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Preface

We are pleased to introduce the technical programme of the Fourth International Natural Language
Generation Conference (INLG), the Biennial Meeting of SIGGEN, the ACL Special Interest Group in
Natural Language Generation. INLG is the leading international conference on research into natural
language generation. It has been held at Brockenhurst (UK) in 2004, in Harriman (New York, USA) in
2002, and in Mitzpe Ramon (Israel) in 2000. Prior to 2000, the INLG meetings were International
Workshops, running every other year since 1980. The INLG conference provides a forum for the
discussion, dissemination and archiving of research topics and results in the field of text generation.
This year, INLG is being held as a COLING/ACL 2006 workshop. It takes place on the weekend prior
to the main COLING/ACL 2006 conference, on July 15-16th 2006, in Sydney, Australia.

The INLG programme consists of substantial, original, and previously unpublished results on all topics
related to natural language generation. This year, as in previous years, each submission was reviewed as
a full paper by at least three members of an international programme committee of leading researchers in
the field, listed on the next page. We received 38 submissions (both long and short papers) from all over
the world, from which we accepted 11 long papers (including two student papers) and five short papers.
We would like to thank all who submitted papers and our programme committee for their hard work.

This year, the programme centers around a variety of research issues around the realisation component
of a natural language system, including the use of statistical techniques. In particular, there are a
substantial number of contributions on the generation of referring expressions. The programme also
includes an invited talk by Professor Kathleen McKeown (Columbia University, New York, USA)
entitled ”Lessons Learned from Large Scale Evaluation from Systems that Produce Text: Nightmares and
Pleasant Surprises” and a special session on ”Sharing Data and Comparative Evaluation”, organised by
Dr Anja Belz (University of Brighton, UK) and Professor Robert Dale (Macquarie University, Australia).

We would like to thank the whole COLING/ACL 2006 committee, in particular: Suzanne Stevenson,
the COLING/ACL 2006 Workshop Chair; Olivia Kwong, the Publications Chair; Priscilla Rasmussen,
the ACL Business manager; and the local organising committee, including Judy Potter of Well Done
Events, for their help and advice in organising INLG 2006. We are also grateful to the ACL Executive
Committee and the SIGGEN board for their support and advice.

We welcome you to the conference and hope you will find it to be a productive and enjoyable experience.

Nathalie Colineau
Cécile Paris
Stephen Wan
Robert Dale
INLG 2006 Programme Co-chairs
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Extended Abstract

As the language generation community explores
the possibility of an evaluation program for lan-
guage generation, it behooves us to examine our
experience in evaluation of other systems that pro-
duce text as output. Large scale evaluation of sum-
marization systems and of question answering sys-
tems has been carried out for several years now.
Summarization and question answering systems
produce text output given text as input, while lan-
guage generation produces text from a semantic
representation. Given that the output has the same
properties, we can learn from the mistakes and
the understandings gained in earlier evaluations.
In this invited talk, I will discuss what we have
learned in the large scale summarization evalua-
tions carried out in the Document Understanding
Conferences (DUC) from 2001 to present, and in
the large scale question answering evaluations car-
ried out in TREC (e.g., the definition pilot) as well
as the new large scale evaluations being carried out
in the DARPA GALE (Global Autonomous Lan-
guage Environment) program.

DUC was developed and run by NIST and pro-
vides a forum for regular evaluation of summariza-
tion systems. NIST oversees the gathering of data,
including both input documents and gold standard
summaries, some of which is done by NIST and
some of which is done by LDC. Each year, some
30 to 50 document sets were gathered as test data
and somewhere between two to nine summaries
were written for each of the input sets. NIST has
carried out both manual and automatic evaluation
by comparing system output against the gold stan-
dard summaries written by humans. The results
are made public at the annual conference. In the
most recent years, the number of participants has

grown to 25 or 30 sites from all over the world.
TREC is also run by NIST and provides an

annual opportunity for evaluating the output of
question-answering (QA) systems. Of the various
QA evaluations, the one that is probably most illu-
minating for language generation is the definition
pilot. In this evaluation, systems generated long
answers (e.g., paragraph length or lists of facts) in
response to a request for a definition. In contrast to
DUC, no model answers were developed. Instead,
system output was pooled and human judges de-
termined which facts within the output were nec-
essary (termed “vital nuggets”) and which were
helpful, but not absolutely necessary (termed “OK
nuggets”). Systems could then be scored on their
recall of nuggets and precision of their response.

DARPA GALE is a new program funded by
DARPA that is running its own evaluation, carried
out by BAE Systems, an independent contractor.
Evaluation more closely resembles that done in
TREC, but the systems’ scores will be compared
against the scores of human distillers who carry
out the same task. Thus, final numbers will report
percent of human performance. In the DARPA
GALE evaluation, which is a future event at the
time of this writing, in addition to measuring prop-
erties such as precision and recall, BAE will also
measure systems’ ability to find all occurrences of
the same fact in the input (redundancy).

One consideration for an evaluation program
is the feel of the program. Does the evalua-
tion program motivate researchers or does it cause
headaches? I liken Columbia’s experience in DUC
and currently in GALE to that of Max in Where the
Wild Things Are by Maurice Sendak. We began
with punishment (i.e., if you don’t do well, your
funding will be in jeopardy), encounter monsters
along the way (seemingly arbitrary methods for
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measuring output quality), finally tame the mon-
sters and sail back peacefully across time. DUC
has reached the peaceful stage, but GALE has not.
The TREC definition pilot had less of a threat of
punishment.

Evaluation in all of these programs began at the
request of the funders, with the goal of comparing
how well different funded systems perform. Im-
provement over the years is also measured in order
to determine if funding is well spent. This kind of
goal creates anxiety in participants and makes it
most important to get the details of the evaluation
right; errors in how evaluation is carried out can
have great consequences. Coming to agreement
on the metrics used, the methodology for measur-
ing output and the tasks on which performance is
measured can be difficult; the environment does
not feel friendly. Even if evaluation within the
language generation community was not initiated
with the same goals, I think it is reasonable to ex-
pect a certain amount of disagreement as the pro-
gram gets off the ground.

However, over time, researchers come to agree-
ment on some portion of the task and these fea-
tures become accepted. At this point in time, it is
possible to see the benefits of the program. Cer-
tainly, within DUC, we are at this stage. DUC has
generated large amounts of data, including both
input document sets and multiple models of good
output for each input set, which has spurred stud-
ies both on evaluation and summarization. Hal-
teren and Teufel, for example, provide a method
for annotation of content units and study consen-
sus across summarizers (van Halteren and Teufel,
2003; Teufel and van Halteren, 2004b). Nenkova
studies significant differences across DUC04 sys-
tems (Nenkova, 2005) as well as the properties of
human and system summaries (Nenkova, 2006).
We can credit DUC with the emergence of au-
tomatic methods for evaluation such as ROUGE
(Lin and Hovy, 2003; Lin, 2004) which allow
quick measurement of systems during develop-
ment and enable evaluation of larger amounts of
data. We have seen the development of man-
ual methods for evaluation developed both within
DUC (Harman and Over, 2004) and without. The
Pyramid method (Nenkova and Passonneau, 2004)
provides a annotation method and metric that ad-
dresses the issues of reliability and stability of
scoring. Thus, research on evaluation of summa-
rization has become a field in its own right result-

ing in greater understanding of the effect of differ-
ent metrics and methodologies.

¿From DUC and TREC, we have learned im-
portant characteristics of a large-scale evaluation,
of which the top three might be:

• Output can be measured by comparison
against a human model, but we know that
this comparison will only be valid if multi-
ple models are used. There are multiple good
summaries of the same input and if system
output is compared against just one, the re-
sults will be biased.

• If the task is appealing to a wide audience,
the evaluation will spur research and motivate
researchers to join in. We have seen this with
growth of participation in DUC. One benefit
of summarization and QA is that the task is
domain-independent and thus, no one site has
an advantage over others through experience
with a particular domain.

• Given the different ways in which evaluation
can be carried out and the fact that different
researchers may be biased towards methods
which favor their own approach, it is impor-
tant the evaluation be overseen by a neutral
party which is not deeply involved in research
on the task itself. On the other hand, some
knowledge is necessary if the evaluation is to
be well-designed.

While my talk will focus on large scale evalua-
tion programs that feature quantitative evaluation
through comparison with a gold standard, there
has been work on task-based evaluation of sum-
marization (McKeown et al, 2005). Task-based
evaluation is more intensive and to date, has not
been done on a large scale across sites, but shows
potential for indicating the usefulness of summa-
rization systems.

In this brief abstract, I’ve suggested some of the
topics that will be covered in my talk, which will
tour the land of the wild things for evaluation, il-
luminating monsters and highlighting events that
will allow more peaceful sailing. Evaluation can
be a nightmare, but over time and particularly
if carried out away from the influence of fund-
ing pressures, it can nurture a community of re-
searchers with common goals.
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Abstract 

We describe a generation-oriented 
workbench for the Performance 
Grammar (PG) formalism, highlighting 
the treatment of certain word order and 
movement constraints in Dutch and 
German. PG enables a simple and uni-
form treatment of a heterogeneous col-
lection of linear order phenomena in 
the domain of verb constructions 
(variably known as Cross-serial De-
pendencies, Verb Raising, Clause Un-
ion, Extraposition, Third Construction, 
Particle Hopping, etc.). The central 
data structures enabling this feature are 
clausal “topologies”: one-dimensional 
arrays associated with clauses, whose 
cells (“slots”) provide landing sites for 
the constituents of the clause. Move-
ment operations are enabled by unifica-
tion of lateral slots of topologies at ad-
jacent levels of the clause hierarchy. 
The PGW generator assists the gram-
mar developer in testing whether the 
implemented syntactic knowledge al-
lows all and only the well-formed per-
mutations of constituents. 

1 Introduction 

Workbenches for natural-language grammar 
formalisms typically provide a parser to test 
whether given sentences are treated adequately 
— D-PATR for Unification Grammar (Kart-
tunen, 1986) or XTAG for Tree-Adjoining 
Grammars (Paroubek et al., 1992) are early 
examples. However, a parser is not a conven-
ient tool for checking whether the current 
grammar implementation licenses all and only 
the strings qualifying as well-formed expres-
sions of a given input. Sentence generators that 

try out all possible combinations of grammar 
rules applicable to the current input, are better 
suited. 

Few workbenches in the literature come 
with such a facility. LinGO (Copestake & 
Flickinger, 2000), for Head-Driven Phrase 
Structure Grammar, provides a generator in 
addition to a parser. For Tree Adjoining 
Grammars, several workbenches with genera-
tion components have been built: InTeGenInE 
(Harbusch & Woch, 2004) is a recent example.  

Finetuning the grammar such that it neither 
over- nor undergenerates, is a major problem 
for semi-free word order languages (e.g., Ger-
man; cf. Kallmeyer & Yoon, 2004). Working 
out a satisfactory solution to this problem is 
logically prior to designing a generator capable 
of selecting, from the set of all possible para-
phrases, those that sound “natural,” i.e., the 
ones human speakers/writers would choose in 
the situation at hand (cf. Kempen & Harbusch, 
2004). 

Verb constructions in German and Dutch 
exhibit extremely intricate word order patterns 
(cf. Seuren & Kempen, 2003). One of the fac-
tors contributing to this complexity is the phe-
nomenon of clause union, which allows con-
stituents of a complement clause to be inter-
spersed between those of the dominating 
clause. The resulting sequences exhibit, among 
other things, cross-serial dependencies and 
clause-final verb clusters. Further complica-
tions arise from all sorts of ‘movement’ phe-
nomena such as fronting, extraction, disloca-
tion, extraposition, scrambling, etc. Given the 
limited space available, we cannot describe the 
Performance Grammar (PG) formalism and the 
linearization algorithm that enables generating 
a broad range of linear order phenomena in 
Dutch, German, and English verb construc-
tions. Instead, we refer to Harbusch & Kempen 
(2002), and Kempen & Harbusch (2002, 2003). 
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Here, we present the generation-oriented PG 
Workbench (PGW), which assists grammar 
developers, among other things, in testing 
whether the implemented syntactic and lexical 
knowledge allows all and only well-formed 
permutations. 

In Section 2, we describe PG’s topology-
based linearizer implemented in the PGW gen-
erator, whose software design is sketched in 
Section 3. Section 4 shows the PGW at work 
and draws some conclusions. 

2 Linearization in PG and PGW 

Performance Grammar (PG) is a fully lexical-
ized grammar that belongs to the family of tree 
substitution grammars and deploys disjunctive 
feature unification as its main structure build-
ing mechanism. It adheres to the ID/LP format 
(Immediate Dominance vs. Linear Precedence) 
and includes separate components generating 
the hierarchical and the linear structure of sen-
tences. Here, we focus on the linearization 
component. 

PG's hierarchical structures consist of unor-
dered trees composed of elementary building 
blocks called lexical frames. Every word is 
head of a lexical frame, which specifies the 
subcategorization constraints of the word. As-
sociated with every lexical frame is a topology. 
Topologies serve to assign a left-to-right order 
to the branches of lexical frames. In this paper, 
we will only be concerned with topologies for 
verb frames (clauses). We assume that clausal 
topologies of Dutch and German contain ex-
actly nine slots — see (1). 

 (1) Wat wil je dat ik doe? / what want you that I do 
/‘What do you want me to do?’ 

  F1 M1 M2 … M6 E1 E2 
   wil je     

  ↑       ⇑ 
 Wat dat ik   doe  

The slot labeled F1 makes up the Forefield 
(from Ger. Vorfeld); slots M1-M6 make up the 
Midfield (Mittelfeld); slots E1 and E2 define 
the Endfield (Nachfeld). Every constituent 
(subject, head, direct object, complement, etc.) 
has a small number of placement options, i.e. 
slots in the topology associated with its “own” 
clause. 

How is the Direct Object NP wat ‘what’ 
'extracted' from the complement clause and 
‘promoted’ into the main clause? Movement of 
phrases between clauses is due to lateral to-

pology sharing. If a sentence contains more 
than one verb, each of their lexical frames in-
stantiates its own topology. This applies to 
verbs of any type — main, auxiliary or copula. 
In such cases, the topologies  are allowed to 
share identically labeled lateral (i.e. left- 
and/or right-peripheral) slots, conditionally 
upon several restrictions (not to be explained 
here; but see Harbusch & Kempen, 2002)). 
After two slots have been shared, they are no 
longer distinguishable; in fact, they are unified 
and become the same object. In example (1), 
the embedded topology shares its F1 slot with 
the F1 slot of the matrix clause. This is indi-
cated by the dashed borders of the bottom F1 
slot. Sharing the F1 slots effectively causes the 
embedded Direct Object wat to be preposed 
into the main clause (black dot in F1 above the 
single arrow in (1)). The dot in E2 above the 
double arrow marks the position selected by 
the finite complement clause. 

The overt surface order is determined by a 
read-out module that traverses the hierarchy of 
topologies in left-to-right, depth first manner. 
E.g., wat is already seen while the reader scans 
the higher topology. 

3    A sketch of PGW’s software design 

The PGW is a computational grammar devel-
opment tool for PG. Written in Java, it comes 
with an advanced graphical direct-
manipulation user interface. All lexical and 
grammatical data have been encoded in a rela-
tional database schema. This contrasts with the 
predominance of hierarchical databases in 
present-day computational linguistics. Rela-
tional lexical databases tend to be easier to 
maintain and update than hierarchical ones, 
especially for linguists with limited program-
ming experience. The software was designed 
with an eye toward easy cross-language port-
ability of the encoded information. For German 
we developed a lexicon converter that maps the 
German CELEX database automatically to the 
PGW format (Koch, 2004). 

4 Generating verb constructions in 
Dutch and German 

In order to convey an impression of the capa-
bilities of the PGW, we show it at work in gen-
erating verb constructions that involve rather 
delicate linearization phenomena: “Particle 
Hopping” in Dutch (2), and “Scrambling” in 
German (3). 
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The finite complement clause (2) includes 
the verb meezingen ‘sing along with,’ where   
mee ‘with’ is a preposition functioning as sepa-
rable particle. The three other verbs are auxilia-
ries. According to a topology sharing rule for 
Dutch, clauses headed by auxiliaries are free to 
share 4, 5 or 6 left-peripheral slots of their own 
topology with that of its complement. The most 
restrictive sharing option is shown in (2).  

(2) ...  dat   ze    dit  (lied)  zouden kunnen  hebben  
meegezongen 

         ... that they this (song) would be-able-to have 
      along-sung 

 ‘... that they might have sung along this 
(song)’ 

 M1 M2 M3   M4    M6  E1  
 dat  ze    zouden   
     ↑      ⇑  
      kunnen   
     ↑      ⇑  
      hebben   
    ↑      ⇑  
   dit 

lied 
mee  gezongen   

The Direct Object NP dit (lied) ‘this (song)’ 
lands in M3 of the lowest topology. As this slot 
belongs to the four left-peripheral ones, it is 
always shared and its content gets promoted all 
the way up into the highest clause (see single 
arrows). Particle mee always lands in the fifth 
slot (M4), i.e. in the optionally shared area. 
Hence, its surface position depends on the ac-
tual number of shared left-peripheral slots. In 
(2), with minimal slot sharing, mee stays in its 
standard position immediately preceding the 
head verb. In case of non-minimal topology 
sharing, the particle may move leftward until 
(but no farther than) the direct object, thus 
yielding exactly the set of grammatical place-
ment options. 

The quality of PGW’s treatment of Scram-
bling in German can be assessed in terms of a 
set of 30 word order variations of sentence (3), 
discussed by Rambow (1994), who also pro-
vides grammaticality ratings for all members of 
the set. Seuren (2003) presents similar gram-
maticality judgments obtained from an inde-
pendent group of native speakers. As the rating 
scores appeared to vary considerably (cf. (3a) 
and (3b)), we checked which permutations are 
actually generated by the PGW. It turned out 
easy to find a set of topology sharing values 
that generates all and only the paraphrases with 
high or satisfactory grammaticality scores. 

In conclusion, although the performance 
data discussed here are very limited, we be-

lieve they justify positive expectations with 
respect to the potential of a topology-based 
linearizer to  approximate closely the gram-
maticality judgments of native speakers and 
thus to avoid over- and undergeneration. 

 (3)  a.  … weil niemand das Fahrrad zu reparie-
ren zu versuchen verspricht  

      because  nobody  the   bike    to   repair 
      to     try          promises 

    ‘… because nobody promises to try to re-
pair the bike’  

 b.  *…weil zu versuchen das Fahrrad nie-
mand zu reparieren verspricht 
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Abstract
This paper presents a novel algorithm
for efficiently generating paraphrases from
disjunctive logical forms. The algorithm
is couched in the framework of Combina-
tory Categorial Grammar (CCG) and has
been implemented as an extension to the
OpenCCG surface realizer. The algorithm
makes use of packed representations sim-
ilar to those initially proposed by Shem-
tov (1997), generalizing the approach in a
more straightforward way than in the algo-
rithm ultimately adopted therein.

1 Introduction

In recent years, the generate-and-select paradigm
of natural language generation has attracted in-
creasing attention, particularly for the task of sur-
face realization. In this paradigm, symbolic meth-
ods are used to generate a space of possible phras-
ings, and statistical methods are used to select
one or more outputs from this space. To spec-
ify the desired paraphrase space, one may either
provide an input logical form that underspecifies
certain realization choices, or include explicit dis-
junctions in the input LF (or both). Our experi-
ence suggests that disjunctive LFs are an impor-
tant capability, especially as one seeks to make
grammars reusable across applications, and to em-
ploy domain-specific, sentence-level paraphrases
(Barzilay and Lee, 2003).

Prominent examples of surface realizers in
the generate-and-select paradigm include Nitro-
gen/Halogen (Langkilde, 2000; Langkilde-Geary,
2002) and Fergus (Bangalore and Rambow, 2000).
More recently, generate-and-select realizers in the
chart realization tradition (Kay, 1996) have ap-
peared, including the OpenCCG (White, 2004)

and LinGO (Carroll and Oepen, 2005) realizers.
Chart realizers make it possible to use the same
reversible grammar for both parsing and realiza-
tion, and employ well-defined methods of seman-
tic composition to construct semantic representa-
tions that can properly represent the scope of log-
ical operators.

In the chart realization tradition, previous work
has not generally supported disjunctive logical
forms, with (Shemtov, 1997) as the only published
exception (to the author’s knowledge). Arguably,
part of the reason that disjunctive LFs have not
yet been embraced more broadly by those work-
ing on chart realization is that Shemtov’s solution,
while ingenious, is dauntingly complex. Look-
ing beyond chart realizers, both Nitrogen/Halogen
and Fergus support some forms of disjunctive in-
put; however, in comparison to Shemtov’s inputs,
theirs are less expressive, in that they do not al-
low disjunctions across different levels of the input
structure.

As an alternative to Shemtov’s method, this pa-
per presents a chart realization algorithm for gen-
erating paraphrases from disjunctive logical forms
that is more straightforward to implement, to-
gether with an initial case study of the algorithm’s
efficiency. As discussed in Section 5, the algo-
rithm makes use of packed representations similar
to those initially proposed by Shemtov, generaliz-
ing the approach in a way that avoids the prob-
lems that led Shemtov to reject his preliminary
method. The algorithm is couched in the frame-
work of Steedman’s (2000) Combinatory Catego-
rial Grammar (CCG) and has been implemented
as an extension to the OpenCCG surface realizer.
Though the algorithm is well suited to CCG, it is
expected to be applicable to other constraint-based
grammatical frameworks as well.
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be<TENSE>pres,<MOOD>dcl e 

<ARG> <PROP>

based_on <DET>the,<NUM>sgdesign d p 

<SOURCE> 
<ARTIFACT>

collection<DET>the,<NUM>sg c 

<HASPROP> <CREATOR>

Funny_Day f v Villeroy_and_Boch

 

(a) Semantic dependency graph for The design (is|’s)
based on the Funny Day collection by Villeroy and
Boch.

be<TENSE>pres,<MOOD>dcl e 

<ARG> <PROP>

based_on <DET>the,<NUM>sgdesign d p 

<SOURCE> 
<ARTIFACT>

series<NUM>sg c 

<HASPROP> <GENOWNER>

Funny_Day f v Villeroy_and_Boch

 

(b) Semantic dependency graph for The design (is|’s)
based on Villeroy and Boch’s Funny Day series.

be<TENSE>pres,<MOOD>dcl e 

<ARG> <PROP>

based_on <DET>the,<NUM>sgdesign d p 

<SOURCE> 
<ARTIFACT>

collection|series(<DET>the)?,<NUM>sg c 

<HASPROP> <GENOWNER>

Funny_Day f v Villeroy_and_Boch

<CREATOR>

 

(c) Disjunctive semantic dependency graph covering (a)-
(b), i.e. The design (is|’s) based on (the Funny Day
(collection|series) by Villeroy and Boch | Villeroy and
Boch’s Funny Day (collection|series)).

Figure 1: Example semantic dependency graphs
from the COMIC dialogue system.

@e(be ∧ 〈TENSE〉pres ∧ 〈MOOD〉dcl ∧

〈ARG〉(d ∧ design ∧ 〈DET〉the ∧ 〈NUM〉sg) ∧

〈PROP〉(p ∧ based on ∧

〈ARTIFACT〉d ∧

〈SOURCE〉(c ∧ collection ∧ 〈DET〉the ∧ 〈NUM〉sg ∧

〈HASPROP〉(f ∧ Funny Day) ∧

〈CREATOR〉(v ∧ V&B))))

(a)
...

@e(be ∧ 〈TENSE〉pres ∧ 〈MOOD〉dcl ∧

〈ARG〉(d ∧ design ∧ 〈DET〉the ∧ 〈NUM〉sg) ∧

〈PROP〉(p ∧ based on ∧

〈ARTIFACT〉d ∧

〈SOURCE〉(c ∧ 〈NUM〉sg ∧ (〈DET〉the)? ∧

(collection ∨ series) ∧

〈HASPROP〉(f ∧ Funny Day) ∧

(〈CREATOR〉v ∨ 〈GENOWNER〉v ))))

∧ @v(Villeroy and Boch)

(c)

Figure 2: HLDS for examples in Figure 1.

2 Disjunctive Logical Forms

As an illustration of disjunctive logical forms,
consider the semantic dependency graphs in Fig-
ure 1, which are taken from the COMIC1 mul-
timodal dialogue system.2 Graphs such as these
constitute the input to the OpenCCG realizer.
Each node has a lexical predication (e.g. design)
and a set of semantic features (e.g. 〈NUM〉sg);
nodes are connected via dependency relations (e.g.
〈ARTIFACT〉).

Given the lexical categories in the COMIC
grammar, the graphs in Figure 1(a) and (b) fully
specify their respective realizations, with the ex-
ception of the choice of the full or contracted
form of the copula. To generalize over these al-
ternatives, the disjunctive graph in (c) may be
employed. This graph allows a free choice be-
tween the domain synonyms collection and se-
ries, as indicated by the vertical bar between
their respective predications. The graph also al-
lows a free choice between the 〈CREATOR〉 and
〈GENOWNER〉 relations—lexicalized via by and
the possessive, respectively—connecting the head
c (collection or series) with the dependent v (for

1http://www.hcrc.ed.ac.uk/comic/
2To simplify the exposition, the features specifying infor-

mation structure and deictic gestures have been omitted, as
have the semantic sorts of the discourse referents.
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@e(see ∧ 〈ARG0〉(m ∧ man) ∧ 〈ARG1〉(g ∧ girl) ∧

@o(on∧〈ARG1〉(h∧hill))∧@w(with∧〈ARG1〉(t∧ telescope))∧

((〈MOD〉o ∧ @h(〈MOD〉w)) ∨

(@g(〈MOD〉o) ∧ (@g(〈MOD〉w) ∨@h(〈MOD〉w))) ∨

(〈MOD〉w ∧ (〈MOD〉o ∨@g(〈MOD〉o)))))

Figure 3: Disjunctive LF for 5-way ambiguity in
A man saw a girl on the hill with a telescope.

Villeroy and Boch); this choice is indicated by an
arc between the two dependency relations. Finally,
the determiner feature (〈DET〉the) on c is indicated
as optional, via the question mark.

It is worth pausing at this point to observe
that in designing the COMIC grammar, the differ-
ences between (a) and (b) could perhaps have been
collapsed. However, such a move would make
it more difficult to reuse the grammar in other
applications—and indeed, the core of the gram-
mar is shared with the FLIGHTS system (Moore et
al., 2004)—as it would presuppose that these para-
phrases should always available in the same con-
texts. An example of a sentence-level paraphrase,
whose context of applicability is more clearly lim-
ited, appears in (1):

(1) (This design | This one | This) (is|’s) (clas-
sic | in the classic style) | Here we have
a (classic design | design in the classic
style).

This example shows some of the phrasings that
may be used in COMIC to describe the style of
a design that has not been discussed previously.
The example includes a top-level disjunction be-
tween the use of a deictic NP this design | this one
| this (with an accompanying pointing gesture) fol-
lowed by the copula, or the use of the phrase here
we have to introduce the design. While these al-
ternatives can function as paraphrases in this con-
text, it is difficult to see how one might specify
them in a single underspecified (and application-
neutral) logical form.

Graphs such as those in Figure 1 are repre-
sented internally using Hybrid Logic Dependency
Semantics (HLDS), as in Figure 2. HLDS is a
dependency-based approach to representing lin-
guistic meaning developed by Baldridge and Krui-
jff (2002). In HLDS, hybrid logic (Blackburn,
2000) terms3 are used to describe dependency

3Hybrid logic extends modal logic with nominals, a new
sort of basic formula that explicitly names states/nodes. Like
propositions, nominals are first-class citizens of the object

graphs. These graphs have been suggested as rep-
resentations for discourse structure, and have their
own underlying semantics (White, 2006).

In HLDS, as can be seen in Figure 2(a), each
semantic head is associated with a nominal that
identifies its discourse referent, and heads are con-
nected to their dependents via dependency re-
lations, which are modeled as modal relations.
Modal relations are also used to represent seman-
tic features. In (c), two new operators are in-
troduced to represent periphrastic alternatives and
optional parts of the meaning, namely ∨ and (·)?,
for exclusive-or and optionality, respectively. To
indicate that a nominal represents a reference to a
node that is considered a shared part of multiple
alternatives, the nominal is annotated with a box,
as exemplified by v . As will be discussed in Sec-
tion 3.1, this notion of shared references is needed
during the logical form flattening stage of the al-
gorithm in order to determine which elementary
predications are part of each alternative.

As mentioned earlier, disjunctive LFs may con-
tain alternations that are not at the same level.
To illustrate, Figure 3 shows the representation
(minus semantic features) for the 5-way ambigu-
ity in A man saw a girl on the hill with a tele-
scope (Shemtov, 1997, p. 45); in the figure, the
nominal o (for on) can be a dependent of e (for
see) or g (for girl), for example. As Shemtov ex-
plains, such packed representations can be useful
in machine translation for generating ambiguity-
preserving target language sentences. In a straight
generation context, disjunctions that span levels
enable one to compactly represent alternatives that
differ in their head-dependent assumptions; for in-
stance, to express contrast, one might employ the
coordinate conjunction but as the sentence head,
or the subordinate conjunction although as a de-
pendent of the main clause head.

3 The Algorithm

As with the other chart realizers cited in the in-
troduction, the OpenCCG realizer makes use of a
chart and an agenda to perform a bottom-up dy-
namic programming search for signs whose LFs

language, and thus formulas can be formed using propo-
sitions, nominals, and standard boolean operators. They
may also employ the satisfaction operator, @. A formula
@i(p∧〈F〉(j∧q)) indicates that the formulas p and 〈F〉(j∧q)
hold at the state named by i, and that the state j, where q
holds, is reachable via the modal relation F; equivalently, it
states that node i is labeled by p, and that node j, labeled by
q, is reachable from i via an arc labeled F.
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completely cover the elementary predications in
the input logical form. The search for complete
realizations proceeds in one of two modes, any-
time or two-stage packing/unpacking. This sec-
tion focuses on how the two-stage mode has been
extended to efficiently generate paraphrases from
disjunctive logical forms.

3.1 LF Flattening
In a preprocessing stage, the input logical form
is flattened to an array of elementary predications
(EPs), one for each lexical predication, semantic
feature or dependency relation. When the input
LF contains no exclusive-or or optionality oper-
ators, the list of EPs, when conjoined, yields a
graph description that is equivalent to the origi-
nal one. With disjunctive logical forms, however,
more needs to be said. Our strategy is to keep track
of the elementary predications that make up the al-
ternatives and optional parts of the LF, as specified
by the exclusive-or or optionality operators, and
use these to enforce constraints on the elementary
predications that may appear in any given realiza-
tion. These constraints ensure that only combina-
tions of EPs that describe a graph that is also de-
scribed by the original LF are allowed.

To illustrate, the results of flattening the LF in
Figure 2(c) are given below:

(2) 0: @e(be), 1: @e(〈TENSE〉pres),

2: @e(〈MOOD〉dcl), 3: @e(〈ARG〉d),

4: @d(design), 5: @d(〈DET〉the),

6: @d(〈NUM〉sg),

7: @e(〈PROP〉p), 8: @p(based on),

9: @p(〈ARTIFACT〉d), 10: @p(〈SOURCE〉c),
11: @c(〈NUM〉sg), 12: @c(〈DET〉the),

13: @c(collection), 14: @c(series),
15: @c(〈HASPROP〉f), 16: @f (Funny Day),

17: @c(〈CREATOR〉v), 18: @c(〈GENOWNER〉v),

19: @v(Villeroy and Boch)

(3) alt0,0 = {13}; alt0,1 = {14}
alt1,0 = {17, 19}; alt1,1 = {18, 19}
opt0 = {12}

In (2), the EPs are shown together with their array
positions. Since the EPs are tracked positionally, it
is possible to use bit vectors to represent the alter-
natives and optional parts of the LF. In (3), the first
line shows the bit vectors4 for the choice between
collection (EP 13) and series (EP 14), as alterna-
tives 0 and 1 in alternative group 0. On the sec-

4Only the positive bits are shown, via their indices.

ond line, the bit vectors for the 〈CREATOR〉 (EP
17) and 〈GENOWNER〉 (EP 18) alternatives ap-
pear; note that both of these options also involve
the shared EP 19. The bit vector for the optional
determiner (EP 12) is shown on the third line.

The constraint associated with each group of al-
ternatives is that in order to be valid, a collection
of EPs must not intersect with the non-overlapping
parts of more than one alternative. For example,
for the second group of alternatives in (3), a valid
collection could include EPs 17 and 19, or EPs 18
and 19, but it could not include EPs 17 and 18 to-
gether.

Flattening an LF to obtain the array of EPs,
as in (2), just requires a relatively straightforward
traversal of the HLDS formula. Obtaining the al-
ternatives and optional parts of the LF is a bit
more involved. To do so, during the traversal,
the exclusive-or and optionality operators are han-
dled by introducing a new alternative group or op-
tional part, and then keeping track of which ele-
mentary predications fall under each alternative or
under the optional part. Subsequently, the alterna-
tives and optional parts are recursively propagated
through any nominals marked as shared, collecting
any further EPs that turn up along the way.5 For
example, with the second alternative group (sec-
ond line) of (3), the initial traversal creates EPs
17 and 18 under alts alt1,0 and alt1,1, respectively.
Since EPs 17 and 18 both include a nominal de-
pendent v marked as shared in Figure 2(c), both
alternatives are propagated through this reference,
and thus EP 19 ends up as part of both alt1,0 and
alt1,1. Determining which EPs have shared mem-
bership in multiple alternatives is essential for ac-
curately tracking an edge’s coverage of the input
LF, a topic which will be considered next.

3.2 Edges
In the OpenCCG realizer, an edge is a data struc-
ture that wraps a CCG sign, which itself consists
of a word sequence paired with a category (syn-
tactic category plus logical form). An edge has
bit vectors to record its coverage of the input LF
and its indices, i.e. syntactically available nomi-
nals. In packing mode, a representative edge also
maintains a list of alternative edges whose signs
have equivalent categories (but different word se-
quences), so that a representative edge may effec-

5Though space precludes discussion, it is worth noting
that the same propagation of membership applies to the LF
chunks described in (White, 2006).
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tively stand in for the others during chart construc-
tion.

To handle disjunctive inputs, an edge addition-
ally maintains a list of active (i.e., partially com-
pleted) LF alternatives. It also makes use of a
revised notion of input coverage and a revised
equivalence relation. As in Shemtov’s (1997, Sec-
tion 3.3.2) preliminary algorithm, an edge is con-
sidered to cover an entire disjunction (alternative
group) if it covers all the EPs of one of its alter-
natives. With optional parts of an LF, an edge that
does not cover any EPs in the optional part can be
extended to a new edge (using the same sign) that
is additionally considered to cover all the EPs in
the optional part. In this way, an edge can be de-
fined to be complete with respect to the input LF
if it covers all its EPs. For example, an edge for
the sentence in Figure 1(b) would be considered
complete, since (i) it would cover all the EPs in
(2) except for 12, 13 and 17; (ii) 12 is optional;
(iii) 14 completes alt0,1, and thus counts as cover-
ing 13, the other EP in the group; and (iv) 18 and
19 complete alt1,1, and thus count as covering EP
17.

As Shemtov points out, this extended notion
of input coverage provides an appropriate way to
form edge equivalence classes, as it can gather
edges together that realize different alternatives in
the same group. Thus, in OpenCCG, edge equiva-
lence classes have been modified to include edges
with the same syntactic category and coverage bit
vector, but different word sequences and/or logical
forms (as the latter varies according to which al-
ternative is realized). The appropriate equivalence
checks are efficiently carried out using a hash map
with a custom hash function and equals method.

3.3 Lexical Instantiation
Once the input LF has been flattened, and the alter-
natives and optional parts have been identified, the
next step is to access and instantiate lexical items.
For each elementary predication, all lexical items
indexed by the EP’s lexical predicate or relation
are retrieved from the lexicon.6 Each such lexi-
cal item is then instantiated against the input EPs,
starting with the one that triggered its retrieval,
and incrementally extending successful instantia-
tions until all the lexical item’s EPs have been in-
stantiated (otherwise failing). The lexical instanti-

6See (White, 2004; White, 2006) for discussion of how
semantically null lexical items and unary type changing rules
are handled.

ation routine returns all instantiations that satisfy
the alternative exclusion constraints. Associated
with each instantiation is a bit vector that encodes
the coverage of the input EPs. From each bit vec-
tor, the active (partially completed) LF alternatives
are determined, and the bit vector is updated to in-
clude the EPs in any completed disjunctions. Fi-
nally, edges are created for the instantiated lexical
items, which include the active alternatives and the
updated coverage vector.

Continuing with example (2)-(3), the selected
lexical edges in (4) below illustrate how lexical in-
stantiation interacts with disjunctions:

(4) a. {11,13,14} collection ` nc :
@c(collection) ∧ @c(〈NUM〉sg)

b. {11,13,14} series ` nc :
@c(series) ∧ @c(〈NUM〉sg)

c. {17} alt1,0 by ` nc\nc/npv :
@c(〈CREATOR〉v)

d. {18} alt1,1 ’s ` npc/nc\npv :
@c(〈GENOWNER〉v)

e. {19} alt1,0; alt1,1 Villeroy and Boch ` npv

: @v (V&B)

The nouns in (a) and (b) complete alt0,0 and alt0,1,
respectively, and thus they each count as cover-
ing EPs 11, 13 and 14. In (c) and (d), by and ’s
partially cover alt1,0 and alt1,1, respectively, and
thus these alternatives are active for their respec-
tive edges. In (e), V&B partially covers both alt1,0

and alt1,1, and thus both alternatives are active.

3.4 Derivation
Following lexical instantiation, the lexical edges
are added to the agenda, as is usual practice with
chart algorithms, and the main loop is initiated.
During each iteration of the main loop, an edge
is moved from the agenda to the chart. If the edge
is in the same equivalence class as an edge already
in the chart, it is added as an alternative to the ex-
isting representative edge. Otherwise, it is com-
bined with all applicable edges in the chart (via the
grammar’s combinatory rules), as well as with the
grammar’s unary rules, where any newly created
edges are added to the agenda. The loop termi-
nates when no edges remain on the agenda.

Before edge combinations are attempted, a
number of constraints are checked, as detailed in
(White, 2006). In particular, the edges’ coverage
bit vectors are required to not intersect, which en-
sures that they cover disjoint parts of the input LF.
Since the coverage vectors are updated to cover all
the EPs in a disjunction when one of the alterna-
tives is completed, this check also ensures that the
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1. {8-10} based on ` sp\npd/npc

2. {12} the ` npc/nc

3. {15, 16} Funny Day ` nc/nc

4. {11, 13, 14} collection ` nc

{11, 13, 14} series ` nc

5. {17} alt1,0 by ` nc\nc/npv

6. {18} alt1,1 ’s ` npc/nc\npv

7. {19} alt1,0; alt1,1 Villeroy and Boch ` npv

8. {11, 13-16} FD [collection] ` nc (3 4 >)

9. {17-19} by V&B ` nc\nc (5 7 >)

10. {17-19} V&B ’s ` npc/nc (7 6 <)

11. {11, 13-19} FD [coll.] by V&B ` nc (8 9 <)

12. {11, 13-19} V&B ’s FD [coll.] ` npc (10 8 >)

13. {11-19} the FD [coll.] by V&B ` npc (2 11 >)
{11-19} V&B ’s FD [coll.] ` npc (12 optC)

14. {8-19} b. on [the FD [coll.] . . . ] ` sp\npd (1 13 >)

Figure 4: Part of realization chart for Figure 1(c).

exclusion constraints for the disjunction continue
to be enforced. Thus, for example, no attempt will
be made to combine the edges for collection and
series in (4a) and (4b), since they both express EP
11 and since they contribute to different alterna-
tives in group 0.

To enforce the constraints associated with active
alternatives, a compatibility check is made to en-
sure that if the input edges have active alternatives
in the same group, the intersection of these alter-
natives is non-empty. To illustrate, consider the
edges for by and the possessive ’s in (4c) and (4d).
Since these edges have different alternatives active
within group 1, the compatibility check fails, and
thus their combination is not attempted. By con-
trast, the edge for Villeroy and Boch in (4e) will
pass the compatibility check with both (4c) and
(4d), as it shares an active alternative in common
with each of these. When two edges succeed in
combining, a new edge is constructed from the re-
sulting sign by taking the union of the coverage bit
vectors, determining the active alternatives, and
updating the coverage vector to include the EPs
in any completed disjunctions.

When the grammar’s unary rules are applied to
an edge, an operation is also invoked for creat-
ing an edge (for the same sign) with one or more
optional parts marked as completed. This oper-
ation is invoked when it would complete the in-

put LF, complete an alternative, or complete an LF
chunk.7 A constraint on its application is that the
optional parts must be wholly missing from the in-
put edge; additionally, in the case of completing an
alternative or LF chunk, the optional parts must be
part of the alternative or chunk in question.

Figure 4 demonstrates how the lexical edges in
(4) are combined in the chart.8 These lexical edges
appear on lines 4-7. Note that the edge for series
is added as an alternative edge to the one for col-
lection, which acts as a representative for both; to
highlight its role as a representative, collection is
shown in square brackets from line 8 onwards. At
the end of each line, the derivation of each (non-
lexical) edge is shown in parentheses, in terms of
its input edges and combinatory rule. On line 13,
observe that the NP using the possessive is added
as an alternative to the one using the by-phrase;
the possessive version becomes part of the same
equivalence class when the optional determiner is
marked as covered, via the optional part comple-
tion operation.

3.5 Unpacking

Once chart construction has finished, the complete
realizations are recursively unpacked bottom-up in
a way that generalizes the approach of (Langkilde,
2000). Unpacking proceeds by multiplying out the
alternative edges stored with the representative in-
put edges; filtering out any duplicate edges result-
ing from spurious ambiguities; scoring the new
edges with the scoring method configured via the
API; and pruning the results with the configured
pruning strategy. Note that since there is no need
for checking grammatical or other constraints dur-
ing the unpacking stage, new edges can be quickly
and cheaply constructed using structure sharing.

To briefly illustrate the process, consider how
the Funny Day collection edge in line 8 of Fig-
ure 4 is unpacked. While the Funny Day input
edge has no alternative edges, the collection input
edge has the series edge as an alternative, and thus
a new Funny Day series edge will be created and
scored; as long as the pruning strategy keeps more
than the single-best option, this edge will be added
as an alternative, and both combinations will be
propagated upwards through the edges in lines 11

7LF chunks serve to avoid propagating semantically in-
complete phrases; see (White, 2006) for discussion.

8To save space, the figure only shows part of the normal
form derivation, and the logical forms for the categories have
been suppressed.
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10-best two-stage 1-best anytime
time edges time edges

disjunctive 1.1 602 0.5 281
sequential 5.6 3550 4.1 2854

Table 1: Comparison of average run times (in sec-
onds) and edges created vs. sequential realization

and 12.

4 Case Study

To examine the potential of the algorithm to effi-
ciently generate paraphrases, this section presents
a case study of its run times versus sequential real-
ization of the equivalent top-level LF alternatives
in disjunctive normal form. The study used the
COMIC grammar, a small but not trivial grammar
that suffices for the purposes of the system. In
this grammar, there are relatively few categories
per lexeme on average, but the boundary tone cat-
egories engender a great deal of non-determinism.
With other grammars, run times can be expected
to vary.

In anticipation of the present work, Foster and
White (2004) generated disjunctive logical forms
during sentence planning, then (as a stopgap mea-
sure) multiplied out the disjunctions and sequen-
tially realized the top-level alternatives until an
overall time limit was reached. Taking the pre-
vious logical forms as a starting point, 104 sen-
tences from the evaluation in (Foster and White,
2005) were selected, and their LFs were manu-
ally augmented to cover a greater range of para-
phrases allowed by the grammar.9 To obtain the
corresponding top-level LF alternatives, 100-best
realization was performed, and the unique LFs
appearing in the top 100 realizations were gath-
ered; on average, there were 29 such unique LFs.
We then compared the present algorithm’s per-
formance against sequential realization in produc-
ing 10-best outputs and single-best outputs. In
the 10-best case, we used the two-stage pack-
ing/unpacking mode; for the single-best case, we
used the anytime mode with 3-best pruning. With
both cases, the run times include scoring with a
trigram language model, and were measured on a
2.8GHz Linux PC. Realization quality was not as-
sessed as part of the study, though manual inspec-
tion indicated that it was very high.

Table 1 shows the results of the comparison.
9Extending the COMIC sentence planner to produce these

augmented LFs is left for future work.

The average run times of the present algorithm,
with disjunctive LFs as input, appear on the first
line, along with the average number of edges cre-
ated; on the second line are the average aggregate
run times and num. edges created of sequentially
realizing the top-level alternatives (not including
the time taken to produce these alternatives). As
can be seen, realization from disjunctive inputs
yields a 5-fold and 8-fold speedup over the se-
quential approach in the two cases, with corre-
sponding reductions in the number of edges cre-
ated. Additionally, the run times appear to be ad-
equate for use in interactive dialogue systems (es-
pecially in the anytime, single-best case).

5 Comparison to Shemtov (1997)

The present approach differs from Shemtov’s in
two main ways. First, since Shemtov developed
his approach with the task of ambiguity preserv-
ing translation in mind, he framed the problem as
one of generating from ambiguous semantic rep-
resentations, such as one might find in a parse
chart with unresolved ambiguities. Consequently,
he devised a method for converting the meanings
in a packed parse chart into an encoding where
each fact (here, EP) appears exactly once, together
with an indication of the meaning alternatives it
belongs to, expressed as propositional formulas.
While this contexted facts encoding may be suit-
able for MT, it is not very convenient as an input
representation for systems which generate from
non-linguistic data, as the formulas representing
the contexts only make sense in reference to a
parse chart. By contrast, the present approach
takes as input disjunctive logical forms that should
be reasonably intuitive to construct in dialogue
systems or other NLG applications, since they are
straightforwardly related to their non-disjunctive
counterparts.

The second way in which the approach differs
concerns the relative simplicity of the algorithms
ultimately adopted. As part of his preliminary al-
gorithm (Shemtov, 1997, Section 3.3.2), Shemtov
proposed the extended use of coverage bit vectors
that we embraced in Section 3.2. He then de-
veloped a refined version to handle disjunctions
with intersecting predicates. However, he con-
cluded that this refined version was arc-consistent
but not path-consistent (p. 65, fn. 10), given that it
checked combinations of contexted facts pairwise,
without keeping track of which alternations such
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combinations were committed to. By contrast, the
present approach does not suffer from this defect,
because it checks the alternative exclusion con-
straints on all of a lexical edge’s EPs at once (us-
ing bit vectors for both edge coverage and alter-
native membership), and also ensures that the ac-
tive alternatives are compatible before combining
edges during derivations. Shemtov does not ap-
pear to have considered a solution along the lines
proposed here; instead, he went on to develop a
sound but considerably more complex algorithm
(his Section 3.4), where an edge’s coverage bit
vector is replaced with a contexted coverage array
(an array of boolean conditions). With these ar-
rays, it is no longer easy to group edges into equiv-
alence classes, and thus during chart construc-
tion Shemtov is forced to group together edges
which are not derivationally equivalent. Conse-
quently, to prevent overgeneration, his algorithm
has to solve during the enumeration phase a sys-
tem of constraints (potentially exponential in size)
formed from the conditions in the contexted cov-
erage arrays—a process which is far from straight-
forward.

