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Abstract

In this paper we propose two metrics to be
used in various fields of computational lin-
guistics area. Our construction is based on
the supposition that in most of the natural
languages the most important information
is carried by the first part of the unit. We
introduce total rank distance and scaled to-
tal rank distance, we prove that they are
metrics and investigate their max and ex-
pected values. Finally, a short application
is presented: we investigate the similarity
of Romance languages by computing the
scaled total rank distance between the di-
gram rankings of each language.

1 Introduction

Decision taking processes are common and fre-
quent tasks for most of us in our daily life.
The ideal case would be that when the decisions
can be taken deterministically, based on some
clear, quantifiable and unambiguous parameters
and classifiers. However, there are many cases
when we decide based on subjective or sensor-
ial criteria (e.g. perceptions), but which prove to
function well. The domains in which decisions are
taken based on perceptions vary a lot: the quali-
tative evaluation of services, management, finan-
cial predictions, sociology, information/intelligent
systems, etc (Zadeh and Kacprzyk, 1999).

When people are asked to approximate the
height of some individual, they prefer to use terms
like: very tall, rather tall, tall enough, short, etc.
We can expect the same linguistic variable to have
a different metrical correspondence according to
the community to which the individual belongs
(i.e. an individual of 170 cm can be considered

short by the Australian soldiers and tall by the Es-
kimos). Similar situations also arise when people
are asked to hierarchically order a list of objects.

For example, we find it easy to make the top of
the best five novels that we read, since number one
is the novel that we like best and so on, rather than
to say that we liked in the proportion of 40% the
novel on the first position, 20 % the novel on the
second place and so on. The same thing is happen-
ing when we try to talk about the style of a certain
author: it is easier to say that the author x is closer
to y than z, then to quantify the distance between
their styles. In both cases we operate with a ”hid-
den variable” and a ”hidden metric”.

Especially when working with perceptions, but
not only, we face the situation to operate with
strings of objects where the essential information
is not given by the numerical value of some para-
meter of each object, but by the position the object
occupies in the strings (according to a natural hier-
archical order, in which on the first place we find
the most important element, on the second place
the next one and on the last position the least im-
portant element).

As in the case of perceptions calculus, in most
of the natural languages, the most important infor-
mation is also carried by the first part of the unit
(Marcus, 1974). Cf. M. Dinu (1997), it is advis-
able that the essential elements of a message to be
situated in the first part of the utterance, thus hav-
ing the best chances to be memorized1 (see Table
1).

Based on the remark that in most of the natural
1On the contrary, M. Dinu notices that at the other end, we

find the wooden language from the communist period, text
that was not meant to inform, but to confuse the receiver with
an incantation empty of content, and that used the reversed
process: to place the important information at the end of very
long phrases that started with irrelevant information
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The length Memorized words (%)
of the phrase all first half second half

12 100 % 100 % 100 %
13 90 % 95 % 85 %
17 70 % 90% 50%
24 50 % 70 % 30 %
40 30 % 50 % 10 %

Table 1: The percentage of memorized words from
phrases

languages the most important information is car-
ried out by the first part of the unit, in this paper
we introduce two metrics: total rank distance and
scaled total rank distance.

Some preliminary and motivations are given in
Section 2. In Section 3 we introduce total rank dis-
tance; we prove that it is a metric (Section 3.1), we
investigate its max and expected values (Section
3.2) and its behavior regarding the median ranking
problem (Section 3.3). An extension for strings is
proposed in Section 4. Scaled total rank distance
is introduced in Section 4, where we prove that it
is a metric and we investigate its max and expected
values. In Section 6 a short application is pre-
sented: we investigate the similarity of Romance
languages by computing the scaled total rank dis-
tance between the digram rankings of each lan-
guage. Section 7 is reserved to conclusions, while
in Section 8 we give a mathematically addendum
where we present the proofs of the statements.

