
rank among all non-terminals in G is r .

Definition 4 Put V WD comp.N / [ T , and let

� 2 V �
D u1X1u2 � � �urXrurC1

 2 V �
D u1˛1u2 � � �ur˛rurC1

such that u2; : : : ; ur 2 ESD.N; T /, and X 2 NŒr�.
We say that  can be derived from � in one step,
and write � )G  , if G contains a production
X ! h˛1; : : : ; ˛ri. The string language of G is
the set L.G/ WD f s 2 T � j S )�

G s g.

Based on this definition, the notions of derivation
tree and derived tree are defined in the usual way.
In particular, the nodes of the derivation tree are
labelled with productions, while the nodes of the
corresponding derived tree are labelled with com-
ponents from comp.˘/ (inner nodes) and terminal
symbols (leaves). We write .T ]; T [/ to refer to a
derivation in CCFG: T ] stands for the derivation
tree, T [ for the corresponding derived tree.

4.2 The dependency view on CCFG
A CCFG G is strongly lexicalized, if each produc-
tion p contains exactly one terminal symbol, writ-
ten as anchor.p/. Just as in the case of TAG, a
strongly lexicalized CCFG G can be interpreted as

a dependency grammar: Let .T ]; T [/ be a deriva-
tion in G. Since G is strongly lexicalized, there
is a one-to-one mapping between the nodes of the
derivation tree T ] (labelled with productions) and
the leaves of the derived tree T [ (labelled with ter-
minals); we refer to this mapping by the name fL.

Definition 5 A dependency structureD is induced
by a derivation .T ]; T [/, written .T ]; T [/ ` D, if
(a) anchor.p1/ ! anchor.p2/ in D if and only
if p1 ! p2 in T ]; (b) anchor.p1/ � anchor.p2/

in D if and only if fL.p1/ � fL.p2/ in T [.

We write D.G/ for the set of all dependency struc-
tures induced by derivations in G. Figure 3 shows
a sample CCFG G, a derivation in G, and the de-
pendency structure induced by this derivation.

4.3 Projections
To reason about the structural properties of the
dependency languages induced by CCFGs, we need
some additional definitions. In the following, we
use the notation .u W �/ to refer to a node u with
label � in some given labelled tree.

Let D 2 D.G/ be a dependency structure such
that .T ]; T [/ ` D, and let .u Wp/ 2 T ] be a node.
Somewhere in the course of the derivation repre-
sented by T ], the �.p/ components of the non-ter-
minal on the LHS of the production p are simulta-
neously rewritten. Let fI .u/ be the �.p/-tuple of
nodes in T [ that correspond to these components.
Note that, while fL maps nodes in the derivation
tree T ] to leaves in the derived tree T [, fI takes
nodes in T ] to tuples of inner nodes in T [. Define

down.u/ D f v j u !
� v in T ]

g ;

proj.u; i/ D f v j fI .u/i !
� fL.v/ in T [

g :

The set down.u/ contains the lexical anchors in the
sub-derivation starting at u. The set proj.u; i/ iden-
tifies that part of this sub-derivation that is derived
from the i-th component of the non-terminal at the
LHS of the production corresponding to u. For the
derivation shown in Figure 3, we have

fI .p2/ D hB1; B2; B3i ; proj.p2; 1/ D fp2g :

Lemma 6 For all nodes u 2 T ],

down.u/ D
U

1�i��.p/ proj.u; i/ :

4.4 Results
In this section, we prove the main technical re-
sults of this paper: that all dependency structures

124



Grammar G�: p1W A ! hai; p2W B ! hb;D1;D1i; p3W C ! hA1B1cA1B2A1B3i; p4W D ! hd i

p3

p1 p2 p1 p1

p4 p4

(a) Derivation tree

C

A1 B1 c A1 B2 A1 B3

a b a D1 a D1

d d

(b) Derived tree

a b c a d a d

(c) Induced dependency structure

Figure 3: A CCFG derivation and the dependency structure induced by it

induced by an r-CCFG have a gap degree that is
bounded by r ; that they are all well-nested; and
that each well-nested structure with a gap degree
bounded by r can be induced by an r-CCFG. In the
following, let G be an r-CCFG, and write Gr for the
set of all r-CCFGs.

Lemma 7 D.G/ � Dr�1

Proof Let .T ]; T [/ ` D, and let .u Wp/ 2 T ]. By
definition of proj, for each 1 � i � �.p/, the set
proj.u; i/ forms a contiguous region of the sen-
tence derived by T ]. Using Lemma 6, we then
see that down.u/ is distributed over at most �.u/
contiguous regions of that sentence. This means
that the dependency subtree rooted at anchor.p/
has at most �.p/ � 1 gaps.

Lemma 8 D.G/ � Dwn

Proof Choose a D 2 D.G/, and assume that D is
not well-nested. Then there is a governor u 2 D

with two distinct dependents v;w such that #v

contains tokens v1; v2, and #w contains tokens
w1; w2 such that v1 � w1 � v2 � w2. For the
derivation .T ]; T [/ that induces D, this means that
there is a node .u Wp/ with children .v Wpv/ and
.w Wpw/ in T ] such that

9.v1; v2 2 down.v//W 9.w1; w2 2 down.w//W

fL.v1/ � fL.w1/ � fL.v2/ � fL.w2/ in T [ :

Since down.v/ and down.w/ are disjoint; v1 and v2

must come from distinct convex blocks in down.v/,
and w1 and w2 must come from distinct convex
blocks in down.w/. Therefore,

v1 2 proj.v; i1/; v2 2 proj.v; i2/; i1 < i2 and

w1 2 proj.w; j1/; w2 2 proj.w; j2/; j1 < j2 :

By definition, proj.x; k/ (x 2 fv;wg) is the projec-
tion of a node fI .x/k in T [; the label of this node
is LHS.px/k . Assume now that the non-terminal
on the LHS of pv is V , and that the non-terminal
on the LHS of pw is W . Given that pv and pw are
used to rewrite p, RHS.p/ contains the substring
Vi1

� � �Wj1
� � �Vi2

� � �Wj2
. This contradicts the fact

that RHS.p/ 2 ESD.N; T /.

Lemma 9 Dwn \ Dr�1 �
S

G2Gr
D.G/

Proof Let D D .W;!;�/ be a dependency struc-
ture from Dwn \ Dr�1. We construct an r-CCFG

G D .N; T; P; S/ that induces D. For the ranked
alphabet N of non-terminals, put

N D fNw
j w 2 W g; �.Nw/ D gd.w/C 1 :

The set S of start symbols is fN>g, where > is the
root of D. For the terminal alphabet, put T D W .
The set P consists of jW j productions of the form
Nw ! Ę, where w 2 W , and Ę is a tuple with
arity gd.w/ C 1 that contains the terminal w and
non-terminal components for all children of w as
follows. Consider the following family of sets:

Cw D ffwgg[f #iv j w ! v; 1 � i � gd.v/C1 g :

All sets in Cw are disjoint, and their union equals
the set #w. We define a function Œ�� that interprets
the elements of Cw as elements from N [ T as
follows: Œfwg� WD w, and Œ#iv� WD N v

i . Now the
RHS of a rule Nw ! Ę is fully specified by the
following equivalences, where C 2 Cw :

ŒC � occurs in ˛i iff C � #iw

ŒC1� precedes ŒC2� in Ę iff C1 � C2 � �

Applied to the dependency structure of Figure 3c,
this constructs the given grammar G�. Note that,
due to the well-nestedness of D, the RHS of each
rule forms a valid extended semi-Dyck word.

125



5 Summary

Starting from the fact that TAG is able to derive
well-nested dependency structures with a gap de-
gree of at most 1, we have investigated how multi-
component and multi-foot extensions of TAG alter
this expressivity. Our results are as follows:

� For multi-component TAG, the notion of ‘in-
duced dependency structures’ depends on the
assumed notion of lexicalization. Therefore,
either the same structures as in TAG, or arbi-
trary gap-bounded dependency structures are
derivable. In the former case, MCTAG has the
same structural limits as standard TAG; in the
latter case, even non-well-nested dependency
structures are induced.

� The multi-foot extension CCFG (and its equiv-
alent RNRG) is restricted to well-nested de-
pendency structures, but in contrast to TAG, it
can induce structures with any bounded gap
degree. The rank of a grammar is an upper
bound on the gap degree of the dependency
structures it induces.

Since the extensions inherent to MCTAG and
CCFG are orthogonal, it is possible to combine
them: Multi-Component Multi-Foot TAG (MMTAG)
as described by Chiang (2001) allows to simulta-
neously adjoin sets of trees, where each tree may
have multiple foot nodes. The structural limita-
tions of the dependency structures inducible by
MCTAG and CCFG generalize to MMTAG as one
would expect. As in the case of MCTAG, there
are two different understandings of how a depen-
dency structure is induced by an MMTAG. Under
the ‘one anchor per component’ perspective, MM-
TAG, just like CCFG, derives well-nested structures
of bounded gap-degree. Under the ‘one anchor
per tree set’ perspective, just like MCTAG, it also
derives non-well-nested gap-bounded structures.

Acknowledgements We thank Jan Schwingham-
mer, Guido Tack, and Stefan Thater for fruitful dis-
cussions during the preparation of this paper, and
three anonymous reviewers for their detailed com-
ments on an earlier version. The work of Marco
Kuhlmann is funded by the Collaborative Research
Centre ‘Resource-Adaptive Cognitive Processes’
of the Deutsche Forschungsgemeinschaft.

References
Naoki Abe. 1988. Feasible learnability of formal

grammars and the theory of natural language acqui-
sition. In 12th International Conference on Compu-
tational Linguistics, pages 1–6, Budapest, Hungary.

Manuel Bodirsky, Marco Kuhlmann, and Mathias
Möhl. 2005. Well-nested drawings as models of
syntactic structure. In Tenth Conference on For-
mal Grammar and Ninth Meeting on Mathematics
of Language (FG-MoL), Edinburgh, UK.

David Chiang. 2001. Constraints on strong gener-
ative power. In 39th Annual Meeting and Tenth
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, pages 124–131,
Toulouse, France.

Robert Frank. 2002. Phrase Structure Composition
and Syntactic Dependencies. MIT Press.

Jan Hajič, Barbora Vidova Hladka, Jarmila Panevová,
Eva Hajičová, Petr Sgall, and Petr Pajas. 2001.
Prague Dependency Treebank 1.0. LDC, 2001T10.

Günther Hotz and Gisela Pitsch. 1996. On parsing cou-
pled-context-free languages. Theoretical Computer
Science, 161:205–233.

Aravind K. Joshi. 1985. Tree adjoining grammars:
How much context-sensitivity is required to provide
reasonable structural descriptions? In David R.
Dowty, Lauri Karttunen, and Arnold M. Zwicky,
editors, Natural Language Parsing, pages 206–250.
Cambridge University Press, Cambridge, UK.

Laura Kallmeyer. 2005. A descriptive charac-
terization of multicomponent tree adjoining gram-
mars. In Traitement Automatique des Langues Na-
turelles (TALN), volume 1, pages 457–462, Dourdan,
France.

Marco Kuhlmann and Joakim Nivre. 2006. Mildly
non-projective dependency structures. In 22nd In-
ternational Conference on Computational Linguis-
tics and 43rd Annual Meeting of the Association for
Computational Linguistics (COLING-ACL), Com-
panion Volume, Sydney, Australia.

Solomon Marcus. 1967. Algebraic Linguistics: An-
alytical Models, volume 29 of Mathematics in Sci-
ence and Engineering. Academic Press, New York.

Giorgio Satta. 1992. Recognition of linear context-
free rewriting systems. In 30th Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
89–95, Newark, Delaware, USA.

David J. Weir. 1988. Characterizing Mildly Context-
Sensitive Grammar Formalisms. Ph.D. thesis, Uni-
versity of Pennsylvania, Philadelphia, USA.

126



Proceedings of the 8th International Workshop on Tree Adjoining Grammar and Related Formalisms, pages 127–132,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Using LTAG-Based Features for Semantic Role Labeling

Yudong Liu and Anoop Sarkar
Computing Science Department

Simon Fraser University
British Columbia, Canada, V5A 1S6
yudongl,anoop@cs.sfu.ca

Abstract

Semantic role labeling (SRL) methods
typically use features from syntactic parse
trees. We propose a novel method that
uses Lexicalized Tree-Adjoining Gram-
mar (LTAG) based features for this task.
We convert parse trees into LTAG deriva-
tion trees where the semantic roles are
treated as hidden information learned by
supervised learning on annotated data de-
rived from PropBank. We extracted var-
ious features from the LTAG derivation
trees and trained a discriminative decision
list model to predict semantic roles. We
present our results on the full CoNLL 2005
SRL task.

1 Introduction

Semantic role labeling (SRL) is a natural exten-
sion of the syntactic parsing task. In SRL, par-
ticular syntactic constituents in a parse tree for a
sentence are identified with semantic roles. The
labels assigned to various types of arguments and
adjuncts differ in different annotation schemes.
In this paper, we use the PropBank corpus of
predicate-argument structures (Palmer, Gildea and
Kingsbury, 2005). We assume we are given a syn-
tactic parse tree and a particular predicate in the
sentence for which we then identify the arguments
and adjuncts and their labels. In this paper we
compare two models for the identification of se-
mantic role labels in a parse tree: A model that
uses a path in the parse tree (or the derived tree in
TAG terminology) and various associated features
related to this, and we compare this model with a
model that converts the syntactic parse tree into
a Lexicalized Tree-Adjoining Grammar (LTAG)
derivation tree and uses features extracted from the
elementary trees and the LTAG derivation tree.

In each model the features of that model are
used in a discriminative model for semantic role
labeling. The model is a simple decision list

learner that uses tree patterns extracted from the
LTAG derivation trees in order to classify con-
stituents into their semantic roles. We present re-
sults on the full CoNLL 2005 SRL task (Carreras
and Màrquez, 2005) a dataset built by combining
the Treebank and parser data with the PropBank
annotations.

2 Background about SRL

A semantic role is defined to be the relationship
that a syntactic constituent has with the predicate.
For example, the following sentence, taken from
the PropBank corpus, shows the annotation of se-
mantic roles:

[A0 Late buying] [V gave] [A2 the Paris
Bourse] [A1 a parachute] [AM-TMP after its
free fall early in the day].

Here, the arguments for the predicategave are
defined in the PropBank Frame Scheme (Palmer,
Gildea and Kingsbury, 2005) as:

V: verb A2: beneficiary
A0: giver AM-TMP: temporal
A1: thing given

Recognizing and labeling semantic argu-
ments is a key task for answering “Who”,
“When”,“ What”, “ Where”, “ Why”, etc. questions
in Information Extraction, Question Answering,
Summarization (Melli et al, 2005), and, in general,
in all NLP tasks in which some kind of semantic
interpretation is needed.

Most previous research treats the semantic role
labeling task as a classification problem, and di-
vides it into two phases:argument identification
and argument classification. Argument identifi-
cation involves classifying each syntactic element
in a sentence into either an argument or a non-
argument. Argument classification involves clas-
sifying each argument identified into a specific se-
mantic role. A variety of machine learning meth-
ods have been applied to this task. One of the most
important steps in building an accurate classifier is
feature selection. Different from the widely used

127



feature functions that are based on the syntactic
parse tree (Gildea and Jurafsky, 2002), we explore
the use of LTAG-based features in a simple dis-
criminative decision-list learner.

3 LTAG Based Feature Extraction

In this section, we introduce the main components
of our system. First, we do a pruning on the given
parse trees with certain constraints. Then we de-
compose the pruned parse trees into a set of LTAG
elementary trees. For each constituent in question,
we extract features from its corresponding deriva-
tion tree. We train using these features in a deci-
sion list model.

3.1 Pruning the Parse Trees

Given a parse tree, the pruning component identi-
fies the predicate in the tree and then only admits
those nodes that are sisters to the path from the
predicate to the root. It is commonly used in the
SRL community (cf. (Xue and Palmer, 2004)) and
our experiments show that 91% of the SRL targets
can be recovered despite this aggressive pruning.
There are two advantages to this pruning: the ma-
chine learning method used for prediction of SRLs
is not overwhelmed with a large number of non-
SRL nodes; and the process is far more efficient
as 80% of the target nodes in a full parse tree are
pruned away in this step. We make two enhance-
ments to the pruned Propbank tree: we enrich the
sister nodes with their head information, which is
a part-of-speech tag and word pair:〈t, w〉 and PP
nodes are expanded to include the NP complement
of the PP (including the head information). Note
that the target SRL node is still the PP. Figure 1
shows the pruned parse tree for a sentence from
PropBank section 24.

3.2 LTAG-based Decomposition

As next step, we decompose the pruned tree
around the predicate using standard head-
percolation based heuristic rules1 to convert a
Treebank tree into a LTAG derivation tree. We
do not use any sophistical adjunct/argument or
other extraction heuristics using empty elements
(as we don’t have access to them in the CoNLL
2005 data). Also, we do not use any substitution
nodes in our elementary trees: instead we exclu-
sively use adjunction or sister adjunction for the
attachment of sub-derivations. As a result the

1using http://www.isi.edu/∼chiang/software/treep/treep.html

root node in an LTAG derivation tree is aspinal
elementary tree and the derivation tree provides
the path from the predicate to the constituent in
question. Figure 2 shows the resulting elementary
tree after decomposition of the pruned tree. For
each of the elementary trees we consider their
labeling in the derivation tree to be their semantic
role labels from the training data. Figure 3 is the
derivation tree for the entire pruned tree.

Note that the LTAG-based decomposition of the
parse tree allows us to use features that are distinct
from the usual parse tree path features used for
SRL. For example, the typical parse tree feature
from Figure 2 used to identify constituent(NP (NN
terminal))as A0 would be the parse tree fragment:
NP ↑ NP ↓ SBAR ↓ S ↓ V P ↓ S ↓ V P ↓
V BG cover (the arrows signify the path through
the parse tree). Using the LTAG-based decompo-
sition means that our SRL model can use any fea-
tures from the derivation tree such as in Figure 2,
including the elementary tree shapes.

3.3 Decision List Model for SRL

Before we train or test our model, we convert
the training, development and test data into LTAG
derivation trees as described in the previous sec-
tion. In our model we make an independence as-
sumption that each semantic role is assigned to
each constituent independently, conditional only
on the path from the predicate elementary tree
to the constituent elementary tree in the deriva-
tion tree. Different elementary tree siblings in the
LTAG derivation tree do not influence each other
in our current models. Figure 4 shows the differ-
ent derivation trees for the target constituent(NP
(NN terminal)): each providing a distinct semantic
role labeling for a particular constituent. We use
a decision list learner for identifying SRLs based
on LTAG-based features. In this model, LTAG el-
ementary trees are combined with some distance
information as features to do the semantic role la-
beling. The rationale for using a simple DL learner
is given in (Gildea and Jurafsky, 2002) where es-
sentially it based on their experience with the set-
ting of backoff weights for smoothing, it is stated
that the most specific single feature matching the
training data is enough to predict the SRL on test
data. For simplicity, we only consider one inter-
mediate elementary tree (if any) at one time in-
stead of multiple intermediate trees along the path
from the predicate to the argument.