6 Conclusions

This paper has presented a new chart realization
algorithm for efficiently generating surface real-
izations from disjunctive logical forms, and has
argued that the approach represents an improve-
ment over that of (Shemtov, 1997) in terms of both
usability and simplicity. The algorithm has been
implemented as an extension to the OpenCCG hy-
brid symbolic/statistical realizer, and has recently
been employed to generate n-best realization lists
for reranking according to their predicted synthe-
sis quality (Nakatsu and White, 2006), as well as
to generate dialogues exhibiting individuality and
alignment(Brockmann et al., 2005; Isard et al.,
2005). An initial case study has shown that the
algorithm works many times faster than sequential
realization, with run times suitable for use in dia-
logue systems; a more comprehensive study of the
algorithm’s efficiency is planned for future work.
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Abstract

We describe an implemented generator
for a spoken dialogue system that fol-
lows the ‘overgeneration and ranking’ ap-
proach. We find that overgeneration based
on bottom-up chart generation is well-
suited to a) model phenomena such as
alignment and variation in dialogue, and b)
address robustness issues in the face of im-
perfect generation input. We report evalu-
ation results of a first user study involving
20 subjects.

1 Introduction

Overgeneration and ranking approaches have be-
come increasingly popular in recent years (Langk-
ilde, 2002; Varges, 2002). However, most work on
generation for practical dialogue systems makes
use of generation components that work toward
a single output, often using simple templates. In
the following, we first describe our dialogue sys-
tem and then turn to the generator which is based
on the overgeneration and ranking paradigm. We
outline the results of a user study, followed by a
discussion section.

The dialogue system: Dialogue processing
starts with the output of a speech recognizer
(Nuance) which is analyzed by both a statistical
dependency parser and a topic classifier. Parse
trees and topic labels are matched by the ‘di-
alogue move scripts’ of the dialogue manager
(DM) (Mirkovic and Cavedon, 2005). The
dialogue system is fully implemented and has
been used in restaurant selection and MP3 player
tasks (Weng et al., 2004). There are 41 task-
independent, generic dialogue rules, 52 restaurant
selection rules and 89 MP3 player rules. Query

constraints are built by dialogue move scripts if
the parse tree matches input patterns specified
in the scripts. For example, a request “I want
to find an inexpensive Japanese restaurant that
takes reservations” results in constraints such as
restaurant:Cuisine = restaurant:japanese

and restaurant:PriceLevel = 0-10. If the
database query constructed from these constraints
returns no results, various constraint modification
strategies such as constraint relaxation or removal
can be employed. For example, ‘Japanese food’
can be relaxed to ‘Asian food’ since cuisine types
are hierarchically organized.

2 Overgeneration for spoken dialogue

Table 1 shows some example outputs of the sys-
tem. The wording of the realizations is informed
by a wizard-of-oz data collection. The task of
the generator is to produce these verbalizations
given dialogue strategy, constraints and further
discourse context, i.e. the input to the generator
is non-linguistic. We perform mild overgenera-
tion of candidate moves, followed by ranking. The
highest-ranked candidate is selected for output.

2.1 Chart generation

We follow a bottom-up chart generation approach
(Kay, 1996) for production systems similar to
(Varges, 2005). The rule-based core of the gen-
erator is a set of productions written in a produc-
tion system. Productions map individual database
constraints to phrases such as “open for lunch”,
“within 3 miles”, “a formal dress code”, and re-
cursively combine them into NPs. This includes
the use of coordination to produce “restaurants
with a 5-star rating and a formal dress code”,
for example. The NPs are integrated into sen-
tence templates, several of which can be combined
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|result| mod example realization fexp

s1 0 no I’m sorry but I found no restaurants on Mayfield Road that serve Mediterranean food . 0

s2 small: no There are 2 cheap Thai restaurants in Lincoln in my database :Thai Mee Choke and 61

> 0, < t1 Noodle House .

s3 medium: no I found 9 restaurants with a two star rating and a formal dresscode that are open 212

>= t1, < t2 for dinner and serve French food . Here are the first ones :

s4 large: no I found 258 restaurants on Page Mill Road, for example Maya Restaurant , 300

>= t2 Green Frog and Pho Hoa Restaurant . Would you like to try searching by cuisine ?

s5 large yes I found no restaurants that ... However, there are NUM restaurants that ... Would you like to ...? 16

s6 (any) yes/no I found 18 items . 2

Table 1: Some system responses (‘|result|’: size of database result set, ‘mod’: performed modifications).
Last column: frequency in user study (180 tasks, 596 constraint inputs to generator)

to form an output candidate turn. For example,
a constraint realizing template “I found no [NP-
original] but there are [NUM] [NP-optimized] in
my database” can be combined with a follow-up
sentence template such as “You could try to look
for [NP-constraint-suggestion]”. ‘NP-original’ re-
alizes constraints directly constructed from the
user utterance; ‘NP-optimized’ realizes potentially
modified constraints used to obtain the actual
query result. To avoid generating separate sets of
NPs independently for these two – often largely
overlapping – constraint sets, we assign unique in-
dices to the input constraints, overgenerate NPs
and check their indices.

The generator maintains state across dialogue
turns, allowing it to track its previous decisions
(see ‘variation’ below). Both input constraints and
chart edges are indexed by turn numbers to avoid
confusing edges of different turns.

We currently use 102 productions overall in the
restaurant and MP3 domains, 38 of them to gener-
ate NPs that realize 19 input constraints.

2.2 Ranking: alignment & variation

Alignment Alignment is a key to successful nat-
ural language dialogue (Brockmann et al., 2005).
We perform alignment of system utterances with
user utterances by computing an ngram-based
overlap score. For example, a user utterance “I
want to find a Chinese restaurant” is presented by
the bag-of-words{‘I’, ‘want’, ‘to’, ‘find’, ... } and
the bag-of-bigrams{‘I want’, ‘want to’, ‘to find’,
...}. We compute the overlap with candidate sys-
tem utterances represented in the same way and
combine the unigram and bigram match scores.
Words are lemmatized and proper nouns of exam-
ple items removed from the utterances.

Alignment allows us to prefer “restaurants that

serve Chinese food” over “Chinese restaurants”
if the user used a wording more similar to the
first. The Gricean Maxim of Brevity, applied to
NLG in (Dale and Reiter, 1995), suggests a prefer-
ence for the second, shorter realization. However,
if the user thought it necessary to use “serves”,
maybe to correct an earlier mislabeling by the
classifier/parse-matching patterns, then the system
should make it clear that it understood the user
correctly by using those same words. On the other
hand, a general preference for brevity is desirable
in spoken dialogue systems: users are generally
not willing to listen to lengthy synthesized speech.

Variation We use a variation score to ‘cycle’
over sentence-level paraphrases. Alternative can-
didates for realizing a certain input move are
given a unique alternation (‘alt’) number in in-
creasing order. For example, for the simple move
continuation query we may assign the follow-
ing alt values: “Do you want more?” (alt=1) and
“Do you want me to continue?” (alt=2). The sys-
tem cycles over these alternatives in turn. Once
we reach alt=2, it starts over from alt=1. The ac-
tual alt ‘score’ is inversely related to recency and
normalized to [0...1].

Score combination The final candidate score is
a linear combination of alignment and variation
scores:

scorefinal = λ1 · alignuni,bi +(1 − λ1) · variation (1)

alignuni,bi = λ2 · alignuni +(1 − λ2) · alignbi (2)

whereλ1, λ2 ∈ {0...1}. A high value ofλ1

places more emphasis on alignment, a low value
yields candidates that are more different from pre-
viously chosen ones. In our experience, align-
ment should be given a higher weight than vari-
ation, and, within alignment, bigrams should be
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weighted higher than unigrams, i.e.λ1 > 0.5 and
λ2 < 0.5. Deriving weights empirically from cor-
pus data is an avenue for future research.

3 User study

Each of 20 subjects in a restaurant selection task
was given 9 scenario descriptions involving 3 con-
straints. We use a back-end database of 2500
restaurants containing the 13 attributes/constraints
for each restaurant.

On average, the generator produced 16 output
candidates for inputs of two constraints, 160 can-
didates for typical inputs of 3 constraints and 320
candidates for 4 constraints. For larger constraint
sets, we currently reduce the level of overgenera-
tion but in the future intend to interleave overgen-
eration with ranking similar to (Varges, 2002).

Task completion in the experiments was high:
the subjects met all target constraints in 170 out of
180 tasks, i.e. completion rate was 94.44%. To
the question “The responses of the system were
appropriate, helpful, and clear.” (on a scale where
1 = ‘strongly agree’, 5 = ‘strongly disagree’), the
subjects gave the following ratings: 1: 7, 2: 9, 3:
2, 4: 2 and 5: 0, i.e. the mean user rating is 1.95.

4 Discussion & Conclusions

Where NLG affects the dialogue system: Dis-
course entities introduced by NLG add items to the
system’s salience list as an equal partner to NLU.

Robustness: due to imperfect ASR and NLU,
we relax completeness requirements when doing
overgeneration, and reason about the generation
input by adding defaults for missing constraints,
checking ranges of attribute values etc. Moreover,
we use a template generator as a fall-back if NLG
fails to at least give some feedback to the user (s6
in table 1).

What-to-say vs how-to-say-it: the classic sep-
aration of NLG into separate modules also holds
in our dialogue system, albeit with some mod-
ifications: ‘content determination’ is ultimately
performed by the user and the constraint opti-
mizer. The presentation dialogue moves do micro-
planning, for example by deciding to present re-
trieved database items either as examples (s4 in
table 1) or as part of a larger answer list of items.
The chart generator performs realization.

In sum, flexible and expressive NLG is cru-
cial for the robustness of the entire speech-based
dialogue system by verbalizing what the system

understood and what actions it performed as a
consequence of this understanding. We find that
overgeneration and ranking techniques allow us to
model alignment and variation even in situations
where no corpus data is available by using the dis-
course history as a ‘corpus’.
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Abstract

It would be useful to enable dialogue
agents to project, through linguistic
means, their individuality or personality.
Equally, each member of a pair of agents
ought to adjust its language (to a greater or
lesser extent) to match that of its interlocu-
tor. We describe CRAG, which generates
dialogues between pairs of agents, who are
linguistically distinguishable, but able to
align. CRAG-2 makes use of OPENCCG
and an over-generation and ranking ap-
proach, guided by a set of language mod-
els covering both personality and align-
ment. We illustrate with examples of out-
put, and briefly note results from user stud-
ies with the earlier CRAG-1, indicating
how CRAG-2 will be further evaluated.
Related work is discussed, along with cur-
rent limitations and future directions.

1 Introduction

A computer agent should beindividual. Nass
and collaborators find that users’ responses
to computer-agents are influenced by whether
the agent’s linguistic personality matches—or
mismatches—the personality of the user (Moon
and Nass, 1996; Nass and Lee, 2000). Similarly,
characters in virtual environments should be dis-
tinctive (Ball and Breese, 2000; Rist et al., 2003).
But an aspect of personality is how well you adjust
to other people (and their language use):align-
ment. Pickering and Garrod’s Interactive Align-
ment Model suggests that people tend to automat-
ically converge on lexical and syntactic choices,
via a low-level mechanism of interpersonal prim-
ing (Pickering and Garrod, 2004), and Brennan

has shown that people will align their language to-
wards that of computer agents (Brennan, 1996).
But it is an open issue as to whether some peo-
ple are better ‘aligners’ than others. Conversely,
alignment is only visible and interesting (among
computer agents) if they start out being individual.

We therefore set out to simulateboth individ-
uality and alignment. The paper briefly surveys
the evidence for linguistic personality, for inter-
personal alignment, and for interaction between
them. It then sketches the current version of
CRAG. CRAG-2 makes use of OPENCCG and
an over-generation and ranking approach, guided
by a set of language models for personality and
alignment. We illustrate the differing linguis-
tic behaviours that it generates, and briefly note
promising results from user studies with the ear-
lier CRAG-1 system, indicating how CRAG-2 will
be further evaluated. Related work is discussed,
along with possible directions for future work.

2 Background

2.1 Personality and Language

Current work on personality traits is dominated by
Costa and McCrae’s five-factor model (Costa and
McCrae, 1992). The five factors, or dimensions,
are: Extraversion; Neuroticism; Openness; Agree-
ableness; and Conscientiousness (Matthews et al.,
2003). It has been shown that scores on these di-
mensions correlate with some aspects of language
use (Scherer, 1979; Dewaele and Furnham, 1999).
In studies of text, the focus has been on lexical
choice, and Pennebaker and colleagues have anal-
ysed relative frequencies of use of word-stems in
a dictionary structured into semantic and syntac-
tic categories (Pennebaker et al., 2001). Amongst
other results, they have shown that High Extraverts
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use: more social process talk, positive emotion
words and inclusives; and fewer negations, ten-
tative words, exclusives, causation words, nega-
tive emotion words, and articles (Pennebaker and
King, 1999; Pennebaker et al., 2002).

Computational linguistic exploitation of such
empirically-derived features has been limited. On
the one hand, in generation, there has been work
on personality-based generation. For instance, in
developing embodied conversational agents, re-
searchers have designed agents or teams of agents
with distinguishable linguistic personalities (Ball
and Breese, 2000; Rist et al., 2003; Piwek and
van Deemter, 2003; Gebhard, 2005). However,
the linguistic behaviour is usually informed by
rules based on personality stereotypes, rather than
on language statistics themselves. On the other
hand, in interpretation, more empirical work has
recently been carried out, to enable text classifi-
cation. Argamon et al. (2005) attempted to clas-
sify authors as High or Low Extravert and High
or Low Neurotic, using Pennebaker and King’s
(1999) data. They report classification accuracies
of around 58% (with a 50% baseline). Oberlander
and Nowson (2006) undertake a comparable task,
using weblog data. They report classification ac-
curacies of roughly 85% (Neuroticism) and 94%
(Extraversion), and comparable figures for Agree-
ableness and Conscientiousness. Such studies can
provide ordered lists of linguistic features which
are useful for distinguishing language producers,
and we will return to this, below.

2.2 Alignment and Language

People converge with their interlocutors in linguis-
tic choices at a number of levels (Pickering and
Garrod, 2004). The phenomena can be seen in
both social and cognitive terms. On the social side,
co-operative processes such as audience design
are usually considered to be conscious, at least in
part (Bell, 1984). But on the cognitive side, co-
ordinative processes such as alignment are usu-
ally considered to be largely automatic (Garrod
and Doherty, 1994). Alignment can be probed
by psycholinguistic tests for interpersonal prim-
ing, establishing the extent to which participants
are more likely to use a lexical item or syntac-
tic construction after hearing their conversational
partner use it. Syntactic priming experiments in-
volve constructions such as passives, and ditransi-
tives (Pickering and Branigan, 1998).

It is possible that some people are stronger
aligners than others. Gill et al. (2004) probed
syntactic priming for passives, and investigated
whether levels of Extraversion or Neuroticism
would affect the strength of priming effects. It
was found that Extraversion has no effect, but that
Neuroticism has a non-linear effect: both High and
Low levels of Neuroticism led to weaker priming;
Mid levels led to significantly stronger priming.
Given this, if a generation system is going to simu-
late alignment, it is probably worth designing it so
that it can simulate agents with differing propensi-
ties to align.

3 The CRAG System Overview

The system described in the following sections
(CRAG-2) is the successor to CRAG-1 which is
detailed in Isard et al. (2005). The system gener-
ates a dialogue between two computer agents on
the subject of opinions about a film. CRAG-2 uses
the OPENCCG parsing and generation framework
(White, 2004; White, 2006). The realiser com-
ponent takes a logical form as input and outputs
a list of candidate sentences ranked using one or
more language models. In CRAG-2, we use the
OPENCCG generator to massively over-generate
paraphrases, and the combination of n-gram mod-
els described in Section 4 to choose the best ut-
terance according to a character’s personality and
agenda, and the dialogue history.

4 N-Grams: Personality and Alignment
Modelling

4.1 N-Gram Language Models

The basic assumption underlying CRAG-2 is that
personality, as well as alignment behaviour, can
be modelled by the combination of a variety of n-
gram language models.

Language models are trained on a corpus and
subsequently used to compute probability scores
of word sequences. An n-gram language model
approximates the probability of a word given its
history of the precedingn− 1 words. According
to the chain rule, probabilities are then combined
by multiplication. Equation (1) shows a trigram
model that takes into account two words of context
to predict the probability of a word sequencewn

1:

(1) P(wn
1)≈

n

∏
i=1

P(wi |wi−1
i−2)
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4.2 Avoiding the Length Effect

Because word probabilities are always less than 1
and therefore each multiplication decreases the to-
tal, if we use this standard model, longer sentences
will always receive lower scores (this is known as
the length effect). We therefore calculate the prob-
ability of a sentence as the geometric mean of the
probability of each word in the sentence as shown
in (2):

(2) P(wn
1)≈

n

∏
i=1

P(wi |wi−1
i−2)

1/n

4.3 Linear Combination of Language Models

OPENCCG supports the linear combination of
language models, where each model is assigned a
weight. For uniform interpolation of two language
modelsPa andPb, each receives equal weight:

(3) P(wi |wi−1
i−2) =

Pa(wi |wi−1
i−2)+Pb(wi |wi−1

i−2)
2

In the more general case, the language models
are assigned weightsλi , the sum of which has to
be 1:

(4) P(wi |wi−1
i−2) = λ1Pa(wi |wi−1

i−2)+λ2Pb(wi |wi−1
i−2)

For example, settingλ1 = 0.9 andλ2 = 0.1 assigns
a high weight to the first language model.

4.4 OPENCCG N-Gram Ranking

In the OPENCCG framework, language models
can be used to influence the chart-based realisation
process. The agenda of edges is re-sorted accord-
ing to the score an edge receives with respect to a
language model. For CRAG-2, many paraphrases
are generated from a given logical form, and they
are then ranked in order of probability according
to the combination of n-gram models appropriate
for the character and stage of the dialogue.

5 CRAG-2 Personality and Alignment
Models

We use the SRILM toolkit (Stolcke, 2002) to com-
pute our language models. All models (except
for the cache language model described in Sec-
tion 5.4) are trigram models with backoff to bi-
grams and unigrams.

We have experimented with two strategies for
creating personality models. Since we want to

study the effects of alignment as well as person-
ality, it is essential that the two characters in a di-
alogue be distinct from one another, so that the ef-
fects of alignment can be seen. The first strategy
involves using typical language for each personal-
ity trait, and the second uses the language of one
individual. In both cases, the language models de-
scribed in the following sections are combined as
described in Section 5.5.

5.1 Building a Personality

Nowson (2006) performed a study on language
use in weblogs. The weblog authors were asked to
complete personality questionnaires based on the
five-factor model (see Section 2.1). All weblog au-
thors scored High or Medium on the Openness di-
mension, so we have no data for typical Low Open
language.

We divided the data into High, Medium and
Low for each personality dimension, and trained
language models so that we would be able to as-
sess the probability of a word sequence given a
personality type. This means that each individual
weblog is used 5 times, once for each dimension.

For each personality dimension, the system sim-
plifies a character’s personality settingx by assign-
ing a value of High (x > 70), Medium (30< x≤
70) or Low (x≤ 30). The five models correspond-
ing to the character’s assigned personality are uni-
formly interpolated to give the final personality
model. If the character has been given a low Open-
ness score, since we do not have a model for this
personality type, we simply interpolate the other
four models.

5.2 Borrowing a Personality

Our second strategy was to train n-gram models
on language of the individuals from the CRAG-1
corpus (Isard et al., 2005) and to use one of these
models for each character in the dialogue.

5.3 Base Language Model

In the case of building a personality, a base lan-
guage model is obtained by combining a language
model computed from the corpus collected for the
CRAG-1 system and a general language model
based on data from the Switchboard corpus (Stol-
cke et al., 2000). The combined base model alone
would rank the utterances without any bias for per-
sonality or alignment. When we are borrowing a
personality, the base model is calculated from the
Switchboard corpus alone.
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5.4 Cache Language Model

We simulate alignment by computing a cache lan-
guage model based on the utterance that was gen-
erated immediately before. This dialogue history
cache model is the uniform interpolation of word-
and class-based n-gram models, where classes act
as a backoff mechanism when there is no exact
word match. Classes group together lexical items
with similar semantic properties, e.g.:

• good, bad: quality-adjective

• loved, hated: opinion-verb

Details of this approach can be found in Brock-
mann et al. (2005).

5.5 Combining the Language Models

The system uses weights to combine all the mod-
els described above. First the base and person-
ality models are interpolated to produce a base-
personality model, and finally the cache model is
introduced to add alignment effects.

6 Dialogue and Utterance Specifications

6.1 Character Specification

Two computer characters are parameterised for
their personality by specifying values (on a scale
from 0 to 100) for the five dimensions: Extraver-
sion (E), Neuroticism (N), Openness (O), Agree-
ableness (A), and Conscientiousness (C). Their
alignment behaviour is set to a value between 0
(low propensity to align) and 1 (high propensity
to align). Also, each character receives an agenda
of topics they wish to discuss, along with polari-
ties (positive/negative) that indicate their opinion
on the respective topic.

6.2 Utterance Design

The character with the higher Extraversion score
begins the dialogue, and their first topic is se-
lected. Once an utterance has been generated, the
other character is selected, and the system applies
the algorithm shown in (5) to decide which topic
should come next. This process continues until
there are no topics left on the agenda of the cur-
rent speaker.

(5) if (A < 46) or (C< 46) or
(no. of utts about this topic= 2)

then take next topic from own agenda
elsecontinue on same topic

The system creates a simple XML representa-
tion of the character’s utterance, using the speci-
fied topic and polarity. An example using the topic
music and polarity negative is shown in Figure 1.
At this point the system also decides which dis-
course connectives may be appropriate, based on
the previous topic and polarity.

<utterance>
<utt topic="music" polarity="dislike"

opp-polarity="like" so="no" right="no"
also="no" well="yes" and="no" but="no">

<pred adj="bad"/>
<opp-pred adj="good"/>

</utt>
</utterance>

Figure 1: Simple Utterance Specification

6.3 OPENCCG Logical Forms

Following the method described in Foster and
White (2004), the basic utterance specification is
transformed, using stylesheets written in the XSL
transformation language, into an OPENCCG log-
ical form. We make use of the facility for defin-
ing optional and alternative inputs and underspec-
ified semantics to massively over-generate candi-
date utterances. A fragment of the logical form
which results from the transformation of Figure 1
is shown in Figure 2. We also include some frag-
ments of canned text from the CRAG corpus in our
OPENCCG lexicon.

We also add optional interjections (i mean, you
know, sort of) and conversational markers (right,
but, and, well) where appropriate given the dis-
course history.

When the full logical form is processed by the
OPENCCG system, the output consists of sen-
tences of the types shown below:

(I think) the music was bad.
(I think) the music was not (wasn’t)
good.
I did not (didn’t) like the music.
I hated the music.
One thing I did not (didn’t) like was the
music.
One thing I hated was the music.

The fragmentary logical form in Figure 2 would
create all possible paraphrases from:

(well) (you know) I (kind of) [liked/loved] the
[music/score]

By using synonyms (e.g., plot=story, com-
edy=humour) and combining the sentence types
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<node id="l1:opinion" pred="like" tense="past">
<rel name="Speaker">

<node id="p1:person" pred="pro1" num="sg"/>
</rel>
<rel name="Content">

<node id="f1:cragtopic" pred="music"
det="the" num="sg"/>

</rel>
<opt>

<rel name="Modifier">
<node id="w1:adv" pred="well"/>

</rel>
<opt>
<opt>

<rel name="HasProp">
<node id="a2:proposition" pred="kind-of"/>

</rel>
</opt>
<opt>

<rel name="Modifier">
<node id="a1:adv" pred="you-know"/>

</rel>
</opt>

</node>

Figure 2: Fragment of Logical Form

Stan: E:53 N:48 A:57 C:46 O:65
agenda: film(neg), dialogue(neg),
music(pos)
other opinions: plot(neg), comedy(neg)

Eddie: E:51 N:43 A:57 C:41 O:65
agenda: plot(neg), comedy(neg),
dialogue(neg)
other opinions: music(pos), film(neg)

Figure 3: Stan and Eddie

and optional expressions, we create up to 3000
possibilities per utterance, and the best candidate
is chosen by the specific combination of n-gram
models appropriate for the given personality and
dialogue history, as described in Section 4.

Our OPENCCG lexicon is based on the core
English lexicon included with the system and we
have added vocabulary appropriate to the movie
domain, and extended the range of grammatical
constructions where necessary.

7 Output and Evaluation

7.1 Output

In this section, we provide some example out-
puts from the CRAG-2 system, using characters
based on participants from our corpus (see Sec-
tion 5.2). Stan is higher on the Extraversion, Neu-
roticism, and Conscientiousness scales than Ed-
die. The characters’ personalities and agendas are
summarised in Figure 3.

We show three example dialogues between Stan
and Eddie. In the first (Figure 4) neither charac-

ter aligns with the other at all, while in the sec-
ond (Figure 5) Stan has a slight tendency towards
alignment and in the third (Figure 6) a more pro-
nounced tendency. In system terms, this means
that in the first dialogue the cache model was given
weight 0, while in the second and third the cache
model was given weights 0.05 and 0.1 respectively
for Stan’s utterances. It can be seen that in the
first dialogue, Eddie’s use ofhumourin utterance
4 is followed by Stan’scomedy, anddialogue in
utterance 6 is followed byscript. In the second
dialogue, Stan aligns his first lexical choice with
Eddie’s but not his second, while in the third di-
alogue he aligns both. The syntactic structures of
Stan’s utterances in the second and third dialogue
also mirror Eddie’s progressively more closely.

1. Stan: I didn’t think much of the film you know.
2. Eddie: I mean I didn’t like kind of like the story.
3. Stan: Yeah there were so many little pathways that they

didn’t take you know.
4. Eddie: I mean I didn’t think the humour was really funny.
5. Stan: Yeah you know the comedy was a bit dull.
6. Eddie: I mean I didn’t like kind of like the dialogue.
7. Stan: I mean the script was a bit dull.

Figure 4: Zero Alignment

1. Stan: I didn’t think much of the film you know.
2. Eddie: I mean I didn’t like kind of like the story.
3. Stan: Yeah there were so many little pathways that they

didn’t take you know.
4. Eddie: I mean I didn’t think the humour was really funny.
5. Stan: I mean the humour was a bit dull.
6. Eddie: I mean I didn’t like kind of like the dialogue.
7. Stan: I mean the script was a bit dull.

Figure 5: Little Alignment from Stan

1. Stan: I didn’t think much of the film you know.
2. Eddie: I mean I didn’t like kind of like the story.
3. Stan: I mean the story was a bit dull.
4. Eddie: I mean I didn’t think the humour was really funny.
5. Stan: I mean the humour was a bit dull.
6. Eddie: I mean I didn’t like kind of like the dialogue.
7. Stan: I mean the dialogue was a bit dull.

Figure 6: More Alignment from Stan

To further illustrate the differences between the
dialogues with and without alignment, we provide
some utterance rankings. We show candidates
for the fifth utterance in each dialogue. Table 1
shows sentences from the example generated with-
out alignment, corresponding to utterance 5 (Stan)
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1 .03317 Yeah you know the comedy was a
bit dull.

3 .03210 Yeah you know the humour was a bit
dull.

6 .03083 Yeah to be honest I didn’t think that
the comedy was very good either.

15 .02938 I didn’t think much of the comedy
either.

24 .02861 I thought that the comedy was a bit
dull too you know.

Table 1: Ranked Sentences with Zero Alignment

1 .05384 I mean the humour was a bit dull.
8 .05239 The humour wasn’t really funny you

know.
15 .04748 I mean I didn’t think that the humour

was very good either.
19 .04518 I didn’t think much of the humour

either you know.
21 .04478 I thought the humour was a bit dull

too you know.

Table 2: Ranked Sentences with Little Alignment
from Stan

from Figure 4. We show the first five occurrences
of different sentence structures (see Section 6.3),
with their rank and their geometric mean adjusted
scores.

Table 2 shows the the top five sentences from
the fifth utterance from Figure 5 (little alignment),
and Table 3 those from Figure 6 (more align-
ment). It can be seen that when more alignment
is present, the syntactic structure used by the pre-
vious speaker rises higher in the rankings.

7.2 Evaluation

We have not evaluated CRAG-2. However, we
have evaluated CRAG-1. The method was to gen-
erate a set of dialogues, systematically contrasting
characters with extreme settings for the personal-
ity dimensions (High/Low Extraversion, Neuroti-
cism, and Psychoticism1).

1CRAG-1 used the simpler PEN three factor personality
model.

1 .07081 I mean the humour was a bit dull.
2 .06432 The humour wasn’t really funny you

know.
15 .05516 I mean I didn’t think that the humour

was really funny either.
27 .05000 I thought the humour was a bit dull

too you know.
36 .04884 I mean I didn’t think much of the hu-

mour either.

Table 3: Ranked Sentences with More Alignment
from Stan

Human subjects were asked to fill in a question-
naire to determine their personality. They were
then given a selection of dialogues to read. After
each dialogue, they were asked to rate their per-
ception of the interaction and of the characters in-
volved by assigning scores to a number of adjec-
tives related to the personality dimensions.

It was found that subjects could recognise dif-
ferences in the Extraversion level of the language.
Also, the personality setting of a character influ-
enced the perception of its and its dialogue part-
ner’s personality (Kahn, 2006).

We plan a similar evaluation for CRAG-2 to be
able to compare human raters’ impressions of di-
alogues generated by the two systems. We also
plan to evaluate CRAG-2 internally by varying the
weight given to the underlying language models,
and observing the effects this has on the resulting
ranking of the generated utterances.

8 Related Work

Related work in NLG involves either personality
or alignment. So far as we can tell, there is little
work on the latter. Varges (2005) suggests that “a
word similarity-based ranker could align the gen-
eration output (i.e. the highest-ranked candidate)
with previous utterances in the discourse context”,
but there is no report yet on an implementation of
this proposal. A rather different approach is sug-
gested by Bateman and Paris (2005), who discuss
initial work on alignment, mediated by a process
of register-recognition. Regarding generation with
personality, the most influential work is probably
Hovy’s PAULINE system, which varies both con-
tent selection and realisation according to an indi-
vidual speaker’s goals and attitudes (Hovy, 1990).
In her extremely useful survey of work on affective
(particularly, emotional) natural language gener-
ation, Belz (2003) notes that the complexity of
PAULINE’s rule system means that numerous rule
interactions can lead to unpredictable side effects.
In response, Paiva and Evans (2004) take a more
empirical line on style generation, which is closer
to that pursued here. Other relevant work includes
Loyall and Bates (1997), who explicitly propose
that personality and emotion could be used in
generation, but Belz observes that technical de-
scriptions of Hap and the Oz project suggest that
the proposals were not implemented. Walker et
al.’s (1997) system produces linguistic behaviour
which is much more varied than our current sys-
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tem is capable of; but there, variation is driven by
a model of social relations (based on Brown and
Levinson), rather than on personality. TheNECA

project subsequently developed methods for gen-
erating scripts for pairs of dialogue agents (Piwek
and van Deemter, 2003), supported by theMIAU

platform (Rist et al., 2003). The VIRTUAL HU-
MAN project is a logical successor to this work,
and itsALMA platform provides an integrated ap-
proach to affective generation, covering emotion,
mood and personality (Gebhard, 2005).

9 Conclusion and Next Steps

Our current system takes a much coarser-grained
approach to semantics and discourse goals than
the recent projects described above, in order to
take advantage of empirically-derived relations
between language and personality. It should be
feasible in principle to move to a more sophisti-
cated semantics, but still retain the massive over-
generation and ranking method. However, to
support more perceptible variation, we need to
exploit much larger personality-corpus resources
than have been available up to now, and our cur-
rent priority is to obtain a corpus at least an order
of magnitude larger than what is currently avail-
able. This interest in individual differences and
what corpora can (and cannot) tell us about them
is one we share with Reiter and colleagues (Reiter
and Sripada, 2004).

We also plan to integrate techniques from
CRAG-1 and CRAG-2, by passing the ranked out-
put of CRAG-2 through further processing and
ranking stages. Furthermore, we intend to inves-
tigate longer-ranging alignment processes, taking
into account more than one previous utterance,
with reduced weight by distance, to emulate mem-
ory effects.

With these enhancements, we will take further
steps towards our goal of simulating both individu-
ality and alignment in believable computer agents.
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Abstract

Human text is characterised by the indi-
vidual lexical choices of a specific au-
thor. Significant variations exist be-
tween authors. In contrast, natural lan-
guage generation systems normally pro-
duce uniform texts. In this paper we
apply distributional similarity measures
to help verb choice in a natural lan-
guage generation system which tries to
generate text similar to individual au-
thor. By using a distributional sim-
ilarity (DS) measure on corpora col-
lected from a recipe domain, we get
the most likely verbs for individual au-
thors. The accuracy of matching verb
pairs produced by distributional similar-
ity is higher than using the synonym out-
puts of verbs from WordNet. Further-
more, the combination of the two meth-
ods provides the best accuracy.

1 Introduction

Human text is characterised by the individual lex-
ical choices of the specific author. It varies from
author to author. Individual authors use different
verbs to describe the same action. Natural lan-
guage generation (NLG) systems, in contrast, nor-
mally produce uniform outputs without consider-
ing other lexical possibilities. Consider the fol-
lowing example from our corpora that are the BBC
corpus and the Recipes for health eating corpus.

1. BBC Corpus: Finely grate the ginger and
squeeze out the juice into a shallow non-
metallic dish. (BBC online recipes)

2. Author2: Extract juice from orange and add
this with the water to the saucepan. (Recipes
for health eating).

Here, we can see that the two authors express the
same type of action with different verbs, ’squeeze’
and ’extract’. In fact, when expressing this action,
the BBC corpus always use the verb ’squeeze’, and
Author2 only uses the verb ’extract’. Therefore,
we can assume that Author2 considers the verb
’extract’ to describe the same action as the verb
’squeeze’ used by the BBC corpus. The purpose of
our research is to develop a NLG system that can
detect these kinds of individual writing features,
such as the verb choice of individual authors, and
can then generate personalised text.

The input of our personalised NLG system is an
unseen recipe from the BBC food website. Our
system, then, translates all sentences into the style
of a personal author based on features drawn from
analysing an individual corpus we collected. In
this paper, we address the verb choice of the indi-
vidual author in the translation process.

Our system defines the writing style of an in-
dividual author by analysing an individual cor-
pus. Therefore, our system is a corpus-based NLG
system. Lexical choice for individual authors is
predicted by analysing the distributional similar-
ity between words in a general large recipe cor-
pus that is used to produce the verbs as the ac-
tion representation and words in a specific indi-
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vidual recipe corpus. Firstly, we collected a large
corpus in the recipe domain from the BBC online
website. This large recipe corpus is used to ex-
tract feature values, for example verb choice, by
analysing an individual corpus. Secondly, we col-
lected our individual corpora for a number of in-
dividual authors. Each of them is used to extract
feature values that may define the individual writ-
ing style. The individual author may choose the
same or a different verb to describe cooking ac-
tions. The question is how can we identify the in-
dividual choice? For example, Author2 uses the
verb ’extract’ instead of the verb ’squeeze’. How-
ever, if the author does express the action by a dif-
ferent verb, the problem is how our system picks
out verbs according to the individual choice of an
author.

One way to solve this problem is to access
large-scale manually constructed thesauri such as
WordNet (Fellbaum, 1998), Roget’s (Roget, 1911)
or the Macquarie (Bernard, 1990) to get all syn-
onyms and choose the most frequent one in the
individual corpus. Another possible way is to use
a lexical knowledge based system, like VerbNet
(Kipper et al., 2000) to get more possible lexical
choices. However, both methods only provide a
number of pre-produced lexical choices that may
or may not be the words that the individual author
would choose. In other words, the lexical choice
of an author may not be based on the synonyms
extracted from one of the thesauri or may not even
belong to the same semantic class. In our exam-
ple, ’squeeze’ and ’extract’ are neither synonyms
nor Coordinate Terms in WordNet. In a small do-
main, it is possible to manually build a verb list
so that each action is described by a set of possi-
ble verbs. The drawback is that this is expensive.
Furthermore, it still cannot catch verbs that are not
included in the list. Is it possible to predict the
individual verbs automatically?

The distributional hypothesis (Harris, 1968)
says the following:

The meaning of entities, and the
meaning of grammatical relations
among them, is related to the restriction
of combinations of these entities relative
to other entities.

Over recent years, many applications (Lin,
1998), (Lee, 1999), (Lee, 2001), (Weeds et al.,
2004), and (Weeds and Weir, 2006) have been in-
vestigating the distributional similarity of words.
Similarity means that words with similar meaning
tend to appear in similar contexts. In NLG, the
consideration of semantic similarity is usually pre-
ferred to just distributional similarity. However, in
our case, the most important thing is to capture the
most probable choice of a verb of an individual au-
thor for expressing an action. The expression of
an action can be either the same verb, synonyms,
or Coordinate terms to the verb in the big corpus,
or any verbs that an individual author chooses for
this action. If we check an individual corpus, there
are a set of verbs in our list that do not occur. If
these actions occur in the individual corpus, the
individual author must use different verbs. Distri-
butional similarity technology helps us to build the
links between verbs in our list and the verbs in an
individual corpus.

The rest of this paper is organised as follows.
In Section 2, we describe the recipe domain, our
corpora and our verb list. Section 3 disscuss our
baseline system. In Section 4, we present the dis-
tributional similarity measures that we are propos-
ing for analysing our corpora. The combination
method is disscussed in Section5. In Section 6,
we present an evaluation of our results. In Section
7, we draw conclusions and discuss future work.

2 The Recipe Domain and our Corpora

To find the most expressive verb pairs, we have to
have corpora to be analysed. Therefore, the se-
lection of a corpus is very important. As the re-
search of authorship attribution (AA) shows (Bur-
row, 1987), (Holmes and Forsyth, 1995), (Keuelj
et al., 2003), (Peng, 2003), and (Clement and
Sharp, 2003), there can be style variations of an in-
dividual author. This happens even with the same
topic and genre, and for the same action expres-
sions. Firstly, a person’s writing style can change
as time, genre, and topic change. Can and Pat-
ton (Can and Patton, 2004) have drawn the con-
clusion:

A higher time gap may have positive
impact in separation and categorization.
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Even within one text, the style may not be uni-
form. (Burrow, 1987) has pointed out that, for ex-
ample, in fiction:

The language of its dialogue and that
of its narrative usually differ from each
other in some obvious and many less ob-
vious ways.

These problems require us to collect high-quality
corpora. The recipe domain is a good start in
this case. Sentences in it are narrative, impera-
tive and objective, compared with other normal
human text. For example, journal articles nor-
mally contain a large number of quotations, and
they are more subjective. Furthermore, journal ar-
ticles are more varied in content, even within the
same topic. Secondly, most large corpora are not
author-categorised. This requires us to collect our
own individual corpora.

2.1 Our Corpora
As we mentioned before, we collected a general
corpus in the recipe domain from the BBC food
website. To make recipes varied enough, this cor-
pus contains different cooking styles from west-
ern to eastern, different courses, including starters,
main courses and desserts, and a number of recipes
of famous cooks, such as Ainsley Harriott. Since
recipes are widely-available both from the Internet
and from publications, it is easy to collect author-
categorised corpora. Our individual recipe corpora
include four individual authors so far. Two of them
are from two published recipe books, and another
two we collected online. Recipe books are useful,
because they are written in an unique style. Ta-
ble 1 shows information about both our individual
corpora and our large general corpus.

Although we are focusing on a small domain,
verb variation between individual authors is a
common phenomenon. Here are a few further ex-
amples from our corpora, which we want to cap-
ture.

1. BBC corpus: Preheat the oven to
200C/400F/Gas 6. (BBC online food
recipes)

2. Author2: Switch on oven to 200C, 400F or
Gas Mark 6 and grease a 1

2 litre ovenproof
serving dish. (Recipes for Healthy Eating)

Our Corpora Number Total Total
of Recipes Lines Words

Large corpus 823 6325 85594

(BBC online recipes)

Recipes for 76 961 9212

Health Eating

Food for Health 113 1347 11791

CM 48 537 6432

(www.cooks.com)

Jo Pratt 91 904 15417

(www.bbc.co.uk)

Table 1: Our corpora information

3. Author3. Put the oven on. (Food for Health)

1. BBC corpus: Sift the flour, baking powder
and salt into a large bowl. (BBC online
Recipes)

2. Author2: Sieve the flour, baking powder and
bicarbonate of soda into a large mixing bowl.
(Recipes for Health Eating)

3. Author3: Sieve the flour in, one-third at a
time. (Food for Health)

2.2 Our Verb List

Figure 1: The information of the verblist

We manually built a verb list with 146 verbs in
total from our BBC corpus. Each verb represents
an unique cooking action, associated with defini-
tions and synonyms extracted from WordNet. For
example, the verb ’squeeze’ contains the follow-
ing information shown in Figure 1. The BBC Cor-
pus also contains a number of synonyms, such as
the verb sift and the verb sieve. In this case, we
only pick up the most frequent verb, which is the
verb sift in this case, as an cooking action, and we
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record its synonyms, such as the verb sieve, in the
late part of our verb list.

2.3 Using RASP in our corpora

Our data consists of verb-object pairs for verbs ob-
tained from our BBC Corpus using RASP (Briscoe
and Carroll, 2002). To derive reliable results, we
deal with our data by the following rules. To avoid
the sparse data problem and parsing mistakes, we
removed a number of verbs that occur less than
3 times in our large corpus, and a set of mistake
verbs made by the parser. We consider both direct
objects and indirect objects together at the same
time.

3 The Baseline Method - WordNet
Synonyms

After the individual corpus is parsed, there are a
number of main verbs appearing only in the BBC
recipe corpus, but not in the individual corpus.
This kind of main verbs is called missing verb
in a corpus. For example, verbs such as ’roast’,
’insert’, ’drizzle’ appear in the BBC corpus, but
not in the Food for Health corpus. We say they
are missing verbs in the Food for Health corpus.
In this case, if the individual author expresses ac-
tions in the missing verb group, other verbs must
be chosen instead. Our purpose is to find alter-
natives used by the individual author. To solve
this problem, our baseline measure is the WordNet
synonyms. If the missing verb contains synonyms
in the verb list, we pick one as the candidate verb,
called an available candiate. The following ways
decide the verb alternatives for a missing verb. If
there is more than one candidate verb for one miss-
ing verb, the most frequent synonym of the miss-
ing verb in the individual corpus is chosen as the
alternative. The chosen synonym also has to be a
main verb in the individual corpus. If the miss-
ing verb does not have a synonym or all available
candidates do not appear in the individual corpus,
we assign no alternative to this missing verb. In
this case, we say there is no available alternative
for the missing verb. The number of available al-
ternatives for the missing verb and the accuracy is
shown in Table 2, and Figure 2.

4 Distributional Similarity Measure

In this section, we introduce the idea of using dis-
tributional similarity measures, and discuss how
this methodology can help us to capture verbs
from individual authors.

By calculating the co-occurrence types of target
words, distributional similarity defines the similar-
ity between target word pairs. The co-occurrence
types of a target word (w) are the context, c, in
which it occurs and these have associated frequen-
cies which may be used to form probability esti-
mates (Weeds et al., 2004). In our case, the tar-
get word is main verbs of sentences and the co-
occurrence types are objects. In section 6, simi-
larity between verbs is derived from their objects,
since normally there is no subject in the recipe do-
main. We are using the Additive t-test based Co-
occurrence Retrieval Model of (Weeds and Weir,
2006). This method considers for each word w
which co-occurrence types are retrieved. In our
case, objects have been extracted from both the
BBC Corpus and an individual corpus. Weeds and
Weir use the the co-occurrence types as the fea-
tures of word (w), F(w):

F (w) = {c : D(w, c) > 0}

where D(w, c) is the weight associated with word
w and co-occurrence type c. T-test is used as a
weight function, which is listed later.

Weeds and Weir use the following formula to
describe the set of True Positives of co-occurrence
types, which w1 and w2 are considered main verbs
in copora:

TP (w1, w2) = F (w1) ∩ F (w2)

They use the t-test from (Manning and Schütze,
1999) as the weight formula Dt(w, c):

Dt(w, c) =
p(c, w)− P (c)P (w)√

P (c,w)
N

Weeds and Weir then calculate the precision by
using the proportion of features of w1 which oc-
curs in both words, and the recall by using the
proportion of features of w2 which occur in both
words. In our experiment, precision is relative to
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Total Available Available Available Correct
Individual Corpora Numbers Candidates Candidates Candidates Alternatives by

of Missing by by by (DS VS. WordNet
Verbs WordNet DS Combination VS. Combination)

Recipes for Health Eating 56 A = 36 A = 47 A = 52 8 VS. 10 VS. 17

Food for Health 57 A = 34 A = 52 A = 54 12 VS. 18 VS. 27

CM (www.cooks.com) 58 A = 25 A = 44 A = 51 10 VS. 4 VS. 14

Jo Pratt (www.bbc.co.uk) 26 A = 13 A = 22 A = 24 4 VS. 5 VS. 8

Table 2: The number of available missing verbs by the Distributional Similarity (DS) and by WordNet
and by combination of DS and WordNet. (’A’ means the total number of missing verbs in the individual
corpus that have candidate alternatives in an individual corpus from methods.)

the BBC Corpus, and the recall is relative to an
individual corpus.

P add(w1, w2) =
∑

TP (w1,w2) D(w1, c)∑
F (w1) D(w1, c)

Radd(w1, w2) =
∑

TP (w1,w2) D(w2, c)∑
F (w2) D(w2,c)

Finally, Weeds and Weir combine precision and
recall together by the following formulas:

mh(P (w1, w2), R(w1, w2)) =

2.P (w1, w2).R(w1, w2)
P (w1, w2) + R(w1, w2)

ma(P (w1, w2), R(w1, w2)) =

β.P (w1, w2) + (1− β).R(w1, w2)

sim(w1, w2) = r.mh(P (w1, w2), R(w1, w2))

+(1− r).ma(P (w1, w2), R(w1, w2))

where both r, β are between [0, 1]. In our ex-
periments, we only assigned r=1. However, fur-
ther performs can be done by assigning different
values to r and β.

4.1 The Distributional Similarity method
Each missing verb in the BBC corpus is assigned
the most likely verb as the available candidate
from the individual corpus. The most likely verb
is always chosen according to the largest similarity
using the DS measure. In our case, if the largest

similarity of the verb pair is larger than a certain
value (-5.0), we say the missing verb has an avail-
able candidate. Otherwise, there is no available
candidate existing in the individual corpus. For
instance, DS suggests verb ’switch’ is the most
likely-exchangable verb for missing verb ’preheat’
in the Recipes for Health Eating corpus. ’switch’
appears 33 times in the individual corpus, in which
there are 33 times that ’switch’ has the same ob-
ject as ’preheat’. Meanwhile, ’preheat’ shows 191
times in total in the BBC corpus, with the same
objects as ’switch’ 176 times. By using the DS for-
mulas, the similarity value between ’preheat’ and
’switch’ is 11.99. The number of available can-
didates of the missing verbs and the accuracy are
shown in Table 2, and Figure 2.