2 Rank distance

By analogy to computing with words, natural lan-
guage and genomics, we can say that if the differ-
ences between two strings are at the top (i.e., in
essential points), the distance has to have a bigger
value then when the differences are at the bottom
of the strings.

On the other hand, many of the similarity mea-
sures used today (edit distance, Hamming distance
etc.) do not take into account the natural tendency
of the objects to place the most important informa-
tion in the first part of the message.

This was the motivation we had in mind when
we proposed Rank distance (Dinu, 2003) as an al-
ternative similarity measure in computational lin-
guistics. This distance had already been suc-
cessfully used in computational linguistics, in
such problems as the similarity of Romance lan-
guages (Dinu and Dinu, 2005), or in bioinformat-

ics (in DNA sequence comparision problem, Dinu
and Sgarro).

2.1 Preliminaries and definitions

To measure the distance between two strings, we
use the following strategy: we scan (from left to
right) both strings and for each letter from the first
string we count the number of elements between
its position in first string and the position of its
first occurrence in the second string. We sum these
scores for all elements and obtain the rank dis-
tance. Clearly, the rank distance gives a score zero
only to letters which are in the same position in
both strings, as Hamming distance does (we recall
that Hamming distance is the number of positions
where two strings of the same length differ).

On the other hand, the reduced sensitivity of
the rank distance w.r.t. deletions and insertions
is of paramount importance, since it allows us to
make use of ad hoc extensions to arbitrary strings,
such as its low computational complexity is not
affected. This is not the case for the extensions
of the Hamming distance, mathematically optimal
but computationally heavy, which lead to the edit-
distance, or Levenshtein distance, and which are at
the base of the standard alignment principle. So,
rank distance sides with Hamming distance rather
than Levenshtein distance as far as computational
complexity is concerned: the fact that in the Ham-
ming and in the rank case the median string prob-
lem is tractable (Dinu and Manea), while in the
edit case it is is NP-hard (Higuera and Casacu-
berta, 2000), is a very significant indicator.

The rank distance is an ordinal distance tightly
related to the so-called Spearman’s footrule (Di-
aconis and Graham, 1977) 2, which has long been
used in non-parametric statistics. Unlike other or-
dinal distances, the Spearman’s footrule is linear
in n, and so very easy to compute. Its average
value is at two-thirds of the way to the maximum
value (both are quadratics in n); this is because,
in a way, the Spearman footrule becomes rather
”undiscriminating” for highly different orderings.
Rank distance has the same drawbacks and the
same advantages of Spearman’s foootrule. As for
”classical” ordinal distances for integers, with av-
erages values, maximal values, etc., the reader is

2Both Spearman’s footrules and binary Hamming dis-
tances are a special case of a well-known metric distance
called sometimes taxi distance, which is known to be equiv-
alent to the usual Euclidian distance. Computationally, taxi
distance is obviously linear.
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referred to the basic work (Diaconis and Graham,
1977).

Let us go back to strings. Let us choose a fi-
nite alphabet, say {N, V,A, O} (Noun, Verb, Ad-
jective, Object) and two strings on that alphabet,
which for the moment will be constrained to be a
permutation of each other. E.g. take two strings
of length 6: NNV AOO and V OANON ; put
indexes for the occurrences of repeated letters in
increasing order to obtain N1N2V1A1O1O2 and
V1O1A1N1O2N2. Now, proceed as follows: in
the first sequence N1 is in position 1, while it is in
position 4 in the second sequence, and so the dif-
ference is 3; compute the difference in positions
for all letters and sum them. In this case the dif-
ferences are 3, 4, 2, 1, 3, 1 and so the distance is
14. Even if the computation of the rank distance
as based directly on its definition may appear to
be quadratic, in (Dinu and Sgarro) two algorithms
which take it back to linear complexity are exhibit.