128



S

NP

PRP-H

He

VP-H

VBZ-H

backflips

PP

IN-H

into

NP

NP-H

NN-H

terminal

,

,

SBAR

WHNP-H

WDT-H

which

S

VP-H

VBZ-H

explodes

,

,

S

VP-H

VBG-H

covering

NP

NN-H

face

PP

IN-H

with

NP

NNS-H

microchips

Figure 1: The pruned tree for the sentence “He backflips into a desktop computer terminal, which ex-
plodes, covering Huntz Hall ’s face with microchips.”

S

VP-H

VBG-H

cover

NP

NN-H

face

PP

IN-H

with

NP

NNS-H

microchips

S

VP-H

VBZ-H

explodes

,

,

SBAR

WHNP-H

WDT-H

which

predicate: A1: A2: NULL: NULL: R-A0:

NP

NP-H

NN-H

terminal

PP

IN-H

into

S

VP-H

VBZ-H

backflips

NP

PRP-H

He

A0: NULL: NULL: NULL:

Figure 2: The resulting elementary trees after decomposition of the pruned tree.

129



S(backflips)

NP(he) PP(into)

NP(terminal)

,(,) SBAR(which)

S(explodes)

,(,) S(cover)

NP(face) PP(with)

Figure 3: The LTAG derivation tree (with no semantic role labels) corresponding to the pruned tree.

A0: NP-NP(NN,terminal)

R-A0: SBAR-WHNP(WDT,which)

NULL: S-VP(VBZ,explodes)

predicate: S-VPH(VBG,cover)

A1: NP-NP(NN,terminal)

R-A0: SBAR-WHNP(WDT,which)

NULL: S-VP(VBZ,explodes)

predicate: S-VPH(VBG,cover)

A0: NP-NP(NN,terminal)

R-A0: SBAR-WHNP(WDT,which)

AM-ADV: S-VP(VBZ,explodes)

predicate: S-VPH(VBG,cover)

Figure 4: Different LTAG derivation trees corresponding to different assignments of semantic roles to
constituents. The constituent in question is(NP (NN terminal)).

NP

NP

NN

terminal

SBAR

S

VP

S

VP

VBG

cover

VP

VBG

cover

PP

IN

with

NP

NNS

microchips

SBAR

WHNP

WDT

which

S

VP

S

VP

VBG

cover

VP

VBZ

explodes

S

VP

VBG

cover

Figure 5: Tree patterns in tree pattern matching

130



The input to the learning algorithm is labeled
examples of the form(xi, yi). yi is the label (either
NULL for no SRL, or the SRL) of theith example.
xi is a feature vector〈P,A, Dist, Position,R-
type, ti ∈ tI , Distti〉, whereP is the predicate
elementary tree,A is the tree for the constituent
being labeled with a SRL,tI is a set of interme-
diate elementary trees between the predicate tree
and the argument tree. EachP,A, I tree consists
of the elementary tree template plus the tag, word
pair: 〈t, w〉.

All possible combinations of fully-
lexicalized/postag/un-lexicalized elementary
trees are used for each example.Dist andDistti
denote the distance to the predicate from the
argument tree and the intermediate elementary
tree respectively.Position is interpreted as the
position that the target is relative to the predicate.
R-type denotes the relation type of the predicate
and the target constituent. 3 types are defined: if
the predicate dominates (directly or undirectly)
the argument in the derivation tree, we have the
relation of type-1; if the other way around, the
argument dominates (directly or undirectly) the
predicate then we have the relation of type-2; and
finally type-3 means that neither the predicate
or the argument dominate each other in the
derivation tree and instead are dominated (again,
directly or indirectly) by another elementary tree.

The output of the learning algorithm is a func-
tionh(x, y) which is an estimate of the conditional
probability p(y | x) of seeing SRLy given pat-
ternx. h is interpreted as a decision list of rules
x ⇒ y ranked by the scoreh(x, y). In testing,
we simply pick the first rule that matches the par-
ticular test examplex. We trained different mod-
els using the same learning algorithm. In addition
to the LTAG-based method, we also implemented
a pattern matching based method on the derived
(parse) tree using the same model. In this method,
instead of considering each intermediate elemen-
tary tree between the predicate and the argument,
we extract the whole path from the predicate to the
argument. So the input is more like a tree than a
discrete feature vector. Figure 5 shows the patterns
that are extracted from the same pruned tree.

4 Experiments and Results

We use the PropBank corpus of predicate-
argument structures (Palmer, Gildea and Kings-
bury, 2005) as our source of annotated data for the

dev = Sec24 p(%) r(%) f(%)
test = Sec23

M1: dev 78.42 77.03 77.72
M1: test 80.52 79.40 79.96
M2: dev 81.11 79.39 80.24
M2: test 83.47 81.82 82.64
M3: dev 80.98 79.56 80.26
M3: test 81.86 83.34 82.60

Table 1: Results on the CoNLL 2005 shared task
using gold standard parse trees. M1 is the LTAG-
based model, M2 is the derived tree pattern match-
ing Model, M3 is a hybrid model

SRL task. However, there are many different ways
to evaluate performance on the PropBank, leading
to incomparable results. To avoid such a situation,
in this paper we use the CoNLL 2005 shared SRL
task data (Carreras and Màrquez, 2005) which
provides a standard train/test split, a standard
method for training and testing on various prob-
lematic cases involving coordination. However, in
some cases, the CoNLL 2005 data is not ideal for
the use of LTAG-based features as some “deep” in-
formation cannot be recovered due to the fact that
trace information and other empty categories like
PRO are removed entirely from the training data.
As a result some of the features that undo long-
distance movement via trace information in the
TreeBank as used in (Chen and Rambow, 2003)
cannot be exploited in our model. Our results are
shown in Table 1. Note that we test on the gold
standard parse trees because we want to compare
a model using features from the derived parse trees
to the model using the LTAG derivation trees.

5 Related Work

In the community of SRL researchers (cf. (Gildea
and Jurafsky, 2002; Punyakanok, Roth and Yih,
2005; Pradhan et al, 2005; Toutanova et al.,
2005)), the focus has been on two different aspects
of the SRL task: (a) finding appropriate features,
and (b) resolving the parsing accuracy problem by
combining multiple parsers/predictions. Systems
that use parse trees as a source of feature func-
tions for their models have typically outperformed
shallow parsing models on the SRL task. Typi-
cal features extracted from a parse tree is the path
from the predicate to the constituent and various
generalizations based on this path (such as phrase
type, position, etc.). Notably the voice (passive or

131



active) of the verb is often used and recovered us-
ing a heuristic rule. We also use the passive/active
voice by labeling this information into the parse
tree. However, in contrast with other work, in this
paper we do not focus on the problem of parse ac-
curacy: where the parser output may not contain
the constituent that is required for recovering all
SRLs.

There has been some previous work in SRL
that uses LTAG-based decomposition of the parse
tree and we compare our work to this more
closely. (Chen and Rambow, 2003) discuss a
model for SRL that uses LTAG-based decompo-
sition of parse trees (as is typically done for sta-
tistical LTAG parsing). Instead of using the typi-
cal parse tree features used in typical SRL models,
(Chen and Rambow, 2003) uses the path within
the elementary tree from the predicate to the con-
stituent argument. They only recover seman-
tic roles for those constituents that are localized
within a single elementary tree for the predicate,
ignoring cases that occur outside the elementary
tree. In contrast, we recover all SRLs regardless
of locality within the elementary tree. As a result,
if we do not compare the machine learning meth-
ods involved in the two approaches, but rather the
features used in learning, our features are a natural
generalization of (Chen and Rambow, 2003).

Our approach is also very akin to the approach
in (Shen and Joshi, 2005) which uses PropBank
information to recover an LTAG treebank as if it
were hidden data underlying the Penn Treebank.
This is similar to our approach of having several
possible LTAG derivations representing recovery
of SRLs. However, (Shen and Joshi, 2005) do
not focus on the SRL task, and in both of these
instances of previous work using LTAG for SRL,
we cannot directly compare our performance with
theirs due to differing assumptions about the task.

6 Conclusion and Future Work

In this paper, we proposed a novel model for
SRL using features extracted from LTAG deriva-
tion trees. A simple decision list learner is applied
to train on the tree patterns containing new fea-
tures. This simple learning method enables us to
quickly explore new features for this task. How-
ever, this work is still preliminary: a lot of addi-
tional work is required to be competitive with the
state-of-the-art SRL systems. In particular, we do
not deal with automatically parsed data yet, which

leads to a drop in our performance. We also do not
incorporate various other features commonly used
for SRL, as our goal in this paper was to make a
direct comparison between simple pattern match-
ing features on the derived tree and compare them
to features from LTAG derivation trees.

References
X. Carreras and L. M̀arquez 2005. Introduction to

the CoNLL-2005 Shared Task. In Proc. of CoNLL
2005.

J. Chen and O. Rambow. 2003. Use of Deep Linguis-
tic Features for the Recognition and Labeling of Se-
mantic Arguments. In Proceedings of the 2003 Con-
ference on Empirical Methods in Natural Language
Processing, Sapporo, Japan, 2003.

D. Gildea and D. Jurafsky. 2002. Automatic Label-
ing of Semantic Roles. Computational Linguistics,
58(3):245–288

M. Palmer, D. Gildea, and P. Kingsbury. 2005. The
Proposition Bank: An Annotated Corpus of Seman-
tic Roles. Computational Linguistics, 31(1).

G. Melli and Y. Wang and Y. Liu and M. Kashani and Z.
Shi and B. Gu and A. Sarkar and F. Popowich 2005.
Description of SQUASH, the SFU Question An-
swering Summary Handler for the DUC-2005 Sum-
marization Task. In Proceeding of Document Un-
derstanding Conference (DUC-2005)

S. Pradhan, K. Hacioglu, W. Ward, J. H. Martin, and
D. Jurafsky. 2005. Semantic Role Chunking Com-
bining Complementary Syntactic Views, In Pro-
ceedings of the 9th Conference on Natural Language
Learning (CoNLL 2005), Ann Arbor, MI, 2005.

V. Punyakanok, D. Roth, and W Yih. 2005. Gener-
alized Inference with Multiple Semantic Role La-
beling Systems (shared task paper). Proc. of the
Annual Conference on Computational Natural Lan-
guage Learning (CoNLL) pp. 181-184

Ruppenhofer, Josef, Collin F. Baker and Charles J. Fill-
more. 2002. The FrameNet Database and Soft-
ware Tools. In Braasch, Anna and Claus Povlsen
(eds.), Proceedings of the Tenth Euralex Interna-
tional Congress. Copenhagen, Denmark. Vol. I: 371-
375.

L. Shen and A. Joshi. 2005. Building an LTAG Tree-
bank. Technical Report MS-CIS-05-15, CIS Depart-
ment, University of Pennsylvania.

K. Toutanova, A. Haghighi, and C. D. Manning. 2005.
Joint learning improves semantic role labeling. ACL
2005

N. Xue and M. Palmer. 2004. Calibrating Features
for Semantic Role Labeling, In Proceedings of
EMNLP-2004. Barcelona, Spain.

132



Proceedings of the 8th International Workshop on Tree Adjoining Grammar and Related Formalisms, pages 133–136,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Extracting Syntactic Features from a Korean Treebank 

 
 

Jungyeul Park 
UFR Linguistique  

Laboratoire de linguistique formelle 
Université Paris VII - Denis Diderot 

jungyeul.park@linguist.jussieu.fr 
 

  
 

Abstract 

In this paper, we present a system which 
can extract syntactic feature structures 
from a Korean Treebank (Sejong Tree-
bank) to develop a Feature-based Lexi-
calized Tree Adjoining Grammars.  

1 Introduction 

In a Tree Adjoining Grammar, a feature structure 
is associated with each node in an elementary 
tree (Vijay-Shanker and Joshi, 1991). This fea-
ture structure contains information about how the 
node interacts with other nodes in the tree. It 
consists of a top part, which generally contains 
information relating to the super-node, and a bot-
tom part, which generally contains information 
relating to the sub-node.  

In this paper, we present a system which can 
extract syntactic feature structures from a Tree-
bank to develop a Feature-based Lexicalized 
Tree Adjoining Grammars. Several works have 
been on extracting grammars, especially using 
TAG formalism proposed. Chen (2001) has ex-
tracted lexicalized grammars from English Penn 
Treebank and there are other works based on 
Chen’s procedure such as Nasr (2004) for French 
and Habash and Rambow (2004) for Arabic. Xia 
et al. (2000) developed the uniform method of a 
grammar extraction for English, Chinese and 
Korean. Neumann (2003) extracted Lexicalized 
Tree Grammars from English Penn Treebank for 
English and from NEGRA Treebank for German. 
However, none of these works have tried to ex-
tract syntactic features for FB-LTAG. 

We use with Sejong Treebank (SJTree) which 
contains 32 054 eojeols (the unity of segmenta-
tion in the Korean sentence), that is, 2 526 sen-
tences. SJTree uses 43 part-of-speech tags and 55 
syntactic tags (Sejong Project 2003). 

2 Extracting a Feature structure for 
FB-LTAG  

FB-LTAG grammars eventually use reduced 
tagset because FB-LTAG grammars contain their 
syntactic information in features structures. For 
example, NP_SBJ syntactic tag in LTAG is 
changed into NP and a syntactic feature 
<case=nominative> is added. Therefore, we use 
actually a 13 reduced tagset for FB-LTAG gram-
mars compared with a 55 syntactic tagset for an 
LTAG without features. From full-scale syntactic 
tags which end with _SBJ (subject), _OBJ (ob-
ject) and _CMP (attribute), we extract <case> 
features which describe argument structures in 
the sentence.  

Alongside <case> features, we also extract 
<mode> and <tense> from morphological analy-
ses in SJTree. Since however morphological 
analyses for verbal and adjectival endings in 
SJTree are simply divided into EP, EF and EC 
which mean non-final endings, final endings and 
conjunctive endings, respectively, <mode> and 
<tense> features are not extracted directly from 
SJTree. In this paper, we analyze 7 non-final 
endings (EP) and 77 final endings (EF) used in 
SJTree to extract automatically <mode> and 
<tense> features. In general, EF carries <mode> 
inflections, and EP carries <tense> inflections. 
Conjunctive endings (EC) are not concerned with 
<mode> and <tense> features and we only ex-
tract <ec> features with its string value. <ef> and 
<ep> features are also extracted with their string 
values. Some of non-final endings like si are ex-
tracted as <hor> features which have honorary 
meaning. In extracted FB-LTAG grammars, we 
present their lexical heads in a bare infinitive 
with morphological features such as <ep>, <ef> 
and <ec> which make correspond with its in-
flected forms.  

133



<det> is another automatically extractable fea-
ture in SJTree and it is extracted from both syn-
tactic tag and morphological analysis unlike 
other extracted features. For example, while 
<det=-> is extracted from dependant nouns 
which always need modifiers (extracted by mor-
phological analyses), <det=+> is extracted from 
_MOD phrases (extracted by syntactic tags). 
From syntactic tag DP which contains MMs (de-
terminative or demonstrative), <det=+> is also 
extracted. See Table 1 for all the extractable fea-
tures from SJTree.  
 

Feature Description Values 
<case> a case feature 

assigned by 
predicate 

nom(inative), 
acc(usative), 

attr(ibut) 
<det> determiner, 

modifier 
+/- 

<mode> mode ind(icative), 
imp(erative), 

int(errogative), 
exc(lamatory) 

<temps> tense pre(sent), past, 
fut(ure) 

<ep>, <ef>, 
<ec> 

a feature 
marked for 

different ways 
of instantiating 
mode and tense 

string values 
like eoss, da, 

go, etc. 

<hor> honorific +/- 
Table 1. Extractable Features from SJTree 

 
Korean does not need features <person> or 
<number> as in English. Han et al. (2000) pro-
posed several features for Korean FBLTAG 
which we do not use in this paper, such as <adv-
pp>, <top> and <aux-pp> for nouns and <clause-
type> for predicates. While postpositions are 
separated from eojeol during our grammar ex-
traction procedure, Han et al. considered them as 
“one” inflectional morphology of noun phrase 
eojeol. <aux-pp> adds semantic meaning of aux-
iliary postpositions such as only, also etc. which 
we can not extract automatically from SJTree or 
other Korean Treebank corpora because syntacti-
cally annotated Treebank corpora generally do 
not contain such semantic information. <top> 
marks the presence or absence of a topic marker 
in Korean like neun, however topic markers are 
annotated like a subject in SJTree which means 
that only <case=nominative> is extracted for 
topic markers. <clause-type> indicates the type 
of the clause which has its values such as main, 
coord(inative), subordi(native), adnom(inal), 
nominal, aux-connect. Since the distinction of 

the type of the clause is very vague except main 
clause in Korea, we do not adopt this feature. 
Instead, <ef> is extracted if a clause type is a 
main clause and for <ec> is extracted for other 
types.  

3 Experimentations  

The actual procedure of feature extraction is 
implemented by two phases. In the first phase, 
we convert syntactic tags and morphological 
analysis into feature structure as explained above 
(see Table 2 for our conversion scheme for 
syntactic tags and see Table 3 for morphological 
analyses). In the second phase, we complete 
feature structure onto nodes of the “spine (path 
between root and anchor, node in an initial tree 
and path between root and foot node in an 
auxiliary tree)”. For example, we put the same 
feature of VV bottom in Figure 1a onto VV top, 
VP top/bottom and S bottom because nodes in 
dorsal spine share certain number of feature of 
VV bottom. The initial tree for a verb 
balpyoha.eoss.da (‘announced’) in (1) is 
completed like Figure 1b for a FB-LTAG. 
 
(1) 일본 외무성은 즉각 해명 성명을 발표했다. 
(1)  ilbon    oimuseong.eun   
(1)  Japan   ministy_of_foreign_affairs.Nom  
(1)  jeukgak   haemyeng seongmyeng.eul 
(1)  immediately   elucidation declaration.Acc 
(1)  balpyo.ha.eoss.da 
(1)  announce.Pass.Ter 
(1) ‘The ministry of foreign affairs in Japan 
(1) immediately announced their elucidation’ 

S

NP↓ VP

VPNP↓

VV

balpyoha

<cas> = nom

<cas> = acc

b: <ep> = eoss
b: <ef> = da
b: <mode> = decl
b: <tense> = past

 
a. First phase 

S

NP↓ VP

VPNP↓

VV

balpyoha

b: <ep> = eoss
b: <ef> = da
b: <mode> = decl
b: <tense> = past

t:  <ep> = x, <ef> = y, <mode> = i, <tense> = j

t:  <ep> = x, <ef> = y, <mode> = i, <tense> = j
b: <ep> = x, <ef> = y, <mode> = i, <tense> = j

t:  <ep> = x, <ef> = y, <mode> = i, <tense> = j
b: <ep> = x, <ef> = y, <mode> = i, <tense> = j

t:  -
b: <ep> = x, <ef> = y, <mode> = i, <tense> = j

<cas> = nom
<det> = +

<cas> = acc
<det> = +

 
b. Second phase 

Figure 1. Extracted FB-LTAG grammar for 
balpyoha.eoss.da (‘announced’) 

 

134



Table 4 shows the results of experiments in ex-
tracting feature-based lexicalized grammars. See 
Park (2006) for the detail extraction scheme.  