There is only one corpus in the DS measures.
In our case, w1 and w2 are from different corpora.
For example, verb ’preheat’ is from the BBC cor-
pus, and verb ’switch’ is in the Recipes for Health
Eating. Although the co-occurence type is objects
of the main verb, the precision is for the general
corpus ——the BBC corpus, and the recall is for
the individual corpus in our experiments.

5 The Combination method

We also combine the baseline and the DS method
together in the combination method. The combi-
nation method tries the baseline first. For each
missing verb, if the baseline returns an available
alternative, this is the final available alternative of
the combination method. If not, the available al-
ternative is calculated by the DS method. If there
is still no candidate for the missing verb, there is
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no available alternative in this case.

6 Evaluation

To justify accuracy of results by both the baseline
method and the DS method, we manually judge
whether or not the alternatives are inter change-
able for the missing verbs. Table 2 shows the total
number of missing verbs for each individual cor-
pus and numbers of available alternatives as well.
Also, it presents the number of correct alternatives
for cases where both methods return answers, and
results of a combination of two methods. In the
future, we would like to evaluate the accuracy by
more judges.

From Table 2, accuracies of distributional simi-
larity are higher than WordNet synonyms in most
cases, except in the individual corpus CM. The
reason that CM got worse results is probably that
the corpus size is not big enough. Since CM is
the only individual corpus that has less than 50
recipes, this could lead to unreliable accuracy. In
table 2, ’A’ means the total number of missing
verbs in the individual corpus that have candidate
alternatives in an individual corpus from meth-
ods. It is obvious that distributional methods pro-
duce more available verbs than the synonyms of
WordNet. In this case, we assume that WordNet
is not very productive to provide alternative verb
choices for individual authors compared with dis-
tributional similarity in a domain.

Figure 2 represents the accuracies of all meth-
ods. In Figure 2, we can see the overall accuracy
of WordNet is not as good as the distributional
similarity method. Moreover, we calculate the ac-
curacy for the available verb pairs from the com-
bination method of both the distributional similar-
ity and WordNet. We can see that all combina-
tion accuracies are significantly better than accu-
racies of either distributional similarity or Word-
Net synonyms. In this case, distributional similar-
ity and WordNet find different types of verbs. In
other words, the similarity distributional method
is very useful to find verbs that are not synonyms
but represent the same type of action in individual
corpora. And the type of verbs found by distribu-
tional similarity could not be pre-predicted, which
makes the verb choice personalised.

In our verb pair outputs from distributional sim-

ilarity, one problem is that we got similar verb
pairs, for instances the verb ’simmer’ matches to
’fry’. This is a common problem with distribu-
tional similarity, since it is not based on semantic
meaning. This problem can perhaps be solved by
building some hierarchical relationships between
verbs. For instance, roast is one type of cooking.

The following examples are correct cases of
verb pairs that are captured by distributional simi-
larity. In each example, the semantic meanings of
sentences are different, but the representation of
action are the same.

roast (BBC Corpus) - cook (Food for Health):

1. BBC Corpus: Season generously and roast
for 30 minutes until softened and a little
charred. (BBC online recipes)

2. Author2: Cover with a lid or foil and cook
in the centre of the oven for 20 minutes, then
turn down the oven to Reg 3 or 160C and con-
tinue cooking for 1 hour or until the kidneys
are cooked. (Food for Health)

saute (BBC Corpus) - fry (Food for Health):

1. BBC Corpus: Melt the butter in a small to
medium ovenproof pan and saute the cashew
nuts for 2-3 minutes. (BBC online recipes)

2. Author2: Add the carrots and fry quickly for
5 minutes, stirring continuously. (Food for
Health)

preheat (BBC Corpus) - switch on (Food for
Health):

1. BBC Corpus: Preheat the oven to
200C/400F/Gas 6. (BBC online recipes)

2. Author2: Switch on oven to 190C, 375F or
Gas Mark 5. (Food for Health)

So far distributional similarity cannot capture
the prepositions such as on in the third example.
This is our future work.

7 Conclusion

In this paper, we used a distributional similar-
ity method to help us to find matching verbs in
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Figure 2: The Accuracy for Missing Verbs in Individual Corpora

an individual corpus. We have compared the re-
sult between the distributional similarity method
and WordNet and the overall accuracy of distribu-
tional similarity is better than WordNet. Further-
more, the combination of the distributional simi-
larity method and WordNet achieved the best ac-
curacy. This suggests that distributional similar-
ity is very helpful in choosing the proper verbs
for individual authors. It is especially useful to
find verbs that are not synonyms but represent the
same type of action in individual corpora. This
means distributional similarity can capture unpre-
dicted verb preferences of individual authors from
the individual corpora.
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Abstract
This paper describes adjective-to-verb
paraphrasing in Japanese. In this para-
phrasing, generated verbs require addi-
tional suffixes according to their difference
in meaning. To determine proper suffixes
for a given adjective-verb pair, we have ex-
amined the verbal features involved in the
theory of Lexical Conceptual Structure.

1 Introduction

Textual expressions that (roughly) convey the
same meaning are called paraphrases. Since gen-
erating and recognizing paraphrases has a poten-
tial to contribute to a broad range of natural lan-
guage applications, such as MT, IE, and QA, many
researchers have done a lot of practices on auto-
matic paraphrasing in the last decade.
Most previous studies have addressed para-

phrase phenomena where the syntactic category
is not changed: e.g., noun-to-noun (“document”
⇔ “article”), verb-to-verb (“raise”⇔ “bring up”).
In these inner-categorial paraphrasing, only lim-
ited types of problems arise when replacing words
or phrases with their synonymous expressions.
On the other hand, this paper focuses on inter-
categorial paraphrasing, such as adjective-to-verb
(“attractive” ⇔ “attract”) that leads to novel type
of problems due to the prominent differences in
meaning and usage. In other words, calculating
those differences is more crucial to determine how
they can or cannot be paraphrased.
The aim of this study is to clarify what lexical

knowledge is required for capturing those differ-
ences, and to explore where such a knowledge can
be obtained from. Recent work in lexical seman-
tics has shown that syntactic behaviors and seman-
tic properties of words provide useful informa-
tion to explain the mechanisms of several classes
of paraphrases. More specifically, lexical proper-
ties involved in the theory of Lexical Conceptual
Structure (LCS) (Jackendoff, 1990) have seemed

to be beneficial because each verb does not func-
tion idiosyncratically. However, in the literature,
there have been less studies for other syntactic
categories than verbs. To the best of our knowl-
edge, the Meaning-Text Theory (MTT) (Mel’čuk
and Polguère, 1987) is one of the very few frame-
works. In MTT, lexical properties and inter-
categorial paraphrasing are realized with a unique
semantic representation irrespective of syntactic
categories and what are called lexical functions,
e.g., S0(receive) = reception.
To make out how the recent advances in lexi-

cal semantics for verbs can be extended to other
syntactic categories, we assess LCS for inter-
categorial paraphrasing. We choose adjectives as
a counterpart of paraphrasing because they behave
relatively similar to verbs compared with other
categories: both adjectives and verbs have inflec-
tion and function as predicates, adnominal ele-
ments, etc. Yet, we speculate that their difference
in meaning and usage reveal intriguing generation
problems. To put it briefly, adjective-to-verb para-
phrasing in Japanese requires verbal suffixes such
as “ta (past / attributive)” in example (1)1:
(1) s. furui otera-no jushoku-o tazune-ta.

be old temple-GEN priest-ACC to visit-PAST
I visited a priest in the old temple.

t. furubi-ta otera-no jushoku-o tazune-ta.
to olden-ATTR temple-GEN priest-ACC to visit-PAST
I visited a priest in the olden(ed) temple.

2 Preliminary investigation

To make an investigation into the variation and
distribution of required verbal suffixes, we col-
lected a set of paraphrase examples through the
following semi-automatic procedure:
Step 1. We handcrafted adjective-verb pairs

based on JCore (Sato, 2004), which classifies
Japanese words into five-levels of readability.
Our 128 pairs (for 85 adjectives) contain only
those sharing first few phonemes (reading)

1For each example, “s” and “t” denote an original sen-
tence and its paraphrase, respectively.
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Table 1: Distribution of verbal suffixes used.
Verbal suffix Cadc Cpr1 Cpr2
ru 9 16 0
tei-ru 5 42 0
re-ru 14 8 0
re-tei-ru 2 5 0
ta 57 0 7
tei-ta 2 0 2
re-ta 6 0 1
re-tei-ta 0 0 1
both ta and tei-ru 4 0 0
both ta and ru 1 0 0
tea-ru 0 2 0
Total 100 73 11

where
ru: base form
tei: progressive / perfective
re: passive / potential
ta: past / attributive
tea: perfective

and characters (kanji), and either of adjective
or verb falls into the easiest three levels.

Step 2. Candidate paraphrases for a given sen-
tence collection are automatically generated
by replacing adjectives with their corre-
sponding verbs. Multiple candidates are gen-
erated for adjectives that correspond to mul-
tiple verbs.

Step 3. The correctness of each candidate para-
phrase is judged by two human annotators.
The basic criterion for judgement is that two
sentences are regarded as paraphrases if and
only if they share at least one interpretation.
In this step, the annotators are allowed to re-
vise candidates: (i) append verbal suffixes,
(ii) change of case markers, and (iii) insert
adverbs. Finally, candidates that both anno-
tators judge correct qualify as paraphrases.

Assuming that the variation and distribution of
verbal suffixes vary according to the usage of ad-
jectives, we separately collected paraphrase exam-
ples for adnominal and predicative usages.
Adnominal usages: For 960 sentences randomly
extracted from a one-year newspaper corpus,
Mainichi 1995, we obtained 165 examples for 142
source sentences. We then divided them into two
portions: 12 adjectives that appeared only once
and at least one examples for the other adjectives
were kept unseen (Cado ), while the remaining ex-
amples (Cadc ) were used for our investigation.
Predicative usages: For 157 example sentences
within IPAL adjective dictionary (IPA, 1990), we
generated candidate paraphrases. 84 candidates
for 70 sentences qualified as paraphrases. They
are then divided into two portions according to
the tense of adjectives: Cpr1 consists of examples
where adjectives appear in base form and Cpr2 is
for “ta” form (past tense).
Table 1 shows the distribution of verbal suffixes

used for given adjective-verb pairs in each portion
of example collections. We confirmed that their
distribution was fairly different. In the remaining
sections, we focus on adnominal usages because
examples of predicative usages have displayed a

degree of compositionality. Which of “ru” or “ta”
must be used is given by the input: if a given ad-
jective accompanies past tense, the resultant ver-
bal suffix is necessarily that for present tense fol-
lowed by “ta.”

3 Determining verbal suffixes

The task we address here is to determine verbal
suffixes for a given input, a pair of an adnominal
usage of adjective in a certain context and a candi-
date verb given by our adjective-verb list.
From the viewpoint of language generation,

this task can be thought of as generating verbal
expressions where options are already given in
Table 1. A straightforward way for determining
verbal suffixes is to make use of lexical properties
of verbs as constraints on generation. To manifest
them, in particular aspectual properties involved
in LCS, we first designed seven types of linguis-
tic tests shown in Table 2. They are derived from
a classical analysis of verb semantics in Japanese
(Kageyama, 1996) and some ongoing projects on
constructing LCS dictionaries (Kato et al., 2005;
Takeuchi et al., 2006). We then manually ex-
amined 128 verbs in Section 2 under those tests.
To determine the word sense in which the deriva-
tive relationship hold good, example sentences in
IPAL verb dictionary (IPA, 1987) for each verb
were used. For a verb which was out of the dic-
tionary, we manually gave a sample sentence.
Since our aim is to explain why a certain ver-

bal suffix is used for a given input, we have not
feverishly applied a machine learning algorithm to
the task. Instead, we have manually created a rule-
based model shown in Table 3 using Cadc , where
each if-then rule assigns either of verbal suffixes in
Table 1 to a given input based on verbal features in
Table 2 and some other features below:
• D: affix pair of the adjective and the candi-
date verb: e.g., “A shii-V mu” for “kuyashii
(be regretful)”⇔ “kuyamu (to regret)”

• N : disjunction of semantic classes in a the-
saurus (The Natural Institute for Japanese
Language, 2004) for the modified noun

• C: whether the adjective is head of clause

4 Experiment and discussion

By conducting an empirical experiment with Cadc

and Cado , we evaluate how our model (RULE)
properly determines verbal suffixes. A compar-
ison with a simple baseline model (BL) is also
done. BL selects the most frequently used suffix
(in this experiment “ta”) for any given input.
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Table 2: Linguistic tests for verbs derived from Lexical Conceptual Structure (Kageyama, 1996).
Label Description
Va whether the verb allows accusative case
Vb whether the verb can co-occur with a temporal adverb “ichi-jikan (for one hour)” or its variant
Vc whether the verb can co-occur with a temporal adverb “ichi-jikan-de (in one hour)” or its variant
Vd whether the verb can be followed by “tearu (perfective)” when its accusative case is moved to nominative
Ve interpretation of the verb followed by “tei-ru (progressive / perfective)”
Vf when followed by “ta,” whether the verb can have the perfective interpretation or just past tense
Vg whether the verb can co-occur with a sort of adverb which indicates intention of the action: e.g. “wazato (purposely)” and “iyaiya (reluctantly)”

Table 3: The rule-set for determining verbal suf-
fixes, where “(non)” indicates non-paraphrasable.
Order Condition (conjunction of “feature label =“ value”) Verbal suffix
1 Va=“yes”∧ Vb=“yes” ∧ Vf=“no” ∧ re-ru

N=“except Human (1.10)” ∧
D=“A ui–V bumu” ∨ “A i–V mu” ∨ “A asii–V u”

2 Va=“yes”∧ Vb=“yes” ∧ Vf=“no” ∧ ta
Vd=“no” ∧N=“Mind: mind, attitude (1.303)”

3 Va=“no” ∧ Vg=“yes” ta
4 Va=“no” ∧ Vf=“yes”∧ D=“A i–V migakaru” ta / tei-ru
5 C=“clause” ∧ D=“A i–V maru” ru
6 Va=“no” ∧ Vf=“yes” ta
7 Va=“no” ∧ Vb=“yes”∧ Vf=“no” ta
8 Vb=“yes” ∧ Vf=“no” ∧ Vc=“yes”∧ tei-ru

Vd=“yes”∧ Ve=“progressive”∧N=“Subject (1.2)”
9 ∗ (non)

Table 4 shows the experimental results, where
recall and precision are calculated with regard
to input adjective-verb pairs. Among rules in
Table 3, rules 1 (for “re-ru”), 3, 6, and 7 (for “ta”
where Va=“no”) performed much better than the
other rules. This indicates that these rules and fea-
tures in their conditions properly reflect our lin-
guistic intuition. For instance, rule 6 reflects that
a change-of-state intransitive verb expresses re-
sultative meaning as adjectives when it modifies
Theme of the event via “ta” (Kageyama, 1996)
as shown in (1), and rule 2 does that a psycho-
logical verb modifies a nouns with “re-ru” when
the noun arouses the specific emotion, such as re-
gretting mistakes (e.g., “kuyashii (be regretful)”
⇔ “kuyama-re-ru (be regretted)”). The aspectual
property captured by the tests in Table 2 is used to
classify verbs into these semantic classes.
On the other hand, the rules for the other types

are immature due to lack of examples: we cannot
find out even necessary conditions to be “ru,” “tei-
ru,” etc. What is required to induce proper con-
ditions for these suffixes is a larger example col-
lection and discovering another semantic property
and a set of linguistic tests for capturing it.

5 Conclusion and future work

In this paper, we focused on inter-categorial para-
phrasing and reported on our study on an issue
in adjective-to-verb paraphrasing. Two general-
purpose resources and a task-specific rule-set have
been handcrafted to generate proper verbal suf-
fixes. Although the rule-based model has achieved
better performance than a simple baseline model,
there is a plenty of room for improvement.

Table 4: Recall and precision of determining ver-
bal suffix for given adjective-verb pairs.

Cadc Cado
Verbal suffix Recall Precision Recall Precision
ta (Va=“yes”) 3/13 3/3 1/6 1/1
ta (Va=“no”) 42/44 42/63 18/18 18/29
re-ru 12/14 12/19 7/13 7/11
ru 3/9 3/6 0/2 0/5
tei-ru 1/5 1/7 2/8 2/6
ta / tei-ru 2/4 2/2 1/2 1/1
No rule for 11 inputs for 7 inputs
Total (RULE) 63/100 63/100 29/56 29/53

(63%) (63%) (52%) (55%)

BL 57/100 57/148 24/56 24/83
(57%) (39%) (43%) (29%)

Future work includes (i) to enlarge our two
resources as in (Dorr, 1997; Habash and Dorr,
2003) evolving an effective construction method,
(ii) intrinsic evaluation of those resources, and, of
course, (iii) to enhance the paraphrasing models
through further experiments with a larger test-set.
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Abstract

Algorithms that generate expressions to 
identify a referent are mostly tailored 
towards objects which are in some sense 
conceived as holistic entities, describing 
them in terms of their properties and 
relations to other objects. This approach 
may prove not fully adequate when 
referring to components of structured 
objects, specifically for abstract objects 
in formal domains, where scope and 
relative positions are essential features. 
In this paper, we adapt the standard Dale 
and Reiter algorithm to specifics of such 
references as observed in a corpus about  
mathematical proofs. Extensions incor-
porated include an incremental speciali-
zation of property values for metonymic 
references, local and global positions 
reflecting group formations and impli-
cature-based scope preferences to justify 
unique identification of the intended 
referent. The approach is primarily 
relevant for domains where abstract 
formal objects are prominent, but some 
of its features are also useful to extend 
the expressive repertoire of reference 
generation algorithms in other domains.

1 Introduction

Over the past two decades, a number of algo-
rithms for generating referring expressions 
have been proposed. Almost all of these 
algorithms conceive objects in some sense as 
holistic entities, describing them in terms of 
their properties and relations to other objects, 
but not treating components of an object as 
objects in their own rights. This approach may 
yield inadequate results for references to 
components of recursively structured objects. 

Consider, for instance, a Rubic's cube where 
one side is currently visible, and reference is 
intended to a square consisting of the visible 
squares of four white subcubes, which are the 
only white elements on the visible side. The 
best way to refer to this composed structure is 
the concise “the white square”, which exploits 
a preference for maximum scope objects, 
typical for such recursive structures. However, 
most reference generation algorithms would 
attempt to disambiguate the intended referent 
from its four components, producing an unne-
cessarily long expression, such as “the big 
white square” or “the white square which is 
composed of four squares”. These expressions 
are not really bad, especially the first one, but 
things might turn out really awkward for more 
complex structural compositions, where the 
maximum scope preference often allows the 
identification in a surprisingly concise form.

In this paper, we address this problem by 
examining referring expressions produced by 
humans in domains with recursively structured 
objects playing a prominent role. Specifically, 
we have studied referring expressions in a 
corpus of simulated human-computer dialogs 
about tutoring mathematical problem-solving 
(Wolska et al. 2004, with recent additions in 
this paper). We express the criteria and prefer-
ences observed in a way compatible with the 
incremental reference generation algorithm of 
Dale and Reiter (1995), and we extend their 
algorithm by adapting the property selection 
and discrimination testing criteria accordingly.

This paper is organized as follows. First, we 
motivate our approach. Then we describe our 
corpus and the relevant phenomena observed 
in it. Next, we present extensions to the incre-
mental algorithm that allow the generation of 
this kind of referring expressions. Finally, we 
illustrate how some examples from the corpus 
are handled and discuss our achievements.
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2 Previous Work

Within this paper, we adopt Dale's terminology 
(1988). A referential description (Donellan 
1966) serves the purpose of letting the hearer 
or reader identify a particular object or set of 
objects in a situation. Referring expressions to 
be generated are required to be distinguishing 
descriptions, that is, descriptions of the entities 
being referred to, but not to any other object in 
the context set. A context set is defined as the 
set of the entities the addressee is currently 
assumed to be attending to – this is similar to 
the concept of focus spaces of the discourse 
focus stack in Grosz' & Sidner's (1986) theory 
of discourse structure. Moreover, the contrast 
set (the set of potential distractors (McDonald 
1981)) is defined to entail all elements of the 
context set except the intended referents.

Generating referring expressions is pursued 
since the eighties (e.g., (Appelt 1985), among 
several others). Subsequent years were charac-
terized by a debate about computational effi-
ciency versus minimality of the elements 
appearing in the resulting referring expression 
(Dale 1988, Reiter 1990, and several others). In 
the mid-nineties, this debate seemed to be 
settled in favor of the incremental approach 
(Dale and Reiter 1995) – motivated by results 
of psychological experiments (e.g., Levelt 
1989), certain non-minimal expressions are 
tolerated in favor of adopting the fast strategy 
of incrementally selecting ambiguity-reducing 
attributes from a domain-dependent preference 
list. Complementary activities include the 
generation of vague descriptions (van Deemter, 
2000) and extensions to multimodal 
expressions (Van der Sluis 2005). Recently, 
algorithms have also been developed to the 
identification of sets of objects rather than 
individuals (Bateman 1999, Stone 2000, 
Krahmer, v. Erk, and Verweg 2001), and the 
repertoire of descriptions has been extended to 
boolean combinations of attributes, including 
negations (van Deemter 2002). To avoid the 
generation of redundant descriptions what 
incremental approaches typically do, Gardent 
(2002) and Horacek (2003) proposed exhaust-
ive resp. best-first searches.

All these procedures more or less share the 
design of the knowledge base which bears 
influence on the descriptor selection. Objects 
are conceived as atomic entities, which can be 
described in terms of sets of attributes and 

relations to other objects. In such a setting, a 
structured object can be represented, among 
others, by a set of relations to its components, 
which are themselves conceived as objects. An 
exception to this method is the work by Para-
boni and van Deemter (2002) who use hierar-
chical object representations to refer to parts of 
a book (figures, sections., etc.). Reference to 
such a component is made identifiable by iter-
atively adding a description of embedding 
structures until obtaining uniqueness. There 
are, however, no approaches addressing identi-
fication of objects or their components when 
the structures in these objects are of a recursive 
nature. Objects of this kind are mostly abstract 
ones, such as formulas, but also some sorts of 
geometric objects. Typical applications where 
such objects are prominent include scientific-
technical documentation and tutoring systems. 
As we will see in the next section, naturally 
observed references to such objects have a 
number of particularities which are not 
addressed by existing generation algorithms.

3 A Corpus with References to Formulas

In this paper, we analyze some phenomena in 
the context of references to mathematical 
formulas and their components, as observed in 
a corpus on simulated man-machine tutoring 
dialogs (Wolska et al., 2004). These dialogs 
constitute the result of Wizard-of-Oz exper-
iments in teaching students mathematical 
theorem proving in naive set theory resp. 
mathematical relations. In these experiments, a 
human wizard took the role of the tutor, with 
constraints on tutoring strategy and on use of 
natural language, although the constraints on 
natural language use were relaxed to encour-
age natural behavior on behalf of the student.

In the corpus obtained this way, a number 
of quite particular expressions referring to 
components of recursively structured objects – 
the formulas – showed up. Consequently, it is 
our goal to automate the production of these 
kinds of referring expressions in a more elab-
orate version of the simulated tutoring system, 
with full-fledged natural language generation.

Representative examples originating from 
our corpus appear in Figure 1. Each example 
consists of two parts: 1. a student utterance, 
mostly a formula, labeled by (#a), which is the 
context for interpreting subsequent referring 
expressions, the intended referent appearing in 
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1. Reference to the typographic order

(1a) (R°S)-1 = {(x,y) | (y,x) ∈ R°S} = {(x,y) | ∃z (z ∈ M ^ (x,z) ∈ R-1 ^ (z,y) ∈ S-1)} = R-1°S-1

(1b) Das geht ein wenig schnell. Woher nehmen Sie die zweite Gleichheit?
(That was a little too fast. How did you find the second equality?)

(2a) Nach 9 ⇒ ((y,z) ∈ R ^ (z,y) ∈ S)
(2b) Fast korrekt. Das zweite Vorkommen von y muß durch x ersetzt werden.

Almost correct. The second occurrence of y must be replaced by x.
(3a) (R ∪ S)°T ist dann {(x,y) | ∃z (z ∈ M ^ ((x,y) ∈ R ∨ (x,y) ∈ S) ^ (y,z) ∈ T)}
(3b) Nicht korrekt. Vermutlich liegt der Fehler nach der letzten ‘und‘-Verknüpfung

Not correct. The mistake is probably located after the last ‘and‘-operation

2. Reference by exploiting default scope and metonymic relations

(4a) (R°S)-1 = {(x,y) | ∃z (z ∈ M ^ (y,z) ∈ R-1 ^ (z,x) ∈ S-1)} ⊇ S-1°R -1

(4b) Nein, das ist nicht richtig! Vergleichen Sie den zweiten Term mit Ihrer vorhergehenden 
Aussage!
No, this is not correct! Compare the second term with your previous assertion!

(5a) {(x,y) | (y,x) ∈ (R°S)} =  {(x,y) | (x,y) ∈ {(a,b) | ∃z (z ∈ M) ^ (a,z) ∈ R ^ (z,b) ∈ S}}
(5b) Das stimmt so nicht. Die rechte Seite wäre identisch mit R°S.

This is not correct. The right side would be identical to R°S.
(6a) {(x,y) | ∃z (z ∈ M) ^ ((x,z) ∈ R ∨ (x,z) ∈ S) ^ (z,y) ∈ S} =

{(x,y) | ∃z (z ∈ M) ^ (z,y) ∈ S ^ ((x,z) ∈ R ∨ (x,z) ∈ S)} ⇔ ((y,z) ∈ S ^ (z,y) ∈ S)
(6b) Auf der rechten Seite ist z nicht spezifiziert

On the right side, z is not specified
(7a) {(x,y) | ∃z (z ∈ M) ^ ((x,z) ∈ R ∨ (x,z) ∈ S) ^ (z,y) ∈ S} = {(x,y) | ∃z (z ∈ M) ^ 

(z,y) ∈ S ^ ((x,z) ∈ R ∨ (x,z) ∈ S)} ⇔ ∃z (z ∈ M ^ ((y,z) ∈ S ^ (z,y) ∈ S))
(7b) Diese Aussagen scheinen nicht gleichwertig zu sein. Ein z, das die Bedingung der rechten 

Aussage erfüllt, muß nicht die Bedingung der linken Menge erfüllen.
These assertions do not seem to be of equal range. A z which fulfills the condition of the 
right assertion does not necessarily fulfill the condition of the left set.

3. Reference by exploiting default scope for building groups of objects

(8a) K((A ∪ B) ∩ (C ∪ D)) = K(A ∪ B) ∪ K(C ∪ D)
(8b) De Morgan Regel 2 auf beide Komplemente angewendet.

De Morgan Rule 2, applied to both complements.

(9a) (T-1°S-1)-1 ∪ (T-1°R-1)-1 = {(x,y) | (y,x) ∈ (T-1°S-1) ^ (y,x) ∈ (T-1°R-1)}
(9b) Dies würde dem Schnitt der beiden Mengen entsprechen.

This would correspond to the intersection of both sets.

4. Reference to regions by expressions involving vagueness

(10a) Also ist (R ∪ S)°T = {(x,z) | ∃v (((x,v) ∈ R ∨ (x,v) ∈ S) ^ (z,v) ∈ T)}
(10b) Fast richtig. Am Ende der Formel ist ein Fehler.

Almost correct. At the end of the formula, there is a mistake.
(11a) Wegen der Formel für die Komposition folgt (R ∪ T)°(S ∪ T) = 

{(x,z) | ∃z ((x,z) ∈ R ^ (z,y) ∈ T) ∨ ∃z ((x,z) ∈ R ^ (z,y) ∈ T)}
(11b) Fast richtig. In der zweiten Hälfte der Formel ist ein Fehler.

Almost correct. In the second half of the formula, there is a mistake.
                                                                                                                                                                                                                                   

Figure 1: References to components of mathematical objects in dialog fragments of our corpus
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bold, and 2. a tutor response labeled by (#b), 
with at least one referring expression, in italics. 
Texts are given in the original German version, 
accompanied by a translation into English.

The examples are partitioned into four cate-
gories. The first one, (examples 1 to 3), illus-
trate references by the typographical position,  
from left to right. Items referred to in this 
manner are qualified by their formal category. 
(1) refers to an equality – two terms joined by 
an equal sign – in a sequence of three equa-
lities. (2) refers to an instance of a variable, y, 
which must be further qualified by its position 
to distinguish it from another occurrence. (3) 
refers to the last occurrence of the and oper-
ator. Distinct surface forms are used for objects 
referred to by category (“second equality”) 
resp. by name (“second occurrence of y”).

The second category, the only one specific 
to recursively structured objects, comprises 
references which look similar to the previous 
ones, but they do not reflect the typographical 
position but structural embeddings. Objects 
referred to by this kind of expressions are 
found on the top level of the embedding object 
or close to it. In most cases, references to the 
embedding level where the intended referent is 
to be found are left unexpressed, which carries 
the implicit meaning that the referent appears 
at the top most level in which the referred cate-
gory can be found. In (4), for example, the 
entire formula contains many terms as its 
components, in various levels of embedding, so 
that orientation on typographic positions is not 
clear. However, on top level of the inequation 
chain, there are only three terms and the order 
among these is perfectly clear. (5) and (6) 
illustrate the role of incompleteness – only 
“right side” is mentioned, leaving the object 
whose right side is meant implicit. Conse-
quently, this must be the right side of the whole 
formula. The last example in this category, (7) 
shows the reference to different levels of 
embedding in one sentence. While “right 
assertion” refers to the expression on the right 
side of the equivalence on top level, “left set” 
refers to the left of the two sets in the equation 
on the left side of that equivalence.

The third category, which features the refer-
ence to sets of objects, shows the interpretation 
of the embedding level in which the intended 
referent is to be found on the basis of number 
constraints. In precise terms, this is an instance 

of implicature (Grice 1975): if the number of 
objects that are on top level of the embedding 
object and satisfy the description, exceeds the 
cardinality specified, identification of the 
intended referents is transferred to one of the 
embedded substructures. In (8), three subex-
pressions satisfy the metonymic description 
“complement”, but the expression refers only 
to two. Consequently, the intended referents 
must be found in one of the substructures 
where a precise cardinality match is present – 
here, the right side of the equation. Due to the 
implicature, expressing this additional qualifi-
cation is not required. An additional compli-
cation arises in the context of interference 
across referring expressions in one sentence. In 
(9), “both sets” would be resolved to the two 
sides of the equation, without the context of the 
whole sentence. However, since “this” refers 
to the result of the preceeding assertion, that is, 
the right side of the equation, this part is in 
some sense excluded from the context for 
resolving the next referring expressions. 
Hence, the left side of the equation yields the 
two sets on top level as interpretation.

The fourth category comprises examples of 
references which are in some sense associated 
with vagueness. In references to formulas, we 
consider the end (example (10)) – which 
means the region towards the end, as a vague 
expression, but also the second half (example 
(11)), since it is not entirely clear whether this 
expression must be interpreted structurally or 
typographically, and a precise interpretation of 
“half” in the typographical sense is pointless.

In the following, we present methods for the 
automated generation of referring expressions 
of the kind illustrated in Figure 1 – concise 
ones. We address the following phenomena:

• Implicit scope interpretation 

• Incomplete or metonymic expressions

• Implicatures of category and cardinality

We do, however, restrict our task to the 
generation of single referring expressions with 
precise references. Hence, we do not address 
vagueness issues, since the meaning of 
expressions as occurring in (10) and (11) is 
not fully clear. Moreover, we do not accom-
modate the context due to previously gener-
ated referring expressions as in (9), which we 
assume to be done by the embedding process.
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3 Operationalization

In this section, we describe an operationali-
zation of generating referring expressions of 
the kind discussed in the previous section. This 
operationalization is realized in terms of 
extensions to the algorithm by Dale and Reiter 
(1995). This algorithm assumes an envir-
onment with three interface functions: Basic-
LevelValue, accessing basic level categories of 
objects (Rosch 1978), MoreSpecificValue for 
accessing incrementally specialized attribute 
values according to a taxonomic hierarchy, and 
UserKnows for judging whether the user is 
familiar with the attribute value of an object. In 
a nutshell, MakeReferringExpression (Figure 2, 
including our extensions) iterates over the attri-
butes P of an intended referent r (or a set of 
referents). In FindBestValue, a value is chosen 
that is known to the user and maximizes discri-
mination (RulesOut) – this value describes the 
intended referent and rules out at least one 
potential distractor in C. If existing, such values 
are iteratively collected in L, until P is empty or 
a distinguishing description is found. The 
value V of an attribute A is chosen within an 
embedded iteration, starting with the basic level 
value attributed to r , after which more specific 
values also attributed to r  and assumed to be 
known to the user are tested for their discri-
minatory power. Finally, the least specific value 
that excludes the largest number of potential 
distractors and is known to the user is chosen.

The extensions to handle particularities for 
our concerns comprise several components:

• The knowledge representation of objects 
is enhanced by properties expressing  
positions in some context and by a meta-
property about the use of descriptors  – 
metonymic use of a descriptor when 
standing in relation to another one.

• The value selection for context-dependent 
descriptors requires special treatment; 
moreover, metonymic expressions are 
built in some sort of a two-step process.

• The discriminatory power in the subpro-
cedure RulesOut is interpreted in local 
contexts for attributes expressing position.

• Termination criteria include a test whether 
a cardinality or position-based impli-
cature establishes a unique preference.

                                                                                                             

Group(x) ::=
G ≡ {y | ∃z (∀y dominates(z,y))} ^ G ⊇ x

T-group-items :: = 
{x | ∃y (¬∃z dominates(z,y) ^ ∀x dominates(y,x))}

L1-items :: = 
{x | ∃y (y ∈ T-group-items ^ dominates(y,x))}

Group-pref(Group,N,V) :: =
  |(r  ∪ C) ∩ Group| = N ^
∀x ∈ ((r ∪ C) ∩ Group): Position(x,Group,N) = V

T-group-pref(N,V) ::=
Group-pref(T-group-items,N,V)

L1-group-pref(x,N,V) ::= ¬T-Group-pref(N,V) ^
L1-items ⊇ Group(x) ^ Group-pref(x,N,V) ^
(∀y (Group(y) ^ L1-items ⊇ Group(y)): 

   (x≠y → ¬Group-pref(y,N,V)))
                                                                                                             

Figure 2: Definitions with group components 

In order to precisely define the extensions, 
we introduce some predicates and formal defi-
nitions for them (Figure 2). Composition in 
recursively structured objects is built on domi-
nates(x,y), expressing that component y is part 
of component x; chained compositions of 
dominates are acyclic. On that basis, groups of 
items are built according to local contexts. A 
Group which some items x belong to is the set 
of items dominated by one same item, if 
existing. Otherwise, Group is empty. A special 
group is the set of items on top level, T-group-
items, which are all dominated by the entire 
structure, the root item, which is not domi-
nated by any item. These items also build a 
group. In contrast, L1-items, which comprise 
the items one level below the T-group-items, 
are not all in one group. Intersection with the 
Group predicate yields subsets, where each 
element in these sets is dominated by one and 
the same T-group-item (see the definition of 
L1-group-pref). A central definition is Group-
pref (group preference), used for testing the 
effect of implicatures. It is defined for the set 
of relevant items to be used within the algo-
rithm (r  ∪  C), that is, the intended referents 
and still existing distractors, in relation to a 
Group, in the context of cardinality N and 
position V, which apply to the set of items. For 
that group to be preferred, the relevant items 
falling into that group must match the given 
cardinality and the position description (see 
the definition of Position in the next para-
graph). On that basis, T-group-pref expresses
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MakeReferringExpression (r,C,P)
L ← {}, Ctotal ← C       [1]
for each member Ai of list P do   
case Ai of    [2]
cardinality: V ← |r|      [3]
global-position: V ← Position(r,Ctotal,|r |)    [4]
local-position: V ← Position(r,Group(r),|r |)    [5]
other: V = FindBestValue(r,Ai,BasicLevelValue(r,Ai))

end case
if RulesOut(<Ai,V>,C) ≠ nil then
if metonymic(Ai,X) and <type,X> ∈ L for some X      [6]

  and RulesOut(<Ai,V>,Ctotal) ⊇     [7]
       RulesOut(<type,X>,Ctotal)     [8]

then L ← L  \ {<type,X>} ∪ {<type,V>}      [9]
else L ← L ∪ {<Ai,V>} end if

C ← C - RulesOut(<Ai,V>,C)    [10]
end if
if C = {} or Preference-by-Implicature then   [11]
if <type,X> ∈ L for some X

then return L (an identifying description)
else return L ∪ {<type,BasicLevelValue(r,type)>}

end if end if
end for
return L (a non-identifying description)

FindBestValue (r,A,initial-value)
if UserKnows(r,<A,initial-value>) = true
then value ←  initial-value 
else value ← no-value end if
if (spec-value ← MoreSpecificValue(r,A,value)) ≠ nil ^
(new-value ← FindBestValue(r,A,spec-value)) ≠ nil ^
(|RulesOut(<A,new-value>,C)| > 
|RulesOut(<A,value>,C)|)  [12]

then value ←  new-value end if  
return value

RulesOut (<A,V>,C)  [13]
if V = no-value then return nil
else case Ai of  [14]
cardinality: return C ∩ ∪ Group(c) c ∈ C,

         where |Group(c) ∩ C | < V  [15]
global-position: return {x : x ∈ C ^ Position(x,Ctotal,|r|) ≠ V  [16] 
local-position: return {x : x ∈ C ^ Position(x,Group(x),|r|) ≠ V  
other: return {x: x ∈ C ^ UserKnows(x,<A,V>) = false}

end case end if 
      Preference-by-Implicature  [17]

V ←  any, N ←  any
 if <global-position,V> ∈ L ∨ <local-position,V> ∈ L ∨
   <cardinality,N> ∈ L  then  [18]
 return (T-group-pref(|r|,V) ^ T-group-items ⊇ r ) ∨

 (L1-items ⊇ r ^  L1-group-pref(r,|r|,V))  [19]
else return false end if
                                                                                                             

Figure 3: The algorithm in pseudo-code 

preference for top-group items, when bound 
to Group, and L1-group-pref expresses prefer-
ence for such a group with x one level below.

The knowledge representation of objects is 
enriched by some properties which are not 
intrinsic to an object itself. These properties 
comprise descriptors cardinality, position, and 
the meta-property metonymic. The predicate 
metonymic(x,y) expresses the acceptability of 
a metonymic reference of a descriptor x for a 
category y (e.g., an operator for a formula, in  
mathematical domains). The descriptor cardi-
nality easily fits in the standard schema of the 
procedure. However, it only contributes to the 
discrimination from potential distractors in the 
context of effects of implicature. The most 
complex addition is the descriptor position, 
which expresses some sort of relative position 
of an object considered within the context of a 
set of comparable objects (e.g., first, second). 
There are two dimensions along which such 
descriptors are meaningful in the domain of 
mathematical formulas and in similar domains 
with recursively structured objects: (1) the 
typographical position within the entire object, 
referred to by the descriptor global-position, 
and (2) the position within the structural level 
where the object in question resides, referred 
to by the descriptor local-position. Moreover, 
that position also depends on the number of 
objects considered, if subgroups of objects are 
built prior to checking their position within 
the entire group (e.g,: the first two items). This 
information is encapsulated in the function 
Position(x,y,n), where x denotes the object or 
set of objects whose position within group y is 
the value of that function, where subgroups of 
n objects are formed. In order to yield a 
proper result, x must be a subset of y and the 
position value within y must be the same for 
all elements of x. Otherwise, the value is unde-
fined. For example, for a group G=<1,2,3,4, 
5,6>, Position({3},G,1) = 3, Position({3},G,2) 
= 2, and Position({2,3},G,2) = undefined. In 
some sense, this handling of positions is a 
generalization of the ordering for vague 
descriptors in (van Deemter 2006). Also in 
accordance with van Deemter, we separate 
descriptor selection from surface form deter-
mination, yielding, for example, “left set” for 
{<type,set>, <local-position,first>}, the first 
part of an equation, and “second occurrence 
of x” for {<type,x>, <local-position,second>}.  
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In order to process these enhanced represen-
tations adequately, we have incorporated  
appropriate modifications in the procedure 
MakeReferringExpression (labeled by [#] in 
Figure 3). First, the original set of potential 
distractors is stored for computations within a 
global context [1]. Then the value selection 
for the attribute currently considered is done 
[2], which is different from the usual call to 
FindBestValue for cardinality [3], global-
position [4], and local-position [5]; the latter 
two are realized by the function Position, with 
appropriate instantiations for the group para-
meter. Next, the treatment for the inclusion of 
metonymic properties in the description is 
addressed. If the metonymic descriptor fits to 
the object category [6], and its discriminatory 
power [7] dominates that associated with the 
type descriptor [8], the descriptor values are 
conflated by overwriting the type value by 
that of the metonymic descriptor [9]. The two 
calls to RulesOut involved in the above test 
([7] and [8]) are the only references to Rules 
Out where effects on the original, entire set of 
distractors are tested. Therefore, the parameter 
C is added in the definition of RulesOut [13] 
and in all other places where that procedure is 
called [10], [12]. Similarly to the inclusion of 
attribute-value pairs in the description, the 
exclusion tests in RulesOut are specific for 
non-intrinsic attributes [14]. For cardinality, 
those distractors are excluded which belong to 
a group where the number of still relevant 
distractors (those consistent with the partial 
description built so far) is below that cardina-
lity [15]. Similarly, for testing position values, 
those distractors are picked for which the 
values returned by the function Position, in 
dependency of the relevant scope – the group 
the intended referent(s) belong to, are not 
consistent with value of the attribute consi-
dered (global-position resp. local-position) 
[16]. Finally, the termination criterion [11] is 
enhanced, by taking into account the effect of 
implicatures through cardinality and position 
descriptors, by the function Preference-by-
implicature [17]. In this function, the values 
of cardinality and global-position or local-
position are instantiated, provided they appear 
in the description L [18]. The return value is 
the result of a test whether there exists prefer-
ence for the top-level, or for that level 1 group 
which contains the intended referents [19]. 

4 Examples

In this section, we illustrate how particularities 
of our application domain are modeled and 
how the procedure behaves in generating the 
referring expressions observed in our corpus. 
The ordered list of attributes, P, consists of 
<type, form, cardinality, global-order, local-
order> for atomic items and of <type, oper-
ator, cardinality, local-order, dominated-by> 
for the composed expressions – dominated-by 
is the inverse of dominates. The meta-predi-
cate metonymic is instantiated for pairs <vari-
able, form>, <expression, local-order>, and 
<term, operator> for producing expressions 
such as “x” referring to variable x, “left 
side” referring to the left part of an assertion 
or equation, and “complement” referring to 
a term with complement as top level operator. 

We show the generation of two examples.
1. example: “Left set” in (7) in Figure 1. 

It is generated by choosing “set” as the type, 
followed by unsuccessful attempts to pick an 
operator attribute (there is none defined for 
that set), and a cardinality (which yields no 
discrimination). Then “first” is chosen for 
local-ordering, yielding unique identification 
(the embedding is left implicit), and this value 
is expressed by “left” on the surface. 

2. example: “both complements” in (8). 
It is generated by choosing “term” as the 
type, followed by “complement” as the oper-
ator, which overwrites “term” due to its 
specification as metonymic with respect to that 
category. Then “2” is chosen for cardinality, 
which yields unique identification since a 
subgroup preference for level one is present.

Altogether, the algorithm is able to gener-
ate the expressions occurring in our corpus, or 
quite similar ones, assisted by the application-
specific tailored list P. Exceptions constitute 
reference to regions related to some formula 
component, such as (3) in Figure 1, effects of 
interference of scope across several referring 
expressions, such as (9), and expressions 
involving vague region descriptors, such as 
(10) and (11). While the last set of examples 
comprises more than referring expressions, 
the first two can be handled, but the generated 
expressions are typically a bit cumbersome, 
such as “the third term in the condition of the 
set” instead of “after the last ‘and‘-oper-
ation” in (3) and “both sets on the left side” 
instead of simply “both sets” in (9).
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5 Conclusion and Discussion

In this paper, we have presented an approach to 
generating referring expressions that identify 
components of recursively structured objects. 
Known techniques are enhanced by measures 
building metonymic expressions, descriptors 
expressing positions relative to some subgroup 
of object components, and exploiting the effect 
of implicatures due to cardinality and position 
descriptors. Concise expressions can be gener-
ated, in accordance with those in our corpus.

While our elaborations are domain-specific 
to a certain extent, several parts of our method 
are also much broader applicable. Metonymic 
expressions are quite common, and we think 
that building them within the task of reference 
generation is superior to doing this in a process 
thereafter, because this enables an easy compu-
tation of the discrminatory power of both alter-
natives, the implicit and the explicit one. 
Another aspect of broader relevance concerns 
the effect of implicatures in connection with 
object subgroups. While the group building 
itself, which is based on compositions of the 
relation dominates, is specific to our envir-
onment, the techniques to establish preferences 
among groups and deriving identification from 
that pertain to other environments. For 
instance, when a subgroup of two items of 
some kind is visually identifiable in the context 
of a few other subgroups with different cardi-
nalities, “the two X's” would lead to the identi-
fication of the subgroup in focus, through the 
effect of implicature, the group formation 
being based on local proximity. Thus, only the 
group formation schema needs to be changed.  
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Abstract

It is often desirable that referring expres-
sions be chosen in such a way that their
referents are easy to identify. In this paper,
we investigate to what extent identification
becomes easier by the addition of logically
redundant properties.We focus on hierar-
chically structured domains, whose con-
tent is not fully known to the reader when
the referring expression is uttered.

Introduction

Common sense suggests that speakers and writ-
ers who want to get their message across should
make their utterances easy to understand. Broadly
speaking, this view is confirmed by empirical
research (Deutsch 1976, Mangold 1986, Levelt
1989, Sonnenschein 1984, Clark 1992, Cremers
1996, Arts 2004, Paraboni and van Deemter 2002,
van der Sluis, 2005). The present paper follows in
the footsteps of Paraboni and van Deemter (2002)
by focussing on hierarchically structured domains
and asking whether any benefits are obtained when
an algorithm for the generation of referring ex-
pressions (GRE) builds logical redundancy into the
descriptions that it generates. Where Paraboni and
van Deemter (2002) reported on the results of a
simple experiment in which subjects were asked
to say which description theypreferredin a given
context, the present paper describes a much more
elaborate experiment, measuring how difficult it is
for subjects to find the referent of a description.

1 Background

Let us distinguish between two aspects of the ‘un-
derstanding’ of a referring expression, which we

shall denote by the terms interpretation and reso-
lution. We takeinterpretation to be the process
whereby a hearer/reader determines the meaning
or logical form of the referring expression; we take
resolutionto be the identification of the referent of
the expression once its meaning has been deter-
mined. It is resolution that will take centerstage in
our investigation.

Difficulty of resolution and interpretation do not
always go hand in hand. Consider sentences (1a)
and (1b), uttered somewhere in Brighton but not
on Lewes Road.

(1a)968 Lewes Road
(1b) number 968

Assume that (1a) refers uniquely. If other streets
in Brighton do not have numbers above900, then
even (1b) is a unique description – but a pretty
useless one, since it does not help you to find the
house unless your knowledge of Brighton is ex-
ceptional. The description in (1a) is longer (and
might therefore take more time to read and in-
terpret) than (1b), but the additional material in
(1a) makesresolutioneasier once interpretation is
successfully completed. We explore how anGRE

program should make use of logically redundant
properties so as to simplify resolution (i.e., the
identification of the referent).