In computational linguistics the rank distance
for strings without repetitions had been enough. In
a way, indexing converts a sequence with repeti-
tions into a sequence without repetitions, in which
the k occurrence of a letter a are replaced by sin-
gle occurrences of the k indexed letters a1, a2, . . .,
ak. Let u = x1x2 . . . xn and v = y1y2 . . . ym be
two strings of lengths n and m, respectively. For
an element xi ∈ u we define its order or rank by
ord(xi|u) = n+1−i: we stress that the rank of xi

is its position in the string, counted from the right
to the left, after indexing, so that for example the
second O in the string V OANON has rank 2.

Note that some (indexed) occurrences appear in
both strings, while some other are unmatched, i.e.
they appear only in one of the two strings. In de-
finition (1) the last two summations refer to these
unmatched occurrences. More precisely, the first
summation on x ∈ u ∩ v refers to occurrences x
which are common to both strings u and v, the sec-
ond summation on x ∈ u \ v refers to occurrences
x which appear in u but not in v, while the third
summation on x ∈ v \ u refers to occurrences x
which appear in v but not in u.

Definition 1 The rank distance between two
strings without repetitions u and v is given by:

∆(u, v) =
∑

x∈u∩v
|ord(x|u)− ord(x|v)|+

+
∑

x∈u\v
ord(x|u) +

∑
x∈v\u

ord(x|v) (1)

Example 1 1. Let u = abcde and v = beaf be

two strings without repetitions. ∆(u, v) =
|ord(a|u) − ord(a|v)| + |ord(b|u) −
ord(b|v)| + |ord(e|u) − ord(e|v)| +
ord(c|u) + ord(d|u) + ord(f |v) =
3 + 0 + 2 + 3 + 2 + 1 = 11.

2. Let w1 = abbab and w2 = abbbac be two
strings with repetitions. Their corresponding
indexed strings will be: w1 = a1b1b2a2b3

and w2 = a1b1b2b3a2c1, respectively. So,
∆(w1, w2) = ∆(w1, w2) = 8.

Remark 1 The ad hoc nature of the rank distance
resides in the last two summations in (1), where
one compensates for unmatched letters, i.e. in-
dexed letters which appear only in one of the two
strings.

Deletions and insertions are less worrying in the
rank case rather than in the Hamming case: if one
incorrectly moves a symbol by, say, one position,
the Hamming distance loses any track of it, but
rank distance does not, and the mistake is quite
light. So, generalizations in the spirit of the edit
distance are unavoidable in the Hamming case,
even if they are computationally very demanding,
while in the rank case we may think of ad hoc
ways-out, which are computationally convenient.

3 Total Rank Distance

We remind that one of the goals of introducing
rank distance was to obtain a tool for measuring
the distance between two strings which is more
sensitive to the differences encountered in the be-
ginning of the strings than in the ending.

Rank distance satisfies in a good measure the
upper requirement (for example it penalizes more
heavily unmatched letters in the initial part of
strings), but some black points are yet remaining.
One of them is that rank distance is invariant to the
transpositions on a given length.

The following example is eloquent:
Example 2 1. Let a = (1, 2, 3, 4, 5), b =

(2, 1, 3, 4, 5), c = (1, 2, 4, 3, 5) and d =
(1, 2, 3, 5, 4) be four permutations. Rank dis-
tance between a and each of b, c or d is the
same, 2.

2. The same is happening with
a = (1, 2, 3, 4, 5, 6, 7, 8) and
b = (3, 2, 1, 4, 5, 6, 7, 8), c =
(1, 4, 3, 2, 5, 6, 7, 8), or d =
(1, 2, 3, 4, 5, 8, 7, 6) (here rank distance
is equal to 4).
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In the following we will repair this inconve-
nient, by introducing the Total Rank Distance, a
measure which gives us a more comprehensive in-
formation (compared to rank distance) about the
two strings which we compare.

Since in many situations occurred in computa-
tional linguistics, the similarity for strings with-
out repetitions had been enough, in the following
we introduce first a metric between rankings3 and
then we generalize it to strings.