4 Evaluations 

Finally, extracted grammars are evaluated by its 
size (see Figure 2) and its coverage (see Table 5). 
The number of tree schemata is not stabilized at 
the end of the extraction process, which seems to 
indicate that the size of Treebank is not enough 
to reach the convergence of extracted grammars. 
However, the number of tree schemata appearing 
at least twice and three times (threshold = 2 and 
3) in Treebank is much stabilized at the end of 
the extraction process than that of tree schemata 
appearing only once (threshold = 1).  

The coverage of extracted grammars is calcu-
lated not only by the frequency of tree schemata 
but also by the number of tree schemata. 
 

 
Figure 2. Size of tree schemata 

 
We manually overlap our 163 tree schemata for 
predicates, which contain 14 subcategorization 
frames with 11 subcategorization frames of a 
FB-LTAG grammar proposed in Han et al. 
(2000) to evaluate the coverage of hand-crafted 
grammars 1 . Our extracted template grammars 
cover 72.7 % of their hand-crafted subcategori-
zation frames2.  
                                                 
1  Our extracted tree schemata contain not only 
subcategorization frames but also some phenomena of 
syntactic variations, the number of lexicalized trees and the 
frequency information while Han el al. (2000) only presents 
subcategorization frames and some phenomena.  
2 Three subcategorization frames in Han el al. (2000) which 
contain prepositional phrases are not covered by our ex-
tracted tree schemata. Generally, prepositional phrases in 
SJTree are labeled with _AJT which is marked for adjunc-
tion operation.  Since there is no difference between noun 
adverbial phrase and prepositional phrases in SJTree like [S 
na.neun [NP_AJT ojeon.e ‘morning’] [NP_AJT hakgyo.e ‘to 
school’] ga.ss.da] (‘I went to school this morning’), we do 
not consider _AJT phrases as arguments.  

5 Conclusion  

In this paper, we have presented a system for 
automatic grammar extraction that produces fea-
ture-based lexicalized grammars from a Tree-
bank. Also, we evaluated by its size and its cov-
erage, and overlap our automatically extracted 
tree schemata from a Treebank with a manually 
written subcategorization frames to evaluate the 
coverage of hand-crafted grammars. 

References 
Alexis Nasr. 2004. Analyse syntaxique probabiliste 

pour grammaires de dépendances extraites auto-
matiquement. Habilitation à diriger des recherches, 
Université Paris 7. 

Chunghye Han, Juntae Yoon, Nari Kim, and Martha 
Palmer. 2000. A Feature-Based Lexicalized Tree 
Adjoining Grammar for Korean. IRCS Technical 
Report 00-04. University of Pennsylvania. 

Fei Xia, Martha Palmer, and Aravind K. Joshi. 2000. 
A Uniform Method of Grammar Extraction and Its 
Application. In The Joint SIGDAT Conference on 
Empirical Methods in Natural Language Process-
ing and Very Large Corpora (EMNLP/VLC-2000), 
Hong Kong, Oct 7-8, 2000.  

Günter Neumann. 2003. A Uniform Method for 
Automatically Extracting Stochastic Lexicalized 
Tree Grammar from Treebank and HPSG, In A. 
Abeillé (ed) Treebanks: Building and Using 
Parsed Corpora, Kluwer, Dordrecht. 

John Chen. 2001. Towards Efficient Statistical Pars-
ing Using Lexicalized Grammatical Information. 
Ph.D. thesis, University of Delaware. 

Jungyeul Park. 2006. Extraction automatique d’une 
grammaire d’arbres adjoints à partir d’un corpus 
arboré pour le coréen. Ph.D. thesis, Université 
Paris 7.  

K. Vijay-Shanker and Aravind K. Joshi. 1991. Unifi-
cation Based Tree Adjoining Grammar, in J. 
Wedekind ed., Unification-based Grammars, MIT 
Press, Cambridge, Massachusetts. 

Nizar Habash and Owen Rambow. 2004. Extracting a 
Tree Adjoining Grammar from the Penn Arabic 
Treebank. In Proceedings of Traitement Auto-
matique du Langage Naturel (TALN-04). Fez, Mo-
rocco, 2004. 

Sejong Project. 2003. Final Report of Sejong Korean 
Treebank. Ministry of Education & Human Re-
sources Development in Korea. 

 

135



Anchor Tree type Syntactic tag Node type Conversion exam-
ple 

verb α NP_SBJ subst NP  
[<cas> = nom  
<det> = +] 

verb α|β VP, VP_MOD - VP  
[<ep> <ef>  
<mode> <tense>] 

anchored by 
_MOD phrase 

β NP|NP_CMP|NP_MOD
|NP_OBJ||NP_SBJ 

root NP  
[<det> = +] 

postposition α NP_SBJ root NP  
[<cas> = nom] 

postposition α NP_SBJ subst NP  
[<cas> = NONE] 

Table 2. Conversion example for syntactic tags 
 

Verbal ending Ending type Conversion example 
eoss EP <ep> = eoss, <tense> = past  

si EP <ep> = si, <hor> = + 
da EF <ef> = da, <mode> = ind 

Table 3. Conversion example for morphological analyses 
 
 # of lexicalized 

tree 
(α + β) 

Average fre-
quencies per lexi-

calized tree

# of tree sche-
mata (α + β) 

Average fre-
quencies per tree 

schemata
G 12 239 

(7 315 + 4 766) 
3.26 338  

(109 + 229)  
118.1

Table 4. Results of experiments in extracting feature-based lexicalized grammars 
 

 Coverage of grammars by the fre-
quency of tree schemata 

Coverage of grammars by the number 
of tree schemata 

Threshold 1 2 3 1 2 3 
60 % of 

training set 
60.75 % 60.7 % 60.66 % 81.66 % 83.83 % 83.5 % 

90 % of 
training set 

91.14 % 91.14 % 91.11 % 95.86 % 98.3 % 96.5 % 

Table 5. Coverage of grammars: 60% of training set (1511 sentences) and 90% of training set (2265 
sentences) 

 
 

136



Proceedings of the 8th International Workshop on Tree Adjoining Grammar and Related Formalisms, pages 137–140,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Handling Unlike Coordinated Phrases in TAG by Mixing Syntactic
Category and Grammatical Function

Carlos A. Prolo
Faculdade de Informática - PUCRS
Porto Alegre, RS, 90619-900, Brazil

prolo@inf.pucrs.br

Abstract

Coordination of phrases of different syn-
tactic categories has posed a problem for
generative systems based only on syntactic
categories. Although some prefer to treat
them as exceptional cases that should re-
quire some extra mechanism (as for ellip-
tical constructions), or to allow for unre-
stricted cross-category coordination, they
can be naturally derived in a grammatic
functional generative approach. In this
paper we explore the ideia on how mix-
ing syntactic categories and grammatical
functions in the label set of a Tree Adjoin-
ing Grammar allows us to develop gram-
mars that elegantly handle both the cases
of same- and cross-category coordination
in an uniform way.

1 Introduction

Generative grammars that we commonly hear
about in computational linguistics are usually
based on syntactic categories. This is also the case
when the formalism used is the Tree Adjoining
Grammars (TAGs). Large scale handcrafted gram-
mars for many languages have been built based
on this paradigm (Joshi, 2001; XTAG Research
Group, 2001; Kroch and Joshi, 1985; Abeillé
and Candito, 2000; Candito, 1998; Becker, 1993;
Frank, 2002; Joshi and Schabes, 1997; Abeillé
and Rambow, 2000) as well as grammars extracted
from corpora (Chen and Vijay-Shanker, 2000;
Chiang, 2000; Hwa, 1999; Xia et al., 2001; Xia,
2001). The latter is partly due to the fact that large
scale annotated corpora such as the Penn Treebank
(Marcus et al., 1994; Bies et al., 1995) give pri-
macy to syntactic categories. After all this is the

most strongly sedimented generative approach at
least since (Chomsky, 1957).

Computational approaches of grammar based
on grammatical function such as that of Susumu
Kuno (Kuno, 1987) have been given less impor-
tance. Although we can think of simply inserting
functional labels in elementary trees or use them
in a meta-level to generate the grammar, such as
in (Candito, 1998; Kinyon, 2000; Clément and
Kinyon, 2003), such tags are generally not seen
as an essential part of the derivational process.

Nevertheless coordination is such an inherently
functional phenomenon as we show next. Con-
sider the sentences in (1) and (2). These are ex-
amples of regular coordination between phrases
of the same category. They can easily be handled
in the traditional grammar approaches of syntactic
category.

(1) She flew [PP on May 1st and on July 4th ].

(2) They sell [ADJP electric and electronic ]
products.

Now look at the cases in (3) and (4). They
are different in the sense that the coordination is
across categories. This poses a strong problem
to the traditional grammar of syntactic categories.
This has been noticed for TAGs in (Prolo, 2002).
Recently this has also been tackled in the HPSG
framework by (Sag, 2003) and (Abeillé, 2004).
The Penn Treebank calls this constituents UCP for
“Unlike Coordinated Phrases” (Bies et al., 1995).
The problem is that we would need rules of the
kind below (using context-free rules for short –
see (Prolo, 2002) for TAGs). Basically all pairs of
constituents can be coordinated but we can not as-
sign to the resulting constituents either of the sub-
constituent tags.

137



UCP → ADVP CC PP

UCP → PP CC ADVP

UCP → ADJP CC NP

UCP → NP CC ADJP

(3) She flew [?? yesterday and on July 4th ].

(4) They sell [?? electronic and computer ] de-
vices.

However, UCP coordination is not random.
Two constituents can be coordinated only when
they are fulfilling the same grammatical function
(with respect to a third head). In (3) they are play-
ing the role of adverbial adjuncts of went. Either
one can engage in that relation individually and
hence they can be coordinated while playing that
role. Likewise in (4) the adjective electronic and
the noun computer are both fine as left NP modi-
fiers. Therefore they can be conjoined as such. As
a final example, consider the sentences in (5). Be-
cause the direct object of the verb know can be re-
alized as either an NP or a sentential complement,
they can be coordinated in that role as shown in
(6).

(5) I know the answer.
I know that you don’t know it.

(6) I know [ the answer and that you don’t know
it ].

Clearly the recursive process of conjoining the
constituents is at the grammatic functional level.
We show next how we can solve this problem el-
egantly by mixing grammatical function and syn-
tactic category in the set of symbols for the tree
nodes of a TAG.

2 A Grammar of Grammatical
Functions and Syntactic Categories

The elementary trees in our grammar are the pro-
jection of a lexical item as usual in Lexicalized
TAGs. However, root nodes do not correspond to
syntactic categories, but to grammatical functions.
The node for the function then dominates syntactic
category nodes, according to the way the function
is realized syntactically. Figure 1 shows trees for
an intransitive main clause and an NP subject.1

Main

S

�
��

H
HH

Subj ↓ Pred

V P

V �

Subj

NP

N�

Figure 1: Elementary trees for Intransitive Main
Clause and NP Subject.

NP

�
�

�

H
H

H

AdnAdjLeft

NP

N�

NP∗

NP

�
�

�

H
H

H

AdnAdjLeft

ADJP

A�

NP∗

Figure 2: Elementary trees for Left Adnominal
Adjuncts.

Figure 2 has trees for NP left modifiers (adnom-
inal adjunct) realized either as an NP or an ADJP.

Finally, in Figure 3 we can see the trees for
coordination of left adnominal adjuncts. Notice
that they adjoin at the function node (AdnAdjLeft)
therefore allowing for the coordination of anything
that can fulfill that role, be them equal categories
as in (2) or the UCP case in (4). In Figure 4
we show an additional example with a PP right
NP modifier. It should be straightforward to see
how to build trees for AdnAdjRight coordination of
constituents realized by a PP or a relative clause.

In Figure 5 we finally get to subcategorization.
In any approach to grammar development we have
to make decisions between explicitly modeling
certain restrictions in the tree structure or through
features (of a feature based TAG). That can be
seen ubiquitously in the XTAG grammar (XTAG
Research Group, 2001). We can use the tree of the
figure with verbs such like eat and know, having
trees to realize the direct object as either an NP
or a sentence. Features in the lexical items would
prevent the derivation of eat with a sentential com-
plement. Another approach would be to further
detail the tree into one with a built in NP object

1Figures generally show templates where a diamond indi-
cates where the lexical item would be substituted in, though
occasionally we insert the lexical item itself.

138



AdnAdjLeft

�
�

�
�

�
�

H
H

H
H

H
H

NP ↓ CC� AdnAdjLeft∗

AdnAdjLeft

�
�

�
�

�
�

H
H

H
H

H
H

ADJP ↓ CC� AdnAdjLeft∗

Figure 3: Elementary trees for Coordination of
Left Adnominal Adjuncts.

NP

�
�

�

H
H

H

NP∗ AdnAdjRight

PP

�
�

H
H

P� NP ↓

Figure 4: Elementary trees for a PP as Right Ad-
nominal Adjunct.

and another with a sentential complement. How-
ever, realization constraints would still have to be
present to allow for the coordination of only the
constituents that are allowed for the specific verb.
For the reader unfamiliar with grammar modeling
we notice this is not a drawback of the approach.
Constraints beyond those represented in the struc-
ture are constantly made as a way to avoid irra-
tional growth of a grammar.

In Figure 6 we show still another interesting
case: the predicative clauses.2 We include it for

2Again this is one approach to modeling predicatives,

Main

S

�
�

�

H
H

H

Subj ↓ Pred

V P

�
��

H
HH

V � DirObj ↓

Figure 5: Elementary tree for a Verb that has a
Direct Object

Main

S

�
�

�
��

H
H

H
HH

Subj ↓ NomPred

V P

�
�

��

H
H

HH

V aux[be] Predicative ↓

Figure 6: Elementary tree for Predicative Clauses

this is a rich context for unlike coordination. One
can easily see how to generate trees for coordi-
nating NPs, PPs and ADJPs, as predicative con-
stituents so as to allow for (7).

(7) John was [ a gentlemen, always happy, and
never in bad mood ].

3 Conclusions

We showed in this paper how to build a Tree Ad-
joining Grammar of grammatical functions and
syntactic categories, mixed together in a princi-
pled way of function and possible realizations. It
brings the benefits of allowing handling language
phenomena which are generative at each of the
two sides.

In particular, we showed how it solves the prob-
lem of coordination of constituents of distinct syn-
tactic categories.

Elementary trees are not clumsy. On the con-
trary they bring additional information to the
structure with minimal addition of nodes. This in-
formation could otherwise be hidden in node fea-
tures, which are generally used to represent infor-
mation that would be costly to maintain explicit in
the tree structure.

Finally we can see that this structure can be eas-
ily incorporated in a supervised grammar infer-
ence algorithm such as that of (Xia, 2001), pro-
vided the annotated corpus has grammatical func-
tion information. In fact this is the case in the Penn
Treebank, and Xia’s algorithm allows it to be used
3. Inferring the different kinds of verbs, with re-
spect to the functions they subcategorize for and

with the auxiliary verb be anchoring the tree and the predica-
tive as a substitution node. The alternative used in the XTAG
grammar of having the predicative head as anchor would be
possible as well.

3The same is true of other algorithms such as (Chen and
Vijay-Shanker, 2000)’s.

139



their realizations is an important issue here, and is
also feasible (see (Kinyon and Prolo, 2002)).

References
Anne Abeillé and Marie-Helene Candito. 2000. Ftag:

A lexicalized Tree Adjoining Grammar for French.
In Abeillé and Rambow (Abeillé and Rambow,
2000), pages 305–329.

Anne Abeillé and Owen Rambow, editors. 2000.
Tree Adjoining Grammars: formalisms, linguistic
analysis and processing. CSLI, Stanford, CA, USA.

Anne Abeillé. 2004. A lexicalist and construction-
based approach to coordinations. In Stefan
Mller, editor, Proceedings of the 10th International
Conference on HPSG (HPSG’03), Michigan State
University, Michigan, USA. Available at:
http://cslipublications.stanford.edu/HPSG/4.

Tilman Becker. 1993. HyTAG: A new Type of
Tree Adjoining Grammars for Hybrid Syntactic
Representation of Free Word Order Lang uages.
Ph.D. thesis, Universität des Saarlandes.

Ann Bies, Mark Ferguson, Karen Katz, and Robert
MacIntyre. 1995. Bracketing guidelines for the
Penn Treebank II style Penn Treebank Project.

Marie-Helene Candito. 1998. Building parallel
LTAG for french and italian. In Proceedings of
the 36th Annual Meeting of the Association for
Computational Linguistics and 16th International
Conference on Computational Linguistics, pages
211–217, Montreal, Canada.

John Chen and K. Vijay-Shanker. 2000. Automated
extraction of TAGs from the Penn Treebank. In
Proceedings of the 6th International Workshop on
Parsing Technologies, Trento, Italy.

David Chiang. 2000. Statistical parsing with an
automatically-extracted Tree Adjoining Grammar.
In Proceedings of the 38th Annual Meeting of the
Association for Computational Linguistics, Hong
Kong, China.

N. Chomsky. 1957. Syntactic Structures. Mouton,
The Hague.

L. Clément and A. Kinyon. 2003. Generating paral-
lel multilingual LFG-TAG grammars using a Meta-
Grammar. In Proceedings of the 41st Annual
Meeting of the Association for Computational
Linguistics, Sapporo, Japan.

Robert Frank. 2002. Phrase Structure Composition
and Syntactic Dependencies. MIT Press, Cam-
bridge, MA, USA.

Rebecca Hwa. 1999. Supervised Grammar Induction
Using Training Data with Limited Constituent Infor-
mation. In Proceedings of 37th Annual Meeting of
the Association for Computational Linguistics (ACL
’99), pages 20–26, College Park, MD, USA.

Aravind K. Joshi and Yves Schabes. 1997. Tree-
Adjoining Grammars. In A. Salomaa and G. Rozen-
berg, editors, Handbook of Formal Languages, vol-
ume 3, pages 69–123. Springer-Verlag, Berlin.

Aravind K. Joshi. 2001. The XTAG project at Penn.
In Proceedings of the 7th International Workshop on
Parsing Technologies (IWPT-2001), Beijing, China.
Invited speaker.

Alexandra Kinyon and Carlos A. Prolo. 2002. Iden-
tifying verb arguments and their syntactic function
in the Penn Treebank. In Proceedings of the Third
International Conference on Language Resources
and Evaluation (LREC), pages 1982–87, Las Pal-
mas, Spain.

Alexandra Kinyon. 2000. Hypertags. In
Proceedings of the 18th International Conference
on Computational Linguistics (COLING’2000),
Saarbrücken, Germany.