In corpus-based studies, it has been shown that
logically redundant properties tend to be included
when they fulfill one of a number of pragmatic
functions, such as to indicate that a property is of
particular importance to the speaker, or to high-
light the speaker’s awareness that the referent has
the property in question (Jordan 2000). However,
redundancy has been built intoGRE algorithms
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only to a very limited extent. Perhaps the most in-
teresting account of overspecification so far is the
one proposed by Horacek (2005), where logically
redundant properties enter the descriptions gener-
ated when the combinedcertainty of other prop-
erties falls short of what is contextually required.
Uncertainty can arise, for example, if the hearer
does not know about a property, or if she does not
know whether it applies to the target referent.

Our own work explores the need for overspecifi-
cation in situations where each of the properties
in question is unproblematic (i.e., certain) in prin-
ciple, but where the reader has to make an effort
to discover their extension (i.e., what objects are
truthfully described by the property). We ask how
a generator can use logically redundant informa-
tion to reduce the search space within which a
reader has to ‘find’ a referent. (Cf., Edmonds 1994
for a related set of problems.)

2 Hierarchical domains

Existing work on GRE tends to focus on fairly
simple domains, dominated by one-place proper-
ties. When relations (i.e., two-place properties)
are taken into account at all (e.g., Dale and Had-
dock 1991, Krahmer and Theune 2002), the mo-
tivating examples are kept so small that it is rea-
sonable to assume that speaker and hearer know
all the relevant facts in advance. Consequently,
search is not much of an issue (i.e., resolution is
easy): the hearer can identify the referent by sim-
ply intersecting the denotations of the properties
in the description. While such simplifications per-
mit the study of many aspects of reference, other
aspects come to the fore when larger domains are
considered.

Interesting questions arise, for example, when a
large domain is hierarchically ordered. We con-
sider a domain to be hierarchically ordered if its
inhabitants can be structured like a tree in which
everything that belongs to a given noden be-
long to at most one ofn’s children, while every-
thing that belongs to one ofn’s children belongs
to n. Examples include countries divided into
provinces which, in turn, may be divided into re-
gions, etc.; years into months then into weeks
and then into days; documents into chapters then
sections then subsections; buildings into floors
then rooms. Clearly, hierarchies are among our
favourite ways of structuring the world.

A crucial question, in all such cases, is what
knowledge is shared between speaker and hearer
at utterance time. It will be convenient to start by
focussing on the extreme case where, before the
start of resolution, knows nothing about the do-
main. When the utterance is made, the hearer’s
blindfold is removed, so to speak, and resolution
can start. No similar assumption about the speaker
is made: we assume that the speaker knows every-
thing about the domain, and that he knows that the
hearer can achieve the same knowledge. Many of
our examples will be drawn from a simple model
of a University campus, structured into buildings
and rooms; the intended referent will often be a
library located in one of the rooms. The location
of the library is not known to the hearer, but it is
known to the speaker. Each domain entityr will be

(d)

   library                                         

Watts building                                                        Cockcroft building

  room100       ...       room120     ...        room140  room100       ...       room110     ...        room120   

University of Brighton

Figure 1:A hierarchically structured domain.

associated with aTYPE (e.g., the type ‘room’), and
with some additional attributes such as itsROOM

NUMBER or NAME, and we will assume that it is
always possible to distinguishr from its siblings
in the tree structure by using one or more of these
properties. (For example, ‘R.NUMBER=102’ iden-
tifies a room uniquely within a given building)1.

3 Obstacles for resolution

Generating a uniquely referring expression is not
always enough, because such an expression can
leave the hearer with an unnecessarily large search
space. But the issue is an even starker one, es-
pecially when the locations of speaker and hearer
are taken into account. (For simplicity, we assume
that the locations coincide.)

Suppose a hierarchically-ordered domainD con-
tains only oneentity whoseTYPE is LIBRARY.
Consider the following noun phrases, uttered in
the position marked byd in Figure 1. (The first
three have the same intended referent.)

1This is a useful assumption, since the existence of a dis-
tinguishing description cannot be otherwise guaranteed.
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(2a)the library, in room 120 in the Cockcroft bld.
(2b) the library, in room 120
(2c) the library
(2d) room 120

Utterances like (2a) and (2b) make use of the hi-
erarchical structure of the domain. Their content
can be modelled as a list

L = 〈(x1, P1), (x2, P2)...(xn, Pn)〉,

wherex1 = r is the referent of the referring ex-
pression and, for everyj > 1, xj is an ances-
tor (not necessarily the parent) ofxj−1 in D. For
everyj, Pj is a set of properties that jointly iden-
tify xj within xj+1 or, if j = n, within the whole
domain. For example, (2a) is modelled as

L = 〈(r, {type = library}),
(x2, {type = room, r.number = 120}),
(x3, {type = building,
name = Cockcroft})〉

We focus on the search forxn because, under the
assumptions that were just made this is the only
place where problems can occur (since no parent
node is available).

Even though each of (2a)-(2d) succeeds in char-
acterising their intended referent uniquely, some
of these descriptions can be problematic for the
hearer. One such problem occurs in (2d). The
expression is logically sufficient. But, intuitively
speaking, the expression creates an expectation
that the referent may be found nearby, within the
Watts building whereas, in fact, a match can only
be found in another building. In this case we will
speak ofLack of Orientation(LO).

Even more confusion might occur if another li-
brary was added to our example, e.g., in Watts 110,
while the intended referent was kept constant. In
this case, (2c) would fail to identify the referent, of
course. The expression (2b), however, would suc-
ceed, bymutuallyusing two parts of the descrip-
tion (‘the library’ and ‘room 120’) to identify an-
other: there are two libraries, and two rooms num-
bered 120, but there is only one pair(a, b) such
thata is a library andb is a room numbered120,
while a is located inb. Such cases of mutual iden-
tification are unproblematic in small, transparent,
domains where search is not an issue, but in large
hierarchical domains, they are not. For, like (2d),
(2b) would force a reader to search through an un-
necessarily large part of the domain; worse even,
the search ‘path’ that the reader is likely to follow

leads via an obstacle, namely room 120 Watts, that
matches a part of the description, while not being
the intended referent of the relevant part of the de-
scription (i.e., room 120 Cockcroft). Confusion
could easily result. In cases like this, we speak of
aDead End(DE).

In section 5 we will present evidence suggesting
that instances of Dead End and Lack of Orienta-
tion may disrupt search in a sufficiently large or
complex domain. For a theoretical discussion we
refer to Paraboni and van Deemter (2002).

4 Generation algorithms

What kinds of expression would existingGRE al-
gorithms produce in the situations of interest?
Since hierarchies involve relations, the first al-
gorithm that comes to mind is the one pro-
posed by Dale and Haddock (1991). Essen-
tially, this algorithm combines one- and two-
place predicates, until a combination is found that
pins down the target referent. A standard ex-
ample involves a domain containing two tables
and two bowls, while only one of the two tables
has a bowl on it. In this situation, the combi-
nation {bowl(x), on(x, y), table(y)} identifies x

(and, incidentally, alsoy) uniquely, since only one
value of x can be used to verify the three pred-
icates; this justifies the description‘the bowl on
the table’. This situation can be ‘translated’ di-
rectly into our university domain. Consider Fig-
ure 2, with one additional library in room 110
of the Watts building. In this situation, the com-

University of Brighton

     room100       ...       room110     ...        room120   room100       ...       room120     ...        room140

Watts building                                                        Cockcroft building

   library                                         

(d)

   library                                         

Figure 2:A university campus with two libraries.

bination{library(x), in(x, y), room(y), room−
number(y) = 2} identifiesx (and, incidentally,
also y) uniquely, because no other library is lo-
cated in a room with number 120 (and no other
room numbered 120 contains a library). Thus, the
standard approach to relational descriptions allows
precisely the kinds of situation that we have de-
scribed asDE. Henceforth, we shall describe this
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as the Minimal Description (MD) approach to ref-
erence because, in the situations of interest, it uses
the minimum number of properties by which the
referent can be distinguished.

Paraboni and van Deemter (2002) have sketched
two GRE algorithms, both of which are guaran-
teed to preventDE and LO by including logi-
cally redundant information into the generated de-
scriptions so as to reduce the reader’s search space.
These algorithms, calledFull Inclusion (FI) and
Scope-Limited(SL), are not the only ways in
which resolution may be aided, but we will see that
they represent two natural options. Both take as
input a hierarchical domainD, a locationd where
the referring expression will materialise, and an
intended referentr.

Briefly, theFI algorithm represents a straightfor-
ward way of reducing the length of search paths,
without particular attention toDE or LO. It lines
up properties that identify the referent uniquely
within its parent node, then moves up to identify
this parent node within its parent node, and so on
until reaching a subtree that includes the starting
point d 2. Applied to our earlier example of a ref-
erence to room 120,FI first builds up the list

L = 〈(r, {type = room, r.number = 120})〉,

then expands it to

L = 〈(r, {type = room, r.number = 120}),
(x1, {type = building,
buildingname = Cockcroft})〉.

Now that Parent(X) includesd , r has been iden-
tified uniquely withinD and we reachSTOP. L

might be realised as e.g., ‘room 120 in Cockcroft’.

FI gives maximal weight to ease of resolution.
But something has to give, and that is brevity:
By conveying logical redundancy, descriptions are
lengthened, and this can have drawbacks. The
second algorithm in Paraboni and van Deemter
(2002), called SCOPE-L IMITED (SL), constitutes
a compromise between brevity and ease of resolu-
tion. SL preventsDE andLO but opts for brevity
when DE and LO do not occur. This is done
by making use of the notion of SCOPE, hence the
name of the algorithm.

2The idea behind not moving up beyond this subtree is
a natural extension of Krahmer and Theune’s treatment of
salience inGRE: see Paraboni and van Deemter (2002).

The differencebetweenFI andSL becomes ev-
ident when we consider a case in which the min-
imally distinguishing description does not lead to
DE or LO. For example, a reference tor = li-
brary would be realised byFI as ‘the library in
room 120 in Cockcroft’. By usingSL, however,
the same description would be realised by theSL

algorithm simply as ‘the library’, since there is no
risk of DE or LO. With the addition of a second
library in the Watts building, the behaviour of the
SL algorithm would change accordingly, produc-
ing ‘the library in Cockcroft’. Similarly, had we
instead included the second library under another
room of Cockcroft,SL would describer as ‘the li-
brary in room 120 of Cockcroft’, just likeFI. For
details of both algorithms we refer to Paraboni and
van Deemter (2002).

5 The new experiment

In Paraboni and van Deemter (2002) an experi-
ment was described to find out what types of ref-
erences are favoured by human judges when their
opinion about these references is asked. As an
example of a hierarchically ordered domain, the
experiment made use of a document structured in
sections and subsections. This allowed Paraboni
and van Deemter (2002) to show their subjects the
domain itself, rather than, for example, a pictorial
representation (as it would be necessary in most
other cases such as that of a University campus,
which motivated many of our examples so far).

The experiment investigated the choice of so-
called document-deicticreferences, such as ‘the
picture in part x of section y’ made by authors of
documents to check whether they choose to avoid
potentialDE andLO situations by adding redun-
dant properties (favouring ease of resolution) and,
conversely, whether they choose shorter descrip-
tions when there is no such risk (favouring ease
of interpretation). The results suggested that hu-
man authors often prefer logically redundant ref-
erences, particularly whenDE andLO can arise.

While this approach had the advantage that sub-
jects could compare different expressions (per-
haps balancing ease of interpretation with ease
of resolution), the method is limited in other re-
spects. For example, meta-linguistic judgements
are sometimes thought to be an unreliable pre-
dictor of people’s linguistic behaviour (e.g., van
Deemter 2004). Perhaps more seriously, the ex-
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periment fails to tell us how difficult a given type
of reference (for example, one of theDE type)
would actually be for a reader. Therefore, in this
paper we report on a second experiment investigat-
ing the effect of the presence or absence of logical
redundancy on the performance of readers. We are
primarily interested in understanding the search
process, so resolution rather than interpretation.

5.1 Experiment design

Subjects: Forty-two computing science students
participated in the experiment, as part of a sched-
uled practical.

Procedure: A within-subjects design was used.
Each subject was shown twenty on-line docu-
ments, in a random order. The entire document
structure was always visible, and so was the con-
tent of the current document part. A screenshot of
an example document providing this level of infor-
mation is shown in Figure 3. Each document was

Figure 3:Fragment of the experiment interface.

initially opened in Part B of either Section 2 or
3, where a task was given of the form ”Let’s talk
about [topic]. Please click on [referring expres-
sion]” . For instance ”Let’s talk about elephants.
Please click on picture 5 in part A”. Subjects
could navigate through the document by clicking
on the names of the parts (e.g. Part A as visi-
ble under Section 3). As soon as the subject had
correctly clicked on the picture indicated, the next
document was presented. Subjects were reminded
throughout the document about the task to be ac-
complished, and the location at which the task
was given. All navigation actions were recorded.
At the start of the experiment, subjects were in-
structed to try to accomplish the task with a mini-

mal number of navigation actions.

We assume that readers do not havecomplete
knowledge of the domain. So, they do not know
which pictures are present in each part of each sec-
tion. If readers had complete knowledge, then a
minimal description would suffice. We do, how-
ever, not assume readers to be completely ignorant
either3: we allowed them to see the current doc-
ument part (where the question is asked) and its
content, as well as the hierarchical structure (sec-
tions and parts) of the remainder of the document
as in Figure 3 above.

Research Questions: We want to test whether
longer descriptions indeed help resolution, partic-
ularly in so-called problematic situations. Table 1
shows the types of situation (potentialDE, LO,
and non-problematic)4, reader and referent loca-
tion, and descriptions used.

Hypothesis 1: In a problematic (DE/LO) situ-

ation, the number of navigation actions required

for a long (FI /SL) description is smaller than

that required for a short (MD) description.

We will use theDE and LO situations in Ta-
ble 1 to test this hypothesis, comparing for each
situation the number of navigation actions of the
short, that is, minimally distinguishing (MD) and
long (FI/SL) expressions. In Paraboni and van
Deemter (2002) there was an additional hypothe-
sis about non-problematic situations, stating that
MD descriptions would be preferred to long de-
scriptions in non-problematic situations. We can-
not use this hypothesis in this experiment, as it is
highly unlikely that a shorter description will lead
to fewernavigation actions. (Note that the experi-
ment in Paraboni and van Deemter (2002) looked
at the combination of interpretation and resolution,
while we are now focussing on resolution only).
Instead, we will look atgain: the number of navi-
gation actions required for a short description mi-
nus the number required for a long description.

3Readers will always have some knowledge: if in Part B
of Section 2, then they would know (by convention) that there
will also be a Section 1, and a Part A in Section 2 etc.

4In DE situations, there is another picture with the same
number as the referent, but not in a part with the same name
as the part in which the referent is. InLO situations, there
is no other picture with the same number as the referent, and
the reader location contains pictures. In non-problematicsit-
uations, there is another picture with the same number as the
referent, but not in a part with the same name as the part in
which the referent is.
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Sit. Type Reader Loc. Referent Loc. Short (MD) Long (FI/SL) Long (other)
1 DE Part B Sec 3 Part A Sec 2 Pic 3 in Part A Pic 3 in Part A Sec 2
2 DE Part B Sec 2 Part C Sec 3 Pic 4 in Part C Pic 4 in Part C Sec 3
3 LO Part B Sec 3 Part A Sec 3 Pic 5 Pic 5 in Part A Pic 5 in Part A Sec 3
4 LO Part B Sec 2 Part C Sec 2 Pic 4 Pic 4 in Part C Pic 4 in Part C Sec 2
5 LO Part B Sec 3 Part A Sec 4 Pic 5 Pic 5 in Part A Sec 4 Pic 5 in Part A
6 LO Part B Sec 2 Part C Sec 1 Pic 4 Pic 4 in Part C Sec 1 Pic 4 in Part C
7 NONE Part B Sec 2 Part A Sec 2 Pic 3 in Part A Pic 3 in Part A Sec 2
8 NONE Part B Sec 3 Part C Sec 3 Pic 4 in Part C Pic 4 in Part C Sec 3

Table 1:Situations of reference

Hypothesis 2: The gain achieved by a long

description over anMD description will be

larger in a problematic situation than in a non-

problematic situation.

We will use theDE and non-problematic situa-
tions in Table 1 to test this hypothesis, comparing
the gain of situation 1 with that of situation 7, and
the gain of situation 2 with that of situation 8.

Longer descriptions may always lead to fewer nav-
igation actions, and it can be expected that com-
plete descriptions of the form picture x in Part y of
Section z will outperform shorter descriptions in
any situation. So, from a resolution point of view,
an algorithm that would always give a complete
description may produce better results than the al-
gorithms we proposed, which do not always give
complete descriptions (e.g. situation 3 in Table 1).
The aim of our algorithms is to make the descrip-
tions complete enough to preventDE andLO in
resolution, but not overly redundant as this may
affect interpretation. We would like to show that
the decisions taken byFI andSL are sensible, i.e.
that they produce descriptions that are neither too
short nor too long. Therefore:

S1: We want to consider situations in whichFI

and SL have produced an incomplete descrip-

tion, and investigate how much gain could have

been made by using a complete description in

those cases. We would like this gain to be negli-

gible. We will use situations 3 and 4 for this, cal-

culating the gain of the long, complete descrip-

tions (namely, long (other) in Table 1) over the

short, incomplete descriptions generated by our

algorithms (long (FI /SL) in Table 1).

S2: We want to consider situations in whichFI

and SL have produced a complete description,

and investigate how much gain has been made by

using this compared to a less complete descrip-

tion that is still more complete thanMD. We

would like this gain to be large. We will use situ-

ations 5 and 6 for this, calculating the gain of the

long complete descriptions generated by our al-

gorithms (long (FI /SL) in Table 1) over the less

complete descriptions (long (other) in Table 1).

Introducing separate hypotheses for casesS1 and
S2 poses the problem of defining when a gain is
’negligible’ and when a gain is ’large’. Instead,
we will compare the gain achieved inS1 with the
gain achieved inS2, expecting that the gain inS2
(which we believe to be large) will be larger than
the gain inS1 (which we believe to be negligible).

Hypothesis 3: The gain of a complete descrip-

tion over a less complete one will be larger for

situations in whichFI and SL generated the

complete one, than for situations in which they

generated the less complete one.

Materials: Twenty on-line documents were pro-
duced, with the same document structure (sec-
tions 1 to 5 with parts A to C) and containing
10 pictures. Documents had a unique background
colour, title and pictures appropriate for the title.
The number of pictures in a section or part varied
per document. All of this was done to prevent sub-
jects relying on memory.

Documents were constructed specifically for the
experiment. Using real-world documents might
have made the tasks more realistic, but would have
posed a number of problems. Firstly, documents
needed to be similar enough in structure to allow
a fair comparison between longer and shorter de-
scriptions. However, the structure should not al-
low subjects to learn where pictures are likely to be
(for instance, in patient information leaflets most
pictures tend to be at the beginning). Secondly,
the content of documents should not help subjects
find a picture: e.g., if we were using a real docu-
ment on animals, subjects might expect a picture
of a tiger to be near to a picture of a lion. So,
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Short Long (FI/SL) Long (Other)
Sit. Type Mean STDEV Mean STDEV Mean STDEV

1 DE 3.58 2.14 1.10 0.50
2 DE 3.85 3.28 1.30 1.31
3 LO 5.60 4.84 1.93 1.29 1.23 1.27
4 LO 2.50 1.97 1.60 1.28 1.38 2.07
5 LO 8.53 4.15 1.15 0.53 5.65 6.74
6 LO 7.38 5.49 1.25 1.03 4.08 2.35
7 NONE 1.58 0.98 1.63 2.61
8 NONE 1.48 0.96 1.05 0.32

Table 2:Number of clicks used to complete the tasks.

Sit. Type Mean STDEV
1 DE 2.48 2.24
7 NONE -0.05 2.77
2 DE 2.55 3.62
8 NONE 0.43 1.04

Table 3:Gain as used for Hypothesis 2.

we do not want subjects to use semantic informa-
tion or their background knowledge of the domain.
Thirdly, real documents might not have the right
descriptions in them, so we would need to change
their sentences by hand.

5.2 Results and discussion

Forty subjects completed the experiment. Table
2 shows descriptive statistics for the number of
clicks subjects made to complete each task. To
analyse the results with respect to Hypothesis 1,
we used a General Linear Model (GLM ) with re-
peated measures. We used two repeated factors:
Situation (sit. 1 to 6) and Description Length
(short and long(FI/SL) ). We found a highly sig-
nificant effect of Description Length on the num-
ber of clicks used to complete the task (p<.001).
In all potential problematic situations the number
of clicks is smaller for the long than for the short
description. This confirms Hypothesis 1.

Table 3 shows descriptive statistics for the gain as
used for Hypothesis 2. We again used aGLM

with repeated measures, using two repeated fac-
tors: Descriptions Content (that of situations 1 and
7, and that of situations 2 and 8) and Situation
Type (potentialDE and non-problematic). We
found a highly significant effect of Situation Type
on the gain (p<.001). In the non-problematic situ-
ations the gain is smaller than in the potentialDE

situations. This confirms Hypothesis 2.

Table 4 shows descriptive statistics for the gain as
used for Hypothesis 3. We again used aGLM

Sit. FI Decision Mean STDEV
3 NOT COMPLETE 0.70 1.40
5 COMPLETE 4.50 6.67
4 NOT COMPLETE 0.23 2.51
6 COMPLETE 2.83 2.16

Table 4:Gain as used for Hypothesis 3.

with repeated measures, using two repeated fac-
tors: Descriptions Content (that of situations 3 and
5, and that of 4 and 6) andFI Decision (with 2
levels: complete and not complete). We found
a highly significant effect ofFI Decision on the
gain (p<.001). The gain is smaller for situations
were our algorithm decided to use an incomplete
description than in situations were it chose a com-
plete description. This confirms Hypothesis 3.

6 Conclusion

We have discussed generation strategies that facil-
itate resolution of referring expressions by adding
logically redundant information to the descriptions
generated. Redundancy has a role to play in dif-
ferent kinds of situation (see Introduction for ref-
erences), but we have focussed on a class of cases
that we believe to be widespread, namely where
the domain is hierarchical. We have argued that,
in such situations, minimally distinguishing de-
scriptions can sometimes be useless. Various al-
gorithms for generating logically redundant ref-
erences have been implemented. The extensive
experiment of section 5 indicates that these algo-
rithms are fundamentally on the right track.

The new algorithms discussed in this paper are an
alternative to classicalGREalgorithms. This raises
the question how one knows whether to use the
newFI or SL instead of one of its competitors?
Let us compare the predictions made by our al-
gorithms with those made by Dale and Haddock
(1991). Suppose their description‘the bowl on the
table’ was said when there are two tables and two
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bowls, while (only) the table furthest away from
the hearer has a bowl on it. In this situation,FI

andSL would generate something redundant like
the bowl on the far-away table. Which of the two
descriptions is best? We submit that it depends on
the situation: when all the relevant facts are avail-
able to the hearer without effort (e.g., all the do-
main objects are visible at a glance) then minimal
descriptions are fine. But in a huge room, where
it is not obvious to the hearer what is on each ta-
ble, search is required. It is this type of situation
that there is a need for the kind of ‘studied’ redun-
dancy embodied inFI andSL, because the min-
imally ‘the bowl on the table’would not be very
helpful. The new algorithms are designed for situ-
ations where the hearer may have to make an effort
to uncover the relevant facts.

By focussing on the benefits for the reader (in
terms of the effort required for identifying the ref-
erent), we have not only substantiated the claims
in Paraboni and van Deemter (2002), to the effect
that it can be good to add logically redundant in-
formation to a referring expression; we have also
been able to shed light on thereasonwhy redun-
dant descriptions are sometimes preferred (com-
pared with the experiment in Paraboni and van
Deemter (2002), which did not shed light on the
reason for this preference): we can now say with
some confidence that, in the circumstances speci-
fied, the generated redundant descriptions are re-
solved with particular ease. By counting the num-
ber of clicks that subjects need to find the referent,
we believe that we may have achieved a degree of
insight into the ‘resolution’ processes in the head
of the reader, not unlike the insights coming out
of the kind of eye-tracking experiments that have
been popular in psycholinguistics for a number of
years now. It would be interesting to see whether
our ideas can be confirmed using such a more en-
trenched experimental paradigm.
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Abstract

The natural language generation litera-
ture provides many algorithms for the
generation of referring expressions. In
this paper, we explore the question of
whether these algorithms actually produce
the kinds of expressions that people pro-
duce. We compare the output of three ex-
isting algorithms against a data set consist-
ing of human-generated referring expres-
sions, and identify a number of significant
differences between what people do and
what these algorithms do. On the basis of
these observations, we suggest some ways
forward that attempt to address these dif-
ferences.

1 Introduction

The generation of referring expressions (hence-
forth GRE) — that is, the process of working
out what properties of an entity should be used
to describe it in such a way as to distinguish
it from other entities in the context — is a re-
current theme in the natural language generation
literature. The task is discussed informally in
some of the earliest work on NLG (in particular,
see (Winograd, 1972; McDonald, 1980; Appelt,
1981)), but the first formally explicit algorithm
was introduced in (Dale, 1989); this algorithm,
often referred to as the Full Brevity (FB) algo-
rithm, has served as a starting point for many sub-
sequent GRE algorithms. To overcome its limita-
tion to one-place predicates, Dale and Haddock
(1991) introduced a constraint-based procedure
that could generate referring expressions involv-
ing relations; and as a response to the computa-
tional complexity of ‘greedy’ algorithms like FB,

Reiter and Dale (Reiter and Dale, 1992; Dale and
Reiter, 1995) introduced the psycholinguistically
motivated Incremental Algorithm (IA). In recent
years there have been a number of important ex-
tensions to the IA. The Context-Sensitive exten-
sion (Krahmer and Theune, 2002) is able to gen-
erate referring expressions for the most salient en-
tity in a context; the Boolean Expressions algo-
rithm (van Deemter, 2002) is able to derive ex-
pressions containing boolean operators, as in the
cup that does not have a handle; and the Sets
algorithm (van Deemter, 2002) extends the ba-
sic approach to references to sets, as in the red
cups. Some approaches reuse parts of other al-
gorithms: the Branch and Bound algorithm (Krah-
mer et al., 2003) uses the Full Brevity algorithm,
but is able to generate referring expressions with
both attributes and relational descriptions using a
graph-based technique. There are many other al-
gorithms described in the literature: see, for exam-
ple, (Horacek, 1997; Bateman, 1999; Stone, 2000;
Gardent, 2002). Their general aim is to produce
naturalistic referring expressions, often explicitly
by means of an attempt to follow the same kinds
of principles that we believe people might be fol-
lowing when they produce language — such as the
Gricean maxims (Grice, 1975). However, the al-
gorithms have rarely been tested against real data
from human referring expression generation.1

In this paper, we present a data set containing
human-produced referring expressions in a limited
domain. Focussing specifically on the algorithms

1The only exceptions we know of to this deficit are not
directly concerned with the kinds of properties people select,
but with phenomena such as how people group entities to-
gether (Funakoshi et al., 2004; Gatt, 2006), or with multi-
modal referring expressions where the linguistic part is not
necessarily distinguishing by itself (van der Sluis and Krah-
mer, 2004).
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presented in (Dale, 1989), (Dale and Haddock,
1991) and (Reiter and Dale, 1992), we explore
how well these algorithms perform in the same
context. There are significant differences between
the referring expressions produced by humans,
and those produced by the algorithms; we explore
these differences and consider what it means for
work in the generation of referring expressions.

The remainder of this paper is structured as fol-
lows. In Section 2, we introduce the data set
of human-produced referring expressions we use;
in Section 3, we introduce the representational
framework we use to model the domain underly-
ing this data; in Section 4 we introduce the three
algorithms considered in this paper; in Section 5
we discuss the results of using these algorithms
on the data that represents the model of our do-
main; in Section 6 we discuss the differences be-
tween the output of the algorithms and the human-
produced data; and in Section 7 we draw some
conclusions and suggest some steps towards ad-
dressing the issues we have identified.

2 The Data

Our human-produced referring expressions are
drawn from a physical experimental setting con-
sisting of four filing cabinets, each of which is
four drawers high, located in a fairly typical aca-
demic office. The cabinets are positioned directly
next to each other, so that the drawers form a four-
by-four grid; each drawer is labelled with a num-
ber between 1 and 16 and is coloured either blue,
pink, yellow, or orange. There are four drawers of
each colour which are distributed randomly over
the grid, as shown in Figure 1.

Subjects were given a randomly generated num-
ber between 1 and 16, and asked to produce a de-
scription of the numbered drawer using any prop-
erties other than the number. There were 20 partic-
ipants in the experiment, resulting in a total of 140
referring expressions. Here are some examples of
the referring expressions produced:

(1) the top drawer second from the right [d3]

(2) the orange drawer on the left [d9]

(3) the orange drawer between two pink ones
[d12]

(4) the bottom left drawer [d16]

Since the selection of which drawer to describe
was random, we do not have an equal number of

Figure 1: The filing cabinets

descriptions of each drawer; in fact, the data set
ranges from two descriptions of Drawer 1 to 12 de-
scriptions of Drawer 16. One of the most obvious
things about the data set is that even the same per-
son may refer to the same entity in different ways
on different occasions, with the differences being
semantic as well as syntactic.

We are interested in comparing how algorithms
for referring expression generation differ in their
outputs from what people do; since these al-
gorithms produce distinguishing descriptions, we
therefore removed from the data set 22 descrip-
tions which were ambiguous or referred to a set of
drawers. This resulted in a total of 118 distinct re-
ferring expressions, with an average of 7.375 dis-
tinct referring expressions per drawer.

As the algorithms under scrutiny here are not
concerned with the final syntactic realisation of
the referring expression produced, we also nor-
malised the human-produced data to remove su-
perficial variations such as the distinction between
relative clauses and reduced relatives, and between
different lexical items that were synonymous in
context, such as column and cabinet.

Four absolute properties used for describing the
drawers can be identified in the natural data pro-
duced by the human participants. These are the
colour of the drawer; its row and column; and in
those cases where the drawer is situated in one of
the corners of the grid, its cornerhood.2 A number
of the natural descriptions also made use of the

2A question we will return to below is that of how we
decide whether to view a particular property as a one-place
predicate or as a relation.
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Property Count % (out of possible)
Row 95 79.66% (118)
Column 88 73.73% (118)
Colour 63 53.39% (118)
Corner 11 40.74% (27)
Relation 15 12.71% (118)

Table 1: The properties used in descriptions

following relational properties that hold between
drawers: above, below, next to, right of, left of and
between. In Table 1, Count shows the number of
descriptions using each property, and the percent-
ages show the ratio of the number of descriptions
using each property to the number of descriptions
for drawers that possess this property (hence, only
27 of the descriptions referred to corner drawers).
We have combined all uses of relations into one
row in this table to save space, since, interestingly,
their overall use is far below that of the other prop-
erties: 103 descriptions (87.3%) did not use rela-
tions.

Most algorithms in the literature aim at gen-
erating descriptions that are as short as possi-
ble, but will under certain circumstances pro-
duce redundancy. Some authors, for example
(van Deemter and Halldórsson, 2001), have sug-
gested that human-produced descriptions are of-
ten not minimal, and this is an intuition that we
would generally agree with. However, a strong
tendency towards minimality is evident in the
human-produced data here: only 29 out of 118 de-
scriptions (24.6%) contain redundant information.
Here are a few examples:

• the yellow drawer in the third column from
the left second from the top [d6]

• the blue drawer in the top left corner [d1]

• the orange drawer below the two yellow
drawers [d14]

In the first case, either the colour or column proper-
ties are redundant; in the second, colour and corner,
or only the grid information, would have been suf-
ficient; and in the third, it would have been suffi-
cient to mention one of the two yellow drawers.

3 Knowledge Representation

In order to use an algorithm to generate referring
expressions in this domain, we must first decide

how to represent the domain. It turns out that this
raises some interesting questions.

We use the symbols {d1, d2 . . . d16} as our
unique identifying labels for the 16 drawers.
Given some di, the goal of any given algorithm
is then to produce a distinguishing description of
that entity with respect to a context consisting of
the other 15 drawers.

As is usual, we represent the properties of the
domain in terms of attribute–value pairs. Thus we
have, for example:

• d2: 〈colour, orange〉, 〈row, 1〉, 〈column, 2〉,
〈right-of, d1〉, 〈left-of, d3〉, 〈next-to, d1〉, 〈next-to,
d3〉, 〈above, d7〉

This drawer is in the top row, so it does not have a
property of the form 〈below, d2〉.

The four corner drawers additionally possess
the property 〈position, corner〉. Cornerhood can
be inferred from the row and column informa-
tion; however, we added this property explicitly
because several of the natural descriptions use the
property of cornerhood, and it seems plausible that
this is a particularly salient property in its own
right.

This raises the question of what properties
should be encoded explicitly, and which should
be inferred. Note that in the example above, we
explicitly encode relational properties that could
be computed from others, such as left-of and right-
of. Since none of the algorithms explored here
uses inference over knowledge base properties, we
opted here to ‘level the playing field’ to enable
fairer comparison between human-produced and
machine-produced descriptions.

A similar question of the role of inference arises
with regard to the transitivity of spatial relations.
For example, if d1 is above d9 and d9 is above
d16 , then it can be inferred that d1 is transitively
above d16. In a more complex domain, the imple-
mentation of this kind of knowledge might play
an important role in generating usful referring ex-
pressions. However, the uniformity of our domain
results in this inferred knowledge about transitive
relations being of little use; in fact, in most cases,
the implementation of transitive inference might
even result in the generation of unnatural descrip-
tions, such as the orange drawer (two) right of the
blue drawer for d12.

Another aspect of the representation of relations
that requires a decision is that of generalisation:
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next-to is a generalisation of the relations left-of and
right-of. The only algorithm of those we exam-
ine here that provides a mechanism for exploring
a generalisation hierarchy is the Incremental Al-
gorithm (Reiter and Dale, 1992), and this cannot
handle relations; so, we take the shortcut of ex-
plicitly representing the next-to relation for every
left-of and right-of relation in the knowledge base.
We then implement special-case handling that en-
sures that, if one of these facts is used, the more
general or more specific case is also deleted from
the set of properties still available for the descrip-
tion.3

4 The Algorithms

As we have already noted above, there is a con-
siderable literature on the generation of referring
expressions, and many papers in the area provide
detailed algorithms. We focus here on the follow-
ing algorithms:

• The Full Brevity algorithm (Dale, 1989) at-
tempts to build a minimal distinguishing de-
scription by always selecting the most dis-
criminatory property available; see Algo-
rithm 1.

Let L be the set of properties to be realised in our
description; let P be the set of properties known to be
true of our intended referent r (we assume that P is
non-empty); and let C be the set of distractors (the
contrast set). The initial conditions are thus as follows:

– C = {〈all distractors〉};
– P = {〈all properties true of r〉};
– L = {}

In order to describe the intended referent r with respect
to the contrast set C, we do the following:

1. Check Success:
if |C| = 0 then return L as a distinguishing
description
elseif P = ∅ then fail
else goto Step 2.

2. Choose Property:
for each pi ∈ P do:
Ci ← C ∩ {x|pi(x)}
Chosen property is pj , where Cj is the smallest set.
goto Step 3.

3. Extend Description (wrt the chosen pj):
L ← L ∪ {pj}
C ← Cj

P ← P − {pj}
goto Step 1.

Algorithm 1: The Full Brevity Algorithm

3This is essentially a hack; however, there is clearly a need
for some mechanism for handling what we might think of
as equivalence classes of properties, and this is effectively a
simple approach to this question.

1. Check Success
if Stack is empty then return L as a DD
elseif |Cv| = 1 then pop Stack & goto Step 1
elseif Pr = ∅ then fail
else goto Step 2

2. Choose Property
for each property pi ∈ Pr do
p′i ← [r\v]pi

Ni ← N ⊕ p′i
Chosen prediction is pj , where Nj contains
the smallest set Cv for v.
goto Step 3

3. Extend Description (w.r.t the chosen p)
Pr ← Pr − {p}
p ← [r\v]p
for every other constant r’ in p do

associate r′ with a new, unique variable v′

p ← [r′\v′]p
push Describe(r’,v’) onto Stack
initialise a set P ′r of facts true of r′

N ← N ⊕ p
goto Step 1

Algorithm 2: The Relational Algorithm

MakeReferringExpression(r, C, P ) L ← {}
for each member Ai of list P do

V = FindBestValue(r, Ai, BasicLevelValue(r, Ai))
if RulesOut(〈Ai, V 〉) 6= nil
then L ← L ∪ {〈Ai, V 〉}

C ← C − RulesOut(〈Ai, V 〉)
endif
if C = {} then

if 〈type, X〉 ∈ L for some X
then return L
else return L ∪ {〈type, BasicLevelValue(r,

type)〉}
endif

endif
return failure

FindBestValue(r, A, initial-value)
if UserKnows(r, 〈A, initial-value〉) = true
then value ← initial-value
else value ← no-value
endif
if (more-specific-value ← MoreSpecificValue(r, A,
value)) 6= nil ∧

(new-value ← FindBestValue(A,
more-specific-value)) 6= nil ∧

(|RulesOut(〈A, new-value〉)| > |RulesOut(〈A,
value〉)|)
then value ← new-value
endif
return value

RulesOut(〈A, V 〉)
if V = no-value
then return nil
else return {x : x ∈ C ∧ UserKnows(x, 〈A, V 〉) =
false}
endif
Algorithm 3: The Incremental Algorithm
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• The relational algorithm from (Dale and Had-
dock, 1991) uses constraint satisfaction to in-
corporate relational properties while avoiding
infinite regress; see Algorithm 2.

• the Incremental Algorithm (Reiter and Dale,
1992; Dale and Reiter, 1995) considers the
available properties to be used in a descrip-
tion via a preference ordering over those
properties; see Algorithm 3.

For the purpose of this study, the algorithms were
implemented in Common LISP. The mechanism
described in (Dale and Reiter, 1995) to handle
generalisation hierarchies for values for the dif-
ferent properties, referred to in the algorithm here
as FindBestValue, was not implemented since, as
discussed earlier, our representation of the domain
does not make use of a hierarchy of properties.

5 The Output of the Algorithms

Using the knowledge base described in Section 3,
we applied the algorithms from the previous sec-
tion to see whether the referring expressions they
produced were the same as, or similar to, those
produced by the human subjects. This quickly
gave rise to some situations not explicitly ad-
dressed by some of the algorithms; we discuss
these in Section 5.1 below. Section 5.2 discusses
the extent to which the behaviour of the algorithms
matched that of the human data.

5.1 Preference Orderings

The Incremental Algorithm explicitly encodes a
preference ordering over the available properties,
in an attempt to model what appear to be semi-
conventionalised strategies for description that
people use. This also has the consequence of
avoiding a problem that faces the other two algo-
rithms: since the Full Brevity Algorithm and the
Relational Algorithm choose the most discrimina-
tory property at each step, they have to deal with
the case where several properties are equally dis-
criminatory. This turns out to be a common sit-
uation in our domain. Both algorithms implicitly
assume that the choice will be made randomly in
these cases; however, it seems to us more natural
to control this process by imposing some selection
strategy. We do this here by borrowing the idea
of preference ordering from the Incremental Algo-
rithm, and using it as a tie-breaker when multiple
properties are equally discriminatory.

Not including type information (i.e., the fact that
some di is a drawer), which has no discrimina-
tory power and therefore will never be chosen by
any of the algorithms,4 there are only four differ-
ent properties available for the Full Brevity Algo-
rithm and the Incremental Algorithm: row, column,
colour, and position. This gives us 4! = 24 different
possible preference orderings. Since some of the
human-produced descriptions use all four proper-
ties, we tested these two algorithms with all 24
preference orderings.

For the Relational Algorithm, we added the five
relations next to, left of, right of, above, and below.
This results in 9! = 362,880 possible preference
orderings; far too many to test. Since we are
primarily interested in whether the algorithm can
generate the human-produced descriptions, we re-
stricted our testing to those preference orderings
that started with a permutation of the properties
used by the participants; in addition to the 24 pref-
erence orderings above, there are 12 preference or-
derings that incorporate the relational properties.

5.2 Coverage of the Human Data

Overall, the Full Brevity Algorithm is able to gen-
erate 82 out of the 103 non-relational descriptions
from the natural data, providing a recall of 79.6%.
The recall score for the Incremental Algorithm is
95.1%, generating 98 of the 103 descriptions. As
these algorithms do not attempt to generate rela-
tional descriptions, the relational data is not taken
into account in evaluating the performance here.

Both algorithms are able to generate all the
non-relational minimal descriptions found in the
human-produced data. The Full Brevity Algo-
rithm unintentionally replicates the redundancy
found in nine descriptions, and the Incremental
Algorithm produces all but five of the 29 redun-
dant descriptions.

Perhaps surprisingly, the Relational Algorithm
does not generate any of the human-produced de-
scriptions. We will return to consider why this is
the case in the next section.

6 Discussion

There are two significant differences to be consid-
ered here: first, the coverage of redundant descrip-
tions by the Full Brevity and Incremental Algo-

4Consistent with much other work in the field, we as-
sume that the head noun will always be added irrespective
of whether it has any discriminatory power.
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rithms; and second, the inability of the Relational
Algorithm to replicate any of the human data.

6.1 Coverage of Redundancy

Neither the Full Brevity Algorithm nor the Incre-
mental Algorithm presumes to be able to generate
relational descriptions; however, both algorithms
are able to produce each of the minimal descrip-
tions from the set of natural data with at least one
of the preference orderings. Both also generate
several of the redundant descriptions in the nat-
ural data set, but do not capture all of the human-
generated redundancies.

The Full Brevity Algorithm has as a primary
goal the avoidance of redundant descriptions, so
it is a sign of the algorithm being consistent with
its specification that it covers fewer of the redun-
dant expressions than the Incremental Algorithm.
On the other hand, the fact that it produces any
redundant descriptions signals that the algorithm
doesn’t quite meet its specification. The cases
where the Full Brevity Algorithm produces redun-
dancy are when an entity shares with another en-
tity at least two property-values and, after choos-
ing one of these properties, the next property to
be considered is the other shared one, since it has
the same or a higher discriminatory power than all
other properties. This is a situation that was not
considered in the original algorithm; it is related
to the problem of what to do when two properties
have the same discriminatory power, as noted ear-
lier. In our domain, the situation arises for corner
drawers with the same colour (d4 and d16), and
drawers that are not in a corner but for which there
is another drawer of the same colour in each of the
same row and column (d7 and d8).

The Incremental Algorithm, on the other hand,
generates redundancy when an object shares at
least two property-values with another object and
the two shared properties are the first to be con-
sidered in the preference ordering. This is pos-
sible for corner drawers with the same colour (d4

and d16) and for drawers for which there is another
drawer of the same colour in either the same row,
the same column, or both (d5, d6, d7, d8, d10, d11,
d13, d15).

In these terms, the Incremental Algorithm is
clearly a better model of the human behaviour than
the Full Brevity Algorithm. However, we may ask
why the algorithm does not cover all the redun-
dancy found in the human descriptions. The re-

dundant descriptions which the algorithm does not
generate are as follows:

(5) the blue drawer in the top left corner [d1]

(6) the yellow drawer in the top right corner [d4]

(7) the pink drawer in the top of the column sec-
ond from the right [d3]

(8) the orange drawer in the bottom second from
the right [d14]

(9) the orange drawer in the bottom of the second
column from the right [d14]

The Incremental Algorithm stops selecting prop-
erties when a distinguishing description has been
constructed. In Example (6), for example, the
algorithm would select any of the following, de-
pending on the preference ordering used:

(10) the yellow drawer in the corner

(11) the top left yellow drawer

(12) the drawer in the top left corner

The human subject, however, has added informa-
tion beyond what is required. This could be ex-
plained by our modelling of cornerhood: in Ex-
amples (5) and (6), one has the intuition that the
noun corner is being added simply to provide a
nominal head to the prepositional phrase in an
incrementally-constructed expression of the form
the blue drawer in the top right . . . , in much
the same way as the head noun drawer is added,
whereas we have treated it as a distinct property
that adds discriminatory power. This again em-
phasises the important role the underlying repre-
sentation plays in the generation of referring ex-
pressions: if we want to emulate what people do,
then we not only need to design algorithms which
mirror their behaviour, but these algorithms have
to operate over the same kind of data.

6.2 Relational Descriptions
The fact that the Relational Algorithm generates
none of the human-generated descriptions is quite
disturbing. On closer examination, it transpires
that this is because, in this domain, the discrimi-
natory power of relational properties is generally
always greater than that of any other property, so
a relational property is chosen first. As noted ear-
lier, relational properties appear to be dispreferred
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in the human data, so the Relational Algorithm is
already disadvantaged. The relatively poor per-
formance of the algorithm is then compounded by
its insistence on continuing to use relational prop-
erties: an absolute property will only be chosen
when either the currently described drawer has no
unused relational properties left, or the number
of distractors has been reduced so much that the
discriminatory power of all remaining relational
properties is lower than that of the absolute prop-
erty, or the absolute property has the same discrim-
inatory power as the best relational one and the ab-
solute property appears before all relations in the
preference ordering.

Consequently, whereas a typical human de-
scription of drawer d2 would be the orange drawer
above the blue drawer, the Relational Algorithm
will produce the description the drawer above the
drawer above the drawer above the pink drawer.
Not only are there no descriptions of this form in
the human-produced data set, but they also sound
more like riddles someone might create to inten-
tionally make it hard for the hearer to figure out
what is meant.

There are a variety of ways in which the be-
haviour of this algorithm might be repaired. We
are currently exploring whether Krahmer et al’s
(2003) graph-based approach to GRE is able to
provide a better coverage of the data: this algo-
rithm provides the ability to make use of differ-
ent search strategies and weighting mechanisms
when adding properties to a description, and such
a mechanism might be used, for example, to coun-
terbalance the Relational Algorithm’s heavy bias
towards the relations in this domain.

7 Conclusions and Future Work

We have noted a number of regards in which the
algorithms we have explored here do not produce
outputs that are the same as those produced by hu-
mans. Some comments on the generalisability of
these results are appropriate.

First, our results may be idiosyncratic to the
specifics of the particular domain of our experi-
ment. We would point out, however, that the do-
main is more complex, and arguably more real-
istic, than the much-simplified experimental con-
texts that have served as intuitions for earlier work
in the field; we have in mind here in particular the
experiments discussed in (Ford and Olson, 1975),
(Sonnenschein, 1985) and (Pechmann, 1989). In

the belief that the data provides a good test set
for the generation of referring expressions, we are
making the data set publicly available 5, so others
may try to develop algorithms covering the data.

A second concern is that we have only explored
the extent to which three specific algorithms are
able to cover the human data. Many of the other al-
gorithms in the literature take these as a base, and
so are unlikely to deliver significantly different re-
sults. The major exceptions here may be (a) van
Deemter’s (2002) algorithm for sets; recall that we
excluded from the human data used here 16 ref-
erences that involved sets; and, as noted above,
(b) Krahmer et al’s (2003) graph-based approach
to GRE, which may perform better than the Re-
lational Algorithm on descriptions using relations.
In future work, we intend to explore to what extent
our findings extend to other algorithms.