3.1 Total rank distance on permutations
Let A and B be two rankings over the same uni-
verse U , having the same length, n. Without loss
of generality, we suppose that U = {1, 2, . . . , m}.

For each 1 ≤ i ≤ n we define the function δ by:

δ(i)
def
= ∆(Ai, Bi). (2)

where Ai and Bi are the partial rankings of length
i obtained from the initial rankings by deleting the
elements below position i (i.e. the top i rankings).

Definition 2 Let A and B be two rankings with
the same length over the same universe, U . The
Total Rank Distance between A and B is given by:

D(A,B) =
n∑

i=1

δ(i) =
n∑

i=1

∆(Ai, Bi).

Example 3 1. Let a, b, c and d be the four per-
mutations from Example 2, item 1. The total
rank distance between a and each of b, c, d
is: D(a, b) = 10, D(a, c) = 6, D(a, d) = 4.

2. The visible differences are also in the item 2
of the upper example if we apply total rank
distance: D(a, b) = 30, D(a, c) = 28,
D(a, d) = 10.

3A ranking is an ordered list of objects. Every ranking
can be considered as being produced by applying an order-
ing criterion to a given set of objects. More formally, let U
be a finite set of objects, called the universe of objects. We
assume, without loss of generality, that U = {1, 2, . . . , |U |}
(where by |U | we denote the cardinality of U ). A ranking
over U is an ordered list: τ = (x1 > x2 > . . . > xd),
where {x1, . . . , xd} ⊆ U , and > is a strict ordering rela-
tion on {x1, . . . , xd}, (an ordering criterion. It is important
to point the fact that xi 6= xj if i 6= j. For a given object
i ∈ U present in τ , τ(i) represents the position (or rank) of i
in τ . If the ranking τ contains all the elements of U , than it is
called a full ranking. It is obvious that all full rankings repre-
sent all total orderings of U (the same as the permutations of
U ). However, there are situations when some objects cannot
be ranked by a given criterion: the ranking τ contains only
a subset of elements from the unverse U . Then, τ is called
partial ranking. We denote the set of elements in the list τ
with the same symbol as the list.

The following theorem states that our terminol-
ogy total rank distance is an adequate one:

Theorem 1 Total rank distance is a metric.

Proof:
It is easy to see that D(A,B) = D(B,A).
We prove that D(A,B) = 0 iff A = B. If

D(A, B) = 0, then ∆(Ai, Bi) = 0 for each
1 ≤ i ≤ n (since ∆ is a metric, so a nonnega-
tive number), so ∆(An, Bn) = ∆(A,B) = 0, so
A = B.

For the triangle inequality we have: D(A, B) +

D(B, C) =
n∑

i=1
∆(Ai, Bi) +

n∑
i=1

∆(Bi, Ci)

=
n∑

i=1
(∆(Ai, Bi) + ∆(Bi, Ci))

≥
n∑

i=1
∆(Ai, Ci) = D(A,C). ut

3.2 Expected and max values of the total
rank distance

Let Sn be the group of all permutations of length
n and let A, B be two permutations from Sn. We
investigate the max total rank distance between A
and B and the average total rank distance between
A and B.

Proposition 1 Under the upper hypothesis, the
expected value of the total rank distance between
A and B is:

E(D) =
(n2 − 1)(n + 2)

6
.

Proposition 2 Under the same hypothesis as in
the previous proposition, the max total rank dis-
tance between two permutations from Sn is:

max
A,B∈Sn

D(A,B) =
n2(n + 2)

4

and it is achieved when a permutation is the re-
verse of the other one.

3.3 On the aggregation problem via total
rank distance

Rank aggregation is the problem of combining
several ranked lists of objects in a robust way to
produce a single ranking of objects.

One of the most natural way to solve the aggre-
gation problem is to determine the median (some-
times called geometric median) of ranked lists via
a particular measure.