Anthony S. Kroch and Aravind K. Joshi. 1985. The
linguistic relevance Tree Adjoining Grammar. Tech-
nical Report MS-CIS-85-16, University of Pennsyl-
vania.

Sususmu Kuno. 1987. Functional Grammar. Univer-
sity of Chicago Press, Chicago, Il, USA.

Mitchell Marcus, Grace Kim, Mary Ann
Marcinkiewicz, Robert MacIntyre, Ann Bies,
Mark Ferguson, Karen Katz, and Britta Schas-
berger. 1994. The Penn Treebank: Annotating
predicate argument structure. In Proceedings of the
1994 Human Language Technology Workshop.

Carlos A. Prolo. 2002. Coping with problems
in grammars automatically extracted from tree-
banks. In Proceedings of the Workshop on Grammar
Engineering and Evaluation, pages 36–42, Taipei,
Taiwan.

Ivan Sag. 2003. Coordination and underspecifi-
cation. In Jongbok Kim and Stephen Wechsler,
editors, Proceedings of the 9th International
Conference on HPSG (HPSG’02), Kyung-
Hee University, Seoul, Korea. Available at:
http://cslipublications.stanford.edu/HPSG/3/hpsg02.htm.

Fei Xia, Chung-Hye Han, Martha Palmer, and Aravind
Joshi. 2001. Automatically Extracting and Compar-
ing Lexicalized Grammars for Different Languages.
In Proc. of the Seventeenth International Joint
Conference on Artificial Intelligence (IJCAI-2001),
Seattle, Washington.

Fei Xia. 2001. Investigating the Relationship between
Grammars and Treebanks for Natural Languages.
Ph.D. thesis, Department of Computer and Informa-
tion Science, University of Pennsylvania.

The XTAG Research Group. 2001. A Lexicalized Tree
Adjoining Grammar for English. Technical Report
IRCS 01-03, University of Pennsylvania.

140



Proceedings of the 8th International Workshop on Tree Adjoining Grammar and Related Formalisms, pages 141–146,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Parsing TAG with Abstract Categorial Grammar

Sylvain Salvati
National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku,

Tokyo 101-8430, JAPAN
salvati@nii.ac.jp

Abstract

This paper presents informally an Earley
algorithm for TAG which behaves as the
algorithm given by (Schabes and Joshi,
1988). This algorithm is a specialization
to TAG of a more general algorithm ded-
icated to second order ACGs. As second
order ACGs allows to encode Linear Con-
text Free Rewriting Systems (LCFRS) (de
Groote and Pogodalla, 2004), the presen-
tation of this algorithm gives a rough pre-
sentation of the formal tools which can
be used to design efficient algorithms for
LCFRS. Furthermore, as these tools allow
to parse linearλ-terms, they can be used
as a basis for developping algorithms for
generation.

1 Introduction

The algorithm we present is a specialization to
TAGs of a more general one dedicated to second
order Abstract Categorial Grammars (ACGs) (de
Groote, 2001). Our aim is to give here an informal
presentation of tools that can be used to design ef-
ficient parsing algorithms for formalisms more ex-
pressive than TAG. Therefore, we only give a rep-
resentation of TAGs with linearλ-terms together
with simple derivation rules; we do not give in
complete details the technical relation with ACGs.
For some more information about ACGs and their
relation to TAGs, one may read (de Groote, 2001)
and (de Groote, 2002).

The advantage of using ACG is that they are
defined with very few primitives, but can encode
many formalisms. Thus they are well suited to
study from a general perspective a full class of for-
malisms. In particular, a special class of ACGs

(second order ACGs) embeds LCFRS (de Groote
and Pogodalla, 2004),i.e. mildly context sensi-
tive languages. Therefore, the study of second
order ACGs leads to insights on mildly context
sensitive languages. Having a general framework
to describe parsing algorithms for mildly context
sensitive languages may give some help to trans-
fer some interesting parsing technique from one
formalism to another. It can be, for example, a
good mean to obtain prefix-valid algorithms, LC
algorithms, LR algorithms. . . for the full class of
mildly context sensitive languages.

The class of languages described by second or-
der ACGs is wider than mildly context sensitive
languages. They can encode tree languages, and
more generally languages of linearλ-terms. As
Montague style semantics (Montague, 1974) is
based onλ-calculus, being able to parse linearλ-
term is a first step towards generation algorithms
seen as parsing algorithm. Furthermore, since this
parsing algorithm is a generalization of algorithms
à la Earley for CFGs and TAGs, the more general
algorithm that can be used for generation (when
semantic formulae are linear) can be considered
as efficient.

The paper is organized as follows: section two
gives basic defintions and tools concerning the lin-
earλ-calculus. Section three explains how the in-
dices usually used by parsers are represented for
the linearλ-calculus. Section four gives a rough
explaination of the encoding of TAGs within a
compiled representation of second order ACGs.
Section five explains the parsing algorithm and we
conclude with section six.

2 The linear λ-calculus

We begin by giving a brief definition of linear
types and linearλ-terms together with some stan-

141



dard notations. We assume that the reader is famil-
iar with the usual notions related toλ-calculus (β-
conversion, free variables, capture-avoiding sub-
stitutions. . . ); for more details aboutλ-calculus,
one may consult (Barendregt, 1984).

Definition 1 The set of linear types,T , is the
smallest set containing{∗} and such that ifα, β ∈
T then(α ( β) ∈ T .

Given a type(α1 ( (· · · (αn ( ∗) · · · )), we
write it (α1, . . . , αn) ( ∗.

Definition 2 Given a infinite enumerable set of
variables,X , and an alphabetΣ, we define the
set of linearλ-terms of typeα ∈ T , Λα, as the
smallest set satisfying the following properties:

1. x ∈ X ⇒ xα ∈ Λα

2. t ∈ Λα ∧ xβ ∈ FV (t) ⇒ λxβ.t ∈ Λβ(α

3. a ∈ Σ ⇒ a ∈ Λ∗(∗

4. t1 ∈ Λβ(α∧t2 ∈ Λβ∧FV (t1)∩FV (t2) ⇒
(t1t2) ∈ Λα

In general, we write λx1 . . . xn.t for
λx1. . . . λxn.t and we write t0t1 . . . tn for
(. . . (t0t1) . . . tn). Strings are represented by
closed linearλ-terms of typestr = ∗ ( ∗.
Given a stringabcde, it is represented by the
following linear λ-term: λy∗.a(b(c(d(e y∗))));
/w/ represents the set of terms which are
β-convertible to the λ-term representing the
string w. Concatenation is represented by
+ = λxstr

1
xstr

2
y∗.xstr

1
(xstr

2
y∗), and (+w1)w2

will be written w1 + w2. The concatenation
is moreover associative, we may thus write
w1 + · · · + wn.

For the description of our algorithm, we rely on
contexts:

Definition 3 A context is aλ-term with a hole.
Contexts are defined by the following grammar:

C = [] | ΛC | CΛ | λV.C

The insertion of a term within a context is done
the obvious way. One has nevertheless to remark
that when a termt is inserted in a contextC[], the
contextC[] can bind variables free int. For exam-
ple, if C[] = λx.[] and t = x thenC[t] = λx.x
andx which was free int is not free anymore in
C[t].

3 Indices as syntactic descriptions

Usually the items of Earley algorithms use indices
to represent positions in the input string. The algo-
rithm we describe is a particular instance of a more
general one which parses linearλ-terms rather
than strings. In that case, one cannot describe in a
simple way positions by means of indices. Instead
of indices, positions in a termt will be represented
with zippers((Huet, 1997)),i.e. a pair(C[], v) of
a context and a term such thatC[v] = t. Figure 1
explicits the correspondence between indices and
zippers via an example.

The items of Earley algorithms for TAGs use
pairs of indices to describe portions of the input
string. In our algorithm, this role is played by lin-
ear types built upon zippers; the parsing process
can be seen as a type-checking process in a par-
ticular type system. We will not present this sys-
tem here, but we will give a flavor of the mean-
ing of those types calledsyntactic descriptions
(Salvati, 2006). In order to represent the portion
of a string between the indicesi and j, we use
the zippers(Ci[], vi) and(Cj [], vj) which respec-
tively represent the positioni andj in the string.
The portion of string is represented by the syntac-
tic description(Cj [], vj) ( (Ci[], vi); this syn-
tactic description can be used to type functions
which takevj as argument and returnvi as a re-
sult. For example, given the syntactic description:
(λx.a(b(c[])), d(e x)) ( (λx.a[], b(c(d(e x)))),
it represents the set of functions that result in
terms that areβ-convertible tob(c(d(e x))) when
they take d(e x) as an argument; this set is
exactly /bc/. Our algorithm uses representa-
tions of string contexts with syntactic descrip-
tions such asd = ((C1[], v1) ( (C2[], v2)) (

(C3[], v3) ( (C4[], v4) (in the following we write
((C1[], v1) ( (C2[], v2), (C3[], v3)) ( (C4[], v4)
for such syntactic descriptions). Assume that
(C1[], v1) ( (C2[], v2) represents/bc/ and that
(C3[], v3) ( (C4[], v4) represents/abcde/, then
d describes the terms which give a result in
/abcde/ when they are applied to an element
of /bc/. Thus, d describes the set of termsβ-
convertible toλfy.a(f(d(e y))), the set of terms
representing the string contexta[ ]de.

Some of the syntactic descriptions we use may
containvariablesdenotingnon-specified syntactic
descriptionsthat may be instanciated during pars-
ing. In particular, the syntactic description vari-
ableF will always be used as a non-specified syn-

142



0 (λx.[], a(b(c(d(e x))))) 1 (λx.a[], b(c(d(e x))))

2 (λx.a(b[]), c(d(e x))) 3 (λx.a(b(c[])), d(e x))

4 (λx.a(b(c(d[]), e x) 5 (λx.a(b(c(d(e[])))), x)

abcde

Figure 1: Correspondence indices/zippers for the stringabcde

tactic description representing strings (i.e. F may
only be substituted by a syntactic description of
the form (C1[], v1) ( (C2[], v2)), such syntac-
tic descriptions will represent the foot of an auxil-
iary tree. We will also useY to represent a non-
specifed point in the input sentence (i.e. Y may
only be substituted by syntactic descriptions of
the form(C[], v)), such syntactic descriptions will
represent the end of an elementary tree.

As syntactic desccriptions are types for the lin-
earλ-calculus, we introduce the notion of typing
context for syntactic descriptions.

Definition 4 A typing context Γ (context for
short), is a set of pairs of the formx : d wherex
is a variable andd is a syntactic description such
thatx : d ∈ Γ andx : e ∈ Γ iff d = e.

If x : d ∈ Γ, then we say thatx is declared with
typed in Γ.

Typing contextsΓ must not be confused with
contextsC[]. If a typing contextΓ is the set
{x1 : d1; . . . ;xn : dn} then we will write if by
x1 : d1, . . . , xn : dn. In the present paper, typing
contexts may declare at most two variables.

4 Representing TAG with second order
ACGs

We cannot give here a detailed definition of second
order ACGs here. We therefore directly explain
how to transform TAGs into lexical entries repre-
senting a second order ACG that can be directly
used by the algorithm.

We represent a TAGG by a set of lexical en-
triesLG. Lexical entriesare triples(Γ, t, α) where
Γ is a typing context,t is a linearλ-term andα
is eitherNa, Ns or Na.1 if N is a non-terminal
of the considered TAG. Without loss of general-
ity, we consider that the adjunction at an interior
node of an elementary tree is either mandatory
or forbidden1. We adopt the convention of rep-

1We do not treat here the case of optional adjunction, but
our method can be straightforwardly extended to cope with
it, following ideas from (de Groote, 2002). It only modifies
the way we encode a TAG with a set of lexical entries, the
algorithm remains unchanged.

resenting adjunction nodes labeled withN by the
variablexstr(str

Na
, the substitution nodes labeled

with N ↓ by the variablexstr
Ns

, the foot node of
an auxiliary tree labeled withN∗ by the variable
f str

Na.1 and the variabley∗ will represent the end
of strings. When necessary, in order to respect
the linearity constraints of theλ-terms, indices are
used to distinguish those variables. This conven-
tion being settled, the type annotation on variables
is not necessary anymore, thus we will writexNa

,
xNs

, fNa.1 andy. To translate the TAG, we use
the functionφ defined by figure 2. Given an initial
treeT whose root is labeled byN andt the normal
form of φ(T ), ( , t,Ns)

2 is the lexical entry asso-
ciated toT ; if T is an auxiliary tree whose root
is labeled byN andt is the normal form ofφ(T )
then( , λfNa.1.t,Na)

2 is the lexical entry associ-
ated toT . A TAG G is represented byLG the
smallest set verifying:

1. if T is an elementary tree ofG then the lexi-
cal entry associated toT is in LG.

2. if ( , t, α) ∈ LG, with α equals toNa or Ns,
andt = C[xNa

t1t2] then(Γ, t1, Na.1) ∈ LG

whereΓ = fMa.1 : F if fMa.1 ∈ FV (t1)
otherwiseΓ is the empty typing context.

Given a termt such thatxα ∈ FV (t), and
(Γ, t′, α) ∈ LG, then we say thatt is rewritten
ast[xα := t′], t ⇒ t[xα := t′]. Furthermore ifxα

is the leftmost variable we writet ⇒l t[xα := t′].
It is easy to check that ift

∗

⇒ t′ with FV (t′) = ∅,
then t

∗

⇒l t′. A string w is generated by aLG

wheneverxSs

∗

⇒ t andt ∈ /w/ (S being the start
symbol ofG). Straightforwardly, the set of strings
generated byLG is exactly the language ofG.

5 The algorithm

As we want to emphasize the fact that the algo-
rithm we propose borrows much to type checking,
we use sequents in the items the algorithm manip-
ulates. Sequents are objects of the formΓ ` t : d

2In that case the typing context is empty.

143



φ









N

T1 Tn. . .









−→ λy.xNa
(φ(T1) + · · · + φ(Tn))y xNa

andy are fresh

φ









NNA

T1 Tn. . .









−→ φ(T1) + · · · + φ(Tn)

φ(N∗) −→ λy.xNa
(λy.fN.1y)y

φ(N∗

NA) −→ λy.fN.1y

φ(N ↓) −→ λy.xNs
y

φ(a) −→ λy.ay

φ(ε) −→ λy.y

Figure 2: Translating TAG into ACG: definition ofφ

whereΓ is a typing context,t is a linearλ-term,
andd is a syntactic description.

The algorithm uses two kinds of items; either
items of the form(α; Γ ` t : d;L) (whereL is
a list of sequents, the subgoals, hereL contains
either zero or one element) or items of the form
[Na.1; Γ; t; (C1[], v1) ( (C2[], v2)]. All the pos-
sible instances of the items are given by figure 3.
The algorithm is a recognizer but can easily be ex-
tended into a parser3. It fills iteratively a chart until
a fixed-point is reached. Elements are added to the
chart by means of inference rules given by figure
4, in a deductive parsing fashion (Shieber et al.,
1995). Inference rules contain two parts: the first
part is a set of premises which state conditions on
elements that are already in the chart. The second
part gives the new element to add to the chart if
it is not already present. For the more general al-
gorithm, the rules are not much more numerous as
they can be abstracted into more general schemes.

An item of the form(α; Γ1 ` t1 : d; Γ2 ` t2 :
(C1[], v1)) verifies:

1. (Γ′

1
, t1, α) ∈ LG whereΓ′

1
= fNa.1 : F if

Γ1 = fNa.1 : e or Γ′

1
= Γ1 otherwise.

2. there is a contextC[] such thatt1 = C[t2] and
if d is of the form(d1, . . . ,dn) ( (C2[], v2)

(n must be 1, or 2) thenC[y]
∗

⇒l t′ so thatt′

is described by(C1[], v1) ( (C2[], v2).

3. if Γ1 = fNa.1 : (C3[], v3) ( (C4[], v4)
or if d = ((C3[], v3) ( (C4[], v4), Y ) (

3Actually, if it is extended into a parser, it will ouput the
shared forest of the derivation trees; (de Groote, 2002) ex-
plains how to obtain the derived trees from the derivation
trees in the framework of ACGs

(C2[], v2) andt1 = λfNa.1y.v thenfNa.1 ⇒l

t′′ and t′′ is described by(C3[], v3) (

(C4[], v4)

An item of the form(α; Γ ` t : d; ) verifies:

1. (Γ′, t, α) ∈ LG whereΓ′ = fNa.1 : F if
Γ = fNa.1 : e or Γ′ = Γ otherwise

2. d does not contain non-specified syntactic
descriptions4.

3. t
∗

⇒l t′ andt′ is described byd (d may either
represent a string context or a string).

4. if Γ = fNa.1 : (C3[], v3) ( (C4[], v4) or if
d = ((C3[], v3) ( (C4[], v4), (C1[], v1)) (

(C2[], v2) andt1 = λfNa.1y.t′ thenfMa.1
∗

⇒l

t′′ and t′′ is described by(C3[], v3) (

(C4[], v4)

Finally an item of the form
[Na.1; Γ; t; (C1[], v1) ( (C2[], v2)] im-
plies the existence of t′, (C3[], v3) and
(C4[], v4) such that(Na;` t′ : ((C3[], v3) (

(C4[], v4), (C1[], v1)) ( (C2[], v2); ) and
(Na.1; Γ ` t : (C3[], v3) ( (C4[], v4)); ) are in
the chart.

An input λy.C[y] is recognized iff when the
fixed-point is reached, the chart contains an item
of the form (Ss; ` t : (λy.C[], y) (

(λy.[], C[y]); ) (whereS is the start symbol of the
TAG G.

4There is no occurence ofF or Y in d.

144



General items
(Na ; ` λfNa.1y.t1 : (F, Y ) ( (C1[], v1) ; fNa.1 : F, y : Y ` t2 : (C2[], v2))
(Na ; ` λfNa.1y.t : ((C1[], v1) ( (C2[], v2), Y ) ( (C3[], v3) ; y : Y ` t2 : (C4[], v4))
(Na ; ` λfNa.1y.t : ((C1[], v1) ( (C2[], v2), (C3[], v3)) ( (C4[], v4) ; )
(α ; ` λy.t1 : Y ( (C1[], v1) ; y : Y ` t2 : (C2[], v2))
(α ; ` λy.t : (C1[], v1) ( (C2[], v2) ; )
(Na.1 ; fMa.1 : F ` λy.t : Y ( (C[], v) ; fMa.1 : F, y : Y ` t2 : (C2[], v2)
(Na.1 ; fMa.1 : (C1[], v1) ( (C2[], v2) ` λy.t : Y ( (C3[], v3) ; y : Y ` t2 : (C4[], v4))
(Na.1 ; fMa.1 : (C1[], v1) ( (C2[], v2) ` λy.t : (C3[], v3) ( (C4[], v4) ; )

Wrapped subtrees
[Na.1 ; ; t ; (C1[], v1) ( (C2[], v2)]
[Na.1 ; fMa.1 : (C1[], v1) ( (C2[], v2) ; t ; (C3[], v3) ( (C4[], v4)]

Figure 3: Possible items

6 Conclusion and perspective

In this paper, we have illustrated the use for TAGs
of general and abstract tools, syntactic descrip-
tions, which can be used to parse linearλ-terms.
Even though ACGs are very general in their def-
inition, the algorithm we describe shows that this
generality is not a source of unefficiency. Indeed,
this algorithm, a special instance of a general one
which can parse any second order ACG and it be-
haves exactly the same way as the algorithm given
by (Schabes and Joshi, 1988) so that it parses a
second order ACG encoding a TAG inO(n6).