In conclusion, we point to two directions where
we believe further work is required.

First, as we noted early in this paper, it is clear
that there can be many different ways of refer-
ring to the same entity. Existing algorithms are
all deterministic and therefore produce exactly one
‘best’ description for each entity; but the human-
produced data clearly shows that there are many
equally valid ways of describing an entity. We
need to find some way to account for this in our
algorithms. Our intuition is that this is likely to
be best cashed out in terms of different ‘refer-
ence strategies’ that different speakers adopt in
different situations; we are reminded here of Car-
letta’s (1992) distinction between risky and cau-
tious strategies for describing objects in the Map
Task domain. More experimentation is required in
order to determine just what these strategies are:
are they, for example, characterisable as things
like ‘Produce a referring expression that is as short
as possible’ (the intuition behind the Full Brevity
Algorithm), ‘Just say what comes to mind first and
keep adding information until the description dis-
tinguishes the intended referent’ (something like
the Incremental Algorithm), or perhaps a strategy
of minimising the cognitive effort for either the
speaker or the hearer? Further psycholinguistic
experiments and data analysis are required to de-
termine the answers here.

Our second observation is that the particular re-
sults we have presented here are, ultimately, en-

5The data set is publicly available from
http://www.ics.mq.edu.au/∼jviethen/drawers
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tirely dependent upon the underlying representa-
tions we have used, and the decisions we have
made in choosing how to represent the properties
and relations in the domain. We believe it is im-
portant to draw attention to the fact that precisely
how we choose to represent the domain has an im-
pact on what the algorithms will do. If we are
aiming for naturalism in our algorithms for refer-
ring expression generation, then ideally we would
like our representations to mirror those used by hu-
mans; but, of course, we don’t have direct access
to what these are.

There is clearly scope for psychological exper-
imentation, perhaps along the lines initially ex-
plored by (Rosch, 1978), to determine some con-
straints here. In parallel, we are considering fur-
ther exploration into the variety of representations
that can be used, particularly with regard to the
question of which properties are considered to be
‘primitive’, and which are generated by some in-
ference mechanism; this is a much neglected as-
pect of the referring expression generation task.
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Abstract

Past work of generating referring expres-
sions mainly utilized attributes of objects
and binary relations between objects in or-
der to distinguish the target object from
others. However, such an approach does
not work well when there is no distinc-
tive attribute among objects. To over-
come this limitation, this paper proposes
a novel generation method utilizing per-
ceptual groups of objects and n-ary re-
lations among them. The evaluation us-
ing 18 subjects showed that the proposed
method could effectively generate proper
referring expressions.

1 Introduction

In the last two decades, many researchers have
studied the generation of referring expressions to
enable computers to communicate with humans
about objects in the world.
In order to refer to an intended object (the tar-

get) among others (distractors), most past work
(Appelt, 1985; Dale and Haddock, 1991; Dale,
1992; Dale and Reiter, 1995; Heeman and Hirst,
1995; Horacek, 1997; Krahmer and Theune, 2002;
van Deemter, 2002; Krahmer et al., 2003) utilized
attributes of the target and binary relations be-
tween the target and distractors. Therefore, these
methods cannot generate proper referring expres-
sions in situations where there is no significant
surface difference between the target and distrac-
tors, and no binary relation is useful to distinguish
the target. Here, a proper referring expression

∗Currently at Honda Research Institute Japan Co., Ltd.
†Currently at Hitachi, Ltd.

means a concise and natural linguistic expression
enabling hearers to identify the target.
For example, consider indicating object b to per-

son P in the situation of Figure 1. Note that la-
bels a, b and c are assigned for explanation to the
readers, and person P does not share these labels
with the speaker. Because object b is not distin-
guishable from objects a or c by means of their
appearance, one would try to use a binary relation
between object b and the table, i.e., “a ball to the
right of the table”. However, “to the right of” is
not a discriminatory relation, for objects a and c
are also located to the right of the table. Using a
and c as a reference object instead of the table does
not make sense, since a and c cannot be uniquely
identified because of the same reason that b cannot
be identified. Such situations have drawn less at-
tention (Stone, 2000), but can frequently occur in
some domains such as object arrangement (Tanaka
et al., 2004).

P

a

b

c

Table

Figure 1: An example of problematic situations

In the situation of Figure 1, the speaker can indi-
cate object b to person P with a simple expression
“the front ball”. In order to generate such an ex-
pression, one must be able to recognize the salient
perceptual group of the objects and use the n-ary
relative relations in the group.
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To overcome the problem described above, Fu-
nakoshi et al. (2004) proposed a method of gen-
erating Japanese referring expressions that utilizes
n-ary relations among members of a group. They,
however, dealt with the limited situations where
only homogeneous objects are randomly arranged
(see Figure 2). Thus, their method could han-
dle only spatial n-ary relation, and could not han-
dle attributes and binary relations between objects
which have been the main concern of the past re-
search.
In this paper, we extend the generation method

proposed by (Funakoshi et al., 2004) so as to han-
dle object attributes and binary relations between
objects as well. In what follows, Section 2 shows
an extension of the SOG representation that was
proposed in (Funakoshi et al., 2004). Our new
method will be described in Section 3 and eval-
uated in Section 4. Finally we conclude the paper
in Section 5.

2 SOG representation

Funakoshi et al. (2004) proposed an intermedi-
ate representation between a referring expression
and the situation that is referred to by the expres-
sion. The intermediate representation represents
a course of narrowing down to the target as a se-
quence of groups from the group of all objects to
the singleton group of the target object. Thus it is
called SOG (Sequence Of Groups).
The following example shows an expression de-

scribing the target x in Figure 2 with the cor-
responding SOG representation below it. Since
Japanese is a head-final language, the order of
groups in the SOG representation can be retained
in the linguistic expression.

hidari oku ni aru(1) mittu no tama no uti no(2)

itiban migi no tama(3)
(the rightmost ball(3) among the three balls(2)
at the back left(1))

SOG:[{a, b, c, d, e, f, x}, {a, b, x}, {x}],
where {a, b, c, d, e, f, x} denotes all objects in
the situation, {a, b, x} denotes the three objects
at the back left, and {x} denotes the target.

2.1 Extended SOG

As mentioned above, (Funakoshi et al., 2004) sup-
posed the limited situations where only homoge-
neous objects are randomly arranged, and consid-
ered only spatial subsumption relations between
consecutive groups. Therefore, relations between

P

a

b

e
f

c d

x

Figure 2: An example from (Funakoshi et al.,
2004)

groups are not explicitly denoted in the original
SOGs as shown below.

SOG: [G0, G1, . . . , Gn]
Gi: a group

In this paper, however, other types of relations
between groups are also considered. We propose
an extended SOG representation where types of
relations are explicitly denoted as shown below. In
the rest of this paper, we will refer to this extended
SOG representation by simply saying “SOG”.

SOG: [G0R0G1R1 . . . GiRi . . . Gn]
Gi: a group
Ri: a relation between Gi and Gi+1

2.2 Relations between groups

Ri, a relation between groups Gi and Gi+1, de-
notes a shift of attention from Gi to Gi+1 with
a certain focused feature. The feature can be an
attribute of objects or a relation between objects.
There are two types of relations between groups:
intra-group relation and inter-group relation.

Intra-group relation WhenRi is an intra-group
relation, Gi subsumes Gi+1, that is, Gi ⊃ Gi+1.
Intra-group relations are further classified into the
following subcategories according to the feature
used to narrow down Gi toGi+1. We denote these
subcategories with the following symbols.
space−→ : spatial subsumption
type−→ : the object type
shape−→ : the shape of objects
color−→ : the color of objects
size−→ : the size of objects

With respect to this classification, (Funakoshi et
al., 2004) dealt with only the

space−→ relation.
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Inter-group relation When Ri is an inter-group
relation, Gi and Gi+1 are mutually exclusive, that
is, Gi ∩ Gi+1 = φ. An inter-group relation is a
spatial relation and denoted by symbol⇒.

Example Ri can be one of
space−→ ,

type−→, shape−→ ,
color−→, size−→ and ⇒. We show a referring expres-
sion indicating object b1 and the corresponding
SOG in the situation of Figure 3. In the SOG,
{all} denotes the total set of objects in the situ-
ation. The indexed underlines denote correspon-
dence between SOG and linguistic expressions.
As shown in the figure, we allow objects being on
the other objects.

marui(1) futatu no tukue no uti no(2)

hidari no(3) tukue no(4) ue no(5) tama(6)
(the ball(6) on(5) the left(3) table(4)
among the two(2) round(1) tables(2))

SOG: [{all} type−→ {t1, t2, t3} shape−→ (1)

{t1, t2}(2) space−→ (3) {t1}(4) ⇒(5) {b1}(6)]

b2

b1

b5

t3

t2
p1

t1

b3
b4

blue

black

red

Figure 3: An example situation

3 Generation

Our generation algorithm proposed in this section
consists of four steps: perceptual grouping, SOG
generation, surface realization and scoring. In the
rest of this section, we describe these four steps by
using Figure 3 as an example.

3.1 Step 1: Perceptual grouping

Our algorithm starts with identifying groups of
objects that are naturally recognized by humans.
We adopt Thórisson’s perceptual grouping algo-
rithm (Thórisson, 1994) for this purpose. Per-
ceptual grouping is performed with objects in the
situation with respect to each of the following

features: type, shape, color, size, and proxim-
ity. Three special features, total, singleton, and
closure are respectively used to recognize the to-
tal set of objects, groups containing each single
object, and objects bounded in perceptually sig-
nificant regions (table tops in the domain of this
paper). These three features are handled not by
Thòrisson’s algorithm but by individual proce-
dures.
Type is the most dominant feature because hu-

mans rarely recognize objects of different types as
a group. Thus, first we group objects with respect
to types, and then group objects of the same type
with respect to other features (except for total).
Although we adopt Thórisson’s grouping algo-

rithm, we use different grouping strategies from
the original. Thórisson (1994) lists the following
three combinations of features as possible strate-
gies of perceptual grouping.

• shape and proximity
• color and proximity
• size and proximity

However, these strategies are inappropriate to gen-
erate referring expressions. For example, because
two blue balls b1 and b2 in Figure 3 are too
much distant from each other, Thórisson’s algo-
rithm cannot recognize the group consisting of b1
and b2 with the original strategies. However, the
expression like “the left blue ball” can naturally
refer to b1. When using such an expression, we
assume an implicit group consisting of b1 and b2.
Hence, we do not combine features but use them
separately.
The results of perceptual grouping of the situa-

tion in Figure 3 are shown below. Relation labels
are assigned to recognized groups with respect to
features used in perceptual grouping. We define
six labels: all, type, shape, color, size, and
space. Features singleton, proximity and closure
share the same label space. A group may have
several labels.

feature label recognized groups
total all {t1, t2, t3, p1, b1, b2, b3, b4, b5}
singleton space {t1}, {t2}, {t3}, {p1}, {b1}, {b2},

{b3}, {b4}, {b5}
type type {t1, t2, t3}, {p1}, {b1, b2, b3, b4, b5}
shape shape {t1, t2}, {t3}
color color {b1, b2}, {b3}, {b4, b5}
size size {b1, b3, b4}, {b2, b5}
proximity space {t2, t3}, {b1, b3, b4, b5}, {b3, b4, b5}
closure space {b1}, {b3, b4}
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Target # target object
AllGroups # all generated groups
SOGList # list of generated SOGs

01:makeSOG()
02: SOG = []; # list of groups and symbols
03: All = getAll(); # total set
04: add(All, SOG); # add All to SOG
05: TypeList = getAllTypes(All);

# list of all object types
06: TargetType = getType(Target);

# type of the target
07: TargetSailency = saliency(TargetType);

# saliency of the target type
08: for each Type in TypeList do

# {Table, Plant, Ball}
09: if saliency(Type) ≥

TargetSaliency then
# saliency: Table > Plant > Ball

10: Group = getTypeGroup(Type);
# get the type group of Type

11: extend(SOG, Group);
12: end if
13: end for
14:return

Figure 4: Function makeSOG

3.2 Step 2: SOG generation

The next step is generating SOGs. This is so-
called content planning in natural language gen-
eration. Figure 4, Figure 5 and Figure 6 show the
algorithm of making SOGs.
Three variables Target, AllGroups, and

SOGList defined in Figure 4 are global variables.
Target holds the target object which the refer-
ring expression refers to. AllGroups holds the
set of all groups recognized in Step 1. Given
Target and AllGroups, function makeSOG
enumerates possible SOGs in the depth-first man-
ner, and stores them in SOGList.

makeSOG (Figure 4) makeSOG starts with a list
(SOG) that contains the total set of objects in the
domain. It chooses groups of objects that are more
salient than or equal to the target object and calls
function extend for each of the groups.

extend (Figure 5) Given an SOG and a group
to be added to the SOG, function extend extends
the SOG with the group for each label attached to
the group. This extension is done by creating a
copy of the given SOG and adding to its end an
intra-group relation symbol defined in Section 2.2
corresponding to the given label and group. Fi-
nally it calls search with the copy.

search (Figure 6) This function takes an SOG
as its argument. According to the last group in

01:extend(SOG, Group)
02: Labels = getLabels(Group);
03: for each Label in Labels do
04: SOGcopy = copy(SOG);

05: add(
Label−→, SOGcopy);

06: add(Group, SOGcopy);
07: search(SOGcopy);
08: end for
09:return

Figure 5: Function extend

the SOG (LastGroup), it extends the SOG as
described below.

1. If LastGroup is a singleton of the target
object, append SOG to SOGList and return.

2. If LastGroup is a singleton of a non-target
object, find the groups that contain the target
object and satisfy the following three condi-
tions: (a), (b) and (c).

(a) All objects in the group locate in
the same direction from the object of
LastGroup (the reference). Possi-
ble directions are one of “back”, “back
right”, “right”, “front right”, “front”,
“front left”, “left”, “left back” and “on”.
The direction is determined on the basis
of coordinate values of the objects, and
is assigned to the group for the use of
surface realization.

(b) There is no same type object located be-
tween the group and the reference.

(c) The group is not a total set of a certain
type of object.

Then, for each of the groups, make a copy
of the SOG, and concatenate “⇒” and the
group to the copy, and call search recur-
sively with the new SOG.

3. If LastGroup contains the target object
together with other objects, let the inter-
section of LastGroup and each group in
AllGroups be NewG, and copy the label
from each group to NewG. If NewG contains
the target object, call function extend un-
less Checked contains NewG.

4. If LastGroup contains only non-target ob-
jects, call function extend for each group
(Group) in AllGroupswhich is subsumed
by LastGroup.

Figure 7 shows the SOGs generated to refer to
object b1 in Figure 3.
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1. [{all} type−→ {t1, t2, t3} space−→ {t1} ⇒{b1}]
2. [{all} type−→ {t1, t2, t3} shape−→ {t1, t2} space−→ {t1} ⇒{b1}]
3. [{all} type−→ {b1, b2, b3, b4, b5} space−→ {b1}]
4. [{all} type−→ {b1, b2, b3, b4, b5} color−→ {b1, b2} space−→ {b1}]
5. [{all} type−→ {b1, b2, b3, b4, b5} color−→ {b1, b2} size−→ {b1}]
6. [{all} type−→ {b1, b2, b3, b4, b5} size−→ {b1, b4, b3} space−→ {b1}]
7. [{all} type−→ {b1, b2, b3, b4, b5} size−→ {b1, b4, b3} color−→ {b1}]
8. [{all} type−→ {b1, b2, b3, b4, b5} space−→ {b1, b3, b4, b5} space−→ {b1}]
9. [{all} type−→ {b1, b2, b3, b4, b5} space−→ {b1, b3, b4, b5} color−→ {b1}]
10. [{all} type−→ {b1, b2, b3, b4, b5} space−→ {b1, b3, b4, b5} size−→ {b1, b3, b4} space−→ {b1}]
11. [{all} type−→ {b1, b2, b3, b4, b5} space−→ {b1, b3, b4, b5} size−→ {b1, b3, b4} color−→ {b1}]

Figure 7: Generated SOGs from the situation in Figure 3

01:search(SOG)
02: LastGroup = getLastElement(SOG);

# get the rightmost group in SOG
03: Card = getCardinality(LastGroup);
04: if Card == 1 then
05: if containsTarget(LastGroup) then

# check if LastGroup contains
# the target

06: add(SOG, SOGList);
07: else
08: GroupList =

searchTargetGroups(LastGroup);
# find groups containing the target

09: for each Group in GroupList do
10: SOGcopy = copy(SOG);
11: add(⇒, SOGcopy);
12: add(Group, SOGcopy);
13: search(SOGcopy);
14: end for
15: end if
16: elsif containsTarget(LastGroup) then
17: Checked = [ ];
18: for each Group in AllGroups do
19: NewG = Intersect(Group, LastGroup);

# make intersection
20: Labels = getLabels(Group);
21: setLabels(Labels, NewG);

# copy labels from Group to NewG
22: if containsTarget(NewG) &

!contains(Checked, NewG) then
23: add(NewG, Checked);
24: extend(SOG, Group);
25: end if
26: end for
27: else
28: for each Group of AllGroups do
29: if contains(LastGroup, Group) then
30: extend(SOG, Group);
31: end if
32: end for
33: end if
34:return

Figure 6: Function search

3.3 Step 3: Surface realization

A referring expression is generated by determin-
istically assigning a linguistic expression to each
element in an SOG according to Rule 1 and 2.
As Japanese is a head-final language, simple con-
catenation of element expressions makes a well-
formed noun phrase1. Rule 1 generates expres-
sions for groups and Rule 2 does for relations.
Each rule consists of several subrules which are
applied in this order.

[Rule 1]: Realization of groups

Rule 1.1 The total set ({all}) is not realized.
(Funakoshi et al., 2004) collected referring
expressions from human subjects through ex-
periments and found that humans rarely men-
tioned the total set. According to their obser-
vation, we do not realize the total set.

Rule 1.2 Realize the type name for a singleton.
Type is realized as a noun and only for a sin-
gleton because the type feature is used first to
narrow down the group, and the succeeding
groups consist of the same type objects until
reaching the singleton. When the singleton is
not the last element of SOG, particle “no” is
added.

Rule 1.3 The total set of the same type objects is
not realized.
This is because the same reason as Rule 1.1.

Rule 1.4 The group followed by the relation
space−→

is realized as “[cardinality] [type] no-uti
(among)”, e.g., “futatu-no (two) tukue (desk)
no-uti (among)”. The group followed by

1Although different languages require different surface
realization rules, we presume perceptual grouping and SOG
generation (Step 1 and 2) are applicable to other languages as
well.
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the relation ⇒ is realized as “[cardinality]
[type] no”.
When consecutive groups are connected by
other than spatial relations (

space−→ and ⇒),
they can be realized as a sequence of relations
ahead of the noun (type name). For example,
expression “the red ball among big balls” can
be simplified to “the big red ball”.

Rule 1.5 Other groups are not realized.

[Rule 2]: Realization of relations

Rule 2.1 Relation
type−→ is not realized.

See Rule 1.2.
Rule 2.2 Relations

shape−→ ,
color−→ and

size−→ are real-
ized as the expressions corresponding to their
attribute values. Spatial relations (

space−→ and
⇒) are realized as follows, where |Gi| de-
notes the cardinality of Gi.

Intra-group relation (Gi
space−→ Gi+1)

If |Gi| = 2 (i.e., |Gi+1| = 1), based on the
geometric relations among objects, generate
one of four directional expressions “{migi,
hidari, temae, oku} no ({right, left, front,
back})”.
If |Gi| ≥ 3 and |Gi+1| = 1, based on the
geometric relations among objects, generate
one of eight directional expressions “itiban
{migi, hidari, temae, oku, migi temae, hi-
dari temae, migi oku, hidari oku} no ({right,
left, front, back, front right, front left, back
right, back left}-most)” if applicable. If none
of these expressions is applicable, generate
expression “mannaka no (middle)” if appli-
cable. Otherwise, generate one of four ex-
pressions “{hidari, migi, temae, oku} kara
j-banme no (j-th from {left, right, front,
back})”.
If |Gi+1| ≥ 2, based on the geometric rela-
tions among objects, generate one of eight di-
rectional expressions “{migi, hidari, temae,
oku, migi temae, hidari temae, migi oku, hi-
dari oku} no ({right, left, front, back, front
right, front left, back right, back left})”.

Inter-group relation (Gi ⇒Gi+1)
|Gi| = 1 should hold because of search
in Step 2. According to the direction as-
signed by search, generate one of nine ex-
pressions : “{migi, hidari, temae, oku, migi
temae, hidari temaen, migi oku, hidari oku,
ue} no ({right, left, front, back, front right,
front left, back right, back left, on})”.

Figure 8 shows the expressions generated from
the first three SOGs shown in Figure 7. The num-
bers in the parentheses denote coindexes of frag-
ments between the SOGs and the realized expres-
sions.

3.4 Step 4: Scoring

We assign a score to each expression by taking into
account the relations used in the expression, and
the length of the expression.
First we assign a cost ranging over [0, 1] to each

relation in the given SOG. Costs of relations are
decided as below. These costs conform to the pri-
orities of features described in (Dale and Reiter,
1995).

type−→ : No cost (to be neglected)
shape−→ : 0.2
color−→ : 0.4
size−→ : big(est): 0.6, small(est): 0.8, middle: 1.0
space−→ ,⇒ : Cost functions are defined according to the

potential functions proposed in (Tokunaga
et al., 2005). The cost for relation “on” is
fixed to 0.

Then, the average cost of the relations is calcu-
lated to obtain the relation cost, Crel . The cost of
surface length (Clen ) is calculated by

Clen =
length(expression)

maxi length(expressioni)
,

where the length of an expression is measured by
the number of characters.
Using these costs, the score of an expression is

calculated by

score =
1

α× Crel + (1− α)× Clen
.

α was set to 0.5 in the following experiments.

4 Evaluation

4.1 Experiments

We conducted two experiments to evaluate expres-
sions generated by the proposed method.
Both experiments used the same 18 subjects and

the same 20 object arrangements which were gen-
erated automatically. For each arrangement, all
factors (number of objects, positions of objects, at-
tributes of objects, and the target object) were ran-
domly decided in advance to conform to the fol-
lowing conditions: (1) the proposed method can
generate more than five expressions for the given
target and (2) more than two other objects exist
which are the same type as the target.
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1. SOG: [{all} type−→ {t1, t2, t3} space−→(1) {t1}(2) ⇒(3) {b1}(4)]
itiban hidari no(1) tukue no(2) ue no(3) tama(4) (the ball(4) on(3) the leftmost(1) table(2))

2. SOG: [{all} type−→ {t1, t2, t3} shape−→ (1) {t1, t2}(2) space−→(3) {t1}(4) ⇒(5) {b1}(6)]
marui(1) futatu no tukue no uti(2) hidari no(3) tukue no(4) ue no(5) tama(6)

(the ball(6) on(5) the left(3) table(4) among(2) the round(1) two tables(2))

3. SOG: [{all} type−→ {b1, b2, b3, b4, b5} space−→(1) {b1}(2)]
itiban hidari no(1) tama(2) (the leftmost(1) ball(2))

Figure 8: Realized expressions

第20問

20/20

「一番手前の玉」

t1

b3

b1
b4

t2

p1b2

Figure 9: An example stimulus of Experiment 1

Experiment 1 Experiment 1 was designed to
evaluate the ability of expressions to identify the
targets. The subjects were presented an arrange-
ment with a generated referring expression which
gained the highest score at a time, and were in-
structed to choose the object referred to by the ex-
pression. Figure 9 is an example of visual stimuli
used in Experiment 1. Each subject responded to
all 20 arrangements.

Experiment 2 Experiment 2 was designed to
evaluate validity of the scoring function described
in Section 3.4. The subjects were presented an
arrangement with a marked target together with
the best five generated expressions referring to the
target at a time. Then the subjects were asked
to choose the best one from the five expressions.
Figure 10 is an example of visual stimuli used in
Experiment 2. Each subject responded to the all
20 arrangements. The expressions used in Experi-
ment 2 include those used in Experiment 1.

4.2 Results

Table 1 shows the results of Experiment 1. The
average accuracy of target identification is 95%.

Figure 10: An example stimulus of Experiment 2

This shows a good performance of the generation
algorithm proposed in this paper.
The expression generated for arrangement

No. 20 (shown in Figure 9) resulted in the excep-
tionally poor accuracy. To refer to object b1, our
algorithm generated expression “itiban temae no
tama (the most front ball)” because b1 is the most
close object to person P in terms of the vertical
axis. Humans, however, chose the object that is the
closest to P in terms of Euclidean distance. Some
psychological investigation is necessary to build
a more precise geometrical calculation model to
solve this problem (Landragin et al., 2001).
Table 2 shows the results of Experiment 2. The

first row shows the rank of expressions based on
their score. The second row shows the count of hu-
man votes for the expression. The third row shows
the ratio of the votes. The top two expressions oc-
cupy 72% of the total. This concludes that our
scoring function works well.

5 Conclusion

This paper extended the SOG representation pro-
posed in (Funakoshi et al., 2004) to generate refer-
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Table 1: Result of Experiment 1
Arrangement No. 1 2 3 4 5 6 7 8 9 10
Accuracy 0.89 1.0 1.0 1.0 1.0 1.0 1.0 0.94 1.0 1.0

11 12 13 14 15 16 17 18 19 20 Ave.
1.0 0.94 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.17 0.95

Table 2: Result of Experiment 2
Rank 1 2 3 4 5 Total
Vote 134 125 59 22 20 360
Share 0.37 0.35 0.16 0.06 0.06 1

ring expressions in more general situations.
The proposed method was implemented and

evaluated through two psychological experiments
using 18 subjects. The experiments showed that
generated expressions had enough discrimination
ability and that the scoring function conforms to
human preference well.
The proposed method would be able to handle

other attributes and relations as far as they can be
represented in terms of features as described in
section 3. Corresponding surface realization rules
might be added in that case.
In the implementation, we introduced rather ad

hoc parameters, particularly in the scoring func-
tion. Although this worked well in our experi-
ments, further psychological validation is indis-
pensable.
This paper assumed a fixed reference frame is

shared by all participants in a situation. How-
ever, when we apply our method to conversational
agent systems, e.g., (Tanaka et al., 2004), refer-
ence frames change dynamically and they must
be properly determined each time when generat-
ing referring expressions.
In this paper, we focused on two dimensional

situations. To apply our method to three dimen-
sional worlds, more investigation on human per-
ception of spatial relations are required. We ac-
knowledge that a simple application of the current
method does not work well enough in three dimen-
sional worlds.
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Abstract

We report on a study examining the gener-
ation of noun phrases within a spoken di-
alog agent for a navigation domain. The
task is to provide real-time instructions
that direct the user to move between a se-
ries of destinations within a large interior
space. A subtask within sentence plan-
ning is determining what form to choose
for noun phrases. This choice is driven by
both the discourse history and spatial con-
text features derived from the direction-
follower’s position, e.g. his view angle,
distance from the target referent and the
number of similar items in view. The al-
gorithm was developed as a decision tree
and its output was evaluated by a group of
human judges who rated 62.6% of the ex-
pressions generated by the system to be as
good as or better than the language origi-
nally produced by human dialog partners.

1 Introduction

In today’s world of mobile, context-aware com-
puting, intelligent software agents are being de-
ployed in a wide variety of domains to aid hu-
mans in performing navigation tasks. Exam-
ples include hand-held tourist information por-
tals (Johnston et al., 2002) campus tour guides
(Yang et al., 1999; Long et al., 1996; Striegnitz
et al., 2005), direction-giving avatars for visitors
to a building (Cassell et al., 2002; Chou et al.,
2005), in-car driving direction systems (Dale et al.,
2003; Wahlster et al., 2001), and pedestrian navi-
gation systems (Muller, 2002). These applications
present an exciting and challenging new frontier
for dialog agents, since attributes of the real-world
setting must be combined with other contextual
factors for the agent to communicate successfully.

In the current work, we focus on a scenario
in which the system provides incremental direc-
tions to a mobile user who is following the instruc-
tions as they are produced. Unlike the rigid di-

rections produced by applications like Mapquest,1

which describes the entire route from start to fin-
ish, this task requires realtime instructions issued
while monitoring the user’s progress. Instructions
are based on dynamic local context variables such
as the visibility of and distance to reference points.
In referring to items in the setting, human speak-
ers produce a wide variety of noun phrase forms,
including descriptions that are headed by a com-
mon noun and that employ a definite, indefinite, or
demonstrative determiner, one anaphors, and pro-
nouns such as it, this and that. Our goal in the
current work is to model that entire space of varia-
tion, which makes the task more difficult than the
noun phrase generation task defined in many pre-
vious studies that simplify the alternatives down to
description or pronoun.

In order to study this process, we developed a
task domain in which a human partner is directed
through an interior space (a graphically-presented
3D virtual world) to perform a sequence of ma-
nipulation tasks. In the first stages of the work, we
collected and annotated a corpus of human-human
dialogs from this domain. Then, using this data,
we trained a decision-tree classifier to utilize con-
text variables such as distance, target object visi-
bility, discourse history, etc., to determine lexical
properties of referring expressions to be produced
by the generation component of our dialog system.

2 Generation for Situated Tasks

Many previous projects, such as (Lauria et al.,
2001; Moratz and Tenbrink, 2003; Skubic et al.,
2002), inter alia, study interpretation of situated
language, e.g. for giving directions to a robot. The
focus of our work is rather on generating naviga-
tion instructions for a human partner to follow.

Linguistic studies have shown that speakers se-
lect noun phrase forms to refer to entities based on
a variety of factors. Some of the factors are intrin-
sic to the object being described, while others are
features of the context in which the expression is
spoken. The entity’s status within the discourse,

1www.mapquest.com
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spatial position, and the presence of similar items
from which the target referent must be distin-
guished, have all been found to cause changes to
the lexical properties chosen for a particular refer-
ring expression (i.e. (Gundel et al., 1993; Prince,
1981; Grosz et al., 1995)). This variation is ex-
pressed in terms of the determiner chosen (e.g.
that/a), the head noun (e.g. that/door/one), and
the presence of additional modifiers such as pre-
nominal adjectives or prepositional phrases.

In natural language generation, the process of
generating referring expressions occurs in stages
(Reiter and Dale, 1992). The process we explore
in this paper is the sentence planning stage, which
determines whether the context supports generat-
ing a particular referring expression as a pronoun,
description, one-anaphor, etc.

There has been extensive research in both au-
tomatic route description and on general noun
phrase (NP) generation, but few projects consider
extra-linguistic information as part of the context
that influences dialog behavior. (Poesio et al.,
1999) applies statistical techniques for the prob-
lem of NP generation. However, even though the
corpus used in that study contains descriptions of
museum items visually accessible to the user, the
features used in generation were mostly linguis-
tic, and included little information about the vi-
sual or spatial properties of the referent. Another
related study in statistical NP generation (Cheng et
al., 2001) focuses on choosing the modifiers to be
included. Again, no features derived from the sit-
uated world were used in that study. (Maass et al.,
1995) use features from the world, including ob-
jects’ color, height, width, and visibility, as well as
the user’s direction of travel and distance from ob-
jects, for generating instructions in a situated task.
However, their focus is on selecting landmarks and
descriptions under time pressure, rather than se-
lecting the linguistic form to be produced.

3 Data Collection

Our task setup is designed to elicit natural, spon-
taneous situated language examples from human
partners. The experimental platform employs a
virtual-reality (VR) world in which one partner,
the direction-follower (DF), moves about to per-
form a series of tasks, such as pushing buttons to
re-arrange objects in the room, finding and picking
up treasures, etc. The simulated world was pre-
sented from first-person perspective on a desk-top
computer monitor. The DF had no knowledge of
the world map or tasks.

DG: you can currently see three buttons... there’s
actually a fourth button that’s kind of hidden

DF: yeah
DG: by this cabinet on the right
DF: I know, yeah
DG: ok, um, so what you wanna do is you want to

go in and you’re gonna press one of the buttons
that’s on the right hand wall, so you wanna go
all the way straight into the room and then face
the wall

DF: mhm
DG: there with the two buttons
DF: yep
DG: um and you wanna push the one that’s on the left

Figure 1: Sample dialog fragment and accompanying video

frame

His partner, the direction-giver (DG), had a pa-
per 2D map of the world and a list of tasks to
complete. As they performed the task, the DG
had instant feedback about the DF’s location in
the VR world, via mirroring of the DF’s computer
screen on the DG’s computer monitor. The part-
ners communicated through headset microphones.
Our paid participants were self-identified native
speakers of North American English. Figure 1
shows an example view of the world and the ac-
companying dialog fragment.

The video output of DF’s computer was cap-
tured to a camera, along with the audio from both
microphones. A logfile created by the VR soft-
ware recorded the DF’s coordinates, gaze angle,
and the position of objects in the world 10 times
per second. These data sources were synchronized
using calibration markers. A technical report is
available that describes the recording equipment
and software used (Byron, 2005).

3.1 Corpus and Annotation Scheme

Using the above-described setup, we created a cor-
pus consisting of 15 dialogs containing a total of
221 minutes of speech. It was transcribed and
word-aligned using Praat 2 and SONIC.3 The di-
alogs were further annotated using the Anvil soft-
ware (Kipp, 2004) to identify a set of target refer-
ring expressions in the corpus. Because we are in-

2http://www.praat.org
3http://cslr.colorado.edu/beginweb/speech recognition/sonic.html/
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terested in the spatial properties of the referents of
these target referring expressions, the items of in-
terest in this experiment were restricted to objects
with a defined spatial position.

Each object in the virtual world was assigned a
symbolic id, and the id of each target referring ex-
pression was added to the annotation. Referring
expressions with plural referents were marked as
Set, and were labeled with a list of the members
in the set. Expressions were also annotated as ei-
ther vague when the referent was not clear at the
time of utterance or abandoned in case the utter-
ance was cut short. Items that did not contain a
surface realization of the head of the NP (e.g., on
the left), were marked with the tag empty.

The corpus contains 1736 target expressions, of
which 221 were Vague, 45 were Empty, and 228
were Sets. The remaining 1242 form the set of test
items in the experiment described below. Vague
items were excluded since we do not wish for the
algorithm we develop to reproduce this behavior.
Set items were excluded in order to avoid the more
complex calculation of spatial properties associ-
ated with plural entities.

The data used in the experiments is a consensus
version on which both annotators, two of the au-
thors, agreed on the set of target expressions and
their properties. Due to the constraints introduced
by the task, referent annotation achieved almost
perfect agreement. The data used in this study is
only the DG’s language.

4 Algorithm Development

Our ultimate goal is to provide input to a surface
realization component for NP generation, given
the ID of a target referent and a vector of context
features. It is desirable for these context features
to be automatically derived, to limit the reliance
on human annotation, so we restricted out study to
features that either were derived automatically, or
required minimal human annotation.

One impact of this decision is that even though
the linguistic literature predicts that syntactic fea-
tures such as grammatical role are important in
selecting NP forms, these features were difficult
to obtain. Our corpus contains spontaneous spo-
ken discourse, which has no sentence boundaries
and relaxed structural constraints. Thus, automatic
parsing was problematic. With improved parsing
techniques, we may include syntactic information
in the decision process for NP generation in future,
but this was not included in the current study.

Following (Poesio et al., 1999), we consider the

det a, the, that, none
head it, that, one, noun, none
mod +, -
The possible values of each NP frame slot[
det : none
head : it
mod : −

] [
det : that
head : noun
mod : +

]

it that button on the right
NP frames for it and that button on the right

Figure 2: NP frame slot values and examples

information conveyed by an NP to be divided into
four slots which must be filled to be able to gen-
erate the NP form: a determiner/quantifier, a pre
or post-modifier and a head noun slot. There were
very few examples of premodifiers in the corpus,
so we collapsed the modifier feature. Therefore,
the output from our algorithm is an NP frame spec-
ifying values for the three slots for each target ex-
pression. Figure 2 shows the possible values in
each slot and example slot values for two NPs. The
number of occurrences in the entire corpus for the
NP frame slot values are shown in Table 2.4

In the experimental VR world developed for this
study, all items from the same category were de-
signed to look identical. This was intended to en-
courage the subjects to use referring expressions
that rely on spatial attributes or deictic reference
such as that one. The spatial properties of target
referents and distractors are used as inputs to the
content planning algorithm. Their values in this
study were calculated automatically based on ge-
ometric properties of the virtual world.

To form the training dataset, we processed each
target expression with a syntactic chunker.5 The
partial parse it produced was further processed
with a regular-expression matcher to isolate the
values corresponding to the three slots. Parser er-
rors caused some low-count NP frame values, so
we retained only items that occurred at least 10
times in the entire corpus. Any parser errors that
remained in the data were not hand corrected, in
order to minimize human intervention.

4.1 Context Features

Given the restrictions that we impose over what
is accessible to the learning algorithm, we devel-
oped a set of features for each referring expression
that characterize both the referent and the context
in which the expression was spoken. The context

4The two possible tags for Mod occurred in almost equal
proportion (49%/51%)

5http://www.ltg.ed.ac.uk/software/chunk/index.html
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Dialog history features
1. Count and chainCount the mention counts for the referent over the dialog and inside a reference chaina

2. DeltaTime and DeltaTimeChain the time elapsed since it was last mentioned in the dialog overall or in a chain
3. PrevSpeaker the previous speaker that mentioned the ID (either DG or DF)
4. Modi−1, Deti−1, Headi−1 the values of the slots of the NP frame of the prior mention of the same referent
5. Modi−2, Deti−2, Headi−2 the previous-1 values of the slots
6. WordDistance and the number of words spoken by both speakers since the last mention of the ID

chainWordDistance overall or in the chain
7. Typei−1 indicates if the previous mention was in a Set, was Vague, or was a test item

Spatial/Visual featuresb

8. Distance the distance between the referent and the DF’s VR coordinates
9. Angle the angle between the center of the DF’s view angle and the center of the referent
10. Visible a boolean value which indicates if the object is visible

Relation to other objects in the world
11. Visible Distractors the number of other objects besides the target referent in the field of view
12. SameCatVisDistractors the number of visible distractors of the same type as the referent

Object category and its information status
13. Cat the semantic category of the referent: door/cabinet/button
14. First Locate indicates if this is the first expression that allowed the DF to identify the object

in the world. The point where joint spatial reference is accomplished.

Table 1: The Context Features Used by the Algorithm

amention counts are not considered over vague or ambiguous tags, or over sets.
bnote that an Angle value smaller than 500 ensures the object is visible

Det Head
Value Count Percent Value Count Percent
the 364 39% noun 558 60%
that/this 264 29% one 166 18%
none 253 27% it 116 13%
a 46 5% that 57 6%

none 30 3%

Table 2: Distribution of Det and Head values in the corpus

v = Visible area(100o)

α = Angle to target

d = distance to target

In this scene:

VisDistr =3 {B2, B3, C1}
VisSemDistr =2 {B2, B3}

Figure 3: An example configuration with spatial context
features. The target object is B4.

features are not only linguistic but also derived
from the extralinguistic situation, including spatial
relations between the referent and the DF’s posi-
tion and orientation at that instant. The context
feature for each target expression includes these
automatically-calculated attributes as well as fea-
tures from the annotation described above. Table 1
describes the full set of context features, and Fig-
ure 3 shows a schematic of the spatial context fea-
tures.

The mention history of any target referent is im-
portant for determining the form to use in a subse-
quent referring expression. Ideally, the discourse
history feature should indicate whether a refer-
ent has already been discussed, and the distance
between a new mention and its antecedent. But
determining the discourse status of items in this

world was complicated by two factors. All ob-
jects in the world of the same semantic category
had identical visual features, and the VR world
in which the task is conducted is a maze, which
required the subjects to perform tasks, move to a
different portion of the maze, and possibly return
to a previously visited room. Due to the visual
and spatial confusion possible in this setting, there
is no guarantee that our subjects could accurately
calculate whether they were discussing the same
object they had encountered before, or remember
whether that object had been discussed. While
the subjects were focused on a task in a particular
room, however, it is reasonable to expect that they
could remember which items had been discussed.
Therefore, the discourse histories of target objects
were calculated using a re-initialization process.
Each time the subjects left a VR room to pursue a
different task, if more than 25s elapsed before the
next mention of objects in that room, those sub-
sequent expressions were considered to be in new
coreference chains. This time constant was estab-
lished by examining pronominal referring expres-
sions in the training dialogs.

These features were used as input to develop a
classifier to determine NP frames for unseen tar-
get referents in context. We chose decision trees
due to their ease of interpretation, but we plan to
test other machine learning techniques in the fu-
ture. 5 dialogs were held out as unseen data and
the remaining 10 were used to train and adjust the
parameters of the decision process. The first pro-
cedure was to test whether the three slot values
are interdependent. In contrast to previous work,
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which focused on predicting the values for one of
the slots at a time, we hold that due to their inter-
dependence, these decisions should not be made
separately. For example, a noun form that has the
pronoun it as the head will never have a modifier
or a determiner. If the three slots are independent,
training three separate classifiers and then com-
bining their decisions will yield better results. On
the other hand, if they are dependent, better results
will be obtained through training a single classifier
on the combined label. Unfortunately, combining
the labels is problematic due to data sparsity. To
test these dependencies, we trained several deci-
sion trees, varying the independence assumptions:
Independent - a decision tree was trained for each
slot and their outputs combined at the end.
Joint - a decision tree was trained for the com-
bined label for all three slots
Conditional - three decision trees were trained
in sequence, each having access to the output of
the previous tree. For example, Mod-Det-Head
means that first the Mod tree was trained, then a
tree to classify Det, using the output from Mod,
and finally a tree for Head , using both the Det
and Mod values.

All possible orderings between Mod, Head and
Det were tested. The best result obtained was from
the ordering Mod-Det-Head, but the differences
between the orderings were not significant. The
10 fold cross-validation results are shown in Ta-
ble 3. There were 632 items in the data set. The
Conditional trees outperformed the Independent
trees by 9%, which is significant at the level of
(p < .0002).

As our training data suggests, we test the Mod-
Det-Head trees against our held out data. We
decided to use a leave one out method of train-
ing/testing due to the sparsity of data.

Independent Joint Mod-Det-Head
22.0 % 28.8 % 31.0 %

Table 3: Testing independence of the slot values

Decision tree classifiers offer the opportunity to
examine the relevance of particular features in the
final decision. Algorithm 1 and 2 show example
trees derived for the Mod and Det features (the
Head tree is not shown due to space limitations).
We found that there are significant dependencies
between the slots in the NP form. Each time one of
the slots’ values was available to the decision pro-
cess, it was selected as most informative feature in
the next tree. The spatial features were selected as
informative in all the trees, most prevelantly in the

Algorithm 1 An example decision tree for Mod
if FirstLocate = True then

if V isibleDistractors = 0 then
if Distance ≤ 116 then

return Mod: -
else

return Mod:+
else

if SameCatV isDistractors = 0 then
if V isibleDistractors ≤ 2 then

if Angle ≤ 38 then
return Mod: -

else
return Mod: +

else
return Mod: +

else
return Mod: +

else
if chainWordDistance = 0 then

if prevMention �= Set/AllV ague then
if firstMention = True then

return Mod: +
else

if Angle ≤ 27 then
return Mod: -

else
return Mod: +

else
if noprevMention then

return Mod: +
else {prevMention = Set/AllV ague}

return Mod: -
else

return Mod: -

Algorithm 2 An example decision tree for Det
if Mod : − then

if FirstLocate = True then
return Det:that

else
if prevMention �= Set/AllV ague then

if notV isible then
if Cat = Button/Cabinet then

return Det:none
else {Cat = Door}

return Det:that
else {isV isible}

if Headi−1 = it then
return Det:none

else if Headi−1 = noun then
if DeltaT ime ≤ 6.3 then

if Cat = Button/Cabinet then
return Det:none

else {Cat = Door}
return Det:that

else
return Det:the

else if Headi−1 = one/none/low then
return Det:that

else {Headi−1 = that}
return Det:none

else if noprevMention then
return Det:that

else {prevMention = Set/AllV ague}
return Det:none

else {target has modifier}
return Det:the
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decision tree for Mod, suggesting that the decision
of including extra information is driven largely by
the spatial configuration. The information status
features and discourse history, such as First Lo-
cate, Type, and attributes of the prior mention,
were selected as good predictors for the Det slot.

5 Evaluation

We report several methods of evaluating the NP
frames produced using the process given by the
decision trees. First, we report the results of a
strict evaluation in which the system’s output must
exactly match expressions produced by the hu-
man subjects. We also compare this result with
a hand-crafted Centering-style generation algo-
rithm. Requiring the algorithm to exactly match
human performance is an overly-strict criterion,
since in many contexts several possible referring
expression forms could be equally felicitous in a
given context, so we also conducted a human judg-
ment study. The 5 test dialogs contain 295 target
expressions.

5.1 Exact Match Evaluation

The output of the decision tree classifier was com-
pared to the expressions observed in the test dia-
log. Table 4 reports the results of this evaluation.
The accuracy obtained was 31.2%. The most fre-
quent tag gives a 20.0% baseline performance us-
ing this strict match criterion.

Exact match results
Predicted All three features det mod head
Correct 31% 48% 72% 56%

Exact match: head feature per value
Predicted noun it none one that
Correct 65% 64% 0% 30% 38%

Exact match: det feature per value
Predicted a none that the
Correct 0% 49% 36% 66%

Table 4: Classifier results using Exact-match criterion

5.2 Comparison to Centering

For purposes of comparing the performance of our
generation algorithm to existing work on genera-
tion of NPs, we performed a manual evaluation of
the centering-style generation algorithm described
in (Kibble and Power, 2000) against our dialog
corpus. Algorithms developed according to the
centering framework use discourse coherence to
make decisions about pronominalization (Grosz et
al., 1995), where coherence is measured in terms

of topical continuity from one sentence to the next.
Centering designates the backward-looking cen-
ter (Cb) as the item in the current sentence that
was most topical in the previous sentence. There-
fore, to perform a centering-style evaluation, the
dialogs must be broken into sentence-like units,
and a ranking procedure must be devised for the
items mentioned in each unit.

The current evaluation corpus, being a spo-
ken dialog, has not been parsed to automatically
determine the syntactic or dependency structure,
but rather was manually segmented into utterance
units, where each unit contained a main predicate
and its satellites. The items mentioned in each unit
were ranked according to thematic roles, using the
ranking {AGENT > PATIENT > COMP > AD-
JUNCT}, and excluding references to the speakers
themselves, which often appear in AGENT posi-
tion (Byron and Stent, 1998). The Cb in each unit,
if there is one, is the highest-ranked item from the
prior unit’s list that is repeated in the current unit’s
list. Following a procedure similar to that reported
by Kibble and Power, our decision procedure rec-
ommends pronominalizing an item if it is the Cb
of its unit and if it is in Subject position, otherwise
a description is generated. Based on this rule, all
items that are being mentioned for the first time
in the discourse are predicted to require a descrip-
tion.