Given a multiset T of ranked lists, a median of
T is a list L such that
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d(L, T ) = min
X

d(X,T ),

where d is a metric and X is a ranked list over
the universe of T .

Depending on the choice of measure d, the up-
per problem may contain many unpleasant sur-
prises. One of them is that computing the median
set is NP-complete for some usual measure (in-
cluding edit-distance or Kendal distance) even for
binary universe.

We will show in the following that the median
aggregation problem via Total rank distance can
be computed in polynomial time.

Theorem 2 Given a multiset T of full ranked lists
over the same universe, the median of T via total
rank distance can be computed in polynomial time,
namely proportional to the time to find a minimum
cost perfect matching in a bipartite graph.

Proof: Without loss of generality, we suppose
that the universe of lists is U = {1, 2, . . . , n}.
We define a weighted complete bipartite graph
G = (N, P, W ) as follows. The first set of nodes
N = {1, 2, . . . , n} denotes the set of elements to
be ranked in a full list. The second set of nodes
P = {1, 2, . . . , n} denotes the n available posi-
tions. The weight W (i, j) is the contribution, via
total rank distance, of node i to be ranked on place
j in a certain ranking.

We can give a close formula for computing the
weights W (i, j) and this ends the proof, because
we reduced the problem to the solving of the mini-
mum cost maximum matching problem on the up-
per bipartite graph ((Fukuda and Matsui, 1994),
(Fukuda and Matsui, 1992), (Dinu and Manea)).

ut

4 An extension to strings of total rank
distance

We can extend total rank distance to strings.
Similar to the extensions of rank distance to

strings, we index each letter in a word with the
number of its previous occurrences.

First, we extent the total rank distance to rank-
ings with unequal lengths as it follows:

Definition 3 Let u and v be two rankings of length
|u| and |v|, respectively. We can assume that |u| <
|v|. The total rank distance between u and v is

defined by:

D(u, v) =
|u|∑

i=1

∆(vi, ui) +
|v|∑

i=|u|+1

∆(vi, u).

Theorem 3 The total rank distance between two
rankings with unequal lengths is a metric.

To extent the total rank distance to strings,
firstly we index both strings and than we apply
the upper definition to the newly obtained strings
(which are now rankings).

Example 4 Let u = aabca, v = aab and w =
bca be three strings. We obtained the following
results:

1. Rank distance: ∆(u, v) =
∆(a1a2b1c1a3, a1a2b1) = 9 and
∆(u,w) = ∆(a1a2b1c1a3, b1c2a1) = 9;

2. Total rank distance: D(u, v) =
D(a1a2b1c1a3, a1a2b1) = 13 and
D(u,w) = D(a1a2b1c1a3, b1c2a1) = 33.

What happens in item 1 is a consequence of a
general property of rank distance which states that
∆(uv, u) = ∆(uv, v), for any nonempty strings u
and v.

Total rank distance repairs this fact, as we can
see from item 2; we observe that the total rank
distance is more sensitive than rank distance to the
differences from the first part of strings.

5 Scaled Total Rank Distance

We use the same ideas from Total rank distance,
but we normalize each partial distance. To do this,
we divide each rank distance between two partial
rankings of length i by i(i + 1), which is the max-
imal distance between two rankings of length i
(it corresponds to the case when the two rankings
have no common elements).

Definition 4 The Scaled Total Rank distance be-
tween two rankings A and B of length n is:

S(A,B) =
n∑

i=1

∆(Ai, Bi)
i(i + 1)

.

Theorem 4 Scaled total rank distance is a metric.