The technique used enables to see generation as
parsing. In the framework of second order ACG,
the logical formulae on which generation is per-
formed are bound to be obtained from semantic re-
cipies coded with linearλ-terms and are therefore
not really adapted to Montague semantics. Nev-
ertheless, syntactic descriptions can be extended
with intersection types (Dezani-Ciancaglini et al.,
2005) in order to cope with simply typedλ-
calculus. With this extension, it seems possible
to extend the algorithm for second order ACGs
so that it can deal with simply typedλ-terms and
without loosing its efficiency in the linear case.

References

Henk P. Barendregt. 1984.The Lambda Calculus: Its
Syntax and Semantics, volume 103. Studies in Logic
and the Foundations of Mathematics, North-Holland
Amsterdam. revised edition.

Philippe de Groote and Sylvain Pogodalla. 2004. On
the expressive power of abstract categorial gram-
mars: Representing context-free formalisms.Jour-
nal of Logic, Language and Information, 13(4):421–
438.

Philippe de Groote. 2001. Towards abstract categorial
grammars. In Association for Computational Lin-

guistic, editor,Proceedings 39th Annual Meeting
and 10th Conference of the European Chapter,
pages 148–155. Morgan Kaufmann Publishers.

Philippe de Groote. 2002. Tree-adjoining grammars
as abstract categorial grammars.TAG+6, Proceed-
ings of the sixth International Workshop on Tree Ad-
joining Grammars and Related Frameworks, pages
145–150.

Mariangiola Dezani-Ciancaglini, Furio Honsell, and
Yoko Motohama. 2005. Compositional Characteri-
zation ofλ-terms using Intersection Types.Theoret.
Comput. Sci., 340(3):459–495.

Gérard Huet. 1997. The zipper.Journal of Functional
Programming, 7(5):549–554.

Richard Montague. 1974.Formal Philosophy: Se-
lected Papers of Richard Montague. Yale University
Press, New Haven, CT.

Sylvain Salvati. 2006. Syntactic descriptions: a type
system for solving matching equations in the linear
λ-calculus. Into be published in the proceedings
of the 17th International Conference on Rewriting
Techniques and Applications.

Yves Schabes and Aravind K. Joshi. 1988. An earley-
type parsing algorithm for tree adjoining grammars.
In Proceedings of the 26th annual meeting on Asso-
ciation for Computational Linguistics, pages 258–
269, Morristown, NJ, USA. Association for Compu-
tational Linguistics.

Stuart M. Shieber, Yves Schabes, and Fernando C. N.
Pereira. 1995. Principles and implementation of
deductive parsing.Journal of Logic Programming,
24(1–2):3–36, July–August. Also available as cmp-
lg/9404008.

145



The initializer
(λy.t, Ss) ∈ LG

(Ss; ` λy.t : Y ( (λy.[], u); y : Y ` t : (λy.[], u))

The scanner
(α; Γ1 ` t1 : d; Γ2 ` at2 : (C[], av))

(α; Γ1 ` t1 : d; Γ2 ` t2 : (C[a[]], v))

(α; Γ ` t : d; y : Y ` y : (C[], v)) σ = [Y := (C[], v)]

(α; Γ ` t : d.σ; )

The predictor

(α; Γ1 ` t1 : d; Γ2 ` xNa
t2t3 : (C[], v)) ( , λfNa.1y.t, Na) ∈ LG

(Na; ` λfNa.1y.t : (F, Y ) ( (C[], v); fNa.1 : F, y : Y ` t : (C[], v))

(α; Γ1 ` t1 : d; Γ2 ` xNs
t2 : (C[], v)) ( , λy.t,Ns) ∈ LG

(Ns; ` λy.t : Y ( (C[], v); y : Y ` t : (C[], v))
(α; Γ1 ` t1 : d; Γ2 ` fNa.1t2 : (C2[], v2))
(Γ3, λy.t3, Na.1) ∈ LG

(Na.1; Γ3 ` λy.t3 : Y ( (C2[], v2); Γ3, y : Y ` t3 : (C2[], v2))

The completer

(Na; ` t1 : ((C1[], v1) ( (C2[], v2), (C3[], v3)) ( (C4[], v4); )
(Na.1; Γ2; t2 : (C1[], v1) ( (C2[], v2); )

[Na.1; Γ2; t2; (C3[], v3) ( (C4[], v4)]

(α; Γ1 ` t1 : d; y : Y, Γ′

2 ` xNa
t2t3 : (C1[], v1))

[Na.1; Γ2; t2; (C2[], v2) ( (C1[], v1)]
if Γ2 = fMa.1 : f thenσ = [F := f ] elseσ = Id

(α; Γ1.σ ` t1 : d.σ; Γ2 ` t3 : (C2[], v2))

(α; Γ1 ` t1 : d; fNa.1 : F, y : Y ` fNa.1t2 : (C1[], v1))
(Na.1; Γ2 ` t2 : (C2[], v2) ( (C1[], v1); )
σ = [F := (C2[], v2) ( (C1[], v1)]

(α; Γ1.σ ` t1 : d.σ; y : Y ` t2 : (C2[], v2))

(α; Γ1 ` t1 : d; Γ2 ` xNs
t2 : (C1[], v1))

(Ns; ` t2 : (C2[], v2) ( (C1[], v1); )

(α; Γ1 ` t1 : d; Γ2 ` t2 : (C2[], v2))

Figure 4: The rules of the algorithm

146



Proceedings of the 8th International Workshop on Tree Adjoining Grammar and Related Formalisms, pages 147–152,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Modeling and Analysis of Elliptic Coordination by Dynamic Exploitation
of Derivation Forests in LTAG parsing

Djamé Seddah (1) & Benoît Sagot (2)
(1) NCLT - Dublin City University - Ireland
djame.seddah@computing.dcu.ie

(2) Projet ATOLL - INRIA - France
benoit.sagot@inria.fr

Abstract

In this paper, we introduce a generic ap-
proach to elliptic coordination modeling
through the parsing of Ltag grammars. We
show that erased lexical items can be re-
placed during parsing by informations ga-
thered in the other member of the coordi-
nate structure and used as a guide at the
derivation level. Moreover, we show how
this approach can be indeed implemented
as a light extension of the LTAG formalism
throuh a so-called “fusion” operation and
by the use of tree schemata during parsing
in order to obtain a dependency graph.

1 Introduction

The main goal of this research is to provide a
way of solving elliptic coordination through the
use of Derivation Forests. The use of this de-
vice implies that the resolution mechanism de-
pends on syntactic information, therefore we will
not deal with anaphoric resolutions and scope mo-
difier problems. We show how to generate a de-
rivation forest described by a set of context free
rules (similar to (Vijay-Shanker and Weir, 1993))
augmented by a stack of current adjunctions when
a rule describes a spine traversal. We first briefly
discuss the linguistic motivations behind the reso-
lution mechanism we propose, then introduce the
fusion operation and show how it can be compa-
red to the analysis of (Dalrymple et al., 1991) and
(Steedman, 1990) and we show how it differs from
(Sarkar and Joshi, 1996). We assume that the rea-
der is familiar with the Lexicalized Tree Adjoining
Grammars formalism ((Joshi and Schabes, 1992)).

2 Linguistic Motivations : a parallelism
of Derivation

The LTAG formalism provides a derivation tree
which is strictly the history of the operations nee-

ded to build a constituent structure, the derived
tree. In order to be fully appropriate for seman-
tic inference1, the derivation tree should display
every syntactico-semantic argument and therefore
should be a graph. However to obtain this kind
of dependency structure when it is not possible to
rely on lexical information, as opposed to (Seddah
and Gaiffe, 2005a), is significantly more compli-
cated. An example of this is provided by elliptic
coordination.
Consider the sentences Figure 3. They all can be
analyzed as coordinations of S categories2 with
one side lacking one mandatory argument. In (4),
one could argue for VP coordination, because the
two predicates share the same continuum (same
subcategorization frame and semantic space). Ho-
wever the S hypothesis is more generalizable and
supports more easily the analysis of coordination
of unlike categories (“John is a republican and
proud of it” becomes “Johni isj a republican and
εi εj proud of it”).
The main difficulty is to separate the cases when
a true co-indexation occurs ((2) and (4)) from the
cases of a partial duplication (in (1), the predicate
is not shared and its feature structures could dif-
fer on aspects, tense or number3). In an elliptic
construction, some words are unrealized. There-
fore, their associated syntactic structures are also
non-realized, at least to some extent. However, our
aim is to get, as a result of the parsing process,
the full constituency and dependency structures of
the sentence, including erased semantic items (or
units) and their (empty) syntactic positions. Since
their syntactic realizations have been erased, the
construction of the dependency structure can not

1As elementary trees are lexicalized and must have a mi-
nimal semantic meaning (Abeillé, 1991), the derivation tree
can be seen as a dependency tree with respect to the restric-
tions defined by (Rambow and Joshi, 1994) and (Candito and
Kahane, 1998) to cite a few.

2P for Phrase in french, in Figures given in annex
3see “John lovesi Mary and childreni their gameboy”

147



be anchored to lexical items. Instead, it has to be
anchored on non-realized lexical items and gui-
ded by the dependency structure of the reference
phrase. Indeed, it is because of the parallelism bet-
ween the reference phrase and the elliptical phrase
that an ellipsis can be interpreted.

3 The Fusion Operation

In this research, we assume that every coordina-
tor, which occurs in elided sentences, anchors an
initial tree αconj rooted byP and with two sub-
stitution nodes of categoryP (Figure 1). The fu-

Pαconj

Pαconj
G↓ et Pαconj

D↓

FIG. 1 – Initial Treeαconj

sion operation replaces the missing derivation of
any side of the coordinator by the corresponding
ones from the other side. It shall be noted that the
fusion provide proper node sharing when it is syn-
tactically decidable (cf. 6.4). The implementation
relies on the use of non lexicalized trees (ie tree
schemes) called ghost trees. Their purpose is to
be the support for partial derivations which will
be used to rebuild the derivation walk in the eli-
ded part. We call the partial derivationsghost deri-
vations. The incomplete derivations from the tree
γ are shown as a broken tree in Figure 2. The
ghost derivations are induced by the inclusion of
theghost treeα′ which must be the scheme of the
tree α. When the two derivation structures from
γ andα′ are processed by the fusion operation, a
complete derivation structure is obtained.

αconj

α γ

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

γα

αconj

α’
�����
�����
�����

�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

Derivations before the Fusion After the Fusion

FIG. 2 – Derivation sketch of the Fusion Operation

4 examples anylysis

Let us go back to the following sentences :
(1) Jean aimei Marie et Paulεi Virginie
John loves Mary and Paul Virginia
(2) Pauli aime Virginie etεi déteste Marie
Paul loves Virginia and hates Mary

Obviously (1) can have as a logical formula :

aime′(jean′, Marie′) ∧ aime′(paul′, virginie′)
whereas (2) is rewritten byeat(paul′, apple′) ∧
buy′(Paul′, cherries′). The question is to diffe-
rentiate the two occurrence ofaime′ in (1) from
the paul′ ones. Of course, the second should be
noted as a sharing of the same argument when the
first is a copy of the predicateaime′. Therefore
in order to represent the sharing, we will use the
same node in the dependency graph while a ghos-
ted node (noted by ghost(γ) in our figures) will be
used in the other case. This leads to the analysis
figure 4. The level of what exactly should be co-
pied, speaking of level of information, is outside
the scope of this paper, but our intuition is that
a state between a pure anchored tree and an tree
schemata is probably the correct answer. As we
said, aspect, tense and in most case diathesis for4

are shared, as it is showed by the following sen-
tences :

(3)*Paul killed John and Bill by Rodger
(4)*Paul ate apple and Mary will pears

As opposed to (4), we believe “Paul ate apples
and Mary will do pears” to be correct but in
this case, we do not strictly have an ellipsis but
a semi-modal verb which is susbsumed by its
co-referent. Although our proposition focuses on
syntax-semantic interface, mainly missing syntac-
tic arguments.

5 Ghost Trees and Logical Abstractions

Looking either at the approach proposed by
(Dalrymple et al., 1991) or (Steedman, 1990) for
the treatment of sentences with gaps, we note that
in both cases5 one wants to abstract the realized
element in one side of the coordination in order to
instantiate it in the other conjunct using the coor-
dinator as the pivot of this process. In our analy-
sis, this is exactly the role ofghost treesto support
such abstraction (talking either about High Order
Variable orλ-abstraction). In this regard, the fu-
sion operation has only to check that the deriva-
tions induced by theghost treesuperimpose well
with the derivations of the realized side.
This is where our approach differs strongly from
(Sarkar and Joshi, 1996). Using the fusion opera-
tion involves inserting partial derivations, which
are linked to already existing ones (the realized
derivation), into the shared forest whereas using

4w.r.t to the examples of (Dalrymple et al., 1991), i.e “It
is possible that this result can be derived (..) but I know of no
theory that does so.”

5Footnote n˚3, page 5 for (Dalrymple et al., 1991), and
pages 41-42 for (Steedman, 1990).

148



theconjoinoperation defined in (Sarkar and Joshi,
1996) involves merging nodes from different trees
while the tree anchored by a coordinator acts si-
milarly to an auxiliary tree with two foot nodes.
This may cause difficulties to derive the now dag
into a linear string. In our approach, we use empty
lexical items in order to leave traces in the deriva-
tion forest and to have syntacticly motivated deri-
ved tree (cf fig. 5) if we extract only the regular
LTAG “derivation item” from the forest.

6 LTAG implementation

6.1 Working on shared forest

A shared forestis a structure which combines
all the information coming from derivation trees
and from derived trees. Following (Vijay-Shanker
and Weir, 1993; Lang, 1991), each tree anchored
by the elements of the input sentence is described
by a set of rewriting rules. We use the fact that
each rule which validates a derivation can infer
a derivation item and has access to the whole
chart in order to prepare the inference process.
The goal is to use the shared forest as a guide for
synchronizing the derivation structures from both
parts of the coordinator.
This forest is represented by a context free
grammar augmented by a stack containing the
current adjunctions (Seddah and Gaiffe, 2005a),
which looks like a Linear Indexed Grammar (Aho,
1968).
Each part of a rule corresponds to an
item à la Cock Kasami Younger described
by (Shieber et al., 1995), whose form is
< N, POS, I, J, STACK > with N a node
of an elementary tree,POS the situation relative
to an adjunction (marked⊤ if an adjunction is
still possible,⊥ otherwise). This is marked on
figure 5 with a bold dot in high position,⊤, or a
bold dot in low position,⊥). I andJ are the start
and end indices of the string dominated by theN

node.STACK is the stack containing all the call
of the subtrees which has started an adjunction et
which must be recognized by the foot recognition
rules. We usedS as the starting symbol of the
grammar andn is the length of the initial string.
Only the rules which prove a derivation are shown
in figure 6.
The form of a derivation item is
Name :< Nodeγto , γfrom, γto, T ype, γghost >

whereName is the derivation, typedType6, of
the treeγfrom to the nodeNode of γto.7

6.2 Overview of the process

We refer to aghost derivationas any derivation
which occurs in a tree anchored by an empty
element, andghost treeas a tree anchored by
this empty element. As we can see in figure 5,
we assume that the proper ghost tree has been
selected. So the problem remains to know which
structure we have to use in order to synchronize
our derivation process.

Elliptic substitution of an initial ghost tree
on a tree αconj : Given a treeαconj (see Fig.
1) anchored by a coordinator and an initial tree
α1 of root P to be substituted in the leftmost P
node of αconj . Then the rule corresponding to
the traversal of the Leftmost P node would be
PαconjG(⊤, i, j,−,−) −→ Pα1

(⊤, i, j,−,−) .

So if this rule is validated, then we infer a deriva-
tion item called D1 :<PαconjG,α1,αconj ,subst,->.

Now, let us assume that the node situated to the
right of the coordinating conjunction dominates a
phrase whose verb has been erased (as inet Paul _
Virginie) and that there exists a tree of RootP with
two argument positions (a quasi tree like N0VN1
in LTAG literature for example). This ghost tree
is anchored by an empty element and is called
αghost. We have a rule, calledCall-subst-ghost,
describing the traversal of this node :
PαconjD(⊤,j+1,n,-,-)−→ Pαghost

(⊤,j+1,n,-,-) .

For the sake of readability, let us callD1′ the

pseudo-derivation of call-subst-ghost :

D1′ :< PαconjD, ? , αconj , subst, αghost > ,

where the non-instantiated variable,? , indicates

the missing information in the synchronized tree.
If our hypothesis is correct, this tree will be ancho-
red by the anchor ofα1. So we have to prepare this
anchoring by performing a synchronization with
existing derivations. This leads us to infer a ghost
substitution derivation of the treeα1 on the node
PαconjD. The inference rule which produces the

6which can be an adjunction (type = adj), a substitu-
tion (subst), an axiom (ax), an anchor which is usually an
implicit derivation in an LTAG derivation tree (anch) or a
“ghosted” one (adjg,substg,anchg)

7γghost is here to store the name of the ‘ghost tree’ if the
Node belongs to one or− otherwise.

149



item called ghost(α1) on Figure 5, is therefore :

D1′ :< P αconjD, ? , αconj , subst, αghost >

D1 :< P αconjR, α1, αconj , subst,− >

Ghost−D1 :< P αconjR, α1, αconj , substg, αghost >

The process which is almost the same for the
remaining derivations, is described section 6.4.

6.3 Ghost derivation and Item retrieving

In the last section we have described a ghost
derivation as a derivation which deals with a tree
anchored by an empty element, either it is the
source tree or the destination tree. In fact we need
to keep marks on the shared forest between what
we are really traversing during the parsing process
and what we are synchronizing, that is why we
need to have access to all the needed informations.
But the only rule which really knows which tree
will be either co-indexed or duplicated is the rule
describing the substitution of the realized tree.
So, we have to get this information by accessing
the corresponding derivation item. If we are in a
two phase generation process of a shared forest8

we can generate simultaneously the substitution
rules for the leftmost and rightmost nodes of the
tree anchored by a coordination and then we can
easily get the right synchronized derivation from
the start. Here we have to fetch from the chart this
item using unification variables through the path
of the derivations leading to it.