Although most prior studies take the recom-
mendation to pronominalize to mean that a per-
sonal pronoun (e.g. it) should be generated, due
to the demonstrative nature of our domain, the de-
cision to produce a pronoun can result in either a
demonstrative or a personal pronoun. Therefore,
we considered the algorithm’s output to match hu-
man production when the target expression in the
human corpus was either a personal or demonstra-
tive pronoun, and the algorithm generated either
category of pronoun. Table 5 shows the compari-
son of our system’s output and the output from the
centering algorithm on anaphoric mentions. The 5
dialogs used for testing in this study contained 145
such items. Both algorithms obtained a similar ac-
curacy (64.8% our system vs. 64.1% centering)
and over-generated pronoouns. Although our al-
gorithm does not outperform centering, it assumes
less structural analysis of the input text.

5.3 Human Judgment Evaluation

Evaluating generation studies by calculating their
similarity to human spontaneous speech may not
be the ideal performance metric, since several dif-
ferent realizations may be equally felicitous in a
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Pron Desc Total
Human Production 28 117 145
Predicted by Our Algorithm 55 90
Predicted by Centering 64 81

Table 5: Comparison to Coherence-based Generation

Figure 4: The Anvil software tool used for judging

given context. Therefore, we also performed a
human judgement evaluation. In this evaluation,
judges compared the NPs generated by our algo-
rithm to the NPs produced by human subjects, and
to NPs with randomly generated feature assign-
ments. Judges viewed test NPs in the context of
the original test corpus.

To re-create the context in which the original
expression was produced, the video, audio, and
dialog transcript were played for the judges us-
ing the Anvil annotation tool (Kipp, 2004). The
judges could play or pause the video as they
wished. Using the word-alignments established
during the data annotation phase, the audio of the
test NPs was replaced by silence, and the words
were removed in the transcript shown in the time-
line viewer. For each test item, the judges were
presented with a selection box showing two pos-
sible referring expressions that they were asked to
compare using a qualitative ranking (option 1 is
better, option 2 is better, or they are equal), given
a particular target ID and the context. Figure 4
shows a screen-shot of the judges’ annotation tool.
The judges did not know the source of the expres-
sions they evaluated (system, human production,
or random). The 10 judges were volunteers from
the university community who were self-identified
native speakers of English. They were not com-
pensated for their time.

The decision tree selected NP-frame slot val-
ues which were converted into realized NPs. The
Det and Head choices were directly translated into
surface forms (for Head=noun we chose a consis-
tent common noun for each semantic class: but-

All Items
System compared to Human Trials: 577
equal 45.9%
system preferred 16.6%
(system equal or preferred to human) (62.6%)
human preferred 37.4%
System compared to Random Trials: 289
equal 24.2%
system preferred 53.3%
(system equal or preferred to random) (77.5%)
random preferred 22.5%
Random compared to Human Trials: 292
equal 23.3%
random preferred 13.0%
(random equal or preferred to human) (36.3%)
human preferred 65.7%

Items with two judges & judges agreed
System against Human Trials: 197
equal 37.3%
system preferred 19.8%
(system equal or preferred to human) (57.1%)
human preferred 36.6%

Table 6: Results of Human Judging

ton, door or cabinet. If the system’s selection of
Mod feature matched the value from the corpus,
we used the expression produced by the original
speaker. If the original expression did not include
a modifier, but the system selected Mod:+, we lex-
icalized this feature to a simple but correct spatial
description like on the right, on the left or in front.

Table 6 shows the results of human judging.
The system’s output was either equal or preferred
to the original spontaneous language in 62.6%
of cases where these two choices were compared
directly. Interestingly, the randomly-generated
choice was preferred over the original spontaneous
language in 13.0% of trials, and was preferred over
the system’s output in 22.5% of trials. Aggregat-
ing over all judges, the system’s performance was
judged to be much better than random, but not as
good as the original human language.

Trials were balanced among judges so that each
target item was seen by four judges: with two
comparing the system’s response to the original
human language, one comparing the system to
random, and one comparing the human to random.
There were 282 trials for which 2 judges saw the
identical pair of choices. Out of these, the two
judges’ responses agreed in 197 cases, producing
an inter-annotator reliability (kappa score) of 0.51,
with raw agreement of 69% and expected agree-
ment of 37%. Although this is a relatively low
kappa value, we believe that the aggregate judg-
ments of all of the judges over all of the test items
are still informative, since the scores of items for
which we have two judgements follow a very sim-
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ilar pattern to the overal distribution of responses.
The low inter-annotator agreement may be due to
the substitutability of the expressions.

6 Conclusions and Future Work

In this paper we describe a generation study for
situated dialog and a novel evaluation setup of the
system’s output. The algorithm decides upon the
determiner, head and modifier values to be pro-
duced in a noun phrase describing an object in
a particular moment in the dialog. The decision
is influenced by dialog history, spatial and visual
relations and information status of the ID to be
described. Our algorithm achieved 31.2% exact
match with human language, but human evalua-
tors judged the output as good as or better than the
original human language 62.6% of the time.

For our future work, we intend to develop the
generation module of a dialog system that per-
forms the direction giver’s role. We plan to incor-
porate the results of this study in an extension of
(Reiter and Dale, 1992) algorithm that would take
into account other types of properties of the ob-
jects like visual salience, temporal attributes (for
example time elapsed between mentions), if it par-
ticipated in an action (like the case of a door open-
ing, or a button being pushed) or its importance to
the overall task completion.
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Abstract

Existing algorithms for the Generation of
Referring Expressions (GRE) aim at gen-
erating descriptions that allow a hearer to
identify its intended referent uniquely; the
length of the expression is also considered,
usually as a secondary issue. We explore
the possibility of making the trade-off be-
tween these two factors more explicit, via
a general cost function which scores these
two aspects separately. We sketch some
more complex phenomena which might be
amenable to this treatment.

1 Introduction

Until recently, GRE algorithms have focussed on
the generation of distinguishing descriptions that
are either as short as possible (e.g. (Dale, 1992;
Gardent, 2002)) or almost as short as possible (e.g.
(Dale and Reiter, 1995)). Since reductions in am-
biguity are achieved by increases in length, there
is a tension between these factors, and algorithms
usually resolve this in some fixed way. However,
the need for a distinguishing description is usually
assumed, and typically built in to GRE algorithms.
We will suggest a way to make explicit this bal-
ance between clarity (i.e. lack of ambiguity) and
brevity, and we indicate some phenomena which
we believe may be illuminated by this approach.
The ideas in this paper can be seen as a loosen-
ing of some of the many simplifying assumptions
often made in GRE work.

∗This work is supported by a University of Aberdeen
Sixth Century Studentship, and the TUNA project (EPSRC,
UK) under grant number GR/S13330/01. We thank Ielka van
der Sluis and Albert Gatt for valuable comments.

2 Clarity, Brevity and Cost

We consider only simple GRE, where the aim is to
construct a conjunction of unary properties which
distinguish a single target object from a set of po-
tential distractors. Our notation is as follows. A
domain consists of a set D of objects, and a set P
of properties applicable to objects in D. A descrip-
tion is a subset of P. The denotation of S, written
[[ S ]], is {x ∈ D | ∀p ∈ S : p(x)}.

(Krahmer et al., 2003) describe an approach to
GRE in which a cost function guides search for a
suitable description, and show that some existing
GRE algorithms fit into this framework. However,
they follow the practice of concentrating solely on
distinguishing descriptions, treating cost as a mat-
ter of brevity. We suggest that decomposing cost
into two components, for the clarity and brevity
of descriptions, permits the examination of trade-
offs. For now, we will take the cost of a description
S to be the sum of two terms:

cost(S) = fC(S) + fB(S).
where fC counts ambiguity (lack of clarity) and
fB counts size (lack of brevity). Even with this
decomposition of cost, some existing algorithms
can still be seen as cost-minimisation. For exam-
ple, the cost functions:
fC(S) =| P | × | [[ S ]] |
fB(S) = | S |
allow the Full Brevity algorithm (Dale, 1992) to
be viewed as minimising cost(S), and the in-
cremental algorithm (Dale and Reiter, 1995) as
hill-climbing (strictly, hill-descending), guided by
the property-ordering which that algorithm re-
quires. Whereas Krahmer et al.’s cost functions
are (brevity-based) heuristic guidance functions,
our alternative here is a global quantity for opti-
misation. Hence their simulation of Full Brevity
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relies on the details of their algorithm (rather than
cost) to ensure clarity, while our own cost function
ensures both brevity and clarity.

3 Exploring the Trade-off

3.1 Varying penalties for distractors
Imagine the following situation. You are prepar-
ing a meal in a friend’s house, and you wish to
obtain, from your own kitchen, a bottle of Italian
extra virgin olive oil which you know is there. The
only way open to you is to phone home and ask
your young child to bring it round for you. You
know that also in your kitchen cupboard are some
distractors: one bottle each of Spanish extra virgin
olive oil, Italian non-virgin olive oil, cheap veg-
etable oil, linseed oil (for varnishing) and cam-
phorated oil (medicinal). It is imperative that you
do not get the linseed or camphorated oil, and
preferable that you receive olive oil. A full ex-
pression, Italian extra virgin olive oil, guarantees
clarity, but may overload your helper’s abilities. A
very short expression, oil, is risky. You might well
settle for the intermediate olive oil.

To model this situation, fC could take a much
higher value if [[ S ]] contains a distractor which
must not be selected (e.g. varnish rather than cook-
ing oil). That is, instead of a simple linear function
of the size of [[ S ]], there is a curve where the cost
drops more steeply as the more undesirable dis-
tractors are excluded. For example, each object
could be assigned a numerical rating of how unde-
sirable it is, with the target having a score of zero,
and the fC value for a set A could be the maxi-
mum rating of any element of A. (This would, of
course, require a suitably rich domain model.)

The brevity cost function fB could still be a rel-
atively simple linear function, providing fB values
do not mask the effect of the shape of the fC curve.

3.2 Fuzziness of target
Suppose Mrs X has dropped a piece of raw
chicken meat on the kitchen table, and immedi-
ately removed the meat. She would now like Mr
X to wipe the area clean. The meat leaves no visi-
ble stain, so she has to explain where it was. In this
case, it appears that there is no such thing as a dis-
tinguishing description (i.e. a description that pins
down the area precisely), although Mrs X can ar-
bitrarily increase precision, by adding properties:

– the edge of the table,
– the edge of the table, on the left (etc.)

The ideal description would describe the dirty area
and nothing more, but a larger area will also do,
if not too large. Here, the domain D is implic-
itly defined as all conceivable subareas of the ta-
ble, the target is again one element of D, but – un-
like the traditional set-up with discrete elements –
a description (fuzzily) defines one such area, not
a disjoint collection of individual items. Our fC

operates on the description S, not just on the num-
ber of distractors, so it can assess the aptness of
the denotation of any potential S. However, it has
to ensure that this denotation (subarea of the sur-
face) contains the target (contaminated area), and
does not contain too much beyond that. Hence,
we may need to augment our clarity cost function
with another argument: the target itself. In gen-
eral, more complex domains may need more com-
plicated functions.

3.3 Underspecification in dialogue

Standard GRE algorithms assume that the speaker
knows what the hearer knows (Dale and Reiter,
1995). In practice, speakers can often only guess.
It has been observed that speakers sometimes pro-
duce referring expressions that are only disam-
biguated through negotiation with the hearer, as
exemplified in the following excerpt (quoted in
(Hirst, 2002)).

1. A: What’s that weird creature over there?
2. B: In the corner?
3. A: [affirmative noise]
4. B: It’s just a fern plant.
5. A: No, the one to the left of it.
6. B: That’s the television aerial. It pulls out.

A and B are in the same room, in an informal set-
ting, so A can be relatively interactive in convey-
ing information. Also, the situation does not ap-
pear to be highly critical, in comparison to a mil-
itary officer directing gunfire, or a surgeon guid-
ing an incision. Initially, A produces an expres-
sion which is not very detailed. It may be that he
thinks this is adequate (the object is sufficiently
salient that B will uniquely determine the refer-
ent), or he doesn’t really know, but is willing to
make an opening bid in a negotiation to reach the
goal of reference. In the former case, a GRE algo-
rithm which took account of salience (e.g. (Krah-
mer and Theune, 1999)), operating with A’s model
of B’s knowledge, should produce this sort of ef-
fect. (A dialogue model might also be needed.) In
the latter case, we need an algorithm which can
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relax the need for complete clarity. This could be
arranged by having fC give similar scores to deno-
tations where there are no distractors and to deno-
tations where there are just a few distractors, with
fB making a large contribution to the cost.

3.4 Over-specification

Recently, interest has been growing in ‘overspec-
ified’ referring expressions, which contain more
information than is required to identify their in-
tended referent. Some of this work is mainly or ex-
clusively experimental (Jordan and Walker, 2000;
Arts, 2004), but algorithmic consequences are also
being explored (Horacek, 2005; Paraboni and van
Deemter, 2002; van der Sluis and Krahmer, 2005).
Over-specification could also arise in a dialogue
situation (comparable to that in Section 3.3) if a
speaker is unclear about the hearer’s knowledge,
and so over-specifies (relative to his own knowl-
edge) to increase the chances of success.

This goes beyond the classical algorithms,
where the main goal is total clarity, with no rea-
son for the algorithm to add further properties to
an already unambiguous expression. That is, such
algorithms assume that every description S for
which | [[ S ]] |= 1 has the same level of clarity
(fC value). This assumption could be relaxed. For
example, the approach of (Horacek, 2005) to GRE

allows degrees of uncertainty about the effective-
ness of properties to affect their selection. Within
such a framework, one could separately compute
costs for clarity (e.g. likelihood of being under-
stood) and brevity (which might include the com-
plexity of expressing the properties).

4 Conclusion and Future Work

We have argued that the GRE task becomes very
different when some commonly-made assump-
tions are abandoned: some distractors might be
worse than others (section 3.1); the target may be
impossible to distinguish precisely (section 3.2);
the speaker may be unsure what the hearer knows
(section 3.3); or there may be a need for over-
specification (section 3.4)). As a result, it may be
necessary to consider other aspects of the descrip-
tions and their denotations, not simply counting
distractors or numbers of properties. Some effects
could perhaps be modelled using costs which are
not simple linear functions, but which give varying
importance to particular aspects of the denotation
of a description, or of its content. We hope that

this approach will ultimately shed light not only
on the effect of the discourse situation, but also
some aspects of generating indefinite descriptions.
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Abstract

This paper presents a method of querying
databases by means of a natural language-
like interface which offers the advantage
of minimal configuration necessary for
porting the system. The method allows
us to first automatically infer the set of
possible queries that can apply to a given
database, automatically generate a lexicon
and grammar rules for expressing these
queries, and then provide users with an
interface that allows them to pose these
queries in natural language without the
well-known limitations of most natural
language interfaces to databases. The way
the queries are inferred and constructed
means that semantic translation is per-
formed with perfect reliability.

1 Introduction

Natural Language interfaces to databases (here-
after NLIDBs ) have long held an appeal to both
the databases and NLP communities. However,
difficulties associated with text processing, seman-
tic encoding, translation to database querying lan-
guages and, above all, portability, have meant that,
despite recent advances in the field, NLIDBs are
still more a research topic than a commercial solu-
tion.

Broadly, research in NLIDBs has focused
on addressing the following fundamental, inter-
dependent issues1:

• domain knowledge aquisition (Frank et al.,
2005);

1The extent of NLIDB research is such that it is beyond
the scope of this paper to reference a comprehensive list of
projects in this area. For reviews on various NLIDBs , the
reader is referred to (Androutsopoulos et al., 1995).

• interpretation of the input query, including
parsing and semantic disambiguation, se-
mantic interpretation and transformation of
the query to an intermediary logical form
(Hendrix et al., 1978; Zhang et al., 1999;
Tang and Mooney, 2001; Popescu et al.,
2003; Kate et al., 2005);

• translation to a database query language
(Lowden et al., 1991; Androutsopoulos,
1992);

• portability (Templeton and Burger, 1983; Ka-
plan, 1984; Hafner and Godden, 1985; An-
droutsopoulos et al., 1993; Popescu et al.,
2003)

In order to recover from errors in any either of
these steps, most advanced NLIDB systems will
also incorporate some sort of cooperative user
feedback module that will inform the user of the
inability of the system to construct their query and
ask for clarification.

We report here on a generic method we have
developed to automatically infer the set of possi-
ble queries that can apply to a given database, and
an interface that allows users to pose these ques-
tions in natural language but without the previ-
ously mentioned drawbacks of most NLIDBs . Our
work is substantially different from previous re-
search in that it does not require the user to input
free text queries, but it assists the user in com-
posing query through a natural language-like in-
terface. Consequently, the necessity for syntactic
parsing and semantic interpretation is eliminated.
Also, since users are in control of the meaning of
the query they compose, ambiguity is not an issue.

Our work builds primarily on two directions
of research: conceptual authoring of queries via
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WYSIWYM interfaces, as described in section 2,
and NLIDB portability research. From the perspec-
tive of the query composing technique, our sys-
tem resembles early menu-based techniques, such
as Mueckstein (1985), NL-Menu (Tennant et al.,
1983) and its more recent re-development Lingo-
Logic (Thompson et al., 2005). This resemblance
is however only superficial. Our query editing in-
terface employs natural language generation tech-
niques for rendering queries in fluent language; it
also allows the editing of the semantic content of
a query rather than its surface form, which allows
seamless translation to SQL .

As in (Zhang et al., 1999), our system makes
use of a semantic graph as a mean of representing
the database model. However, whilst Zhang et al
(1999) use the Semantic Graph as a resource for
providing and interpreting keywords in the input
query, we use this information as the main means
of automatically generating query frames.

2 WYSIWYM interfaces for database
querying

Conceptual authoring through WYSIWYM editing
alleviates the need for expensive syntactic and se-
mantic processing of the queries by providing the
users with an interface for editing the conceptual
meaning of a query instead of the surface text
(Power and Scott, 1998).

The WYSIWYM interface presents the contents
of a knowledge base to the user in the form of
a natural language feedback text. In the case of
query editing, the content of the knowledge base is
a yet to be completed formal representation of the
users query. The interface presents the user with
a natural language text that corresponds to the in-
complete query and guides them towards editing
a semantically consistent and complete query. In
this way, the users are able to control the interpre-
tation that the system gives to their queries. The
user starts by editing a basic query frame, where
concepts to be instantiated (anchors) are clickable
spans of text with associated pop-up menus con-
taining options for expanding the query.

Previously, WYSIWYM interfaces have proved
valid solutions to querying databases of legal doc-
uments and medical records (Piwek et al., 2000),
(Piwek, 2002), (Hallett et al., 2005).

As a query-formulation method, WYSIWYM

provides most of the advantages of NLIDBs , but
overcomes the problems associated with natural

language interpretation and of users attempting to
pose questions that are beyond the capability of
the system or, conversely, refraining from asking
useful questions that are in fact within the sys-
tem’s capability. However, one of the disadvan-
tages of the WYSIWYM method is the fact that do-
main knowledge has to be manually encoded. In
order to construct a querying interface for a new
database, one has to analyse the database and man-
ually model the queries that can be posed, then
implement grammar rules for the construction of
these queries. Also, the process of transforming
WYSIWYM queries into SQL or another database
querying language has previously been database-
specific. These issues have made it expensive to
port the interface to new databases and new do-
mains.

The research reported here addresses both these
shortcomings by providing a way of automatically
inferring the type of possible queries from a graph
representation of the database model and by devel-
oping a generic way of translating internal repre-
sentations of WYSIWYM constructed queries into
SQL .

3 Current approach

In the rest of the paper, we will use the following
terms: a query frame refers to a system-generated
query that has not been yet edited by the user,
therefore containing only unfilled WYSIWYM an-
chors. An anchor is part of the WYSIWYM ter-
minology and means a span of text in a partially
formulated query, that can be edited by the user to
expand a concept. Anchors are displayed in square
brackets (see examples in section 3.3).

To exemplify the system behaviour, we will use
as a case study the MEDIGAP database, which
is a freely downloadable repository of informa-
tion concerning medical insurance companies in
the United States. We have chosen this particu-
lar database because it contains a relatively wide
range of entity and relation types and can yield a
large number of types of queries. In practice we
have often noticed that large databases tend to be
far less complex.

3.1 System architecture

Figure 1 shows the architecture of the query-
ing system. It receives as input a model of
the database semantics (the semantic graph) and
it automatically generates some of the compo-
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Figure 1: System architecture

nents and resources (highlighted in grey) that in
previous WYSIWYM querying systems were con-
structed manually. Finally, it implements a mod-
ule that translates the user-composed query into
SQL .

The components highlighted in grey are those
that are constructed by the current system.

The T-box describes the high-level components
of the queries. It is represented in Profit notation
(Erbach, 1995) and describes the composition of
the query frames (the elements that contribute to a
query and their type) . A fragment of the semantic
graph displayed in 2 will generate the following
fragment of t-box:
query > [about_company, about_state,
about_phone, about_ext].
about_company > [company_state, company_phone,
company_ext].
company_state intro [company:company_desc].
company_desc intro [comp:comp_desc, phone:phone_desc,
ext:ext_desc].
state_desc > external(’dbo_vwOrgsByState_StateName’).
comp_desc > external(’dbo_vwOrgsByState_org_name’).
phone_desc > external(’dbo_vwOrgsByState_org_phone’).
ext_desc > external(’dbo_vwOrgsByState_org_ext’).

The grammar rules are also expressed in
Profit, and they describe the query formulation
procedure. For example, the following rule will be
generated automatically to represent the construc-
tion procedure for the query in Example (1.1):
rule(english, company_state,

meaning!(<description &
predicate!company_state &
properties![attribute!comp & value!Comp]) &

layout!level!question &
cset![meaning!in &

syntax!category!prep &
layout!level!word,

meaning!which &
syntax!category!int &
layout!level!word,

meaning!state &
syntax!category!np &
layout!level!word,

meaning!be &
syntax!(category!vb & form!pres),
layout!level!word,

meaning!Comp &
syntax!category!np &
layout!level!phrase,

meaning!locate &
syntax!(category!vb & form!part),
layout!level!word]).

In addition to the grammar rules automatically
generated by the system, the WYSIWYM pack-
age also contains a set of English grammar rules
(for example, rules for the construction of defi-
nite noun phrases or attachment of prepositional
phrases). These rules are domain independent, and
therefore a constant resource for the system.

The lexicon consists of a list of concepts to-
gether with their lexical form and syntactic cate-
gory. For example, the lexicon entry for insurance
company will look like:
word(english, meaning!company &
syntax!(category!noun & form!name) &
cset!’insurance company’)).

3.2 Semantic graph

The semantics of a relational database is specified
as a directed graph where the nodes represent el-
ements and the edges represent relations between
elements. Each table in the database can be seen
as a subgraph, with edges between subgraphs rep-
resenting a special type of join relation.

Each node has to be described in terms of its se-
mantics and, at least for the present, in terms of its
linguistic realisation. The semantic type of a node
is restricted by the data type of the correspond-
ing entity in the database. A database entity of
type String can belong to one of the following se-
mantic categories: person, organization, location
(town, country), address (street or complete ad-
dress), telephone number, other name, other ob-
ject. Similarly, numerical entities can have the se-
mantic type: age, time (year, month, hour), length,
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OrgName
Sem: organisation
Lex: insurance company
Morph: proper noun

Phone#
…

Extension
…

StateName
Sem: location
Lex: state
Morph: proper noun

Type: descriptive
Arity: n to 1
Sem: location
Lex: be located in
Frame: NP-VB-NP

Table 1

Type: attributive
Sem: possession
Lex: have
Frame: NP-VB-NP

Type: attributive
Sem: possession
Lex: have
Frame: NP-VB-NP

Table 2

Figure 2: Example of a semantic graph

weight, value, height. The data type date has only
one possible semantic type, which is date. These
semantic types have proved sufficient in our exper-
iments, however this list can be expanded if nec-
essary.

Apart from the semantic type, each node must
specify the linguistic form used to express that
node in a query. For example, in our case study,
the field StateName will be realised as state, with
the semantic category location. Additionally, each
node will contain the name of the table it belongs
to and the name of the column it describes.

Relations in the semantic graph are also de-
scribed in terms of their semantic type. Since re-
lations are always realised as verbs, their seman-
tic type also defines the subcategorisation frame
associated with that verb. For the moment, sub-
categorisation frames are imported from a locally
compiled dictionary of 50 frequent verbs. The user
only needs to specify the semantic type of the verb
and, optionally, the verb to use. The system au-
tomatically retrieves from the dictionary the ap-
propriate subcategorisation frame. The dictionary
has the disadvantage of being rather restricted in
coverage, however it alleviates the need for the
user to enter subcategorisation frames manually,
a task which may prove tedious for a user with-
out the necessary linguistic knowledge. However,
we allow users to enter new frames in the dictio-
nary, should their verb or category of choice not
be present. A relation must also specify its arity.

This model of the database semantics is par-
tially constructed automatically by extracting
database metadata information such as data types
and value ranges and foreign keys. The manual

effort involved in creating the semantic graph is
reduced to the input of semantic and linguistic in-
formation.

3.3 Constructing queries

We focus our attention in this paper to the con-
struction of the most difficult type of queries:
complex wh-queries over multiple database tables
and containing logical operators. The only restric-
tion on the range of wh-queries we currently con-
struct is that we omit queries that require infer-
ences over numerical and date types.

Each node in the semantic graph can be used
to generate a number of query frames equal to the
number of nodes it is connected to in the graph.
Each query frame is constructed by pairing the
current node with each other of the nodes it is
linked to. By generation of query frames we desig-
nate the process of automatically generating Profit
code for the grammar rule or set of rules used by
WYSIWYM , together with the T-box entries re-
quired by that particular rule.

If we consider the graph presented in Fig.2,
and focus on the node orgName, the system will
construct the query frames:
Example (1):

1. In which state is [some insurance

company] located?

2. What phone number does [some

insurance company] have?

3. What extension does [some insurance

company] have?

If we consider the first query in the example
above, the user can further specify details about
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the company by selecting the [some insurance
company] anchor and choosing one of the options
available (which themselves are automatically
generated from the database in question). This
information may come from one or more tables.
For example, one table in our database contains
information about the insurance companies con-
tact details, whilst another describes the services
provided by the insurance companies. Therefore,
the user can choose between three options:
contact details, services and all. Each selection
triggers a text regeneration process, where the
feedback text is transformed to reflect the user
selection, as in the example below:
Example (2):

1. In which state is [some insurance

company] that has [some phone number]

and [some extension] located?

2. In which state is [some insurance

company] that offers [some medical

insurance plan] and [is available] to

people over 65 located?

3. In which state is the insurance

company with the following features

located:

• It has [some phone number] and [some

extension]

and

• It offers [some medical insurance

plan] and [is available] to people over

65

Figure 3 shows a snapshot of the query editing
interface where query (2.1) is being composed.

Each query frame is syntactically realised by
using specially designed grammar rules. The
generation of high level queries such as those
in Example (1.1) relies on basic query syntax
rules. The semantic type of each linked element
determines the type of wh-question that will be
constructed. For example, if the element has the
semantic type location, we will construct where
questions, whilst a node with the semantic type
PERSON will give rise to a who-question. In
order to avoid ambiguities, we impose further
restrictions on the realisation of the query frames.
If there is more than one location-type element
linked to a node, the system will not generate two
where query frames, which would be ambiguous,
but more specific which queries. For example,
our database contains two nodes of semantic type
location linked to the node OrgName. The first

describes the state where an insurance company is
located, the second its address. The query frames
generated will be:
Example (3):

1. In which states is some insurance

company located?

2. At what addresses is some insurance

company located?

The basic grammar rule pattern for queries
based on one table only states that elements linked
to a particular node will be realised in relative
clauses modifying that node. For example, in Ex-
ample (2.1), the nodes phones and ext are accessi-
ble from the node orgName, therefore will be re-
alised in a relative clause that modifies insurance
company.
In the case where the information comes from
more than one table, it is necessary to introduce
more complex layout features in order to make the
query readable. For each table that provides in-
formation about the focused element we generate
bulleted lines as in Example (2.3).

Each question frame consists of a bound ele-
ment2, i.e., the user cannot edit any values for that
particular element. This corresponds to the infor-
mation that represents the answer to the questions.
In example (2), the bound element is state. All
other nodes will be realised in the feedback text
as anchors, that are editable by users. One ex-
ception is represented by nodes that correspond to
database elements of boolean type. In this case,
the anchor will not be associated to a node, but to
a relation, as in Example (2.3) (the availability of
an insurance plan is a boolean value). This is to
allow the verb to take negative form - in our ex-
ample, one can have is available to people over 65
or is not available to people over 65.

Since not all anchors have to be filled in, one
query frame can in fact represent more than
one real-life question. In example (4), one can
edit the query to compose any of the following
corresponding natural language questions:
Example (4):

1. In which state is the insurance

company with the phone number 8008474836

located?

2. In which state is the insurance

2In fact, a single element can be replaced of any number
of elements of the same type linked by conjunctions or dis-
junctions. However, we will refer to a single element by way
of simplification. The process of inferring queries remains
esentially the same.
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Figure 3: Query editing interface snapshot

company Thrivent Financial for Lutherans

with the phone number 8008474836

located?

3. In which state is the insurance

company Thrivent Financial for Lutherans

with the phone number 8008474836 and

extension 8469 located?

The actual values of anchors are extracted from
the database and transformed into correct lexicon
entries on a per-need basis. The strings associated
with a value (e.g. Thrivent Financial for Luther-
ans) are retrieved from the database table and col-
umn indicated in the description of the node that
was used for generating the anchor (e.g. orgName)
and the syntactic role (e.g. proper noun) is given
by the syntactic information associated with the
node.

3.4 Query translation module

Once a query has been constructed, it is rep-
resented internally as a directed acyclic graph.
Moreover, each node in the graph can be mapped
into a node in the semantic graph of the database.
The translation module transforms a contructed
query to an SQL statement by parsing the query
graph and combining it with the corresponding el-
ements in the semantic graph.

The SELECT portion of the statement contains
the focused element. The WHERE portion con-
tains those nodes in the question graph that cor-
respond to edited anchors. For constructing the
FROM portion of the statement, we extract, from
the semantic graph, for each SELECTED element
information about their corresponding database ta-
ble.

For example, if we assume that in Example (2.1)

the user has specified the name of the company
and its phone number, the SQL statement gener-
ated will be:
SELECT dbo_vwOrgsByState.StateName
FROM dbo_vwOrgsByState
WHERE org_name="Thrivent Financial for

Lutherans"
And org_phone="8008474836";

4 Evaluation

4.1 Usability

A recent study of the usability of a WYSIWYM type
of interface for querying databases (Hallett et al.,
2006) has shown that users can learn how to use
the interface after a very brief training and suc-
ceed in composing queries of quite a high level of
complexity. They achieve near-perfect query con-
struction after the first query they compose. The
study also showed that the queries as they appear
in the WYSIWYM feedback text are unambiguous
— not only to the back-end system — but also to
the user, i.e., users are not misled into constructing
queries that may have a different meaning than the
one intended. Additionally, it appears that expert
users of SQL , with expert knowledge of the un-
derlying database, find the query interface easier
to use than querying the database directly in SQL

. We consider that most of the conclusions drawn
in (Hallett et al., 2006) apply to the current sys-
tem. The only difference may appear in assess-
ing the ambiguity of the feedback text. Since the
query construction rules used for our system are
generated automatically, it is likely that the feed-
back text may be less fluent and, potentially, more
ambiguous than a feedback text generated using
manually constructed rules, as in (Hallett et al.,
2006). We have not yet addressed this issue in a
formal evaluation of the current system.
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4.2 Coverage

We have assessed the coverage of the system us-
ing as our test set a set of English questions
posed over a database of geographical information
GEOBASE, as in (Tang and Mooney, 2001) and
(Popescu et al., 2003). Our first step was to convert
the original Prolog database (containing about 800
facts) into a relational database. Then we tested
how many of the 250 human produced questions
in the test set can be constructed using our system.

There are several issues in using this particu-
lar dataset for testing. Since we do not provide
a pure natural language interface, the queries our
system can construct are not necessarily expressed
in the same way or using the same words as the
questions in the test set. For example, the ques-
tion ”How high is Mount McKinley?” in the test
set is equivalent to ”What is the height of Mount
McKinley?” produced by our system. Similarly,
”Name all the rivers in Colorado.” is equivalent
to ”Which rivers flow through Colorado?”. Also,
since the above test set was designed for testing
and evaluating natural language interfaces, many
of the questions have equivalent semantic content.
For example, ”How many people live in Califor-
nia?” is semantically equivalent to ”What is the
population of California?”. Similarly, there is no
difference in composing and analysing ”What is
the population of Utah?” and ”What is the popu-
lation of New York City?”.

Out of 250 test questions, 100 had duplicate se-
mantic content and the remaining 150 had original
content. On the whole test set of 250 questions,
our system was able to generate query frames that
allow the construction of 145 questions, therefore
58%. The remaining 42% of questions belong to
a single type of questions that our current imple-
mentation cannot handle, which is questions that
require inferences over numerical types, such as
Which is the highest point in Alaska? or What is
the combined area of all 50 states?.

Similar results are achieved when testing the
system on the 150 relevant questions only: 60%
of the questions can be formulated, while the re-
maining 40% cannot.

4.3 Correctness

The correctness of the SQL generated queries was
assessed on the subset of queries that our system
can formulate out of the total number of queries
in the test set. We found that the correct SQL was

produced for all the generated WYSIWYM queries
produced.

5 Conclusions & Further work

Our method presents three main advantages over
other natural language interfaces to databases:
1. It is easily customizable for new domains and
databases.
2. It eliminates errors in parsing and query-to-SQL

translation.
3. It makes clear to the user the full range of
possible queries that can be posed to any given
database.

From a user’s point of view, one could argue
that our method is less natural to use than one that
allows unconstrained (or less constrained) natural
language input. It could also be said that while
syntactically correct, the queries as presented to
the user may not be as fluent as human-authored
questions. These possible disadvantages are, in
our opinion, outweighed by the clarity of the query
composition process, since the user is fully in con-
trol of the semantic content of the query she com-
poses; they are unambiguous to both the user and
the back-end system.

We are currently extending this work to cover
more complex queries that require inferences and
ones that contain elements linked through tempo-
ral relations. We will also refine the query layout
procedures to allow complex queries to be pre-
sented in a more intuitive way. Additionally, we
are about to begin work on automating the the con-
struction of the semantic graph. We expect that
some of the semantic and syntactic information
that, at the moment, has to be manually entered
in the description of the semantic graph can be in-
ferred automatically from the database content.

Acknowledgement

The work described in this paper is part of the
Clinical E-Science Framework (CLEF) project,
funded by the Medical Research Council grant
G0100852 under the E-Science Initiative. We
gratefully acknowledge the contribution of our
clinical collaborators at the Royal Marsden and
Royal Free hospitals, colleagues at the National
Cancer Research Institute (NCRI) and NTRAC
and to the CLEF industrial collaborators.

101



References

I. Androutsopoulos, G.Ritchie, and P.Thanitsch. 1993.
An effcient and portable natural language query in-
terface for relational databases. In Proceedings of
the 6th International Conference on Industrial En-
gineering Applications of Artificial Intelligence and
Expert Systems Edinburgh, pages 327–330.

I. Androutsopoulos, G.D. Ritchie, and P.Thanisch.
1995. Natural language interfaces to databases -
an introduction. Natural Language Engineering,
2(1):29–81.

I. Androutsopoulos. 1992. Interfacing a natural lan-
guage front end to a relational database. Master’s
thesis, Department of Artificial Intelligence Univer-
sity of Edinburgh.

Gregor Erbach. 1995. ProFIT – prolog with features,
inheritance, and templates. In Proceedings of the
7th Conference of the European Chapter of the Ass-
cociation for Computational Linguistics, EACL-95,
Dublin, Ireland.

A. Frank, Hans-Ulrich Krieger, Feiyu Xu, Hans Uszko-
reit, Berthold Crysmann, Brigitte Jorg, and Ulrich
Schafer. 2005. Querying structured knowledge
sources. In AAAI-05 Workshop on Question Answer-
ing in Restricted Domains, Pittsburgh, Pennsylva-
nia.

Carole D. Hafner and Kurt Godden. 1985. Portability
of syntax and semantics in datalog. ACM Trans. Inf.
Syst., 3(2):141–164.

C. Hallett, D. Scott, and R.Power. 2005. Intuitive
querying of ehealth data repositories. In Proceed-
ings of the UK E-Science All-Hands Meeting, Not-
tingham, UK.

C. Hallett, D. Scott, and R.Power. 2006. Evaluation of
the clef query interface. Technical Report 2006/01,
Department of Computing, The Open University.

Gary G. Hendrix, Earl D. Sacerdoti, Daniel Sagalow-
icz, and Jonathan Slocum. 1978. Developing a natu-
ral language interface to complex data. ACM Trans.
Database Syst., 3(2):105–147.

S. Jerrold Kaplan. 1984. Designing a portable nat-
ural language database query system. ACM Trans.
Database Syst., 9(1):1–19.

R.J. Kate, Y.W. Wong, and R.J. Mooney. 2005. Learn-
ing to transform natural to formal languages. In Pro-
ceedings of the Twentieth National Conference on
Artificial Intelligence (AAAI-05), pages 1062–1068,
Pittsburgh, PA.

B.G.T. Lowden, B.R. Walls, A. De Roeck, C.J. Fox,
and R. Turner. 1991. A formal approach to translat-
ing english into sql. In Jackson and Robinson, edi-
tors, Proceedings of the 9th British National Confer-
ence on Databases.

Eva-Martin Mueckstein. 1985. Controlled natural
language interfaces (extended abstract): the best of
three worlds. In CSC ’85: Proceedings of the 1985
ACM thirteenth annual conference on Computer Sci-
ence, pages 176–178, New York, NY, USA. ACM
Press.

P. Piwek, R. Evans, L. Cahill, and N. Tipper. 2000.
Natural language generation in the mile system. In
Proceedings of the IMPACTS in NLG Workshop,
Schloss Dagstuhl, Germany.

P. Piwek. 2002. Requirements definition, validation,
verification and evaluation of the clime interface and
language processing technology. Technical Report
ITRI-02-03, ITRI, University of Brighton.

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz.
2003. Towards a theory of natural language in-
terfaces to databases. In IUI ’03: Proceedings of
the 8th international conference on Intelligent user
interfaces, pages 149–157, New York, NY, USA.
ACM Press.

Richard Power and Donia Scott. 1998. Multilin-
gual authoring using feedback texts. In Proceedings
of 17th International Conference on Computational
Linguistics and 36th Annual Meeting of the Associ-
ation for Computational Linguistics (COLING-ACL
98), pages 1053–1059, Montreal, Canada.

Lappoon R. Tang and Raymond J. Mooney. 2001. Us-
ing multiple clause constructors in inductive logic
programming for semantic parsing. In EMCL ’01:
Proceedings of the 12th European Conference on
Machine Learning, pages 466–477, London, UK.
Springer-Verlag.

Marjorie Templeton and John Burger. 1983. Problems
in natural-language interface to dbms with examples
from eufid. In Proceedings of the first conference
on Applied natural language processing, pages 3–
16, Morristown, NJ, USA. Association for Compu-
tational Linguistics.

Harry R. Tennant, Kenneth M. Ross, and Craig W.
Thompson. 1983. Usable natural language inter-
faces through menu-based natural language under-
standing. In CHI ’83: Proceedings of the SIGCHI
conference on Human Factors in Computing Sys-
tems, pages 154–160, New York, NY, USA. ACM
Press.

C. Thompson, P. Pazandak, and H. Tennant. 2005.
Talk to your semantic web. IEEE Internet Comput-
ing, 9:75–78.

Guogen Zhang, Wesley W. Chu, Frank Meng, and
Gladys Kong. 1999. Query formulation from high-
level concepts for relational databases. In UIDIS
’99: Proceedings of the 1999 User Interfaces to
Data Intensive Systems, page 64, Washington, DC,
USA. IEEE Computer Society.

102



Proceedings of the Fourth International Natural Language Generation Conference, pages 103–110,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Generating Intelligent Numerical Answers
in a Question-Answering System
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Abstract

In this paper, we present a question-
answering system on the Web which aims
at generating intelligent answers to numer-
ical questions. These answers are gener-
ated in a cooperative way: besides a direct
answer, comments are generated to ex-
plain to the user the variation of numerical
data extracted from the Web. We present
the content determination and realisation
tasks. We also present some elements of
evaluation with respect to end-users.

1 Introduction

Search engines on the Web and most existing
question-answering (QA) systems provide the user
with a set of hyperlinks and/or Web page extracts
containing answer(s) to a question. These answers
may be incoherent to a certain degree: they may be
equivalent, complementary, contradictory, at dif-
ferent levels of precision or specificity, etc. It is
then quite difficult for the user to know which an-
swer is the correct one. Thus, an analysis of rel-
evance and coherence of candidate answers is es-
sential.

1.1 Related work

Search engines on the Web produce a set of an-
swers to a question in the form of hyperlinks or
page extracts, ranked according to content or pop-
ularity criteria (Salton, 1989; Page et al., 1998).
Some QA systems on the Web use other tech-
niques: candidate answers are ranked according
to a score which takes into account lexical re-
lations between questions and answers, semantic
categories of concepts, distance between words,
etc. (Moldovan et al., 2003), (Narayanan and
Harabagiu, 2004), (Radev and McKeown, 1998).

Recently, advanced QA systems defined rela-
tionships (equivalence, contradiction, ...) between
Web page extracts or texts containing possible an-
swers in order to combine them and to produce
a single answer (Radev and McKeown, 1998),
(Harabagiu and Lacatusu, 2004), (Webber et al.,
2002).

Most systems provide the user with either a set
of potential answers (ranked or not), or the ”best”
answer according to some relevance criteria. They
do not provide answers which take into account
information from a set of candidate answersor
answer inconsistencies. As for logical approaches
used for database query, they are based on major-
ity approach or on source reliability. But, contrary
to the assumption of (Motro et al., 2004), we noted
that reliability information (information about the
author, date of Web pages, ...) is rather difficult
to obtain, so we assume that all Web pages are
equally reliable.

1.2 Motivations and goals

Our framework is advanced QA systems over open
domains. Our main goals are to model and to eval-
uate a system which, from a factoid question in
natural language (in French), selects a set of can-
didate answers on the Web and generates cooper-
ative answers in natural language. Our challenge
is (1) to generate a synthetic answer instead of a
list of potential answers (in order to avoid provid-
ing the user with too much information), and (2) to
generate relevant comments which explain the va-
riety of answers extracted from the Web (in order
to avoid misleading the user) (Grice, 1975). In a
cooperative perspective, we propose an approach
for answer generation which uses answerintegra-
tion. When several possible answers are extracted
from the Web, the goal is to define a coherent core
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from candidate answers and to generate acooper-
ative answer, i.e. an answer with explanations.

In this paper, we focus on the integration of nu-
merical data in order to generate natural language
cooperative answers to numerical questions. We
first present some motivational problems for the
generation of numerical answers in a QA system.
Then, we present the content determination and
realization processes. Finally, we give some el-
ements of evaluation of our system outputs, with
respect to end-users.

2 On numerical data

We focus on the integration of numerical data
for the generation of natural language coopera-
tive numerical answers. We first present some re-
lated work on generation from numerical data sets.
Then we propose a model for the generation of co-
operative numerical answers.

2.1 Related work

The generation of summaries from numerical data
has been developed in some NLG systems. For ex-
ample, the system ANA (Kukich, 1983) generates
stock market reports by computing fluctuations
for a day. FoG (Goldberg et al, 1994) produces
weather forecasts from forecast data. More re-
cently, StockReporter (Dale, 2003) was developed
to generate summaries describing how a stock per-
forms over a period. Yu et al. (2005) propose a
system which generates summaries of sensor data
from gas turbines.

Those systems have input data analysis compo-
nents which are more or less efficient and describe
numerical time-series data. In the framework of
QA systems, there are other major problems that
the previous systems do not deal with. When a
numerical question is submitted to a QA system,
a set of numerical data is extracted from the Web.
Then, the goal is not to describe the whole data set
but to find an appropriate answer, dealing with the
user expectations (for example, contraints in the
question) or data inconsistencies. Another impor-
tant point is the analysis of numerical input data in
order to identify causes (besides time) of variation.

2.2 A typology of numerical answers

Our challenge is to develop a formal framework
for the integration of numerical data extracted
from Web pages in order to produce cooperative
numerical answers.

To define the different types of numerical
answers, we collected a set of 80 question-answer
pairs about prices, quantities, age, time, weight,
temperature, speed and distance. The goal is
to identify for each question-answer pair why
extracted numerical values are different (is this an
inconsistency? an evolution?).

A numerical question may accept several
answers when numerical values vary according
to some criteria. Let us consider the following
examples.
Example 1 :
How many inhabitants are there in France?
- Population census in France (1999): 60184186.
- 61.7: number of inhabitants in France in 2004.

Example 2:
What is the average age of marriage of women in
2004?
- In Iran, the average age of marriage of women
was 21 years in 2004.
- In 2004, Moroccan women get married at the
age of 27.

Example 3:
At what temperature should I serve wine?
- Red wine must be served at room temperature.
- Champagne: between 8 and 10 ˚ C.
- White wine: between 8 and 11 ˚ C.

The corpus analysis allows us to identify 3 main
variation criteria, namelytime (ex.1),place(ex.2)
andrestriction (ex.3: restriction on the focus, for
example: Champagne/wine). These criteria can be
combined: some numerical values vary according
to time and place, to time and restrictions, etc. (for
example, the average age of marriage vary accord-
ing to time, place and restrictions on men/women).

2.3 A model for cooperative numerical
answer generation

The system has to generate an answer from a set
of numerical data. In order to identify the different
problems, let us consider the following example :
What is the average age of marriage in France?
- In 1972, the average age of marriage was 24.5
for men and 22.4 for women. In 2005, it is 30 for
men and 28 for women.
- The average age of marriage in France increased
from 24.5 to 26.9 for women and from 26.5 to 29
for men between 1986 and 1995.
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This set of potential answers may seem incoher-
ent but their internal coherence can be made ap-
parent once a variation criterion is identified. In a
cooperative perspective, an answer can be for ex-
ample:
In 2005, the average age of marriage in France
was 30 for men and 28 for women.
It increased by about 5.5 years between 1972 and
2005.
This answer is composed of:

1. a direct answer to the question,
2. an explanation characterizing the variation

mode of the numerical value.
To generate this kind of answer, it is necessary (1)
to integrate candidate answers in order to elabo-
rate a direct answer (for example by solving incon-
sistencies), and (2) to integrate candidate answers
characteristics in order to generate an explanation.

Figure 1 presents the general architecture of our
system which allows us to generate answers and
explanations from several different numerical an-
swers. Questions are submitted in natural lan-
guage to QRISTAL1 which analyses them and se-
lects potential answers from the Web. Then, a
grammar is applied to extract information needed
for the generation of an appropriate cooperative
answer. This information is mainly:
- the searched numerical value (val),
- theunit of measure,
- the questionfocus,
- thedateandplaceof the information,
- therestriction(s)on the question focus ,
- theprecisionof the numerical value (for example
adverbs or prepositions such as inabout 700, ...),
- linguistic clues indicating avariationof the value
(temporal adverbs, verbs of change/movement as
in the priceincreasedto 200 euro).