Proof: The proof is similar to the one from the
total rank distance. ut
Remark 2 It is easy to see that S(A,B) ≤
H(A,B), where H(A,B) is the Hamming dis-
tance.
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Example 5 Let A = (a, b, c, d, e), B =
(b, a, c, d, e) and C = (a, b, d, e, c) be three per-
mutations. We have the following values for ∆, D
and S, respectively:

1. Rank distance: ∆(A,B) = 2, ∆(A,C) = 4, so
∆(A,B) < ∆(A,C).

2. Total Rank Distance: D(A,B) = 2 + 2 + 2 +
2 + 2 = 10, D(A,C) = 0 + 0 + 2 + 4 + 4 = 10,
so D(A,B) = D(A,C).

3. Scaled Total Rank Distance: S(A,B) = 2
2 + 2

6 +
2
12 + 2

20 + 2
30 = 5

3 , S(A,C) = 0
2 + 0

6 + 2
12 + 4

20 +
4
30 = 1

2 , so S(A,B) > S(A,C).

It is not hard to see that S(A,B) ≤ n, so we can
normalize scaled total rank distance by dividing it
to n.

We obtained the following two values for max
and average values of scaled total rank distance:

Proposition 3
1. If n →∞, then max

A,B∈Sn

1
nS(A,B) = 7

2 − 4 ln 2.

2. The average value of scaled total rank distance
is: E(S) = 2(n−1)

3 . When n →∞, E(S)
n → 2

3 .

Remark 3 It is a nice exercise to show that 7
2 −

4 ln 2 ≤ 1.

Proof: 7
2 − 4 ln 2 ≤ 1 iff 1 ≤ 4(ln 4 − 1).

But 4(ln 4 − 1) > 4(ln 4 − ln 3). From La-
grange Theorem, there is 3 < ξ < 4 such that
ln 4 − ln 3 = 1

ξ , so 4(ln 4 − ln 3) = 4
ξ > 1, so

4(ln 4− 1) > 4(ln 4− ln 3) > 1. ut

6 Application

We present here a short experiment regarding the
similarity of Romance languages. The work cor-
pus is formed by the representative vocabularies of
the following six Romance languages: Romanian,
Italian, Spanish, Catalan, French and Portuguese
languages (Sala, 1988). We extracted the digrams
from each vocabularies and then we constructed a
ranking of digrams for each language: on the first
position we put the most frequent digram of the
vocabulary, on the second position the next fre-
quent digram, and so on.

We apply the scaled total rank distance between
all pairs of such classifications and we obtain a se-
ries of results which are presented in Table 2.

Some remarks are immediate:

• If we analyze the Table 2, we observe
that every time Romanian finds itself at the
biggest distance from the other languages.

Table 2: Scaled total rank distances in Romance
languages

Ro It Sp Ca Po Fr
Ro 0 0.36 0.37 0.39 0.41 0.36
It 0.36 0 0.21 0.24 0.26 0.30
Sp 0.37 0.21 0 0.20 0.18 0.27
Ca 0.39 0.24 0.20 0 0.20 0.28
Po 0.41 0.26 0.18 0.20 0 0.30
Fr 0.36 0.30 0.27 0.28 0.30 0

This fact proves that the evolution of Ro-
manian in a distanced space from the Latin
nucleus has lead to bigger differences be-
tween Romanian and the rest of the Romance
languages, then the differences between any
other two Romance languages.

• The closest two languages are Portuguese
and Spanish.

• It is also remarkable that Catalan is equally
distanced from Portuguese and Spanish.

The upper remarks are in concordance with the
conclusions of (Dinu and Dinu, 2005) obtained
from the analise of the syllabic similarity of the
Romance languages, where the rank distance was
used to compare the rankings of syllables, based
on the frequency of syllables for each language.

During the time, different comparing methods
for natural languages were proposed. We mention
here the work of Hoppenbrouwers and Hoppen-
brouwers (2001). Their approach was the follow-
ing: using the letter frequency method for each
language variety the unigram frequencies of let-
ters are found on the basis of a corpus. The dis-
tance between two languages is equal to the sum
of the differences between the corresponding letter
frequencies. They verify that this approach cor-
rectly shows that the distance between Afrikaans
and Dutch is smaller than the distance between
Afrikaans and the Samoan language.