Let us call “climbing” the process of going
from a leaf nodeN of a tree γ to the node
belonging to the tree anchored by a coordi-
nator (αconj) and which dominates this node.
This “climbing” gives us a list of linked deri-
vations (ie.[< γx(N), γy, γx, T ype, IsGhost >

, < γz(N), γx, γz, T ype1, IsGhost1 >, ..] where
γ(N) is the node of the treeγ where the derivation
takes place9). The last returned item is the one who
has an exact counterpart in the other conjunct, and
which is easy to recover as shown by the inference
rule in the previous section. Given this item, we
start the opposite process, called “descent”, which
use the available data gathered by the climbing
(the derivation starting nodes, the argumental po-
sition marked by an index on nodes in TAG gram-

8The first phase is the generation of the set of rules,
(Vijay-Shanker and Weir, 1993), and the second one is the fo-
rest traversal (Lang, 1992). See (Seddah and Gaiffe, 2005b)
for a way to generate a shared derivation forest where each
derivation rule infers its own derivation item, directly prepa-
red during the generation phase.

9The form of a derivation item is defined section 6.1

mars..) to follow a parallel path. Our algorithm can
be considered as taking the two resulting lists as a
parameter to produce the correct derivation item.
If we apply a two step generation process (shared
forest generation then extraction), the “descent”
and the “climbing” phase can be done in parallel
in the same time efficient way than(2005a).

6.4 Description of inference rules

In this section we will describe all of the infe-
rences relative to the derivation in the right part,
resp. left, of the coordination, seen in figure 5.

In the remainder of this paper, we describe the
inference rules involved in so called predicative
derivations (substitutions and ghost substitutions).
Indeed, the status of adjunction is ambiguous. In
the general case, when an adjunct is present on one
side only of the conjunct, there are two possible
readings : one reading with an erased (co-indexed)
modifier on the other side, and one reading with no
such modifier at all on this other side. In the rea-
ding with erasing, there is an additionnal question,
which occurs in the substitution case as well : in
the derivation structure, shall we co-index the era-
sed node with its reference node, or shall we per-
form a (partial) copy, hence creating two (partially
co-indexed) nodes ? The answer to this question
is non-trivial, and an appropriate heuristics is nee-
ded. A first guess could be the following : any fully
erased node (which spans an empty range) is fully
co-indexed, any partially erased node is copied
(with partial co-indexation). In particular, erased
verbs are always copied, since they can not occur
without non-erased arguments (or modifiers).

Elliptic substitution of an initial tree α on a
ghost tree γghost : If a tree α substituted in
a nodeNi of a ghost treeγghost (ie. Derivation
g-Der2’ on figure 5), wherei is the traditional
index of an argumental position (N0,N1...) of this
tree ; and if there exists a ghost derivation of a
substitution of the treeγghost into a coordination
tree αconj (Der. g-Der1) and therefore if this
ghost derivation pertains to a treeαX where
a substitution derivation exists nodeNi,(Der.
Der2) then we infer a ghost derivation indicating
the substitution ofα on the forwarded treeαX

through the nodeNi of the ghost treeγghost (Der.
Ghost-Der2).

150



g-Der2’:< N iα , α, ? , substg, γghost >

g-Der1:< P αconjD, αX , αconj , substg, γghost

Der2:< N iαX
,−, αX , subst,− >

ghost-Der2:< N iα , α, ghost(αX), substg, γghost >

This is the mechanism seen in the analysis of
“Jean aime Marie et Pierre Virginie” to provide the
derivation tree.

Elliptic substitution of a initial ghost tree αghost

on a treeγ substituted on an treeαconj : We
are here on a kind of opposite situation, we have
a realized subtree which lacks one of its argument
such asJeani dormit puisǫi mourut (Johni slept
thenǫi died). So we have to first let a mark in the
shared forest, then fetch the tree substituted on
the left part of the coordination, and get the tree
which has substituted on its ith node, then we will
be able to infer the proper substitution. We want
to create a real link, because as opposed to the last
case, it’s really a link, so the resulting structure
would be a graph with two links out of the tree
anchored byJean, one to[dormir] (to sleep) and
one to[mourir] (to die).

If a ghost treeαghost substituted on a nodeNi

of a treeα (Der. g-Der1’), if this treeα has been
substituted on a substitution node,PconjD, in the
rightmost part of a treeαconj , (Der. Der1) ancho-
red by a coordinating conjunction, if the leftmost
part node, PconjL, of αconj received a substitu-
tion of a treeαs, (Der. Der2) and if this tree has
a substitution of a treeαfinal on its ith node, (Der.
Der3) then we infer an item indicating a derivation
between the treeαfinal and the treeα on its node
Ni, (Der. g-Der1)10.

g-Der1’:< N iαghost
, ? , α, substg, αghost >

Der1:< P αconjD, α, αconj , subst,− >
Der2:< P αconjL, αs, αconj , subst,− >
Der3:< N iαs

, αfinal, αs, subst,− >

g-Der1:< N iα , αfinal, α, subst, αghost >

7 Conclusion

We presented a general framework to model and
to analyze elliptic constructions using simple me-
chanisms namely partial sharing and partial dupli-
cation through the use of a shared derivation fo-
rest in the LTAG framework. The main drawback
of this approach is the use of tree schemata as part
of parsing process because the anchoring process

10This mechanism without any restriction in the general
case, can lead to a exponential complexity w.r.t to the length
of the sentence.

must have a extremely good precision choose al-
gorithm when selecting the relevant trees. For the
best of our knowledge it is one of the first time that
merging tree schemata, shared forest walking and
graph induction, i.e., working with three different
levels of abstraction, is proposed. The mechanism
we presented is powerful enough to model much
more than the ellipsis of verbal heads and/or some
of their arguments. To model elliptic coordinations
for a given langage, the introduction of a specific
saturationfeature may be needed to prevent over-
generation (as we presented in (Seddah and Sagot,
2006)). But the same mechanism can be used to go
beyond standard elliptic coordinations. Indeed, the
use of strongly structured anchors (e.g., with a dis-
tinction between the morphological lemma and the
lexeme) could allow a fine-grained specification of
partial value sharing phenomena (e.g. zeugmas).
Apart from an actual large scale implementation
of our approach (both in grammars and parsers),
future work includes applying the technique des-
cribed here to such more complex phenomena.

References

Anne Abeillé. 1991. Une grammaire lexicalisée
d’arbres adjoints pour le français. Ph.D. thesis, Pa-
ris 7.

Alfred V. Aho. 1968. Indexed grammars-an extension
of context-free grammars.J. ACM, 15(4) :647–671.

Marie-Hél’ene Candito and Sylvain Kahane. 1998.
Can the TAG derivation tree represent a semantic
graph ? InProceedings TAG+4, Philadelphie, pages
21–24.

Mary Dalrymple, Stuart M. Shieber, and Fernando
C. N. Pereira. 1991. Ellipsis and higher-order unifi-
cation.Linguistics and Philosophy, 14(4) :399–452.

Aravind K. Joshi and Yves Schabes. 1992. Tree Adjoi-
ning Grammars and lexicalized grammars. In Mau-
rice Nivat and Andreas Podelski, editors,Tree auto-
mata and languages. Elsevier Science.

Bernard Lang. 1991. Towards a Uniform Formal Fra-
mework for Parsing. In M. Tomita, editor,Current
Issues in Parsing Technology. Kluwer Academic Pu-
blishers.

Bernard Lang. 1992. Recognition can be harder than
parsing. InProceeding of the Second TAG Work-
shop.

Owen Rambow and Aravind K. Joshi. 1994.A Formal
Look at Dependency Grammar and Phrase Structure
Grammars, with Special consideration of Word Or-
der Phenomena. Leo Wanner, Pinter London, 94.

Anoop Sarkar and Aravind Joshi. 1996. Coordination
in tree adjoining grammars : Formalization and im-
plementation. InCOLING’96, Copenhagen, pages
610–615.

151



Djamé Seddah and Bertrand Gaiffe. 2005a. How to
build argumental graphs using TAG shared forest :
a view from control verbs problematic. InProc.
of the 5th International Conference on the Logical
Aspect of Computional Linguistic - LACL’05, Bor-
deaux, France, Apr.

Djamé Seddah and Bertrand Gaiffe. 2005b. Using both
derivation tree and derived tree to get dependency
graph in derivation forest. InProc. of the 6th In-
ternational Workshop on Computational Semantics
- IWCS-6, Tilburg, The Netherlands, Jan.

Djamé Seddah and Benoît Sagot. 2006. Modélisation
et analyse des coordinations elliptiques via l’exploi-
tation dynamique des forêts de dérivation. InProc.
of Traitement automatique des Langues Naturelle -
TALN 06 - louveau, Belgium, Apr.

Stuart Shieber, Yves Schabes, and Fernando Pereira.
1995. Principles and implementation of deductive
parsing.Journal of Logic Programming, 24 :3–36.

Marc Steedman. 1990. Gapping as constituant coordi-
nation.Linguistic and Philosophy, 13 :207–264.

K. Vijay-Shanker and D. Weir. 1993. The use of sha-
red forests in tree adjoining grammar parsing. In
EACL ’93, pages 384–393.

8 Figures

1) Jean aimei Marie et Paulεi Virginie
John loves Mary and Paul Virginia
Predicate elision
2) Pauli mange une pomme etεi achète des cerises
Paul eats an apple and buys cherries
Right subject elision
3) Marie cuitεi et Pierre vend des crêpesi

Mary cooks and Peter sells pancakes
Left object elision
4)Mariei cuit εj etεi vend des crêpesj

Mary cooks and sells pancakes
Left object and right subject elision

FIG. 3 – Exemples of elliptic constructions

ε
ii

V

aime

N1

Virginie

V

déteste

N1

Marie

P

etP P

N0

Paul

N0

Paul Virginie

DétesterAimer

Marie

Et

Derived tree

i i
Jean

P

etP

N1

Marie

P

N0

Paul

V N1

Virginie

V

εaime

N0

ghost(Aimer)Aimer

Et

Jean Marie VirginiePaul

FIG. 4 – Gapping and Forword Conjunction reduc-
tion

α1

α1

α1α1

α1

α1

α2

α2

α3

α3 α4 α5

S
Conj(et)

α1

α2 α3
α4 α5

ghost(α1)

Ghost Der. 1

Ghost Der. 2

Ghost Der. 3

Der. 2

Der. 0

Der. 1

Shared forest Dependency graph

α5α4

P

P

VN0

V

N1

N

N

N

N N

N

N

N

Pconj

Pconj

Pconj_G

Jean Marie

Pconj_D

Pg

Pg

N0g

Paul

Vg

Vg

N1g

Virginieaime ε

et

FIG. 5 – Shared forest and relative dependancy
graph for “Jean aime Marie et Paul Virginie”( John
loves Mary and Paul Virginie)

call transition rules

Call subst
< ⊥, Nγ , i, j,−,−, R, Stack > →
< ⊤, Nα, i, j,−,−, R, Stack >

Call adj
< ⊤, Nγ , i, j,−,−, R, Stack > →

< ⊤, Nβ , i, j,−,−, R, [Nγ |Stack] >

Call axiom
S→
< ⊤, Nα, 0, n,−,−, ∅, ∅ >

Call no subs
< ⊥, Nγ , i, j,−,−, R, Stack > →
true

Call foot
< ⊥, ∗Nβ , i, j,−,−, R, [Nγ |Stack] > →
< ⊤, Nγ , i, j,−,−, R, [Stack] >

The “Call subst” rule is the rule which starts the recognition
of a substitution of the initial treeα on the nodeN of the tree
γ between the indicesi andj. “Call adj” starts the recogni-
tion of the adjunction of the auxiliary treeβ on the nodeN
of an elementary treeγ betweeni andj. “Call axiom” starts
the recognitionα of an elementary tree spawning the whole
string. “Call no subs” starts the recognition of a nodeN of
a elementary treeγ dominating the empty node between the
indicesi andj. “Call foot” starts the recognition of a subtree
dominated by the nodeNγ between the indicesi andj, the
nodeNgamma was the start of the adjunction of the auxi-
liary treeβ and∗Nβ its foot node.
In order to avoid the “call adj” rule to be over generating, we
control the size of the stack by the number of possible ad-
junctions at a given state : if the automata has no cycle and
if each state of the automata goes forward (j always superior
to i), the number of possible adjunctions on a spine (the path
between the root of an auxiliary tree and its foot) is bounded
by the length of the string to be analyzed.

FIG. 6 – Shared forest derivation inference rules

152



Proceedings of the 8th International Workshop on Tree Adjoining Grammar and Related Formalisms, pages 153–158,
Sydney, July 2006.c©2006 Association for Computational Linguistics

‘Single Cycle’ Languages: Empirical Evidence for TAG-Adjoining

Arthur Stepanov
Institute of Linguistics
University of Potsdam

P.O. Box 601553, D-14415 Potsdam, Germany
artorius7@gmail.com

Abstract

Russian and Polish lack ’unbounded’
syntactic dependencies that fall into
the primary empirical domain of
TAG-Adjoining, namely, long-distance
movement/filler-gap dependencies across
a tensed clause boundary. A theory that
incorporates Adjoining as a recursive
structure building device provides a novel
and straightforward account of this gap,
whereas existing theories of syntactic
locality, e.g. of the standard Minimalist
kind, face difficulties explaining the phe-
nomenon. These languages thus supply
direct linguistic evidence for Adjoining.

1 Introduction

Frank (2002), elaborating on earlier work (Kroch,
1987) shows that incorporating TAG-Adjoining
into a theory of Universal Grammar of the Min-
imalist kind (Chomsky, 1995; Chomsky, 2000)
yields a number of important empirical advan-
tages. In particular, Adjoining provides a sim-
ple and elegant solution for the long-standing and
difficult problem in modern syntactic theory con-
cerning a proper formulation of the recursive, or
’successive-cyclic’, character of unbounded long
movement in examples such as (1) where the wh-
phrase stops by each intermediate CP (’Comp’).

(1) [CP Who1 does Peter think [CP t1 (that)
Mary saw t1]]?

According to Frank (2002), there is no long move-
ment per se in (1); rather, only a local wh-
movement takes place within the embedded clause
(2-a), and the matrix part (2-b) is later ‘interpo-
lated’ by Adjoining at the C’ node.

(2) a. [CP Who1 [C’ Mary saw t1]]
b. [C’ does Peter think]

Other long-distance dependencies, such as long
‘subject raising’ (e.g.John seems to be likely to be
smart) are treated along similar lines.

Long-distance dependencies (LDD) thus reduce
to local dependencies within an elementary tree
(in the sense of TAG) coupled with the recursive
mechanism of ’interpolating’ additional structural
chunk(s) by Adjoining. It follows that if the re-
cursive engine in the form of Adjoining were ren-
dered inoperative in some language, LDDs that are
built with Adjoining will not be possible in that
language. In this study, we investigate Russian and
Polish and argue that those are indeed languages
that meet that expectation.

2 Data

A systematization of the relevant data leads
to the following descriptive generalization:
movement/filler-gap dependencies of any kind
in Russian and Polish are strictly confined to a
single Tense domain, roughly, C(omplementizer)
P(hrase) in the standardly assumed clause
structure.

Consider first the case of A′-movement. It
is well known that Russian lacks standard long-
distance wh-movement out of finite (tensed)
clauses of the type in (1) (Comrie (1972), among
others). Russian also lacks other long-distance A’-
dependencies such as Topicalization (Müller and
Sternefeld, 1993). This is shown in (3).

(3) a. ?*Kogo
Whom-acc

ty
you

sčitaeš’
believe

čto
that

Maša
Masha

ljubit?
loves

153



b. ?*etu
this

knigu
book

Ivan
Ivan

sčitaet
believes

čto
that

emu
him

dal
gave

Maksim
Maksim

Aside from finite clauses, wh-movement is possi-
ble out of control infinitival as well as out of sub-
junctive complements:

(4) Kogo
Whom

Ivan
Ivan

xočet
wants

priglasit’
to-invite

na
to

večerinku?
party

(5) Kogo
Whom

Ivan
Ivan

xotel
wanted

čtoby
that-sbj

my
we

priglasili?
invited

Control infinitivals in Russian have been inde-
pendently shown to be domains smaller than CP,
namely, VPs (Babby, 1998), unlike in English
where they are analyzed as either CPs or TPs, de-
pending on a theory.1 Subjunctive clauses present
a well known ’restructuring’ context. In many
languages, they trigger ’clause union’ and al-
low otherwise clause-bound processes, e.g. clitic
climbing. In Russian, subjunctive clauses display
the obviation effect with respect to Condition B
whereby the embedded subject must have a refer-
ence disjoint with that of the matrix subject, typi-
cal of a clause-bound process:

(6) *Ivani

Ivan
xočet
wants

čtoby
that-subjnct

oni

he
uexal
left

Given this and other local effects, subjunctives
in Russian and other languages have been argued
to involve a ’domain extension’ process (not very
well understood in a derivational theory) collaps-
ing matrix and embedded clauses into a single
Tense domain ((Picallo, 1984; Progovac, 1993;
Terzi, 1992) among others).

The precise nature of the single Tense domain
restriction in Russian has remained largely un-
clear. A number of technical solutions were
proposed in the Government and Binding and
Minimalist frameworks in the form of various
constraints on extraction and additional barriers
(Müller, 1995; Zaenen, 1983; Pesetsky, 1982;
Stepanov, 2001; Koster, 1978). However, the

1Babby’s relevant argument draws on the assumption that
the silent PRO subject has null dative case in Russian. Thus
a contrastive reflexive doubling the PRO subject appears in
dative case in non-obligatory control sentences, but must ap-
pear in nominative in obligatory control cases. Babby argues
that the latter involves no PRO at all, just a bare VP.

question why Russian and Polish should differ
from English in this manner continues to be sub-
ject to much discussion.

LDDs are also missing in the context of so
called A-movement. Long subject raising is un-
available in Russian (even though predicates with
’raising’ semantics are available), unlike in Eng-
lish, cf. (7):2

(7) *Ivan
Ivan

kažetsja
seems

byt’
to-be

bol’nym
sick

On the standard view in transformational theory
(Chomsky, 1981) both subject raising and ob-
ject raising, or Exceptional Case Marking (ECM),
cases are explained by the same principles. In this
respect, it is not surprising that Russian lacks in-
finitival ECM contexts as well (Brecht, 1974; Las-
nik, 1998):

(8) *Ivan
Ivan

sčitaet
considers

Mariju
Mary

byt’
to-be

umnoj
smart

Aspectual, or ‘phase’ verbs (begin, con-
tinue) have sometimes been argued to involve
long (cross-clausal) raising (Perlmutter, 1970).
A number of empirical diagnostics applied to
Russian clearly demonstrate the monoclausal (sin-
gle Tense) character of these constructions in this
language (Stepanov, 2006). For instance, assum-
ing that sentential adverbs such aspossiblymod-
ify the Tense (TP) domain (Watanabe, 1993), in
a truly biclausal configuration a lower TP adverb
could in principle have a narrower scope with re-
spect to the matrix verb. However, with Russian
aspectuals the situation is different. In (9)na
sledujuš̌cej nedelenecessarily modifies the entire
sentence, along withvozmǒzno:

(9) On
He

vozmožno
possibly

prodolžit
will-continue

na
on

sledujuščej
next

nedele
week

čitat’
to-read

knigu
book

Other potential candidates for cross-clausal LDD
in Russian such as epistemic modal constructions
have also been argued to involve a single Tense
domain (Schoorlemmer, 1994). In effect, the cur-
rent literature on Russian syntax reveals no clear
cases of LDD spanning more than one Tense do-
main, and those contexts that have been assumed

2The ‘small clause’ version of (7) (withoutbyt’) is al-
lowed. Small clause sentences also involve a single Tense
domain (Stowell, 1981)

154



to do that (often on analogy with other languages),
on closer introspection show the single Tense be-
havior, such as those above.