For the extraction of restrictions, a set of basic
properties is defined (colors, form, material, etc.).
Ontologies are also necessary. For example, for
the questionhow many inhabitants are there
in France?, population ofoverseas regionsand
metropolitanpopulation are restrictions ofFrance
because they are daughters of the conceptFrance
in the ontology. On the contrary, prison popula-
tion of France is not a restriction becauseprison is
not a daughter ofFrance. Several ontologies are
available2 but the lack of available knowledge for

1www.qristal.fr, Synapse Développement
2http://www.daml.org/ontologies/

Figure 1: Architecture

some domains obviously influences the quality of
answers.

We define the setA = {a1, ..., aN}, with ai a
frame which gathers all this information for a nu-
merical value. Figure 2 shows an extraction result.

Figure 2: Extraction results

From the frame set, the variation criteria and
mode of the searched numerical value are iden-
tified: these components perform content deter-
mination. Finally, a natural language answer is
generated explaining those characteristics. Each
of these stages is presented in the next sections.

3 Content determination for
explanations

In order to produce explanations for data variation,
the system must have a data analysis component

105



which can infer, from extracted information, the
variation phenomena, criteria and mode.

3.1 Variation criteria

Once we have the frames representing the different
numerical values, the goal is to determine if there
is a variation and to identify the variation criteria
of the value. We assume that there is a variation if
there is at leastk different numerical values with
different criteria (time, place, restriction) among
the N frames (for the moment, we arbitrarily set
k = N/4, but this has to be evaluated). Thus, a
numerical value varies according to:

1. time if T = {ai(V al), ∃ aj ∈ A,
such as ai(V al) 6= aj(V al)

∧ ai(Unit) = aj(Unit)
∧ ai(Date) 6= aj(Date) }

∧ card(T ) ≥ k

2. place if P = {ai(V al), ∃ aj ∈ A,
such as ai(V al) 6= aj(V al)

∧ ai(Unit) = aj(Unit)
∧ ai(Place) 6= aj(Place) }

∧ card(P ) ≥ k

3. restriction if Rt = {ai(V al), ∃ aj ∈ A,
such as ai(V al) 6= aj(V al)

∧ ai(Unit) = aj(Unit)
∧ ai(Restriction) 6= aj(Restriction) }

∧ card(Rt) ≥ k

4. time and place if (1) ∧ (2)

5. time and restriction if (1) ∧ (3)

6. place and restriction if (2) ∧ (3)

7. time, place and restriction if (1)∧ (2)∧ (3)

Numerical values can be compared only if they
have the same unit of measure. If not, they have to
be converted. More details about comparison rules
are presented in (Moriceau, 2006).

3.2 Variation mode

In the case of numerical values varying over time,
it is possible to characterize more precisely the
variation. The idea is to draw a trend (increase,
decrease, ...) of variaton over time so that a precise
explanation can be generated. For this purpose, we
draw a regression line which determines the rela-
tionship between the two extracted variablesvalue
anddate.
In particular, Pearson’s correlation coefficient (r),

related to the line slope, reflects the degree of lin-
ear relationship between two variables. It ranges
from +1 to−1. For example, figure 3 shows that a
positive Pearson’s correlation implies a general in-
crease of values whereas a negative Pearson’s cor-
relation implies a general decrease. On the con-
trary, if r is low (−0.6 < r < 0.6), then we con-
sider that the variation is random (Fisher, 1925).

Figure 3: Variation mode

Figure 4 shows the results for the questionHow
many inhabitants are there in France?Differ-
ent numerical values and associated dates are ex-
tracted from Web pages. The Pearson’s correlation
is 0.694 meaning that the number of inhabitants
increases over time (between 1999 and 2005).

Figure 4: Variation mode:How many inhabitants
are there in France?

4 Answer generation

Once the searched numerical values have been ex-
tracted and characterized by their variation crite-
ria and mode, a cooperative answer is generated in
natural language. It is composed of two parts:

- a direct answer if available,
- an explanation of the value variation.

4.1 Direct answer generation

4.1.1 Question constraints

The content determination process for the di-
rect answer generation is mainly guided by con-
straints which may be explicit or implicit in the
question. For example, in the questionhow many
inhabitants are there in France in 2006?, there
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are explicit constraints on time and place. On
the contrary, inhow many inhabitants are there in
France?, there is no constraint on time. LetC be
the set of question constraints:C = {Ct, Cp, Cr}
with :
- Ct: constraint on time (Ct ∈ {exp time, ∅}),
- Cp: constraint on place (Cp ∈ {exp place, ∅}),
- Cr: constraint on restrictions (Cr ∈ {exp restr,
∅}).
For example, in the questionwhat is the average
age of marriage in France?: Ct = ∅, Cp = France
andCr = ∅.

When there is no explicit constraint in the ques-
tion, we distinguish several cases:
- if there is no explicit constraint on time in the
question and if a numerical variation over time has
been infered from the data set, then we assume that
the user wants to have the most recent information:
Ct = max({ai(date), ai ∈ A}),
- if there is no explicit constraint on place in the
question and if a numerical variation according to
place has been infered from the data set, then we
assume that the user wants to have the information
for the closest place to him (the system can have
this information for example via a user model),
- if there is no explicit constraint on restrictions in
the question and if a numerical variation accord-
ing to restrictions has been infered from the data
set, then we assume that the user wants to have the
information for any restrictions.
For example, on figure 5:Ct = 2000 (the most
recent information),Cp = France andCr = ∅.

4.1.2 Candidate answers

Candidate frames for direct answers are those
which satisfy the set of constraintsC. Let AC be
the set of frames which satisfyC (via subsump-
tion):
AC = {ai ∈ A, such as
ai(date) = (Ct ∨ ∅) ∧ ai(place) = (Cp ∨ ∅) ∧

ai(restriction) =

{

Cr ∨ ∅ if Cr 6= ∅
exp rest ∨ ∅ if Cr = ∅

For figure 5:AC = {a1, a2, a3, a4, a5, a6}.

4.1.3 Choosing a direct answer

A direct answer has to be generated from
the setAC. We define subsets ofAC which
contain frames having the same restrictions: a
direct answer will be generated for each relevant
restriction. Let A be the subsets of frames
satisfying the question constraints and having the
same restrictions:A = {AC1, ..., ACM} with:

ACi = {aj , such as∀ aj , ak ∈ AC,
aj(restriction) = ak(restriction)
∨ aj(restriction) = ∅},

andAC1, ..., ACM are disjoint.

For figure 5:A = {AC1, AC2} with:
AC1 = {a1, a3, a5}, subset for restrictionwomen,
AC2 = {a2, a4, a6}, subset for restrictionmen.

Then, for each element inA , an answer is
generated :
∀ ACi ∈ A , answer = generateanswer(ACi).

Each element ofA may contain one or sev-
eral frames, i.e. one or several numerical data.
Some of these values may be aberrant (for exam-
ple, How high is the Eiffel Tower?300m, 324m,
18cm): they are filtered out via classical statistical
methods (use of the standard deviation). Among
the remaining frames, values may be equal or not
at different degrees (rounded values, for example).
Those values have to be integrated so that a syn-
thetic answer can be generated.

There are many operators used in logical ap-
proaches for fusion: conjunction, disjunction, av-
erage, etc. But, they may produce an answer
which is not cooperative: a conjunction or disjunc-
tion of all candidates may mislead users; the aver-
age of candidates is an ”artificial” answer since it
has been computed and not extracted from Web
pages.

Our approach allows the system to choose a
value among the set of possible values, dealing
with the problem of rounded or approximative
data. Candidate values are represented by an ori-
ented graph whose arcs are weighted with the cost
between the two linked values and the weight (w)
of the departure value (its number of occurrences).
A graphG of numerical values is defined byN
the set of nodes (set of values) andA rc the set of
arcs. The costc(x, y) of arc(x, y) is:

|x − y|

y
× (w(x) +

n
∑

i=1

w(xi)) +

n
∑

i=1

c(xi, x).

with (x1, ..., xn, x) a path fromx1 to x.

Finally, we define a fusion operator which
selects the value which is used for the direct
answer. This value is the one which maximizes
the difference (cost(x)) between the cost to leave
this value and the cost to arrive to this value:
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Figure 5: Data set forWhat is the average age of marriage in France?

answer= y ∈ N , such as
cost(y) = max({cost(n), ∀ n ∈ N ,

cost(n) = cost leave(n) − cost arrive(n)})
with: cost leave(x) =

∑

i c(x, xi) and,
cost arrive(x) =

∑

i c(xi, x).

Let us consider an example. The following val-
ues are candidate for the direct answer to the ques-
tion How high is the Mont-Blanc?: 4800, 4807
(2 occurrences), 4808 (2 occurrences), 4808.75,
4810 (8 occurrences) and 4813. Figure 6 shows
the graph of values: in this example, the value
which maximizes the costs is 4810.

From the selected value, the system generates
a direct answer in natural language in the form
of Focus Verb (Precision) Value. For example,
the generated answer forHow high is the Mont-
Blanc? is The Mont-Blanc is about 4810 meters
high. Here the prepositionabout indicates to the
user that the given value is an approximation.
For the questionwhat is the average age of mar-
riage in France?, a direct answer has to be gen-
erated for each restriction. For the restrictionmen
(AC2), there are 3 candidate values: 29.8, 30 and
30.6, the value which minimizes the costs being
30. For the restrictionwomen(AC1), there are
also 3 candidate values: 27.7, 28 and 28.5, the
value which minimizes the costs being 28. Af-
ter aggregation process, the generated direct an-
swer is: In 2000, the average age of marriage in
France was about 30 years for men and 28 years
for women.

4.2 Explanation generation

The generation of the cooperative part of the an-
swer is complex because it requires lexical knowl-
edge. This part of the answer has to explain to
the user variation phenomena of search values:
when a variation of values is identified and char-

acterised, an explanation is generated in the form
of X varies according to Criteria. In the case of
variation according to restrictions or properties of
the focus, a generalizer is generated. For exam-
ple, the average age of marriage varies for men and
women: the explanation is in the formthe average
age of marriage varies according to sex. The gen-
eralizer is the mother concept in the ontology or a
property of the mother concept (Benamara, 2004).
For numerical value varying over time, if the vari-
ation mode (increase or decrease) is identified,
a more precise explanation is generated:X in-
creased/decreased between... and...instead ofX
varies over time.

Here, verbs are used to express precisely numer-
ical variations. The lexicalisation process needs
deep lexical descriptions. We use for that pur-
pose a classification of French verbs (Saint-Dizier,
1999) based on the main classes defined by Word-
Net. The classes we are interested in for our
task are mainly those of verbs of state (have,
be, weight, etc.), verbs of change (increase, de-
crease, etc.) and verbs of movement (climb,
move forward/backward, etc.) used metaphori-
cally (Moriceau et al, 2003). From these classes,
we selected a set of about 100 verbs which can be
applied to numerical values.
From these classes, we characterized sub-classes
of growth, decrease, etc., so that the lexicalisation
task is constrained by the type of verbs which has
to be used according to the variation mode.

A deep semantics of verbs is necessary to gen-
erate an answer which takes into account the char-
acteristics of numerical variation as well as pos-
sible: for example, the variation mode but also
the speed and range of the variation. Thus, for
each sub-class of verbs and its associated varia-
tion mode, we need a refined description of onto-
logical domains and selectional restrictions so that
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Figure 6: Graph of candidate values forHow high is the Mont-Blanc?

an appropriate verb lexicalisation can be chosen:
which verb can be applied to prices, to age, etc.?
(Moriceau et al, 2003). We propose to use propor-
tional series representing verb sub-classes accord-
ing to the speed and amplitude of variation. For
example, the use ofclimb (resp. drop) indicates
a faster growth (resp. decrease) thango up(resp.
go down): the verbclimb is prefered for the gener-
ation of Gas prices climb 20.3% in october 2005
whereasgo up is prefered inGas prices went up
7.2% in september 2005.
Verbs can possibly be associated with a preposi-
tion that refines the information (The average age
of marriage increased byabout 5.5 years between
1972 and 2005).

4.3 Answer justification

Our system generates a cooperative answer com-
posed of a direct answer to the question and an ex-
planation for the possible variation of the searched
numerical value. But the answer may not be sure
because of a too high/low number of candidate
values to the direct answer. In this case, it may be
useful to add some additional information for the
user in order to justify or complete the generated
answer.

We propose to add aknow-how component to
our system, which provides the user with one or
two relevant Web page extracts besides the gen-
erated answer whenever it is necessary. These ex-
tracts must contain information about the searched
numerical values, and for example some explana-
tions of the causes of numerical variation. Some
linguistic clues can be used to select page extracts:
number of numerical values concerning the ques-
tion focus, causal marks (because of, due to, ...),
etc. Figure 7 shows an output example of our sys-
tem.

Figure 7: An ouput example

5 Evaluation

In this section, we present some elements of eval-
uation of our system with respect to 15 end-users3.

We first evaluated how users behave when they
are faced with different candidate answers to a
question. To each user, we presented 5 numeri-
cal questions and their candidate answers which
vary according to time or restrictions and ask them
to produce their own answer from candidate an-
swers. For numerical answers varying according
to restrictions, 93% of subjects produce answers
explaining the different numerical values for each
restriction. For numerical answers varying over
time, 80% of subjects produce answers giving the
most recent information (20% of subjects produce
an answer which a summary of all candidate val-
ues). This validates our hypothesis presented in
section 4.1.1.

The second point we evaluated is the answer or-
der. Our system produces answers in the form of
a direct answer, then an explanation and a justi-
fication (page extract) if necessary. We proposed
to users answers with these three parts arranged
randomly. Contrary to (Yu et al, 2005) which pro-
pose first an overview and then a zoom on inter-

3Subjects are between 20 and 35 years old and are accus-
tomed to using search engines.
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esting phenomena, 73% of subjects prefered the
order proposed by our system, perhaps because, in
QA systems, users wants to have a direct answer
to their question before having explanations.

The last point we evaluated is the quality of the
system answers. For this purpose, we asked sub-
jects to choose, for 5 questions, which answer they
prefer among: the system answer, an average, an
interval and a disjunction of all candidate answers.
91% of subjects prefered the system answer. 75%
of subjects found that the explanation produced is
useful and only 31% of subjects consulted the Web
page extract (28% of these found it useful).

6 Conclusion

We proposed a question-answering system which
generates intelligent answers to numerical ques-
tions. Candidate answers are first extracted from
the Web. Generated answers are composed of
three parts: (1) a direct answer: the content
determination process ”chooses” a direct answer
among candidates, dealing with data inconsisten-
cies and approximations, (2) an explanation: the
content determination process allows to identify,
from data sets, the possible value variations and
to infer their variation criteria (time, place or re-
strictions on the question focus), and (3) a possi-
ble Web page extract. This work has several future
directions among which we plan:
- to define precisely in which cases it is useful to
propose a Web page extract as a justification and,
- to measure the relevance of restrictions on the
question focus to avoid generating an enumeration
of values corresponding to irrelevant restrictions.
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Abstract

We report the results of a pilot study on generating

Multiple-Choice Test Items from medical text and

discuss the main tasks involved in this process and

how our system was evaluated by domain experts.

1 Introduction

Although Multiple-Choice Test Items (MCTIs) are
used daily for assessment, authoring them is a
laborious task. This gave rise to a relatively new
research area within the emerging field of Text-
to-Text Generation (TTG) called Multiple-Choice
Test Item Generation (MCTIG).1

Mitkov et al. (2006) developed a system
which detects the important concepts in a
text automatically and produces MCTIs testing
explicitly conveyed factual knowledge.2 This
differs from most related work in MCTIG such as
Brown et al. (2005) and the papers in BEAUNLP-
II (2005) which deploy various NLP techniques to
produce MCTIs for vocabulary assessment, often
using preselected words as the input (see Mitkov
et al. for more extensive comparisons).

The approach of Mitkov et al. is semi-automatic
since the MCTIs have to be reviewed by domain
experts to assess their usability. They report that
semi-automatic MCTIG can be more than 3 times
quicker than authoring of MCTIs without the aid
of their system.

1TTG, in which surface text is used as the input to
algorithms for text production, contrasts with Concept-
to-Text Generation (better known as Natural Language
Generation) which is concerned with the automatic
production of text from some underlying non-linguistic
representation of information (Reiter and Dale, 2000).

2Mitkov et al. used an online textbook on Linguistics as
their source text. Clearly, their approach is not concerned
with concepts or facts derived through inferencing. Neither
does it address the problem of compiling a balanced test from
the generated MCTIs.

Moreover, analysis of MCTIs produced semi-
automatically and used in the classroom reveals
that their educational value is not compromised in
exchange for time and labour savings. In fact, the
semi-automatically produced MCTIs turn out to
fare better than MCTIs produced without the aid
of the system in certain aspects of item quality.

This paper reports the results of a pilot study on
generating MCTIs from medical text which builds
on the work of Mitkov et al.

2 Multiple-Choice Test Item Generation

A MCTI such as the one in example (1) typically
consists of a question or stem, the correct answer
or anchor (in our example, “chronic hepatitis”)
and a list of distractors (options b to d):

(1) Which disease or syndrome may progress to cirrhosis
if it is left untreated?

a) chronic hepatitis

b) hepatic failure

c) hepatic encephalopathy

d) hypersplenism

The MCTI in (1) is based on the following clause
from the source text (called the source clause; see
section 2.3 below):

(2) Chronic hepatitis may progress to cirrhosis if it is left
untreated.

We aim to automatically generate (1) from (2)
using our simple Rapid Item Generation (RIG)
system that combines several components
available off-the-shelf. Based on Mitkov et al., we
saw MCTIG as consisting of at least the following
tasks: a) Parsing b) Key-Term Identification c)
Source Clause Selection d) Transformation to
Stem e) Distractor Selection. These are discussed
in the following sections.
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2.1 Sentence Parsing

Sentence Parsing is crucial for MCTIG since the
other tasks rely greatly on this information. RIG
employs Charniak’s (1997) parser which appeared
to be quite robust in the medical domain.

2.2 Key-Term Identification

One of our main premises is that an appropriate
MCTI should have a key-term as its anchor
rather than irrelevant concepts. For instance, the
concepts “chronic hepatitis” and “cirrhosis” are
quite prominent in the source text that example (2)
comes from, which in turn means that MCTIs
containing these terms should be generated using
appropriate sentences from that text.

RIG uses the UMLS thesaurus3 as a domain
specific resource to compute an initial set of
potential key terms such as “hepatitis” from the
source text. Similarly to Mitkov et al., the initial
set is enlarged with NPs featuring potential key
terms as their heads and satisfying certain regular
expressions. This step adds terms such as “acute
hepatitis” (which was not included in the version
of UMLS utilised by our system) to the set.

The tf.idf method (that Mitkov et al. did
not find particularly effective) is used to promote
the 30 most prominent potential key terms within
the source text for subsequent processing, ruling
out generic terms such as “patient” or “therapy”
which are very frequent within a larger collection
of medical texts (our reference corpus).

2.3 Source Clause Selection

Mitkov et al. treat a clause in the source text
as eligible for MCTIG if it contains at least one
key term and is finite as well as of the SV(O)
structure. They acknowledge, however, that this
strategy gives rise to a lot of inappropriate source
clauses, which was the case in our domain too.

To address this problem, we implemented a
module which filters out inappropriate structures
for MCTIG (see Table 1 for examples). This
explains why the number of key terms and MCTIs
varies among texts (Table 2).

A finite main clause which contains an NP
headed by a key term and functioning as a
subject or object with all the subordinate clauses
which depend on it is a source clause eligible
for MCTIG provided that it satisfies our filters.
Example (2) is such an eligible source clause.

3http://www.nlm.nih.gov/research/umls/

Structure Example (key term in italics)
Subordinate clause Although asthma is a lung disease, ...
Negated clause Autoimmune hepatitis should not

be treated with interferon.
Coordinated NP Excessive salt intake causes

hypertension and hypokalemia.
Initial pronoun It associates with hypertension instead.

Table 1: Inappropriate structures for MCTIG.

Experimentation during development showed that
our module improves source clause selection by
around 30% compared to the baseline approach of
Mitkov et al.

2.4 Transformation to Stem
Once an appropriate source clause is identified,
it has to be turned to the stem of a MCTI. This
involves getting rid of discourse cues such as
“however” and substituting the NP headed by the
key term such as “chronic hepatitis” in (1) with a
wh-phrase such as “which disease or syndrome”.
The wh-phrase is headed by the semantic type of
the key-term derived from UMLS.

RIG utilises a simple transformational
component which produces a stem via minimal
changes in the ordering of the source clause. The
filtering module discussed in the previous section
disregards the clauses in which the key term
functions as a modifier or adjunct. Additionally,
most of the key terms in the eligible source clauses
appear in subject position which in turn means
that wh-fronting and inversion is performed in just
a handful of cases. The following example, again
based on the source clause in (2), is one such case:

(3) To which disease or syndrome may chronic hepatitis
progress if it is left untreated?

2.5 Selection of Appropriate Distractors
MCTIs aim to test the ability of the student
to identify the correct answer among several
distractors. An appropriate distractor is a concept
semantically close to the anchor which, however,
cannot serve as the right answer itself.

RIG computes a set of potential distractors
for a key term using the terms with the same
semantic type in UMLS (rather than WordNet
coordinates employed by Mitkov et al.). Then, we
apply a simple measure of distributional similarity
derived from our reference corpus to select the
best scoring distractors. This strategy means that
MCTIs with the same answer feature very similar
distractors.
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# of # of Usable Usable Items w/out Replaced distractors Total Average Time
Chapter Words Key-terms Items Items post-edited stems per term Time per Item
Asthma 8,843 9 66 42 (64%) 18 (27%) 2.0 140 mins 3 mins 20 secs
Hepatitis 10,259 17 92 49 (53%) 19 (21%) 0.9 150 mins 3 mins 04 secs
Hypertension 12,941 22 121 59 (49%) 15 (12%) 0.8 200 mins 3 mins 23 secs
Total 32,043 40 279 150 (54%) 52 (19%) − 490 mins 3 mins 16 secs

Table 2: Usability and efficiency of Multiple-Choice Test Item Generation from medical text.

3 Evaluation

RIG is a simple system which often avoids
tough problems such as dealing with key-terms in
syntactic positions that might puzzle the parser or
might be too difficult to question upon. So how
does it actually perform?

Three experts in producing MCTIs for medical
assessment jointly reviewed 279 MCTIs (each
featuring four distractors) generated by the
system. Three chapters from a medical textbook
served as the source texts while a much larger
collection of MEDLINE texts was used as the
reference corpus.

The domain experts regarded a MCTI as
unusable if it could not be used in a test or required
too much revision to do so. The remaining items
were considered to be usable and could be post-
edited by the experts to improve their content and
readability or replace inappropriate distractors.

As Table 2 shows, more than half of the items in
total were judged to be usable. Additionally, about
one fifth of the usable items did not require any
editing. The Table also shows the total number of
key-terms identified in each chapter as well as the
average number of distractors replaced per term.

The last column of Table 2 reports on the
efficiency of MCTIG in our domain. This variable
is calculated by dividing the total time it took
the experts to review all MCTIs by the amount
of usable items which represent the actual end-
product. This is a bit longer than 3 minutes
per usable item across all chapters. Anecdotal
evidence and the experts’ own estimations suggest
that it normally takes them at least 10 minutes to
produce an MCTI manually.

Given the distinct domains in which our system
and the one of Mitkov et al. were deployed (as
well as the differences between them), a direct
comparison between them could be misleading.
We note, however, that our usability scores are
always higher than their worst score (30%) and
quite close to their best score (57%). The amount
of directly usable items in Mitkov et al. was
between just 3.5% and 5%, much lower than

what we achieved. They also report an almost
3-fold improvement in efficiency for computer-
aided MCTIG, which is very similar to our
estimate. These results indicate what our work has
contributed to the state of the art in MCTIG.

In our future work, we aim to address the
following issues: (a) As in Mitkov et al., the
anchor of a MCTI produced by RIG always
corresponds to a key-term. However, the domain
experts pointed out several cases in which it is
better for the key-term to stay in the stem and
for another less prominent concept to serve as the
answer. (b) Students who simply memorise the
input chapter might be able to answer the MCTI if
its surface form is too close to the source clause so
another interesting suggestion was to paraphrase
the stem during MCTIG. (c) We also intend to
introduce greater variability in our process for
distractor selection by investigating several other
measures of semantic similarity.
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Abstract 

This paper presents the design of a discourse 
generator that plans the content and organi-
zation of lay-oriented genetic counseling 
documents containing arguments, and an 
experiment to evaluate the arguments. Due 
to the separation of domain, argument, and 
genre-specific concerns and the methodol-
ogy used for acquiring a domain model, this 
approach should be applicable to argument 
generation in other domains. 

1 Introduction 

The goal of our research is to develop methods by 
which intelligent systems can help lay audiences to 
understand biomedical and other kinds of scientific 
arguments. We have been studying how one type 
of lay-communication and biomedical-domain ex-
pert, the genetic counselor, presents written argu-
ments in patient letters, standard documents 
summarizing information and services provided to 
the client (Baker et al., 2002). Clinical genetics 
involves causal probabilistic reasoning, e.g., diag-
nosis of a genetic basis for a health problem or 
prediction of inheritance risks. The patient letter is 
designed to document the experts’ reasoning for 
medical and legal purposes, as well as to provide 
an explanation that a lay client can understand.  
    This paper presents, for the first time, the design 
of a discourse generator that plans the content and 
organization of genetic counseling patient letters 
containing arguments; and an experiment that we 
performed to evaluate the arguments.  The dis-
course generation process involves three modules: 
a qualitative causal probabilistic domain model, a 

normative argument generator, and a genre-
specific discourse grammar. In (Green, 2005), we 
reported a corpus study that produced a reliable 
biomedical coding scheme. In subsequent work-
shop papers (Green et al., 2004; 2005), we intro-
duced our use of qualitative probabilistic 
constraints and provided a brief description of the 
biomedical domain model. We have also provided 
informal descriptions of argument patterns in the 
corpus (Green, to appear; 2006). However, we 
have not previously published the design of the 
discourse generator, including the discourse 
grammar and argument generator, and their rela-
tionship to the domain model. 
    The theoretical significance of this work is 
three-fold. First, it is empirically based, i.e., based 
on analysis of arguments in a corpus of genetic 
counseling patient letters, since the goal is to pro-
duce the same kinds of normative arguments as are 
used in expert-lay communication. Second, the 
normative argument generator creates an inten-
tional-level representation of the arguments in the 
text, which provides a foundation for an intelligent 
system’s ability to engage in follow-up discussion 
about the arguments that have been presented. Fi-
nally, due to the separation of domain, argument, 
and genre-specific concerns in the design, and due 
to the methodology used to acquire a domain 
model, it should be possible to apply this approach 
to lay-oriented argument generation in other do-
mains. The practical significance of this work is 
that it is major step in the design of a deployable 
system to generate the first draft of genetic coun-
seling patient letters. As genetics plays an increas-
ingly important role in medicine, there is a need for 
tools to aid in dissemination of patient-tailored in-
formation. 
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    In the next section, we give an overview of a 
prototype generation system, whose main compo-
nents are described in more detail in sections 3-5; 
an example of the generation process is given in 
section 6; an experiment to evaluate the generated 
arguments is presented in section 7; and related 
work is summarized in section 8. 

2 System Overview  

We are developing a prototype system for genetic 
counselors that will synthesize the first draft of a 
patient letter. The deployed system will consist of 
a graphical user interface for the genetic counselor, 
a domain model/reasoner, an argument generator, a 
discourse grammar, and a linguistic realizer. Proto-
types of all components except the linguistic real-
izer have been implemented. Although this paper 
focuses on discourse generation and its relationship 
to the domain model, as background we now de-
scribe the flow of information through the system. 

The domain model (section 3) is initialized with 
generic information on clinical genetics. Through a 
user interface providing menus and other non-free-
text input devices, the counselor will provide stan-
dard clinical information such as a patient’s symp-
toms and information about his family tree; test 
results; preliminary diagnosis (before testing); and 
final diagnosis (after test results are known). The 
system uses this information to transform its ge-
neric domain model into a specialized domain 
model of the patient and his family. 

In this genre, a patient letter must provide not 
only the above information, but arguments for the 
diagnosis and other inferences made by the medi-
cal experts. The discourse generation process 
works as follows. A discourse grammar (section 4) 
encodes the high-level topic structure of letters in 
this genre. The discourse grammar rules generate a 
derivation instantiated from the domain model with 
information specific to a patient’s case. For each of 
the writer’s claims about the case for which a nor-
mative  argument must be provided according to 
standard practice, the discourse grammar invokes 
the argument generator.  

The argument generator (section 5) uses non-
domain-specific argument strategies that are in-
stantiated with information from the domain 
model. The argument generator returns a structured 
representation of an argument in which the com-
municative function of information, e.g., as data or 

warrant, is identified. As illustrated in section 6, in 
future interactive systems  knowledge of commu-
nicative function could be used to support follow-
up discussion. In the current prototype, this knowl-
edge is used to determine presentation order, e.g., 
that data supporting a claim is to be presented be-
fore that claim. One of the goals of the experiment 
described in section 7 was to evaluate this order-
ing. In the final system, the output of discourse 
generation will be transformed by a linguistic real-
izer into the first draft of a letter. 

3     Domain Model 

In a previous study of the corpus (Green, 2005), 
we identified a small set of categories (e.g. geno-
type, test result, symptom) with good inter-rater 
reliability that can be used to describe the biomedi-
cal content of a genetic counseling letter as a 
causal probabilistic network (Korb and Nicholson, 
2004). A prototype domain model has been manu-
ally constructed covering representative genetic 
disorders using only these categories of variables. 
By restricting a domain model to these categories, 
the result should reflect the simplified conceptual 
model of genetics used by genetic counselors in 
communication with their lay clients; this facili-
tates generation since the generator will not have to 
distinguish what information in the domain model 
is appropriate to communicate to a lay audience. 
Another benefit of restricting a domain model in 
this way is that it reduces the knowledge acquisi-
tion effort of choosing variables and determining 
network topology; any genetic disorder in the 
scope of the coding scheme (over 4500 single-gene 
autosomal disorders) would be modeled in terms of 
a small number of variable types and a standard 
topology. Thus, it should be straightforward to 
semi-automatically construct a domain model cov-
ering many different genetic disorders. 

Figure 1 shows part of a domain model after it 
has been updated with information about a particu-
lar patient’s case. The nodes labeled GJB2 
(mother), GJB2 (father), GJB2 (child) are geno-
type variables, representing the mother’s, father’s, 
and child’s GBJ2 genotype, respectively. (A geno-
type is a pair of alleles of a gene; one allele is in-
herited from each parent. An individual who has 
two mutated alleles of the GJB2 gene usually ex-
periences hearing loss.) The nodes labeled hearing 
loss (child) and non-syndromic (child) are vari-
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ables representing the child’s symptoms. The node 
labeled test result (child) is a variable representing 
the results of testing the child’s GJB2 genotype.  

The most likely states of the variables are 
shown beside the nodes in Figure 1; T1 and T2 rep-
resent the time at which the (experts’) belief is 
held, before or after the child’s genetic test results 
are known, respectively. The information recorded 
in the network about this particular case is that the 
child was observed to have hearing loss and no 
features of a genetic syndrome; the preliminary 
diagnosis, i.e. before testing, was that the cause of 
hearing loss is having two mutated alleles of GJB2; 
the test results were negative, however; thus, the 
current diagnosis is some other (unspecified) auto-
somal recessively inherited genetic condition, rep-
resented by the genotype variable labeled other 
genotype (child). In addition, the parents are hy-
pothesized to be carriers (i.e. to each have one mu-
tated allele) of that genotype, represented by the 
variables labeled other genotype (mother), other 
genotype (father).  
     Although a causal probabilistic network used to 
perform diagnosis or risk calculation would require 
specification of numeric probabilities, the role of 
the network in our system is to qualitatively model 
the reasoning that the medical experts have per-
formed outside of the system. Also, we found that 
in the corpus numeric probabilities were provided 
only when citing epidemiological statistics or risks 
calculated according to Mendelian inheritance the-
ory (which does not require Bayesian probability 
computation). Thus, instead of using numeric 
probabilities for domain reasoning, the domain 
model uses qualitative constraints based upon for-
mal relations of qualitative influence, product syn-
ergy, and additive synergy (Druzdzel and Henrion, 
1993).  
     In addition to being adequate for natural lan-
guage generation, this approach greatly reduces  
knowledge acquisition effort; it should be straight-
forward to semi-automatically acquire the qualita-
tive constraints of a full-scale domain model due to 
regularities in this domain and the use of a re-
stricted set of variable types as described above. 
For example, qualitative constraints between geno-
types of parents and child would be determined by 
whether a genotype follows an autosomal domi-
nant or recessive inheritance pattern. 
     We now describe some of the qualitative do-
main constraints. An influence relation holds be-

tween a node in a causal graph and its direct 
descendant. A has a positive qualitative influence 
on B, written S+(state(A,VA), state(B,VB)), if the 
state of A reaching a threshold value VA makes it 
more likely that the state of B reaches value VB. 
For example, if having two mutated alleles of a 
genotype A normally results in the appearance of a 
symptom B, this could be described as 
S+(state(A,2), state(B,yes)). Each arc in Figure 1 
implicitly represents an S+ relation. 

Product and additive synergy describe converg-
ing connections, i.e., the relation between a set of 
variables {A, B} and their direct descendant C in a 
graph. A and B have negative product synergy 
with respect to state VC of C, written                    
X-({state(A,VA), state(B,VB)}, state(C,VC)), if 
either the state of A reaching a threshold VA or the 
state of B reaching a threshold VB makes it more 
likely that the state of C reaches VC. This type of 
relationship characterizes mutually exclusive alter-
native diagnoses that could account for the same 
symptom; it also characterizes autosomal dominant 
inheritance, an inheritance pattern where inheriting 
one mutated allele of a genotype (from either par-
ent) is usually sufficient to cause health problems. 
In Figure 1, the possible alternative causes of the 
symptoms are indicated by the X- annotations. 

On the other hand, autosomal recessive inheri-
tance, an inheritance pattern where inheriting two 
mutated alleles (one from each parent) is usually 
necessary to cause health problems, is character-
ized by zero product synergy (X0); A and B have 
zero product synergy with respect to state VC of C,  
X0({state(A,VA), state(B,VB)}, state(C,VC)), if the 
state of A reaching a threshold VA and the state of 
B reaching a threshold VB makes it more likely that 
the state of C reaches VC. For example, if the 
mother’s, father’s, and child’s genotype are repre-
sented by variables A, B, and C, respectively, then 
X0({state(A,1), state(B,1)}, state(C,2)) can repre-
sent the constraint that if the child’s genotype C 
has two mutated alleles, then one mutated allele 
must have come from each parent. In Figure 1, the 
autosomal recessive inheritance pattern of GJB2 
and the other hypothesized genetic disorder are 
indicated by the X0 annotations. 

Other qualitative constraints used in the domain 
model are based on negative qualitative influence 
(S-), positive product synergy (X+), and negative 
additive synergy (Y-). In addition, the domain 
model stores epidemiological statistics as probabil-
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ity statements composed of variables used in the 
network, e.g., the frequency of hearing loss due to 
GJB2. This type of information can be used as 
backing in an argument (see section 5) but does not 
play a role in domain reasoning. 

4 Discourse Grammar 

A discourse grammar was written based upon our  
analysis of the corpus and a description of standard 
practice in genetic counseling (Baker et al., 2002). 
The current grammar is intended to cover letters on 
single-factor autosomal genetic disorders. Thanks 
to the regularities in this domain and in this genre, 
the grammar consists of a small number of rules. 
The starting rule of the grammar represents the 
main sections of a letter in their standard order: 
opening, referral, preliminary diagnosis, testing, 
final diagnosis, origin of genetic condition, inheri-
tance implications, prognosis/treatment, and clos-
ing. One or more grammar rules describe each of 
these sections.  
     Grammar rules may request the domain rea-
soner for case-specific information to be included 
in the letter. In addition, when the grammar pro-
vides a choice of rules, rule selection is based upon 
case-specific information provided by the domain 
reasoner. For example, one rule for reporting the 
final diagnosis handles cases in which the patient’s 
test results confirm the preliminary diagnosis, and 
another rule those cases where the preliminary di-
agnosis has been disconfirmed by test results; the 
domain reasoner returns the information needed to 
choose between those two rules. 
     The process described so far creates an initial 
outline of the information to be presented (in non-
linguistic form), including various claims requiring 
an argument. Each of those claims is passed to the 
argument generator described in the next section. 
For example, the letter shown in Figure 2 contains 
seven claims labeled C1 to C7; argument generation 
adds information labeled D1 to D7, W1 to W7, and 
B1 to B4. The information returned by the argument 
generator is added to the outline, completing the 
structure that will be transformed by the linguistic 
realizer into text.      

5 Argument Generation 

Given a claim, the argument generator uses argu-
ment strategies to construct a normative argument 

for the claim from information provided by the 
domain reasoner. The strategies are non-domain-
specific in the sense that they refer to formal prop-
erties of the qualitative causal probabilistic domain 
model rather than to genetics.  
    According to Toulmin’s model of normative 
argument structure (1998), an argument for a claim 
can be analyzed in terms of various functional 
components: the data, warrant, and backing. The 
data are the facts used to defend a claim. The war-
rant is a principle that licenses the claim given the 
data. An optional backing may be used to justify 
the warrant, e.g., by giving the facts upon which 
the warrant is based. To derive the argument 
strategies used in the system, we analyzed the ar-
guments in the corpus in terms of Toulmin’s 
model; the resulting strategies describe mappings 
from formal properties of the domain model to the 
data and warrant supporting a claim and to the 
backing of a warrant. Several strategies are para-
phrased below for illustration.  
    Strategy 1. Argument for belief in causal claim, 
based on effects: An argument for the claim that it 
is believed to some extent at time Ti that 
state(A,VA) holds and that state(A,VA) is responsi-
ble for the states of variables B1..Bi, i.e., 
state(B1,VB1) .. state(Bi,VBi), consists of the (pre-
supposed) data that state(B1,VB1) .. state(Bi,VBi) 
hold, and optionally other data that state(Bj,VBj) .. 
state(Bk,VBk) hold, where the warrant is a positive 
influence relation S+(state(A,VA), state(Bp,VBp)) 
for each Bp in   { B1 .. Bi , Bj .. Bk}. 
     Strategy 2. Argument for decrease in belief to 
unlikely that state of causal variable is at or over 
threshold value, based on absence of predicted 
effect: An argument for the claim that there has 
been a decrease in belief, from time T1 to T2, to the 
belief at T2 that it is unlikely that state(A,VA) 
holds, consists of the (newly acquired) data that it 
is unlikely that state(C,VCi) holds for all VCi$VC, 
where the warrant is a positive influence relation 
S+(state(A,VA), state(C,VC)). 
    Strategy 3. Argument for increase in belief in 
causal claim, based on decrease in belief in alter-
native cause: An argument for the claim that there 
has been a increase in belief, from time T1 to T2, to 
the belief at T2 that it is believed to some extent 
that state(A,VA) holds and that state(A,VA) is re-
sponsible for the states of variables state(B1,VB1) .. 
state(Bi,VBi), consists of the (presupposed) data 
that state(B1,VB1) .. state(Bi,VBi) hold, and the 
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(newly acquired) data that it is unlikely that 
state(Alt,VAlt) holds for all VAlt$Vthreshold, where the 
warrant is a negative product synergy relation     
X-({state(A,VA),state(Alt,Vthreshold)},state(B,VB)) 
for each B in {B1 .. Bi}. 
    Strategy 4. Argument for belief in joint respon-
sibility, based on effect. An argument for the claim 
that it is believed to some extent at time Ti that 
state(A,VA) and state(B,VB) hold and that 
state(A,VA) and state(B,VB) are jointly responsible 
for state(C,VC), consists of the (presupposed) data 
that state(C,VC) holds, where the warrant is a zero 
product synergy relation X0({state(A,VA), 
state(B,VB)}, state(C,VC)). 

6 Example 

This section gives an example of discourse genera-
tion for the case in section 3. An outline created by 
application of the discourse grammar to the do-
main model in Figure 1 would contain, in addition 
to basic information about the case not requiring an 
argument, several claims requiring further support 
to be provided by the argument generator.  
    First, the claim that it was believed, before test-
ing, that the child’s hearing loss could be due to 
having two mutated alleles of GJB2 would be sup-
ported by an argument constructed using Strategy 
1. The data of the argument is the presupposition 
that the child has hearing loss and the additional 
finding that she has no syndromic features. The 
warrant is the positive influence relations (S+) link-
ing the variable representing the child’s GJB2 
genotype to each of the two variables representing 
the child’s symptoms. Note that if a reader ques-
tioned this argument, an interactive system could 
provide information on the source of the data or 
epidemiological statistics backing the warrant. 
      Second, the claim that it is currently believed, 
after testing, that it is unlikely that the child’s 
GJB2 genotype has two mutated alleles would be 
supported by an argument constructed using Strat-
egy 2. The data of the argument is that the child’s 
GJB2 test results were negative. The warrant is the 
positive influence relation (S+) from the child’s 
GJB2 genotype to the child’s GJB2 test results, 
which predicts that if the child had this mutation, 
then the test results would have been positive. If a 
reader questioned this argument, an interactive sys-
tem could provide information on the source of the 

data or back the warrant by providing information 
about the rate of false negatives.  
     Third, the claim that it is currently believed, 
after testing, that it is possible that the child has 
some other genetic condition that is responsible for 
her hearing loss would be supported by an argu-
ment constructed using Strategy 3. The data of the 
argument is that she has hearing loss and the cur-
rent belief that GJB2 is not likely responsible. The 
warrant is the negative product synergy relation 
(X-) between the child’s GJB2 genotype and an-
other genotype to hearing loss. If a reader ques-
tioned this argument, an interactive system could 
provide information on the proportion of cases of 
hearing loss that are due to other genetic conditions 
as backing for the warrant. 
    Fourth, the claim that it is currently believed, 
after testing, that it is possible that the parents are 
carriers (i.e., each has one mutated allele) of the 
unspecified genotype claimed to be responsible for 
the child’s hearing loss would be supported by an 
argument constructed using Strategy 4. The data of 
the argument is the presupposition that the child 
has two mutated alleles of the other genotype. The 
warrant is the zero product synergy relation (X0) 
between the two parents’ genotype for this alterna-
tive to GJB2 and the child’s genotype for this same 
alternative. If a reader questioned this argument, an 
interactive system could provide an explanation of 
the warrant, which is based on the theory of Men-
delian inheritance; or it could provide the argument 
for the data, i.e., the belief that the child has two 
mutated alleles of the other genotype. 
    Finally, the claim that it is currently believed, 
after testing, that assuming they are both carriers 
there is a 25% probability that each future child 
that the two parents have together will inherit two 
mutated alleles of the other genotype would be 
supported by an argument constructed by a strat-
egy not shown in section 5. The data is the as-
sumption that the parents are both carriers, and the 
warrant is the same zero product synergy relation 
(X0) used in the argument for the fourth claim. If a 
reader questioned this argument, an interactive sys-
tem could provide an explanation of how the prob-
abilities are determined by zero product synergy.  

7 Experiment 

Argument generation was evaluated in the follow-
ing experiment. Five biology graduate students, 
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screened beforehand for writing ability in biology, 
were shown two patient letters. The letters were 
created by the experimenter by paraphrasing the 
output of discourse generation that would be input 
to the realizer. The paraphrases are similar in syn-
tax and lexical style to letters in  the corpus, but the 
genetic disorders covered in the experiment’s let-
ters differ from those covered in the corpus. One 
letter concerns a child confirmed to have cystic 
fibrosis (CF); the other a child whose test results 
for Waardenburg syndrome (WS) were negative. 
The text of letter CF is given in Figure 2. The first 
column contains annotations describing the com-
municative function of the information: C for 
claim, D for data, W for warrant, and B for back-
ing. Each label is subscripted with an integer refer-
ring to the argument. (The row labeled C2/D3 
functions as both the claim of argument 2 and the 
data of argument 3.) Annotations were not shown 
to the experiment’s participants. Communicative 
function was used to determine presentation order 
within each argument. Letters CF and WS had 23 
and 25 segments, respectively, where a segment is 
defined as a unit fulfilling one of the above func-
tions, or a non-argument-related function. 
    The goal of the experiment was to conduct a 
preliminary evaluation of the acceptability of the 
arguments in terms of content, explicitness, and 
presentation order within arguments. The partici-
pants were asked to revise each letter as needed to 
make it more appropriate for its intended recipi-
ents, the biological parents of a patient. Partici-
pants were told they could reword, reorder, and 
make deletions and additions to a letter. The results 
are summarized in Table 1, which includes the av-
erage number of segments to/from which informa-
tion was added (New) or deleted (Delete), and 
reordered (Reorder). (Rewordings are not tabulated 
since it was not our goal to evaluate wording.) 
New and Delete are measures of acceptability of 
argument content and explicitness. Reorder is a 
measure of acceptability of ordering. On average, 
the number of New, Delete, and Reorder revisions 
were low: less than two per letter, with most revi-
sions in the category of Reorder. This is encourag-
ing since the system to be built for genetic 
counselors should provide acceptable arguments 
requiring a minimum of revision. 
     To provide more details about the results, first, 
the only segments to which participants added in-
formation are warrants. The deletions of data con-

sist of information presumably already known to 
the recipients, e.g. D6 in letter CF; other deletions 
are of part or all of a warrant or all of a backing. 
The only deletions of claims consist of information 
duplicated in another part of the letter; there were  
no cases where a claim was deleted even though it  
could be inferred from data and warrant. The reor-
derings were across-argument, which violates con-
ventional topic structure in the genre, or within-
argument. In the latter, half repositioned a claim 
from final position in an argument to a position 
before the warrant or backing; the other half repo-
sitioned the warrant or backing before the data.  

8 Related Work 

Due to space limitations, this section focuses on 
research on generation of normative arguments (as 
opposed to behavior-change and evaluative argu-
ments), and arguments designed for text rather than 
dialogue. Zukerman et al. have presented several 
papers on argument generation from Bayesian 
network domain models (e.g., 2000). The type of 
domain model used in our work differs in two re-
spects. First, it is based on empirical research since 
it is intended to represent the simplified conceptual 
model presented to a lay audience in this genre. 
Second, it uses qualitative probabilistic constraints. 
One difference in argument generation is that our 
system’s argument strategies are based on analysis 
of the corpus. Also, our system creates an inten-
tional-level representation of an argument.     
     Teufel and Moens (2002) present a coding 
scheme for scientific argumentation in research 
articles that is designed for automatic summariza-
tion of human-authored text. Thus, it would not be 
sufficient for generation from a non-linguistic 
knowledge base. Also, it does not make the finer-
grained distinctions of the Toulmin model. 
     Branting et al. (1999) present the architecture of 
a legal document drafting system. In it, a discourse 
grammar applies genre-specific knowledge, while 
a legal reasoning module creates the illocutionary 
structure of legal arguments. Branting et al. argue 
for maintaining a distinct intentional-level repre-
sentation of arguments to support interactive fol-
low-up discussion. We agree, but our design 
further distinguishes domain reasoning from argu-
ment generation.  
    As for work on ordering and explicitness, Reed 
and Long (1997) propose ordering heuristics for 
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arguments of classical deductive logic. Fiedler and 
Horacek (2001) present a model for deciding what 
can be omitted from explanations of mathematical 
proofs. Carenini and Moore (2000) present an ex-
periment to determine how much evidence is opti-
mal in an evaluative argument.  