7 Conclusions

In this paper we provided some low-complexity
metrics to be used in various subfields of computa-
tional linguistics: total rank distance and scaled to-
tal rank distance. These metrics are inspired from
the natural tendency of objects to put the main in-
formation in the first part of the units. Our ana-
lyze was especially concentrated on the mathemat-
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ical and computational properties of these metrics:
we showed that total rank distance and scaled to-
tal rank distance are metrics, computed their ex-
pected and max values on the permutations group
and showed that total rank distance can be used in
classification problem via a polynomial algorithm.

8 Mathematical addendum

This addendum may be skipped by readers who
are not interested in mathematical technicalities;
below some statements are sketched and other are
unproved, but then the proofs are quite straightfor-
ward.
Proposition 1:

Proof: It is not hard to see that D(A,Sn) =
D(B, Sn) for any two permutation A,B ∈ Sn.
So, the expected value can be computed by com-
puting first D(A,Sn) for a convenable permuta-
tion and then by dividing the upper sum to n!. If
we choose A = en (i.e. the identical permutation
of the group Sn), then the expected value is:

E(D) =
1
n!

∑

σ∈Sn

D(en, σ).

The upper sum can be easily computed if we take
into account the fact that each number 1, 2, . . . , n
appears the same number of times (i.e. (n-1)!) on
the ranks 1, 2, . . . n. So, we obtain that the ex-
pected value is equal to:

E(D) =
(n2 − 1)(n + 2)

6
.

ut
Proposition 2:

Proof: W.l.g. we can suppose that first permu-
tation is the identical one, i.e. en (otherwise we
will relabelled it). To compute the max value, the
following preliminary results must be proven (we
skipped the proofs).

We say that an integer from σ is low if its posi-
tion is ≤ n

2 and it is high if its position is > n
2 .

Let σ ∈ Sn be a permutation. We construct the
set Θσ as following:

Θσ = {τ ∈ Sn | ∀x ∈ {1 . . . n}, x is low in τ
iff x is high in σ and viceversa}

Result 1 For each σ ∈ Sn and every two permu-
tation τ, π in Θσ we have: D(σ, τ) = D(σ, π).

Result 2 For each σ ∈ Sn and every two permu-
tation τ, π such that π ∈ Θσ and τ /∈ Θσ, we
have: D(σ, τ) < D(σ, π).

To prove Result 2 we use the following Lemma:

Lemma 1 (Dinu, 2003) If a > b, then the func-
tion f(x) = |x − b| − |x − a| is an increasing
one.

Result 3 Let σ ∈ Sn be a permutation. The max-
imum total rank distance is reached by the per-
mutation τ where ord(x|τ) = n + 1 − ord(x|σ),
∀x ∈ V (Pn). Under this conditions the maximum
total rank distance is:

max
A,B∈Sn

D(A,B) =
n2(n + 2)

4
(3)

In other words, we obtained a more general re-
sult:

Theorem 5 For a given permutation σ, the maxi-
mum rank distance is achieved by all permutations
from Θσ and it is equal to (3).

ut
Proposition 3:

Proof:

1. Similar to Proposition 2, given a permutation
σ ∈ Sn, the max value is reached by its in-
vert. So, to give a close formula for the max
value it is enough to compute S(en, e−1

n ). To
make easier our life, we can suppose that
n = 2k.

S(en, e−1
n ) = k +

∑k
i=1

2i2+(k−i)(k−i+1)
(k+i)(k+i+1) =

. . . = 4k − 2k2

2k+1 − 2(4k + 1)(
∑k

i=1
1

k+i −
k

2k+1);

When k → ∞,
∑k

i=1
1

k+i → ln 2, so
S(en,e−1

n )
n = 7

2 − 4 ln 2 ut

2. To compute the expected value we use the
same motivation as in expected total rank dis-
tance. The rest is obvious.
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