A similar state of affairs was found in Pol-
ish, where the lack of LDD in the domain of A′-
movement out of finite clauses is well documented
(see (Giejgo, 1981; Zabrocki, 1981; Witkos, 1981)
for A′-movement cases, and (Zabrocki, 1981) for
A-movement cases).

One may entertain two analytical strategies in
handling the Russian/Polish facts. One is to look
for separate analyses of the lack of long A’- and
A-dependencies. We believe such an approach
would miss an important generalization concern-
ing the across-the-board character of local move-
ment dependencies in these languages. A more in-
triguing and fruitful possibility to explore is that
Russian and Polish only allow dependencies con-
fined, roughly speaking, to a single CP. We call
such languages ’single cycle’ languages, in con-
trast to the more familiar, ’successive cyclic’ lan-
guage type (English). The question to be ad-
dressed now is: what is responsible for the ’single
cycle’ property?

3 The traditional approach

The standard approach in transformational syntac-
tic theory since Chomsky (1965) and to this day
(Chomsky, 2001) maintains that syntactic move-
ment dependencies are a priori unconstrained by
the size of the structure over which they are
formed; in fact, in this approach there are no a pri-
ori restrictions on structure building at all. The
structure building operation ‘Merge’ applies re-
cursively until the material available for sentence
building (lexical items, previously built chunks of
structure) is exhausted. This approach has an in-
herent difficulty handling the Russian/Polish facts
since it is not clear what would prevent a depen-
dency to stretch as long as the size of the structure
permits, in some languages but not others.3 The
usual strategy in this case would be to impose ad-
ditional constraints on movement in ‘single cycle’
languages which do not apply in languages like
English. This may be satisfactory at some level of
analysis, but involves a real complication in this
theory. A more attractive possibility, we believe,
would be to have this constraint follow from the

3The controversy in formulating the ‘successive cyclic’
character of LDDs in English and other languages, mentioned
in Section 1 is part of that difficulty.

architecture of the theory itself. TAG provides just
the right platform to make this explicit.

4 A TAG solution

We explore the linguistic version of TAG in
Frank (2002) which bears close resemblance to the
mainstream Minimalist model. In this version of
TAG syntactic movement is naturally limited by
the size of maximal structural domains built by
Merge -elementary trees. Crucially, all movement
takes place within elementary trees,before these
trees are joined together into a complex structure
by designated operations - Substitution and Ad-
joining.4 The recursive character of LDDs (‘suc-
cessive cyclicity’) is seen in this system as a con-
sequence of recursion in structure building at par-
ticular structural nodes, such as C′ or T′ (in the
sense of X-bar theory). In particular, the recur-
sive aspect of LDD is captured via the structure
building operation Adjoining which interposes ad-
ditional structure in between the head and the tail
of a local dependency at a recursive node within a
given elementary tree (see Section 1).

Notably, in virtually all cases of LDDs consid-
ered in Frank’s study the additional structure op-
erated by Adjoining constituted a Tensed domain.
This approach suggests a natural direction to pur-
sue with respect to ‘single cycle’ languages that
can be summarized in (10):

(10) Proposal
TAG-Adjoining is inoperative in ‘single
cycle’ languages.

If Adjoining is unavailable, there is no way
to combine two elementary trees as in (2).
(10) straightforwardly accounts for the fact that
Russian and Polish feature neither A- nor A’-
LDD, that is, the type of constructions in which
recursive (‘successive cyclic’) movement is in-
volved. This proposal makes no recourse to addi-
tional theoretical constructs as the traditional ap-
proaches but makes use of the existing machinery
of TAG which provides a simple and accurate de-
scription of the phenomenon.

In effect, (10) implies that a source of paramet-
ric variation lies in the phrase structural compo-
nent, to which Adjoining naturally belongs. The

4Substitution connects the root node of one elementary
tree in an empty slot in another elementary tree, similarly
to a Generalized Transformation of Chomsky (1955/75) or
Chomsky (1995), Ch.3.

155



idea of phrase structure as a locus of paramet-
ric variation, and implications for child language
acquisition and learnability, have been explored
in detail in Lebeaux (1988/2000), a precursor to
standard Minimalism. We believe it is possible
to frame (10) in the general scheme of Lebeaux’s
parametric model.

5 Parametric and acquisitional aspects

Lebeaux (1988/2000) proposes that particular
grammars are hierarchically ordered by their com-
plexity: a grammar G0 that features operations O1

and O2 properly contain a grammar G1 that fea-
tures only O1. Considering the operations Adjoin-
α and Conjoin-α, Lebeaux represents the relevant
parametric space as in (11), where arrows are to be
read as addition of an operation to the grammar,
and parenthesis as ’invisibility’ for the learner.

(11) Adjoin-α Conjoin-α
G0 (( - G1) - G2)

Different parametric options correspond to dif-
ferent sets of erased parentheses (outermost first).
Furthermore, Lebeaux proposes that the paramet-
ric sequence (11) actually mirrors (in his terms, is
’congruent to’) the time course of children’s gram-
matical development. That is, in the course of lan-
guage development children proceed from less to
more computationally complex grammars, along
the lines of (11).

Frank (1998) takes up the developmental por-
tion of Lebeaux’s congruency thesis in the con-
text of TAG-Adjoining, suggesting that the de-
velopmental sequence for English speaking chil-
dren proceeds from the grammar without Adjoin-
ing to a grammar with Adjoining. Viewed in
this manner, the proposal explains, among other
things, why children learning English initially fail
to construe even simple cases of long-distance
wh-movement or subject to subject raising, while
performing well on constructions with similar
processing load that do not involve recursion.
Representing Frank’s proposal with Lebeaux type
notation may look as in (12) (Merge and Move op-
erate within an elementary tree; cf. above).

(12) Adjoining
...G1

Move,Merge
- G2

In the context of Lebeaux’s congruency thesis,
Frank’s proposal begs a question as to whether
there exist a parametric sequence that corresponds

to the proposed developmental sequence. Frank
does not attempt an answer. But now we are able
to fill in this gap. Specifically, we now say that,
indeed, the parametric sequence includes a com-
putationally more complex grammar with Adjoin-
ing which properly contains the grammar without
Adjoining, as represented in (13).

(13) Adjoining
...G1

Move,Merge( - G2)

Here, one parametric option is G1 (no parentheses
erased) corresponding to ’single cycle’ languages
like Russian and Polish. The option erasing the
parentheses in (13) results in languages with usual
recursive LDDs (English etc). This is exactly as
expected under the Congruency thesis. ‘Single cy-
cle’ languages thus provide strong evidence for 1)
the TAG operation Adjoining; 2) Lebeaux’s con-
gruency thesis; and 3) Frank’s acquisitional se-
quence with respect to Adjoining.

6 Refining Adjoining

Auxiliary trees, utilized by Adjoining, come in
two varieties, both of which adhere to a princi-
pal requirement: the ‘root’ and ‘foot’ node of such
tree must be categorically identical (e.g. CP), in
order for Adjoining to succeed. In one variety
the root node directly dominates the foot node
(14-a). This case corresponds to standard transfor-
mational adjunction. In the second variety there is
structural material between the root and the foot
nodes (14-b):

(14) a) A

A X

b) A

X

A

The recursive structures we are interested in in-
volve only the ’interpolation’ variety in (14-b).
But (10) refers to the prohibition of Adjoining
in general. That is, in the present form it is
too powerful: it rules out not only ’interpolated’
cases of Adjoining, but also regular cases of base-
generated adjunction, e.g. VP or DP modifiers
(adverbs or adjectives).

One direction that one might undertake in this
regard is to relax (10) and allow Adjoining for
particular nodes in Russian, while excluding it for
others. This amounts, essentially, to specifying the
list of recursive nodes for grammars of particular

156



languages. In this manner, we automatically con-
strain the types of possible auxiliary trees, targeted
by Adjoining. Such lists are commonly used in
various formal versions of TAG (cf. (Abeillé and
Rambow, 2000)). Our parametric variation could
then be captured for instance as follows:

(15) English: Aux ={TP, CP, VP, DP}
Russian: Aux ={VP, DP}

Another, more interesting alternative, is to make
a principled distinction between the two cases of
Adjoining. In fact, there is a well established
linguistically sound method of distinguishing the
types of root and foot nodes in (14)a and (14)b.
The method goes back to structural distinction be-
tween segments and full categories, along the lines
of Chomsky (1986) (who, in turn, builds on the
work of R. May). Namely, both nodes labeled A
in (14)a are in fact segments of a single category
A. In contrast, the nodes labeled A in (14)b are full
categories (note that the ’listing’ solution above
ignores this state of affairs). It seems appropri-
ate, therefore, to split Adjoining into two different
operations, e.g.Adjunction(which coincides with
the traditional transformational usage) for (14)a,
andInterpolationfor the case (14)a. The proposal
in (10) then pertains to the latter, without loss of
generality. Details of this alternative are discussed
in Stepanov (2006).

7 Further issues

The proposal explored in (10) does not imply that
the recursive component is completely excluded
in ‘single cycle’ languages. Declarative sentences
with one or more embedded tensed clauses are
of course available. In the linguistic version of
TAG adopted here, those are built by Substitution
- at the CP node (for details, see Frank (2002).
Furthermore, wh-extraction facts concerning con-
trol infinitivals and subjunctives and Russian and
Polish suggest that certain recursive structural do-
mains (e.g. VPs in control infinitivals) are built
by Merge within a single elementary tree, and
therefore, that not all prima facie LDDs are ex-
clusively handled with Adjoining, in contrast to
Frank (2002). In particular, Adjoining is re-
sponsible only for LDDs that involve more than
one Tense domain, while all others are built with
Merge within a single elementary tree, and are not,
strictly speaking, LDDs at all as they do not dis-
play the ‘successive cyclic’ character.

This raises two further issues. One issue con-
cerns a possible need to slightly modify the crite-
ria of well-formedness of elementary trees formed
by Merge as discussed by Frank (2002) to allow
the above contexts. Another issue concerns mak-
ing more precise the proper division of labor with
respect to two types of LDDs. In a system such
as Frank (2002) the distinction can be captured
in terms ofselectional restrictions, perhaps of se-
mantic kind. Selection usually plays a crucial role
in forming an elementary tree by Merge: in most
recent transformational theories, selection directly
determines a candidate for Merge. On the other
hand, it is conceivable to suppose that Adjoining -
the operation that interpolates one elementary tree
into anotherafter both have already been built by
Merge - has little to do with selection. Therefore,
dependencies that are formed via selection in di-
rect or indirect manner, cannot be relegated to Ad-
joining. Further aspects of this suggestion remain
to be explored.

8 Conclusion

Integration of TAG mechanisms into the main-
stream linguistic theory leads to a significant
widening of its empirical coverage in various do-
mains. As shown in previous work, a major
strength of the TAG formalism lies in its great
potential to capture facts concerning strict local-
ity of syntactic dependencies in natural language.
The present study applies the TAG machinery in
the domain of well known but ill explained phe-
nomenon of radical across-the-board locality of
syntactic dependencies in two Slavic languages,
Russian and Polish. We have shown that making
use of the TAG operation Adjoining leads to a sim-
ple and straightforward account of this phenom-
enon, while the standard (pre-)Minimalist model
of syntax faces conceptual difficulties in this re-
gard. We also provided independent support for
the thesis of congruency of the parametric and ac-
quisitional sequences with respect to Adjoining
(Lebeaux, 1988/2000; Frank, 1998) and suggested
ways of refining Adjoining in light of the new em-
pirical data.

Acknowledgments

I am grateful to Robert Frank, Jens Michaelis,
Penka Stateva and three anonymous referees for
helpful suggestions.

157



References

Anne Abeillé and Owen Rambow (eds). 1986.Tree
Adjoining Grammars: Formalisms, linguistic analy-
sis and processing. MIT Press, Cambridge, MA.

Leonard Babby. 1998. Subject control as direct
predication: Evidence from Russian. InFormal Ap-
proaches to Slavic Linguistics: The Connecticut
Meeting, 17-37. Michigan Slavic Publications.

Richard Brecht. 1974. Tense and infinitive com-
plements in Russian, Latin and English. InSlavic
transformational syntax, ed. Richard D. Brecht and
Catherine Chvany, 193-218. Michigan Slavic Mate-
rials, University of Michigan.

Noam Chomsky. 1955/1975.The logical structure of
linguistic theory. Plenum, New York.

Noam Chomsky. 1965.Aspects of the theory of syntax.
MIT Press, Cambridge, MA.

Noam Chomsky. 1981.Lectures on government and
binding. Foris, Doredrecht.

Noam Chomsky. 1986.Barriers. MIT Press, Cam-
bridge, MA.

Noam Chomsky. 1995.Minimalist program. MIT
Press, Cambridge, MA.

Noam Chomsky. 2000. Minimalist inquiries: The
Framework. InStep by step: Essays in honor of
Howard Lasnik, ed. Roger Martin, David Michaels
and Juan Uriagereka, 89-155. MIT Press, Cam-
bridge, MA.

Noam Chomsky. 2001. Derivation by phase. InKen
Hale: A life in language, ed. Michael Kenstowicz.
MIT Press, Cambridge, MA.

Bernard Comrie. 1972.Aspects of sentence comple-
mentation in Russian, Ph.D. thesis. Cambridge Uni-
versity.

Robert Frank. 1998. Structural complexity and the
time course of grammatical development.Cognition,
66:249-301.

Robert Frank. 2002.Phrase structure composition
and syntactic dependencies. MIT Press, Cambridge,
MA.

Janina Giejgo. 1981.Movement rules in Polish syntax,
Ph.D. thesis. University College London.

Jan Koster. 1978.Locality principles in syntax. Foris,
Doredrecht.

Anthony Kroch. 1987. Unbounded dependencies and
subjacency in a tree adjoining grammar. InMath-
ematics of language, ed. Alexis Manaster-Ramer,
143-172. John Benjamins, Amsterdam.

Howard Lasnik. 1998. Exceptional Case Marking:
Perspectives old and new. InProceedings of Formal
Approaches to Slavic Linguistics 6, 187-211. Michi-
gan Slavic Publications, University of Michigan.

David Lebeaux. 1988.Language acquisition and the
form of the grammar, Ph.D. thesis, University of
Massachusetts. Published in 2000 by John Ben-
jamins, Amsterdam.

Gereon Müller and Wolfgang Sternefeld. 1993. Im-
proper movement and unambiguous bindingLin-
guistic Inquiry, 24:461-507.

Gereon Müller. 1995.A-bar syntax: A study of move-
ment types. Mouton de Gruyter.

David Perlmutter. 1970. On the two verbs ‘begin’. In
Readings in English transformational grammar, ed.
R. Jacobs and P. Rosenbaum. Ginn, Waltham, MA.

David Pesetsky. 1982.Paths and categories, Ph.D.
thesis. MIT.

M.C. Picallo. 1984. The Infl node and the null subject
parameter.Linguistic Inquiry, 15:75-102.

Ljiljana Progovac. 1993. Locality and subjunctive-like
complements in Serbo-Croatian.Journal of Slavic
Linguistics, 1:116-144.

Maaike Schoorlemmer. 1994. Aspect and verbal com-
plementation in RussianProceedings of the Ann Ar-
bor Workshop on Formal Approaches in Slavic Lin-
guistics, 400-422. Michigan Slavic Publications.

Arthur Stepanov. 2001.Cyclic domains in syntactic
theory, Ph.D. thesis. University of Connecticut.

Arthur Stepanov. 2006 (to appear). ‘Single cycle’ lan-
guages: Implications for cyclicity, recursion and ac-
quisition. InLinguistic Variation Yearbook 6, ed. Jo-
hann Rooryck, Pierre Pica and Jeroen van Craenen-
broeck. John Benjamins, Amsterdam.

Tim Stowell. 1981.Origins of phrase structure, Ph.D.
thesis. MIT.

Arhonto Terzi. 1992.PRO in finite clauses: A study
of the inflectional heads of the Balkan languages,
Ph.D. thesis. City University of New York.

Akira Watanabe. 1993.AGR-based Case theory and
its interaction with the A′-system, Ph.D. thesis. MIT.

Jacek Witkos. 1981.Some aspects of phrasal move-
ment in English and Polish, Ph.D. thesis. Uniwer-
sytet im. Adama Mickiewicza, Poznan.

Tadeusz Zabrocki. 1981.Lexical rules of semantic in-
terpretation. Uniwersytet im. Adama Mickiewicza,
Poznan.

Annie Zaenen. 1993. On syntactic binding.Linguistic
Inquiry, 14:469-504.

158



Proceedings of the 8th International Workshop on Tree Adjoining Grammar and Related Formalisms, pages 159–164,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Reconsidering Raising and Experiencers in English

Dennis Ryan Storoshenko
Department of Linguistics
Simon Fraser University
Burnaby, B.C., Canada
dstorosh@sfu.ca

Abstract

In this paper, structures involving the rais-
ing verb seem, are examined. Specifically,
it is shown that previously-proposed ele-
mentary trees for seem with an experiencer
argument are inadequate, based upon syn-
tactic testing. In Storoshenko (2006), new
articulated structures for the seem pred-
icate are proposed, modelled upon the
treatment of ditransitive verbs. This pa-
per recapitulates and further motivates the
ditransitive-style analysis, while illustrat-
ing its potential value in issues surround-
ing extraction and the raising construction
in TAG.

1 Introduction

The raising predicate seem is often cited as one of
the core examples in discussions of TAG’s appli-
cation to natural language syntax. Under a gener-
ative/minimalist account, a sentence such as (1a)
will have the underlying structure in (1b):

(1) a. John seems to like coffee.

b. John � seems
�
t � to like coffee � .

In TAG, the subject John remains local to the ele-
mentary tree headed by like, the elementary tree in
which its theta role is assigned. The observed dis-
placement effect is a result of the extension of the
like-headed tree after the adjunction of an auxil-
iary tree headed by seem (Kroch and Joshi, 1985).
In the more recent analysis of Frank (2002), a sen-
tence such as (1a) is derived through the composi-
tion of the elementary trees of Figure 1 to derive
the final tree in Figure 2.

TP

DP

John

T �

T

to

VP

V

like

DP

coffee
T �

T VP

V

seems

T ���

Figure 1: Elementary trees to derive John seems to
like coffee.