9 Conclusions 

This paper presents the design of a discourse gen-
erator that plans the content and organization of 
genetic counseling letters containing arguments. A 
preliminary evaluation of the arguments was prom-
ising. The most important contribution of this work 
is the design of a non-domain-specific normative 
argument generator that creates an intentional-level 
representation of an argument. From the corpus, 
we formulated argument strategies that map formal 
properties of qualitative causal probabilistic mod-
els to components of Toulmin’s model. Due to the 
separation of domain, argument and genre-specific 
concerns and the methodology used for acquiring 
the domain model, this approach should be appli-
cable to lay-oriented normative argument genera-
tion in other domains.  
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letter CF New Delete Reorder letter WS New Delete Reorder 
 0 2 1  0 2 4 
 0 2 0  0 0 1 
 0 0 1  0 1 1 
 0 0 6  2 1 1 
 0 2 1  1 0 0 
AVG 0 1.2 1.8 AVG 0.6 0.8 1.4 
STDEV 0 1.1 2.4 STDEV 0.9 0.8 1.5 

 
Table 1. Number of revisions in letters CF and WS. (N=5) 
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Figure 1. Qualitative causal probabilistic network for hearing loss case. 
 

 [Patient] was referred by [doctor] to [clinic] on [date] for evaluation. 
D1 She has had frequent respiratory infections. 
W1 A genetic condition known as cystic fibrosis (CF) can cause respiratory problems. 
B1 Eighty percent of CF patients have chronic respiratory complaints. 
C1 [Doctor] suspected that CF could be the cause of her respiratory problems. 
 Patient was given a sweat chloride test for CF.  
D2 The test showed an abnormal sweat chloride level (75 mmol/L). 
W2 A result over 60 mmol/L is considered positive for CF. 
C2 / 
D3 

It is very likely that [patient] has CF. This means that cells in [patient’s] body contain two altered copies 
of a gene called CFTR. 

W3 This alteration affects organs that secrete mucous, such as the lungs. The alteration causes excessive se-
cretions, resulting in frequent lung infections. 

C3 This alteration of the CFTR gene is most likely the cause of [patient’s] respiratory problems. 
D4 Both of you, [patient’s] parents, are of Northern European ancestry. 
B4 One in twenty-five people of N. European ancestry carry one altered copy of the CFTR gene. 
C4 Each of you could carry this alteration. 
W5 Our cells contain two copies of each gene. One copy is inherited from each parent. A child who inherited 

two altered copies of a gene must have gotten one ...  from the mother and one …  from the father. 
D5 Since [patient’s] cells contain two altered copies of CFTR, 
C5 it is likely that she got one altered copy of CFTR from each of you. 
C6 This is likely 
D6 even though neither of you have cystic fibrosis. 
W6 When a parent has one altered copy and one normal copy of a gene such as CFTR, he or she is not usually 

affected. Someone who has only one altered copy is called a “carrier”. A child who inherits two altered 
copies will be affected since she has no normal copy. 

W7 A couple in which both are carriers will have a one in four (25%) chance that each child that they con-
ceive will inherit two altered copies and be affected. This also means that they have a three in four (75%) 
chance that the child will inherit at least one unaltered copy from one parent and not be affected. 

D7 Assuming that you are both carriers, 
C7 the chances for each child that you conceive together is 25% that the child will have CF, and 75% that the 

child will not have CF. 
 
Figure 2. Letter  used in experiment (column 2) with argument annotations (column 1).  
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Introduction to the INLG’06 Special Session on
Sharing Data and Comparative Evaluation

The idea for this special session had its origins in discussions with many different members of
theNLG community at the 2005 Workshop on Using Corpora for Natural Language Generation
(UCNLG’05, held in conjunction with the Corpus Linguistics 2005 conference at the Univer-
sity of Birmingham in July 2005), and subsequently at the 10th European Natural Language
Generation Workshop (ENLG’05, held at the University of Aberdeen in August 2005). At the
latter event, the excitement about introducing shared tasks was infectious: the topic hijacked
several of the organised discussion groups, it was the focusof conversation at many tables dur-
ing lunch-breaks, and even the end of the conference didn’t put a stop to it, with discussions
carrying right on until the taxis to the airport arrived.

There was some common ground: nobody said it wouldn’t be a good idea to be able to
directly compare differentNLG techniques, most people even seemed to agree that sharable
data and tasks were the way to go. But opinion was sharply divided about how it was to be
achieved. There were—with only a small degree of caricature—two main camps: the bulls
argued for a suck-it-and-see approach, for throwing a task at the research community and then
sitting back to see what would happen; the bears warned that using one data set was not a good
idea until there was community buy-in to a particular data set and a particular task specification
over that data set.

Some of the bears were worried thatNLG would inevitably emulateMT and end up with a
single task, fixed inputs and gold-standard outputs, using asingle automatic metric of similarity
to assess the quality of generated texts against the gold standard, and moreover, require millions
of dollars in direct funding. It would be impossible to decide what the inputs to the task should
look like, because after all, as Yorick Wilks had pointed outyears before, determining the
inputs toNLG was like counting back from infinity to 1 (in contrast toNLU, which, being more
akin to counting from 1 to infinity, seemed at least a little more manageable). The community
would either become hopelessly mired in the task of trying toagree on an input type and task,
or else agree one by dictat and alienate the majority of researchers. Finally, the field would
become obsessed with the single task and the scores producedby the single metric, and all true
scientific enquiry would be stifled.

The bulls envisaged an entirely different future, where many different tasks and bench-
mark datasets co-existed peacefully, where some tasks did have associated inputs and outputs,
but others had more abstract system specifications.NLG was not inherently different from
NLU at all, in fact the output representations used in the latterwere just as much there by
gentle(wo)man’s agreement as any common inputs toNLG would be. The strongNLG tradi-
tions of user-oriented and task-based evaluations using human evaluators would be part of the
evaluation paradigm in shared-task evaluations, while parallel research might look at—but not
impose—bespoke automatic methods forNLG. Money would be needed for data resource cre-
ation, but not necessarily for anything else; evidence thatthis was possible could be found in
successful and vibrant shared-task initiatives run on a shoe-string, such asCoNLL andSENSE-
VAL . The community would create its own forum for reviewing, updating and adding tasks and
evaluation methods.NLG would be invigorated, great scientific progress would result, com-
mercial deployment ofNLG technology and regular papers inComputational Linguistics and
ACL proceedings would surely follow.

One thing was clear: opinions abounded, most of them strong ones. Shared-task evaluation
had been firmly put on theNLG agenda. So, we thought, what better than to create a larger,
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more enduring forum for continuing discussions, in the shape of anINLG special session? We
are pleased to say that the response from theNLG community has been very positive, and that
the papers in this section of the proceedings and the oral presentations at the special session
itself represent both the bullish and the bearish camps. Belz and Kilgarriff present a generally
bullish, but occasionally bearish, history of shared-taskinitiatives inNLP, and the lessons that
NLG might learn from it, while Reiter and Belz present a proposalfor a series of shared tasks
in data-to-textNLG. Van Deemter et al. look at the generation of referring expressions and
propose a method for eliciting reference texts for evaluation ofGREalgorithms. Paris argues for
NLG system evaluation practices similar to theISO standards for software evaluation, including
criteria such as flexibility, portability and maintainability.

Among the oral presentations, Scott and Moore exemplify thebearish position but do ar-
gue in favour of a standardised architecture and interface specifications to eventually enable
cross-system comparison. Horacek considers the input problem and advocates the gradual and
collective development of a generic ‘generation specification’ formalism. Varges recommends
that NLG deliberately take a different route fromNLU and encourage a diversity of tasks and
representations.

Kathy McKeown’s invited talk is perfectly poised between the two camps: from her expe-
rience withDUC, TREC andGALE, she concludes that every evaluation programme must expect
to have to weather a stormy period of initial disagreement and even hostility, before eventually
reaching calmer waters where growing agreement and acceptance enable the true benefits of
the programme to take effect.

Consensus-spotters will be able to identify several areas of interest: certainly nobody wants
to follow the example ofMT and parsing, and become beholden to a single metric and auto-
mated gold-standard evaluation; some degree of standardisation in sub-tasks and representa-
tions is desirable, but should evolve over time; and perhapsmost unanimously, the diversity of
currentNLG research with its many different tasks and interests must bepreserved.

Even a small amount of common ground can be enough for debate to flourish and consensus
to grow. We hope that the snapshot of opinion presented at this special session will be the
beginning of a long history of comparative evaluation inNLG.

Anja Belz and Robert Dale (Organisers; one bull and one bear)
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Abstract 

In this position paper, we argue that a 
common task and corpus are not the only 
ways to evaluate Natural Language Gen-
eration (NLG) systems. It might be, in 
fact, too narrow a view on evaluation and 
thus not be the best way to evaluate these 
systems.  The aim of a common task and 
corpus is to allow for a comparative 
evaluation of systems, looking at the sys-
tems’ performances. It is thus a “system-
oriented” view of evaluation. We argue 
here that, if we are to take a system ori-
ented view of evaluation, the community 
might be better served by enlarging the 
view of evaluation, defining common 
dimensions and metrics to evaluate sys-
tems and approaches. We also argue that 
end-user (or usability) evaluations form 
another important aspect of a system’s 
evaluation and should not be forgotten. 

1 Introduction 

For this special session, a specific question was 
asked: what would a shared task and shared cor-
pus be that would enable us to perform compara-
tive evaluations of alternative techniques in natu-
ral language generation (NLG)? In this position 
paper, we question the appropriateness of this 
specific question and suggest that the community 
might be better served by (1) looking at a differ-
ent question: what are the dimensions and met-
rics that would allow us to compare various 
techniques and systems and (2) not forgetting but 
encouraging usability evaluations of specific ap-
plications. 

The purpose of defining a shared task and a 
shared corpus is to compare the performance of 
various systems. It is thus a system-oriented view 

of evaluation, as opposed to an end-user oriented 
(or usability) view of evaluation.  It is, however, 
potentially a narrow view of a system-oriented 
evaluation, as it looks at the performance of an 
NLG system within a very specific context – thus 
essentially looking at the performance of a spe-
cific application.  We argue here that (1), even if 
we take a system-oriented view of evaluation, the 
evaluation of NLG systems should not be limited 
to their performance in a specific context but 
should take other system’s characteristics into 
account, and that (2) end-user evaluations are 
crucial.  

2 Enlarging the view of system-oriented 
evaluations 

The comparison of NLG systems should not 
be limited to a particular task in a specific con-
text. Most systems are designed for specific ap-
plications in specific domains and tend to be 
tuned for these applications.  Evaluating them in 
a context of a specific common evaluation task 
might de-contextualise them and might encour-
age fine-tuning for this task, which might not be 
useful in general. Furthermore, the evaluation of 
a system should not be limited to its performance 
in a specific context but should address charac-
teristics such as: 
• Cost of building (time and effort); 
• Ease of extension, maintainability and cus-

tomisability to handle new requirements 
(time, effort and expertise required); 

• Cost of porting to a new domain or applica-
tion (time, effort and expertise required);  

• Cost of data capture if required (how expen-
sive, expertise required); 

• Coverage issues (users, tasks, dimensions of 
context; and 

• Ease of integration with other software. 
These dimensions are important if we want the 

technology to be adopted and if we want poten-
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tial users of the technology to be able to make an 
informed choice as to what approach to choose 
when.  

Most NLG systems are built around a specific 
application. Using them in the context of a dif-
ferent application or domain might be difficult. 
While one can argue that basic techniques do not 
differ from one application to another, the cost of 
the modifications required and the expertise and 
skills needed may not be worth the trouble. It 
may be simply cheaper and more convenient to 
rebuild everything. However, firstly, this might 
not be an option, and, secondly, it may increase 
the cost of using an NLG approach to such an 
extent as to make it unaffordable. In addition, 
applications evolve over time and often require a 
quick deployment. It is thus increasingly desir-
able to be able to change (update) an application, 
enabling it to respond appropriately to the new 
situations which it must now handle: this may 
require the ability to handle new situations (e.g., 
generate new texts) or the ability to respond dif-
ferently than originally envisaged to known 
situations. This is important for at least two rea-
sons: 

(1) We are designers not domain experts. 
Although we usually carry out a do-
main/corpus/task analysis beforehand to acquire 
the domain knowledge and understand the users’ 
needs in terms of the text to be generated, it is 
almost impossible to become a domain expert 
and know what is the most appropriate in each 
situation. Thus, the design of a specific applica-
tion should allow the experts to take on control 
and ensure the application is configured appro-
priately. This imposes the additional constraint 
that an application should be maintainable di-
rectly by a requirement specialist, an author, ex-
pert or potentially the reader/listener; 

(2) Situations are dynamic – what is satis-
factory today may be unsatisfactory tomorrow. 
We must be prepared to take on board new re-
quirements as they come in. 

These requirements, of course, come at a cost. 
With this in mind, then, we believe that there is 
another side to system-oriented evaluation which 
we, as designers of NLG systems, need to con-
sider: the ease or cost of developing flexible ap-
plications that can be easily configured and 
maintained to meet changing requirements.  As a 
start towards this goal, we attempted to look 
more precisely at one of the characteristics men-
tioned above, the cost of maintaining and extend-
ing an application, attempting to understand what 
we should take into account to evaluate a system 

on that dimension. We believe asking the follow-
ing questions might be useful. When there are 
new requirements: 

(1) What changes are needed and do the 
modifications require the development of new 
resources, the implementation of additional func-
tionality to the underlying architecture, or both? 

(2) Who can do it and what is the expertise 
required? – NLG systems are now quite complex 
and require a lot of expertise that may be shared 
among several individuals (e.g., software engi-
neering, computational linguistics, domain ex-
pertise, etc.). 

(3) How hard it is? – How much effort and 
time would be required to modify/update the sys-
tem to the new requirements? 

In asking these questions, we believe it is also 
useful to decouple a specific system and its un-
derlying architecture, and ask the appropriate 
questions to both. 

3 Usability Evaluations of NLG Systems 

When talking about evaluation of NLG systems, 
we should also remember that usability 
evaluations are crucial, as they can confirm the 
usefulness of a system for its purpose and look at 
the impact of the generated text on its intended 
audience. There has been an increasing number 
of such evaluations – e.g., (Reiter et al., 2001, 
Paris et al., 2001, Colineau et al., 2002, 
Kushniruk et al., 2002, Elhadad et al., 2005) – 
and we should continue to encourage them as 
well as develop and share methodologies (and 
pitfalls) for performing these evaluations. It is 
interesting, in fact, to note that communities that 
have emphasized common task and corpus 
evaluations, such as the IR community, are now 
turning their attention to stakeholder-based 
evaluations such as task-based evaluations. In 
looking at ways to evaluate NLG systems, we 
might again enlarge our view beyond 
reader/listener-oriented usability evaluations, as 
readers are not the only persons potentially 
affected by our technology. When doing our 
evaluations, then, we must also consider other 
parties. Considering NLG systems as information 
systems, we might consider the following 
stakeholders beyond the reader: 
• The creators of the information: for some 

applications, this may refer to the person 
creating the resources or the information re-
quired for the NLG system. This might be, 
for example, the people writing the frag-
ments of text that will be later assembled 
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automatically. Or it might include the person 
who will author the discourse rules or the 
templates required. With respect to these 
people, we might ask questions such as: 
“Does employing this NLG system/approach 
save them time?”, “Is it easy for them to up-
date the information?”1 

• The “owners” of the information. We refer 
here to the organisation choosing to employ 
an NLG system. Possible questions here 
might be: “Does the automatically generated 
text achieve its purpose with respect to the 
organisation?”, “Can the organisation convey 
similar messages with the automated system? 
(e.g., branding issues). 

4 Discussion 

In this short position paper, we have argued that 
we need to enlarge our view of evaluation to en-
compass both usability evaluation (and include 
users beyond readers/listeners) and system-
oriented evaluations. While we recognise that it 
is crucial to have ways to compare systems and 
approaches (the main advantage of having a 
common corpus and task), we suggest that we 
should look for ways to enable these compari-
sons without narrowing our view on evaluation 
and de-contextualising the systems under consid-
eration. We have presented some possible di-
mensions on which approaches and systems 
could be evaluated. While we understand how to 
perform usability evaluations, we believe that an 
important question is whether it is possible to 
agree on dimensions for system-oriented evalua-
tions and on “metrics” for these dimensions, to 
allow us to evaluate the different applications 
and approaches, and allow potential users of the 
technology to choose the appropriate one for 
their needs. In our own work, we exploit an NLG 
architecture to develop adaptive hypermedia ap-
plications (Paris et al., 2004), and some of our 
goals (Colineau et al., 2006) are to: 

• Articulate a comprehensive framework for 
the evaluation of approaches to building 
tailored information delivery systems and 
specific applications built using these ap-
proaches. 

• Identify how an application or an ap-
proach measures along some dimensions 

                                                 
1 We realise that, for some NLG applications, there 
might be no authors if all the data exploited by the 
system comes from underlying existing sources, e.g., 
weather or stock data or existing textual resources. 

(in particular for system-oriented evalua-
tion). 

We believe these are equally important for the 
evaluation of NLG systems. 

Acknowledgements 
We would like to thank the reviewers of the 
paper for their useful comments.  

 References 
Colineau, N., Paris, C. & Vander Linden, K. 2002. An 

Evaluation of Procedural Instructional Text.  In the 
Proceedings of the International Natural Language 
Generation Conference (INLG) 2002, NY. 

Colineau, N., Paris, C. & Wilkinson, R. 2006.  To-
wards Measuring the Cost of Changing Adaptive 
Hypermedia Systems.   In Proceedings of the In-
ternational Conference on Adaptive Hypermedia 
and Adaptive Web-based Systems (AH2006). 259-
263, Dublin, Ireland.  LNCS 4018. 

Elhadad, N. McKeown, K. Kaufman, D. & Jordan, D. 
2005. Facilitating physicians' access to information 
via tailored text summarization. In AMIA Annual 
Symposium, 2005, Washington DC. 

Kushniruk, A., Kan, MY, McKeown, K., Klavans, J., 
Jordan, D., LaFlamme, M. & Patel, V. 2002. Us-
ability evaluation of an experimental text summari-
zation system and three search engines: Implica-
tions for the reengineering of health care interfaces. 
In Proceedings of the American Medical Informat-
ics Association Annual Symposium (AMIA 2002). 

Paris, C., Wan, S., Wilkinson, R. & Wu, M. 2001. 
Generating Personalised Travel Guides? And who 
wants them? In Proceedings of the 2001 Interna-
tional Conference on User Modelling (UM’01), 
Sondhofen, Germany. 

Paris, C., Wu, M., Vander Linden, K., Post, M. & Lu, 
S. 2004. Myriad: An Architecture for Contextual-
ised Information Retrieval and Delivery. In Pro-
ceedings of the International Conference on Adap-
tive Hypermedia and Adaptive Web-based Systems 
(AH2004). 205-214, The Netherlands. 

Reiter, E., Robertson, R., Lennox A. S. & Osman, L. 
(2001). Using a randomised controlled clinical trial 
to evaluate an NLG system. In Proceedings of 
ACL'01, Toulouse, France, 434-441. 

129



Proceedings of the Fourth International Natural Language Generation Conference, pages 130–132,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Building a semantically transparent corpus
for the generation of referring expressions

Kees van Deemter and Ielka van der Sluis and Albert Gatt
Department of Computing Science

University of Aberdeen
{kvdeemte,ivdsluis,agatt}@csd.abdn.ac.uk

Abstract

This paper discusses the construction of
a corpus for the evaluation of algorithms
that generate referring expressions. It is
argued that such an evaluation task re-
quires a semantically transparent corpus,
and controlled experiments are the best
way to create such a resource. We address
a number of issues that have arisen in an
ongoing evaluation study, among which is
the problem of judging the output of GRE

algorithms against a human gold standard.

1 Creating and using a corpus for GRE

A decade ago, Dale and Reiter (1995) published
a seminal paper in which they compared a num-
ber of GRE algorithms. These algorithms included
a Full Brevity (FB) algorithm which generates de-
scriptions of minimal length, a greedy algorithm
(GA), and an Incremental Algorithm (IA). The
authors argued that the latter was the best model
of human referential behaviour, and versions of
the IA have since come to represent the state
of the art in GRE. Dale and Reiter’s hypothe-
sis was motivated by psycholinguistic findings,
notably that speakers tend to initiate references
before they have completely scanned a domain.
However, this finding affords different algorithmic
interpretations. Similarly, the finding that basic-
level terms in referring expressions allow hearers
to form a psychological gestalt could be incorpo-
rated into practically any GRE algorithm.1

We decided to put Dale and Reiter’s hypothesis
to the test by an evaluation of the output of dif-

1A separate argument for IA involves tractability, but al-
though some alternatives (such as FB) are intractable, others
(such as GA) are only polynomial, and can therefore not eas-
ily be dismissed on purely computational grounds.

ferent GRE algorithms against human production.
However, it is notoriously difficult to obtain suit-
able corpora for a task that is as semantically in-
tensive as Content Determination (for GRE). Al-
though existing corpora are valuable resources,
NLG often requires information that is not avail-
able in text. Suppose, for example, that a corpus
contained articles about politics, how would the
output of a GRE algorithm be evaluated against the
corpus? It would be difficult to infer from an ar-
ticle exactly which representatives in the British
House of Commons are Liberal Democrats, or
Scottish. Combining multiple texts is hazardous,
since facts could alter across sources and time.
Moreover, the conditions under which such texts
were produced (e.g. fault-critical or not, as ex-
plained below) are hard to determine.

A recent GRE evaluation by Gupta and Stent
(2005) focused on dialogue corpora, using MAP-
TASK and COCONUT, both of which have an as-
sociated domain. Their results show that referent
identification in MAPTASK often requires no more
than a TYPE attribute, so that none of the algo-
rithms performed better than a baseline. In con-
trast to MAPTASK, COCONUT has a more elabo-
rate domain, but it is characterised by a collabora-
tive task, and references frequently go beyond the
identification criterion that is typically invoked in
GRE2. Mindful of the limitations of existing cor-
pora, and of the extent to which evaluation de-
pends on the corpus under study, we are using
controlled experiments to create a corpus whose
construction will ensure that existing algorithms
can be adequately differentiated on an identifica-
tion task.

2Jordan and Walker (2000) have demonstrated a signifi-
cantly better match to the human data when task-related con-
straints are taken into account.
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2 Setup of the experiment

Like Dale and Reiter (1995), we focused on first-
mention descriptions. However, we decided to in-
clude simple ‘disjunctive’ references to sets (as
in ‘the red chair and the black table’), in addi-
tion to conjunctions of atomic properties, since
these can be handled by essentially the same al-
gorithms (van Deemter, 2002). For generality, we
looked at two very different domains. One of these
involved artificially constructed pictures of furni-
ture, where the available attributes and values are
relatively easy to determine. The other involved
real photographs of individuals, which provide a
richer range of options to subjects. To date, data
has been collected from 19 participants, and anal-
ysis is in progress.

Our first challenge was to make the experiment
naturalistic. Subjects were shown 38 randomised
trials, each depicting a set of objects, one or two
of which were the targets, surrounded by 6 dis-
tractors (Figure 1). In each case, a minimal distin-
guishing description of the targets was available.
Subjects were led to believe that they would be
describing the targets for an interlocutor. Once a
description was typed, the system removed from
the screen what it took to be the referents.

Figure 1: A stimulus example from the furniture domain.

Three groups performed the task in different
conditions, namely: 〈±FaultCritical〉, where
half the subjects in the 〈+FaultCritical〉 case
could use location (‘in the top left corner’). The
〈+FaultCritical〉 group was told: ‘Our program
will eventually be used in situations where it is
crucial that it understands descriptions accurately.
In these situations, there will often be no option to
correct mistakes. Therefore, (...) you will not get
the chance to revise (your description)’. By con-
trast, the 〈−FaultCritical〉 subjects were given

the opportunity to revise their description should
the system have got it wrong. Subjects in the
〈−Location〉 condition were told that their inter-
locutor could see exactly the same pictures as they
could, but these had been jumbled up; by con-
trast, 〈+Location〉 subjects were led to believe
that their addressee could see the pictures in ex-
actly the same position.

The second main challenge was to create tri-
als that would distinguish between all the algo-
rithms. For instance, if trials involved only one at-
tribute, say an object’s TYPE (e.g., chair or table),
they would not allow us to distinguish IA from
FB, as both would always generate the shortest de-
scription. Subtler issues arise with local brevity
(Reiter, 1990), an optimisation strategy which re-
quires sufficiently complex trials to make a differ-
ence.

3 How to analyse the data?

Our semantically transparent corpus can be
used for testing various hypotheses, for in-
stance about when an algorithm should
overspecify descriptions (e.g. more in
〈+FaultCritical,+Location〉 (Arts, 2004),
and/or when the target is a set). Here, we focus on
the issue raised in Section 1, namely, which of the
algorithms discussed in Dale and Reiter (1995)
matches human behaviour best.

The first problem is determining the relevant al-
gorithms. The IA comes in different flavours, be-
cause its output depends on the order in which
the different properties are attempted (commonly
called the preference order). It is possible to
consider all different IAs (trying every conceiv-
able preference order), but this would increase the
number of statistical hypotheses to be tested, im-
pacting the validity of the results and requiring a
Bonferroni correction. Instead, we are using a pre-
test to find the optimal version of IA, comparing
only that version to the other algorithms.

The second question is how to assess algorithm
performance. Since our production experiment
does not yield a single gold standard (GS), an al-
gorithm might match subjects better in one con-
dition (e.g. 〈+FaultCritical), or perform bet-
ter in one domain (e.g. furniture). Moreover, it
might match subjects poorly overall due to sam-
ple variation, while evincing a perfect match with
a single individual. Using both a by-subjects and a
by-items analysis will partially control for sample

131



dispersion.
How should we calculate the match between an

algorithm and a GS? Once again, there are two
facets to this problem. Since we are focusing on
Content Determination, each human description
could be viewed as associating, with the relevant
trial, a set of properties. Our approach will be to
annotate each human description with the set of at-
tributes it contains. However, the real data is often
messy. For example, when one subject called an
object ‘the non-coloured table’, and another called
it ‘the grey desk’, both may be expressing the same
attributes (i.e. TYPE and COLOUR). Also, while it
is often assumed that the output of GRE is a def-
inite noun phrase, this is not always the case in
our corpus, which contains indefinite distinguish-
ing descriptions such as ‘a red chair, facing to
the right’, and telegraphic messages such as ‘red,
right-facing’.

The second aspect to the problem concerns the
actual human-algorithm comparison. Suppose the
GS equals the output of one subject, and we are
comparing two algorithms, x and y. Suppose our
subject produced ‘the two huge red sofas’, which
the GS associates with the set {sofa, red, large}.
Suppose our algorithms describe the target as:

Output from x : {sofa, red, top}
Output from y : {sofa, red, large, top}

Which of these algorithms matches the GS best?
Algorithm y adds a property (perhaps overspecify-
ing even more than the GS). Algorithm x has the
same length as the GS, but replaces one property
by another. Several reasonable ways of assess-
ing the differences can be devised, one of which is
Levenshtein distance (which suggests preferring y
over x, since the latter involves a deletion and an
addition) (Levenshtein, 1966). We also intend to
examine how often the GS over- or underspecifies
where the algorithm does not.

4 Conclusion

Corpora can be an invaluable resource for NLG

as long as the necessary contextual information
and the conditions under which the texts in a cor-
pus were produced are known. We believe that
controlled and balanced experiments are needed
for building semantically transparent resources,
whose construction we have discussed. As shown
in this paper, evaluation of algorithms against the
number of gold standards obtained with such a
corpus needs careful consideration.

Evaluation of GRE – and NLG systems more
generally – would benefit from more investiga-
tion of the differences between readers and pro-
ducers. In future work, we intend to follow up
with a reader-oriented experiment in which we test
the speed and/or accuracy with which the output
of different GRE algorithms is understood by sub-
jects. The dependent variables here will be non-
linguistic (perhaps involving subjects clicking on
pictures of presumed target referents). This illus-
trates a more general issue in this area, namely
that corpora should, in our view, only be a start-
ing point, with which data of different kinds can
be associated.
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1 Introduction

While natural language generation (NLG) has a
strong evaluation tradition, in particular in user-
based and task-oriented evaluation, it has never
evaluated different approaches and techniques by
comparing their performance on the same tasks
(shared-task evaluation,STE). NLG is charac-
terised by a lack of consolidation of results, and
by isolation from the rest ofNLP where STE is
now standard. It is, moreover, a shrinking field
(state-of-the-artMT and summarisation no longer
perform generation as a subtask) which lacks the
kind of funding and participation that natural lan-
guage understanding (NLU) has attracted.

Evidence from otherNLP fields shows thatSTE

campaigns (STECs) can lead to rapid technolog-
ical progress and substantially increased partici-
pation. The past year has seen a groundswell of
interest in comparative evaluation amongNLG re-
searchers, the first comparative results are being
reported (Belz and Reiter, 2006), and the move to-
wards some form of comparative evaluation seems
inevitable. In this paper we look at how two
decades ofNLP STECs might help us decide how
best to make this move.

2 Shared-task evaluation in HLT

Over the past twenty years, virtually every field
of research in human language technology (HLT)
has introducedSTECs. A small selection is pre-
sented in the table below1. NLG researchers have
tended to be somewhat unconvinced of the benefits
of comparative evaluation in general, and the kind
of competitive, numbers-drivenSTECs that have
been typical ofNLU in particular. YetSTECs do
not have to be hugely competitive events fixated
on one task with associated input/output data and
single evaluation metric, static over time.

Tasks: There is a distinction between (i) evalu-
ations designed to help potential users to decide

1Apologies for omissions, and for bias towards English.

whether the technology will be valuable to them,
and (ii) evaluations designed to help system devel-
opers improve the core technology (Spärck Jones
and Galliers, 1996). In the former, the applica-
tion context is a critical variable in the task defi-
nition; in the latter it is fixed. Developer-oriented
evaluation promotes focus on the task in isolation,
but if the context is fixed badly, or if the outside
world changes but the evaluation does not, then
it becomes irrelevant.NLP STECs have so far fo-
cused on developer-oriented evaluation, but there
are increasing calls for more ‘embedded’, more
task-based types of evaluations2.

Existing NLP STECs show that tasks need to be
broadly based and continuously evolving. To be-
gin with, the task needs to be simple, easy to un-
derstand and easy for people to recognise as their
task. Over time, as the limitations of the sim-
ple task are noted and a more substantial com-
munity is ‘on board’, tasks can multiply, diversify
and become more sophisticated. This is something
that TREC has been good at (still going strong 14
years on), and the parsing community has failed to
achieve (see notes in table).

Evaluation: NLP STECs have tended to use au-
tomatic evaluations because of their speed and re-
producibility, but some have used human evalua-
tors, in particular in fields where language is gen-
erated (MT, summarisation, speech synthesis).

Evaluation scores are not independent of the
task and context for which they are calculated.
This is clearly true of human-based evaluation, but
even scores by a simple metric like word error
rate in speech recognition are not comparable un-
less certain parameters are the same: background-
noise, language, whether or not speech is con-
trolled. Development of evaluation methods and
benchmark tasks therefore must go hand in hand.

Evaluation methods have to be accepted by the
research community as providing a true approxi-

2A prominent theme at the 2005 ELRA/ELDA Workshop
on HLT Evaluation.
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Name Start Domain Sponsors Notes
MUC 1987 Information extraction US Govt Rapidly came to define IE; ended 1998.
PARSEVAL 1991 Parsing — Only ever defined a metric, no STEC1.
TREC 1992 Information retrieval US Govt Large and long-running, multiple tracks.
SEMEVAL 1994 Semantic interpretation US Govt No STEC emerged2.
NIST-MT 1994 Machine translation US Govt Revitalised since 2001 by BLEU3.
Morpholympics 1994 Morphological analysis GLDV German morphological analysis; one-off.
SENSEVAL 1998 Word sense disambiguation ACL-SIGLEX Validity of WSD task problematic.
SUMMAC 1998 Text summarization US Govt One-off.
CoNLL 1999 Various ACL-SIGNLL Focus on learning algorithms.
CLEF 2000 IR across languages EU Project
DUC 2001 Document summarization US Govt Defines field.
Morfolimpiadas 2003 Morphological analysis Portuguese Govt Portuguese language only.
SIGHAN 2003 Chinese tokenization ACL-SIGHAN Key benchmark.
Blizzard 2003 Speech synthesis Festvox project Building synthetic voice from given data.
HAREM 2005 Named-entity recognition Portuguese Govt Portuguese language only.
RTE 2005 Textual entailment EU Project
TC-STAR 2005 Speech-to-speech translationEU integrated project Black-box and glass-box evaluation4.

Notes

1. PARSEVAL is an evaluation measure, not a fullSTEC. This has proved problematic: the parsing community no longer
accepts thePARSEVAL measure, but there has been no organisational framework forestablishing an alternative.

2. SEMEVAL did not proceed largely because it was too ambitious and agreement between people with different interests
and theoretical positions was not achieved. It was eventually reduced in scope and aspects became incorporated inMUC,
SUMMAC andSENSEVAL.

3. MT has been transformed by corpus methods, which have shiftedMT from a backwater to perhaps the most vibrant area
of NLP in the last five years.

4. In TC-STAR, theSST task is broken down into numerous subtasks. The modules and systems that meet the given criteria
are exchanged among the participants, lowering the barrierto entry.

mation of quality. E.g.BLEU is strongly disliked
in the non-statistical part of theMT community be-
cause it is biased in favour of statisticalMT sys-
tems. PARSEVAL stopped being used when the
parsing community moved towards dependency
parsing and related approaches.

Sharing: As PARSEVAL shows, measures and
resources alone are not enough. Also required are
(i) an event (or better, cycle of events) so people
can attend and feel part of a community; (ii) a fo-
rum for reviewing task definitions and evaluation
methods; (iii) a committee which ‘owns’ theSTEC,
and organises the next campaign.

Funding is usually needed for gold-standard
corpus creation but rarely for anything else (Kil-
garriff, 2003). Participants can be expected to
cover the cost of system development and work-
shop attendance. A funded project is best seen as
supporting and enabling theSTEC (especially dur-
ing the early stages) rather than being it.

In sum, STECs are good for community build-
ing. They produce energy (as we saw when the
possibility was raised forNLG at UCNLG’05 and
ENLG’05) which can lead to rapid scientific and
technological progress. They make the field look
like a game and draw people in.

3 Towards an NLG STEC

In 1981, Spärck Jones wrote thatIR lacked con-
solidation and the ability to build new work on
old, and that this was substantially because there
was no commonly agreed framework for describ-
ing and evaluating systems (Spärck Jones, 1981,
p. 245). Since 1981, variousNLP sub-disciplines
have consolidated results and progressed collec-
tively through STECs, and have seen successful
commercial deployment ofNLP technology (e.g.
speech recognition software, document retrieval
and dialogue systems).

However, Spärck Jones’s 1981 analysis could
be said to still hold ofNLG today. There has
been little consolidation of results or collective
progress, and there still is virtually no commercial
deployment ofNLG systems or components.

We believe that comparative evaluation is key
if NLG is to consolidate and progress collectively.
Conforming to the evaluation paradigm now com-
mon to the rest ofNLP will also help re-integration,
and open up the field to new researchers.

Tasks: In defining sharable tasks with associ-
ated data resources forNLG, the core problem is
deciding what inputs should look like. There is
a real risk that agreement cannot be achieved on
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this, so not many groups participate, or the plan
never reaches fruition (as happened inSEMEVAL).

There are, however, ways in which this problem
can be circumvented. One is to use a more abstract
task specification describing system functionality,
so that participants can use their own inputs, and
systems are compared in task-based evaluations
similar to the traditions and standards of software
evaluation (as in Morpholympics). An alternative
is to approach the issue through tasks with inputs
and outputs that ‘occur naturally’, so that partic-
ipants can use their ownNLG-specific represen-
tations. Examples include data-to-text mappings
where e.g. time-series data or a data repository are
mapped to fault reports, forecasts, etc.

Both data-independent task definitions and
tasks with naturally occurring data have promise,
but we propose the second as the simpler, easier
to organise solution, at least initially. A specific
proposal of a set of tasks can be found elsewhere
in this volume (Reiter and Belz, 2006). An inter-
esting idea (recommended byELRA/ELDA) is to
break down the input-output mapping into stages
(as in theTC-STAR workshops, see table) and then,
in a second round of evaluations, to make available
intermediate representations from the most suc-
cessful systems from the first round. In this way,
standardised representations might develop almost
as a side-effect ofSTECs.

Evaluation: As in MT there are at least two cri-
teria of quality forNLG systems: language quality
(fluency in MT) and correctness of content (ade-
quacy in MT). In NLG, these have mostly been
evaluated directly using human scores or prefer-
ence judgments, although recently automatic met-
rics such asBLEU have been used. They have also
been evaluated indirectly, e.g. by measuring read-
ing speeds and manual post-processing3. A more
user-oriented type of evaluation has been to assess
real-world usefulness, in other words, whether the
generated texts achieve their purpose (e.g. whether
users learn more withNLG techniques than with
cheaper alternatives4).

The majority ofNLP STECs have used automatic
evaluation methods, and the ability to produce re-
sults ‘at the push of a button’, quickly and repro-
ducibly, is ideal in the context ofSTECs. However,
existing metrics are unlikely to be suitable forNLG

3E.g. in the SkillSum and SumTime projects at Aberdeen.
4E.g. evaluation of theNL interface of theDIAG intelligent

tutoring system, di Eugenio et al.

(Belz and Reiter, 2006), and there is a lot of scepti-
cism amongNLG researchers regarding automatic
evaluation. We believe thatNLG should develop
its own automatic metrics (development of such
metrics is part of the proposal by Reiter and Belz,
this volume), but for the time being anNLG STEC

needs to involve human-based evaluations of the
intrinsic as well as extrinsic type.

Sharing: A recent survey conducted on the main
NLG and corpus-basedNLP mailing lists5 revealed
that there are virtually no data resources that could
be directly used in shared tasks. Considerable in-
vestment has to go into developing such resources,
and direct funding is necessary. This points to a
funded project, but we recommend direct involve-
ment of theNLG community andSIGGEN. Other
aspects of organisation are notNLG-specific, so
the general recommendations in the preceding sec-
tion apply.

4 Conclusion

STECs have been remarkable stimulants to
progress in other areas ofHLT, through their
community-building role, and through ‘hot-
housing’ solutions to specific problems. There are
also lessons to be learnt aboutSTECs not being
overly ambitious, remaining responsive to devel-
opments in the broader field and wider world, and
having appropriate institutional standing. We be-
lieve thatNLG can benefit greatly from the intro-
duction of shared tasks, provided that an inclusive
and flexible approach is taken which is informed
by the specific requirements ofNLG.
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Abstract

We propose to organise a series of shared-
task NLG events, where participants are
asked to build systems with similar in-
put/output functionalities, and these sys-
tems are evaluated with a range of differ-
ent evaluation techniques. The main pur-
pose of these events is to allow us to com-
pare different evaluation techniques, by
correlating the results of different evalua-
tions on the systems entered in the events.

1 Background

Evaluation is becoming increasingly important in
Natural Language Generation (NLG), as in most
other areas of Natural Language Processing (NLP).
NLG systems can be evaluated in many differ-
ent ways, with different associated resource re-
quirements. For example, a large-scale task-
effectiveness study with human subjects could last
over a year and cost more than US$100,000 (Re-
iter et al., 2003); on the other hand, a small-scale
comparison of generated texts to human-written
reference texts can be done in a manner of days.
However, while the latter kind of study is very
appealing in terms of cost and time, and cheap
and reliable evaluation techniques would be very
useful for people developing and testing new NLG

techniques, it is only worth doing if we have rea-
son to believe that its results tell us something
about how useful the generated texts are to real
human users. It is not obvious that this is the case
(Reiter and Sripada, 2002).

Perhaps the best way to study the reliability of
different evaluation techniques, and more gener-
ally to develop a better empirical understanding of
the strengths and problems of different evaluation
techniques, is to perform studies where a range of
different evaluation techniques are used to evalu-
ate a set of NLG systems with similar functional-
ities. Correlating the results of the different eval-
uation techniques will give us empirical insight as

to how well these techniques work in practice.
Unfortunately, few such studies have been car-

ried out, perhaps because (to date) few NLG sys-
tems have been built with comparable functional-
ity (our own work in this area is discussed below).
We hope to surmount this problem, by organising
‘shared task’ events to which NLG researchers can
submit systems based on a supplied data set of in-
puts and (human-written) text outputs. We will
then carry out our evaluation experiments on the
submitted systems. We hope that such shared-task
events will also make it easier for new researchers
to get involved in NLG, by providing data sets and
an evaluation framework.

2 Comparative Evaluations in NLG

There is a long history of shared task initiatives
in NLP, of which the best known is perhaps MUC

(Hirschman, 1998); others include TREC, PARSE-
VAL, SENSEVAL, and the range of shared tasks or-
ganised by CoNLL. Such exercises are now com-
mon in most areas of NLP, and have had a major
impact on many areas, including machine transla-
tion and information extraction (see discussion of
history of shared-task initiatives and their impact
in Belz and Kilgarriff (2006)).

One of the best-known comparative studies
of evaluation techniques was by Papineni et al.
(2002) who proposed the BLEU metric for machine
translation and showed that BLEU correlated well
with human judgements when comparing several
machine translation systems. Several other studies
of this type have been carried out in the MT and
Summarisation communities.

The first comparison of NLG evaluation tech-
niques which we are aware of is by Bangalore et al.
(2000). The authors manually created several
variants of sentences from the Wall Street Jour-
nal, and evaluated these sentences using both hu-
man judgements and several corpus-based metrics.
They used linear regression to suggest a combina-
tion of the corpus-based metrics which they be-
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lieve is a better predictor of human judgements
than any of the individual metrics.

In our work (Belz and Reiter, 2006), we used
several different evaluation techniques (human
and corpus-based) to evaluate the output of five
NLG systems which generated wind descriptions
for weather forecasts. We then analysed how well
the corpus-based evaluations correlated with the
human-based evaluations. Amongst other things,
we concluded that BLEU-type metrics work rea-
sonably well when comparing statistical NLG sys-
tems, but less well when comparing statistical NLG

systems to knowledge-based NLG systems.
We worked in this domain because of the avail-

ability of the SumTime corpus (Sripada et al.,
2003), which contains both numerical weather
prediction data (i.e., inputs to NLG) and human
written forecast texts (i.e., target outputs from
NLG). We are not aware of any other NLG-related
corpora which contain a large number of texts and
corresponding input data sets, and are freely avail-
able to the research community.

3 Our Proposal

We intend to apply for funding for a three-year
project to create more shared input/output data sets
(we are focusing on data-to-text tasks for the rea-
sons discussed in Belz and Kilgarriff (2006)), or-
ganise shared task workshops, and create and test
a range of methods for evaluating submitted sys-
tems.

3.1 Step 1: Create data sets

We intend to create input/output data sets that con-
tain the following types of representations:

• raw non-linguistic input data;

• structured content representations, roughly
corresponding to document plans (Reiter and
Dale, 2000);

• semantic-level representations, roughly cor-
responding to text specifications (Reiter and
Dale, 2000);

• actual human-authored corpus texts.

The presence of intermediate representations in
our data sets means that researchers who are just
interested in document planning, microplanning,
or surface realisation do not need to build com-
plete NLG systems in order to participate.

We will create the semantic-level representa-
tions by parsing the corpus texts, probably us-
ing a LinGO parser1. We will create the content
representations using application-specific analysis
tools, similar to a tool we have already created for
SumTime wind statements. The actual data sets
we currently intend to create are as follows (see
also summary in Table 1).

SumTime weather statements: These are brief
statements which describe predicted precipitation
and cloud over a forecast period. We will extract
the texts (and the corresponding input data) from
the existing SumTime corpus.

Statistics summaries: We will ask people (prob-
ably students) to write paragraph-length textual
summaries of statistical data. The actual data will
come from opinion polls or national statistics of-
fices. The corpus will also include data about the
authors (e.g., age, sex, domain expertise).

Nurses’ reports: As part of a new project at Ab-
erdeen, Babytalk2, we will be acquiring a corpus
of texts written by nurses to summarise the status
of a baby in a neonatal intensive care unit, along
with the raw data this is based on (sensor read-
ings, records of actions taken such as giving med-
ication).

3.2 Step 2: Organise workshops
The second step is to organise workshops. We
intend to use a fairly standard organisation (Belz
and Kilgarriff, 2006). We will release the data
sets (but not the reference texts), give people six
months to develop systems, and invite people who
submit systems to a workshop. Participants can
submit either complete data-to-text NLG systems,
or components which just do document planning,
microplanning, or realisation.

We are planning to increase the number and
complexity of tasks from one round to the next,
as this has been useful in other NLP evaluations
(Belz and Kilgarriff, 2006); for example, we will
add surface realisation as a separate task in round
2 and layout/structuring task in round 3.

We will carry out all evaluation activities (see
below) ourselves, workshop participants will not
be involved in this.

3.3 Step 3: Evaluation
The final step is to evaluate the systems and com-
ponents submitted to the workshop. As the main

1http://lingo.stanford.edu/
2http://www.csd.abdn.ac.uk/research/babytalk/
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Corpus num texts num ref (*) text size main NLG challenges
Weather statements 3000 300 1-2 sentences content det, lex choice, aggregation
Statistical summaries 1000 100 paragraph above plus surface realisation
Nurses’ reports 200 50 several paras above plus text structuring/layout

(*) In addition to the main corpus, we will also gather texts which will be used as reference texts for
corpus-based evaluations; ‘num ref’ is the number of such texts. These texts will not be released.

Table 1: Planned GENEVAL data sets.

purpose of this whole exercise is to see how well
different evaluation techniques correlate with each
other, we plan to carry out a range of different
evaluations, including the following.

Corpus-based evaluations: We will develop
new, linguistically grounded evaluation metrics,
and compare these to existing metrics including
BLEU, NIST, and string-edit distance. We will also
investigate how sensitive different metrics are to
size and make-up of the reference corpus.

Human-based preference judgements: We will
investigate different experimental designs and
methods for overcoming respondent bias (e.g.
what is known as ‘central tendency bias’, where
some respondents avoid judgements at either end
of a scale). As we showed previously (Belz and
Reiter, 2006) that there are significant inter-subject
differences in ratings, one thing we want to deter-
mine is how many subjects are needed to get reli-
able and reproducible results.

Task performance. This depends on the do-
main, but e.g. in the nurse-report domain we
could use the methodology of (Law et al., 2005),
who showed medical professionals the texts, asked
them to make a treatment decision, and then rated
the correctness of the suggested treatments.

As well as recommendations about the appro-
priateness of existing evaluation techniques, we
hope the above experiments will allow us to sug-
gest new evaluation techniques for NLG.

4 Next Steps

At this point, we encourage NLG researchers to
give us their views regarding our plans for the or-
ganisation of GENEVAL, the data and evaluation
methods we are planning to use, to suggest addi-
tional data sets or evaluation techniques, and espe-
cially to let us know whether they would be inter-
ested in participating.

If our proposal is successful, we hope that the
project will start in summer 2007, with the first
data set released in late 2007 and the first work-

shop in summer 2008. ELRA/ELDA have also al-
ready agreed to help us with this work, contribut-
ing human and data resources.
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