TP

DP

John

T �

T VP

V

seems

T �

T

to

VP

V

like

DP

coffee

Figure 2: Derived tree for John seems to like cof-
fee.

159



1.1 Defining the Problem

At issue in this paper will be the structure of sen-
tences such as those in (2):

(2) a. John seems to me to like coffee.

b. John seems to like coffee to me.

Here, a prepositional phrase to me now appears
in the clause; as illustrated, its position is vari-
able. The individual introduced in this preposi-
tional phrase is interpreted as being an experiencer
of the verb seem, in no way dependent upon the
embedded like predicate. As such, according to
the Fundamental TAG Hypothesis (Frank, 2002),
this experiencer must be composed as a part of the
seem auxiliary tree. For discursive ease, the case
in (2a) will be termed a medial experiencer, and
the (2b) case will be a final experiencer. What is
now required is an auxiliary tree for seem which
retains the desired recursivity, and supports this
experiencer in either possible position. Further
syntactic diagnostics will be used to determine the
necessary shape of such an auxiliary tree.

1.2 An Existing Account

In Frank (2002), a structure is given for this type
of raising verb with an experiencer, as in Figure 3.

T �

T VP

V

seems

PP

P

to

DP

T � �

Figure 3: Auxiliary tree for seem with an experi-
encer (Frank, 2000)

This tree would adjoin into the T � node of an in-
finitival clause tree, as in Figure 1, yielding the
correct string order (after substitution of the fron-
tier DP-experiencer), for a raising sentence with a
medial experiencer (2a). Frank’s discussion of this
ternary structure is essentially limited to the well-
formedness of its functional architecture, and the
fact that a stipulation will need to be put in place to
obviate the satisfaction of the T head’s EPP feature
by the experiencer. While a valid point, there are
still two key unanswered questions with regards to

this structure: first of all, are the complements of
the verb straightforwardly interchangeable (to ac-
count for the variable position of the experiencer),
and is there any evidence for or against the ternary
branching structure? These questions emerge to be
inter-related, and in exploring the consequences of
the ternary structure, it will be shown that simple
transposition of the verb’s complements is not an
option within a flat ternary structure.

2 Establishing Argumenthood

Before embarking upon a discussion of the con-
sequences of Frank’s ternary branching structure,
a more straightforward solution must be consid-
ered. Instead of treating it as a part of the seem-
headed tree, one could attempt to formulate an
argument that the prepositional phrase bearing
the experiencer is introduced as a syntactic ad-
junct. This could be conceivably be accomplished
through the use of one of the two trees of Figure
4. These are adjunct auxiliary trees, recursive on
VP, which would introduce an experiencer prepo-
sitional phrase at either the left or right periphery
of the VP, respectively.

VP

PP

P

to

DP

VP �

VP

VP � PP

P

to

DP

Figure 4: Possible adjunction structures for an ex-
periencer prepositional phrase

While an anonymous reviewer points out that
considering the experiencer to be an argument of
seem is quite uncontroversial, there does appear
to be some evidence that a prepositional phrase of
this form, serving to introduce something akin to
an experiencer, can exist independent of the pred-
icate seem:

(3) a. ? John to me likes coffee.

b. John likes coffee to me.

160



While the first example here sounds quite marginal
to the ears of most native speakers, the second sen-
tence is perfectly acceptable, and is a likely para-
phrase of a sentence such as John seems/appears
to like coffee to me. This suggests at least the pos-
sibility that the prepositional phrase bearing the
experiencer might be considered an adjunct1 .

However, in the case of a sentence such as (2a),
it can be easily demonstrated that adjunction of
the prepositional phrase as an independent auxil-
iary tree is not an option. Adjunction of the right-
recursive VP tree of Figure 4 into the VP node of
either tree of Figure 1 would, after all the trees
were composed, yield one of the following string
orders:

(4) a. * John seems to to me like coffee.

b. * John to me seems to like coffee.

As shown, there is no way to derive the me-
dial experiencer string-order using a simple VP-
adjunction tree. This provides clear evidence that
the mechanics of TAG derivation force an analysis
where at least the medial experiencer must enter
the derivation as a part of the seem auxiliary, giv-
ing further thrust to the contention that the experi-
encer here is indeed an argument of seem.

In turning to the experiencer in final position,
matters are less clear-cut, as there is a viable struc-
ture in which the prepositional phrase can adjoin
to the seem auxiliary and appear at the end of
the sentence, using the left-recursive tree of Fig-
ure 4. Recalling the examples of (3), it is pos-
sibly even more important to establish the argu-
menthood of this position, as there are strikingly
similar sentences in which the equivalent prepo-
sitional phrase appears to be a bona fide adjunct.
For the final experiencers of seem, evidence can
be provided to show that the prepositional phrase
is not opaque to extraction, and therefore not an
adjunct:

(5) a. The woman whom � John seemed to
like coffee to t � kept refilling his cup.

b. John seems to like coffee to the wait-
ress. Her boss, too.

1The possibility that sentences such as those in (3) are de-
rived from a raising structure from which the raising predicate
seem was subsequently elided can be easily dismissed. Aside
from employing a host of tests to identify elision phenomena,
one must simply observe that the verb like appears with finite
tense, a distinct anomaly if one were to treat it as having been
part of a raising structure.

c. Who � is it that you saw the woman
who seemed to like coffee to him � ?

In (5a), it is quite clear that the experiencer can be
relativised out of the final position with no diffi-
culty at all. Similarly, the stripping case in (5b),
where it also seems to Mary’s boss that John likes
coffee, indicates that the experiencer her boss can
be extraposed from the sentence final position, and
the rest of the sentence stripped away. Finally, the
use of a resumptive pronoun to repair the com-
plex noun phrase constraint violation in (5c) pro-
vides further proof that the final-position prepo-
sitional phrase is not opaque to extraction. This
is thus an argument position, part of the seem-
headed auxiliary. As such, the question left at the
end of Section 1 must now be answered: can the
ternary-branching auxiliary tree account for inde-
pendent syntactic observations related to this par-
ticular structure?

3 An Alternative View

At first glance, Frank’s ternary branching struc-
ture is reminiscent of early accounts of ditransi-
tive verbs. Such structures were famously argued
against in Larson (1988), and subsequently re-
examined in Harley (2002). In these treatments, a
ternary structure is replaced with a VP-shell struc-
ture, as schematised in Figure 5.

VP �

DP �������	� V � �

V � VP 


DP ������ V 
 �
t � DP ��� �����

Figure 5: Schematic tree for a ditransitive verb
phrase

In the lower VP, the goal and theme of a di-
transitive verb are projected as the specifier and
complement, respectively. The verb itself then
raises to an upper VP, which supports the agent
of the ditransitive predicate. The motivation for
adopting this structure lay in the observation of c-
command phenomena between the goal and theme

161



positions. In a flat ternary structure, mutual c-
command between these two positions would be
expected, however Larson gives considerable data
to argue that mutual c-command does not exist be-
tween these two positions.

In looking at the tree from Figure 3, it is clear
that straightforward considerations of mutual c-
command will not be informative, as one of the
ternary branches of the seem-headed tree will con-
tain the remainder of the embedded clause ma-
terial which exists below the T � adjunction site.
However, what can be observed is whether or not
a c-command relation exists between the experi-
encer of seem and the embedded clause theme.
This will speak to the matter of the possible trans-
position of the VP complements: if they do indeed
exist in a flat structure, then the experiencer should
c-command the embedded clause theme from both
the medial and final positions2 .

In Storoshenko (2006), it is argued that a seem
auxiliary with an experiencer should be analysed
with a similar VP-shell analysis. Among the ev-
idence provided, three of Larson’s c-command
tests are employed to illustrate that the experiencer
of seem does c-command the embedded clause ob-
ject when in the medial position:

(6) a. John seems to nobody to like any-
thing. (NPI Licensing)

b. John seems to every boy � to like him � .
(Bound Variable)

c. * What � does John seem to whom to
like t � ? (Superiority)

For negative polarity licensing and bound vari-
able readings to obtain in these cases, the expe-
riencer must c-command the direct object. Sim-
ilarly, the fact that extraction of the embedded
clause theme (which would not in itself be the
product of an ill-formed elementary tree), is un-
grammatical here. This is a straightforward supe-
riority violation, again illustrating that the experi-
encer c-commands the embedded theme.

The opposite is demonstrated to be the case
where the experiencer is in the final position:

(7) a. * John seems to like anything to no-
body.

b. John seems to like him � � to every boy � .
2The observed ability of an argument DP to c-command

out of its PP in this type of structure is noted in Jackend-
off (1990)

c. What � does John seem to like t � to
whom?

Here, the negative polarity item is not licensed,
and a bound variable reading does not obtain.
However, the embedded theme can be extracted
in the case where the experiencer is in the final
position. These results demonstrate that in the fi-
nal position, the experiencer does not c-command
the embedded object, contrary to what would be
expected of a flat ternary structure like that of Fig-
ure 4. The experiencer must not be in a position
where it c-commands the embedded clause mate-
rial beneath T � . The elementary trees for seem
with an experiencer in medial and final position,
respectively, are given in Figure 6.

T �

T VP �

V �

seems �
VP 


PP

P

to

DP

V 
 �
V 


t �
T � �

T �

T VP �

V �

seems �
VP 


T � � V 
 �
V 


t �
PP

P

to

DP

Figure 6: Two seem-headed trees with experi-
encers (Storoshenko 2006)

As in the case of the ditransitive structure of
Figure 5, there is verb movement here. The lower
VP supports the experiencer and the T � foot node,
essential if recursivity is to be maintained, while
seem itself raises to an upper VP projection. Un-
like the ditransitive case, seem projects no position
for an agent argument, which retains Frank’s argu-
mentation for having an elementary tree rooted in

162



T � . Crucially, this movement is licensed within
TAG, as it remains local to this one elementary
tree, and has no impact upon the recursive nature
of the tree.

In terms of the relationship between the two
experiencer positions, there are two possibilities,
both of which have been explored in the paral-
lel literature on ditransitives. In the pattern of
Larson (1988), the two trees of Figure 6 would
be derivationally related, one having been derived
from the other. Countering this is the approach
of Harley (2002), in which similar alternations are
argued to be the result of lexically distinct (yet
phonetically indistinguishable) predicates project-
ing different syntactic structures. The second ar-
gument is taken in Storoshenko (2006): there is
no derivational relationship between the two trees
Figure 6. Each is headed by a seem predicate
which specifies whether the experiencer appears
in the medial or final position.

Beyond c-command facts, there is additional
evidence that such an articulated structure for
seem may be required. An anonymous reviewer
comments that the opening of potential adjunction
sites is a common motivation for binarism over
ternary structures in TAG-based syntax. In this
case, neither the seem-headed tree of Figure 1 or
3 will account for the position of a VP-adjoined
manner or temporal adjunct modifying the raising
predicate:

(8) a. John seems for all intents and pur-
poses to be a professor to me.

b. John seemed for as long as we knew
him to like coffee.

Assuming these adjuncts to be introduced through
elementary trees recursive on VP, only the pres-
ence of the lower VP node in the shell structure
allows for an adjunction into the seem auxiliary
which yields the correct string order. Indeed, (8b)
may indicate that the shell structure is required
even in cases where there is no experiencer.

4 Extending the Analysis

Thus far, this discussion has been limited to cases
in which seem is adjoined into an infinitival clause.
There are at least two other types of structure on
which this analysis needs to be tested: those where
seem adjoins into a small clause, and those where
seem takes a finite clause complement:

(9) a. John seems happy.

b. It seems that John likes coffee.

In exploring these cases, a further challenge to the
ditransitive-style analysis arises. While the expe-
riencer is licit in both positions where the seem-
headed tree is adjoined into an infinitival clause,
apparent asymmetries can be noted in these other
constructions, calling into question the broader ap-
plicability of the structures in Figure 6. Where the
seem auxiliary has adjoined into a small clause,
the experiencer is degraded in the position imme-
diately following seem, and is more acceptable in
the sentence-final position, as in (10). Conversely,
in the finite complement case, the experiencer is
marginal at best in the sentence-final position, il-
lustrated in (11).

(10) a. ? John seems to me happy.

b. John seems happy to me.

(11) a. It seems to me that John likes coffee.

b. ? It seems that John likes coffee to
me.

However, it has been pointed out (Tatjana Schef-
fler, p.c.) that considerations of phonetic weight
may be at work in these cases. For the small clause
cases, replacing the simple adjective with a more
complex element yields a more comfortable sen-
tence with the medial experiencer, and the experi-
encer in final position now seems more awkward:

(12) a. John seems to me competent enough
to finish the task at hand.

b. John seems competent enough to fin-
ish the task at hand to me.

The same reversal can be observed with the finite
clause cases where a heavier experiencer appears
alongside the complement clause. The sentence
final experiencer is made to seem much more nat-
ural than in the simpler case above:

(13) a. It seems to all of the cafe’s customers
that John likes coffee.

b. It seems that John likes coffee to all of
the cafe’s customers.

Taking this into consideration, these apparent
variations are nothing more than red herrings, with
the relative positioning of experiencer and embed-
ded material demonstrating sensitivity to consid-
erations of phonetic weight. Such considerations
may determine which seem-headed auxiliary is the
better choice for native speakers in a given context.

163



Furthermore, difficulties in the case of (11b)
may be a function of ambiguity. An alternative
derivation does exist in which the PP to me is not
an argument of seem. Recalling the cases where
a “pseudo-”experiencer appeared without an ac-
companying raising predicate, it is possible that
the to me of (11b) and to all the cafe’s customers
of (13b) are adjuncts to the embedded clause VP,
in the same pattern as (3b). Extraction tests along
the lines of those employed earlier can be used to
show that the experiencer can be an argument, but
this still will not negate the fact that a derivation
exists wherein it may simply be an adjunct.

5 Conclusion and Implications

With the elimination of challenges to this new
analysis of seem, the conclusion is that the struc-
tures in Figure 6 are justified, and generalisable to
many uses of the verb. Potential counterexamples
are either functions of weight considerations, or
interference from ambiguous analyses.

Having used extraction-based tests to reach this
conclusion, it is worth noting that accounting for
extraction from the seem auxiliary tree remains a
problem for TAG (Frank, 2002). A Wh-question
formed through the extraction of the experiencer
argument would necessarily be extended all the
way to CP, thus sacrificing recursivity. While this
problem has not been solved here, the refinements
to the structure of seem will contribute to future
accounts. Specifically, any account of extraction
which is sensitive to issues such as superiority or
crossover will benefit from this analysis. Consider
the sentences in (14):

(14) a. Bill seems to John � to like him � .
b. Bill seems to like him � � to John � .
c. To whom � does Bill seem to like him � ?

In theory, either of (14a) or (14b) could repre-
sent the underlying structure of (14c). Binding,
as shown in (14c), is possible for this question,
though only the (14a) sentence shows equivalent
binding. Extraction of the experiencer in the
(14b) case would result in a weak-crossover vio-
lation, should the extracted experiencer bind the
embedded object. This asymmetry between (14a)
and (14b) would not be predicted by a ternary-
branching analysis, but is captured by the struc-
tures in Figure 6. These sorts of alternations, and
their implications, will need to be kept in mind as

further work on extraction from raising predicates
progresses.

References

Robert Frank. 2002. Phrase Structure Composition
and Syntactic Dependencies. Cambridge, MA: MIT
Press.

Heidi Harley. 2002. Possession and the double object
construction. Linguistic Variation Yearbook, 2:29–
68.

Ray Jackendoff. 1990. On Larson’s treatment of
the double object construction. Linguistic Inquiry,
21(3):427–465.

Anthony Kroch and Aravind Joshi. 1985. The linguis-
tic relevance of Tree Adjoining Grammar. Technical
Report MS-CS-85-16, Department of Computer and
Information Sciences, University of Pennsylvania.

Richard Larson. 1988. On the double object construc-
tion. Linguistic Inquiry, 19(3):335–391.

Dennis Ryan Storoshenko. 2006. Seems like a dou-
ble object. In Proceedings of the 22 �

�
NorthWest

Linguistics Conference.

164



Author Index

Alonso, Miguel A.,103

Babko-Malaya, Olga,91

Chiang, David,1, 25
Crabbé, Benoît,9

Gardent, Claire,97, 115
Gómez-Rodríguez, Carlos,103

Han, Chung-hye,33, 41
Hedberg, Nancy,33
Hoyt, Frederick M.,49

Joshi, Aravind K.,17

Kallmeyer, Laura,73, 81, 109
Kasami, Tadao,57
Kato, Yuki, 57
Kinyon, Alexandra,17
Kow, Eric, 97, 115
Kuhlmann, Marco,121

Le Roux, Joseph,9
Lichte, Timm,81
Liu, Yudong,127

Möhl, Mathias,121

Park, Jungyeul,133
Parmentier, Yannick,9, 115
Prolo, Carlos A.,137

Rambow, Owen,1, 17
Richter, Frank,109
Romero, Maribel,73
Ryant, Neville,65

Sagot, Benoît,147
Salvati, Sylvain,141
Sarkar, Anoop,127
Scheffler, Tatjana,17, 65
Seddah, Djamé,147
Seki, Hiroyuki,57
Stepanov, Arthur,153
Storoshenko, Dennis Ryan,159

Vilares, Manuel,103

Yoon, SinWon,17

165


	Program
	The Hidden TAG Model: Synchronous Grammars for Parsing Resource-Poor Languages
	A Constraint Driven Metagrammar
	The Metagrammar Goes Multilingual: A Cross-Linguistic Look at the V2-Phenomenon
	The Weak Generative Capacity of Linear Tree-Adjoining Grammars
	A Tree Adjoining Grammar Analysis of the Syntax and Semantics of It-Clefts
	Pied-Piping in Relative Clauses: Syntax and Compositional Semantics Based on Synchronous Tree Adjoining Grammar
	Negative Concord and Restructuring in Palestinian Arabic: A Comparison of TAG and CCG Analyses
	Stochastic Multiple Context-Free Grammar for RNA Pseudoknot Modeling
	Binding of Anaphors in LTAG
	Quantifier Scope in German: An MCTAG Analysis
	Licensing German Negative Polarity Items in LTAG
	Semantic Interpretation of Unrealized Syntactic Material in LTAG
	Three Reasons to Adopt TAG-Based Surface Realisation
	Generating XTAG Parsers from Algebraic Specifications
	Constraint-Based Computational Semantics: A Comparison between LTAG and LRS
	SemTAG, the LORIA toolbox for TAG-based Parsing and Generation
	Extended Cross-Serial Dependencies in Tree Adjoining Grammars
	Using LTAG-Based Features for Semantic Role Labeling
	Extracting Syntactic Features from a Korean Treebank
	Handling Unlike Coordinated Phrases in TAG by Mixing Syntactic Category and Grammatical Function
	Parsing TAG with Abstract Categorial Grammar
	Modeling and Analysis of Elliptic Coordination by Dynamic Exploitation of Derivation Forests in LTAG Parsing
	'Single Cycle' Languages: Empirical Evidence for TAG-Adjoining
	Reconsidering Raising and Experiencers in English

