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Abstract 2 Distance Measures

In pursuing such a similarity-based approach to
guestion-answering, the key decisions to be made
are the representations of the questions and an-
swers, and relatedly, distance measures between
them.

We will primarily be concerned with measures
which refer to a linguistic structure assigned to a
word sequence — variants wée-distancebut we
will also considerstring-distance

The results of experiments on the appli-
cation of a variety of distance measures
to a question-answering task are reported.
Variants of tree-distance are considered,
including whole-vs-sub tree, node weight-
ing, wild cards and lexical emphasis. We
derive string-distance as a special case
of tree-distance and show that a particu-
lar parameterisation of tree-distance out-

performs the string-distance measure. 21 Tree Measures

1 Introduction Following (Zhang and Shasha, 1989), one can ar-
rive attree-distancdn the following way. Given
This paper studies the deployment in a quessource and target ordered, labelled tre§sand
tion answering task of methods which assess th&, consider the se#/(S,T) of all 1-to-1 par-
similarity of question and answer representationstial maps, s, from S into 7', which arehomo-

Given gquestions such as morphisns preserving left-to-right order and an-
Q1 whatdoes mallocreturn ? _ cestry. Let the alignment ¢/, be the enlarg-
Q2 What year did poet Emily Dickinson die? ment of the mapr with pairs (Si7 )\) for nodes

and a collection of sentences (eg. a computer mary: £ 40(0) and(A, T;) for nodesT; ¢ ran(o).
ual, a corpus of newspaper articles), the task is t&etD definedeletioncosts for the S;, A), 7 inser-
retrieve the sentences that answer the question, e pn costs for the(/\f Tj), andR replacemen_tosts

Al the malloc function returns a null pointer . r th.e (Si’Tj) which represent nodes with npn-
A2 In 1886, poet Emily Dickinson died in Amherst , Masddentical labels. Then a total cost for the align-
ment, C(o’) can be defined as the sum of these
components costs, and thee distance can then

e defined as the cost of the least-cost map:

One philosophy for finding answers to ques-
tions would be to convert questions and candidat
answers into logical forms and to compute answer-
hood by apply theorem-proving methods. Another
philosophy is to assume that the answerssara-
lar to the questions, where similarity might be de-
fined in many different ways. While not all an-
swers to all questions will be similar, there’'s an
intuition that most questions can be answered in  if 75, = ¢(S;,) andT}, = o(S.,) then (i) S;, is to the

1

a way which shares quite a bit with the question eft of S iff 7T, is to the left of7;, and (ii) i, is a descen-
dant of S;, iff T}, is a descendant df;,, with descendency

a.nd. th"?‘t accordingly with a large enough COTPUS, @nderstood as the transitive closure of the daugher-magher
similarity-based approach could be fruitful. lation.

A(S,T) = min({C(c") | o € H(S,T)})

Forany 3trees[!, T2, T3, the triangle inequal-
ity holds A(T", T3) < A(T',T?) + A(T?,T3).
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Briefly the argument is as follows. Given map-
pingse € H(T',T?),andr € H(T?,T3), 001 €
H(T',T3)?, so(o o 7)’ is an alignment between
T and T3, and A(TY, T3) < C((o o 7)"). The
cost of the composition is less than the sum of the
costs of the composed mapss insertions and re-
placements contribute only if they fall dom (1),

7's deletions and replacements contribute only if
they act orvan(o).

From this basic definition, one can depart in
a number of directions. First of all, there is a
part-vswhole dimension of variation. Where
A(S,T) gives the cost of aligning thevhole

if (d is head or complement)
assign weight =L /rank,
Str(rank,d)}

else if (d is adjunct}
assign weight =1 /(5 x rank),
Str(5 x rank, d)}

else{
assign weight =1/(2 x rank)
Str(2 x rank,d) }

LEX is a function which can be composed
with S7T'R, and scales up the weights of leaf
nodes by a factor of 3.

source trees with the targetl’, one can consider Target wild cards T'(x): this is a function which

variants where one minimises over a setsab
parts ofS. This is equivalent to letting all but the
nodes belonging to the chosen sub-part to delete
at zero cost Let §(S,T) be thesub-tree dis-
tance. Le® (S, T'), be thesub-traversal distance,
in which sub-traversals of the left-to-right, post-
order traversal ob are considered. As fal\, the
triangle inequality holds fob andd — one needs
to extend the notion of alignment with a set of free
deletions. UnlikeA, § and$ are not symmetric.
Allof A, § andd are implicitly parametrised by
the cost functionsD, Z andR. In the work below
4 other parameters are explored

Nodeweighting W: this is a function which
assigns a real-number weight to each each
node. The cost function then refers to the
weights. In experiments reported below,
Du((Si,w),A) = w, (A, (Tj,w)) = w,
Ru((Siyws), (Tj,wr)) = maz(ws,wy), if
S; andT; have unequal labels. The experi-

Source self-effacers S/\:

classifies certain target sub-trees \agd-
card. If sourcesS; is mapped to targéf;, and
T; is the root of a wild-card tree, all nodes
within the S; sub-tree can be deleted for O
cost, and all those within th€; sub-tree can
be inserted for O cost. A wild cardp tree
might can be put in the position of the gap in
wh-questions, allowing for examplehat is
memory allocationto closely match any sen-
tences withmemory allocationas their ob-
ject, no matter what their subject — see Fig-
ure 3.

this is a function
which classifies source sub-trees sslf-
effacers  Such trees can be deleted in
their entirety for zero cost. IfS/\ clas-
sifies all source sub-trees as self-effacing,
then A(S/X) will coincide with notion of
‘tree-distance with Cut’ given in (Zhang and
Shasha, 1989).

ments reported below use 2 weighting func-Target self-inserters A/7: this is a function

tion STR, andLEX. STR assign weights
according to the syntactic structure, via a
classification of nodes as heads vs. comple-
ments vs. adjuncts vs. the rest, with es-
sentially adjuncts given 1/5th the weights of

which classifies certain target sub-trees as
self-inserters. Such trees can be inserted in
their entirety for zero cost. A candidate might
be optional adjuncts.

heads and complements, and other daughters2 Sequence Measures

r € TiVz € Ts((x,2) € oo iff Iy € To((z,y) €

1/2, via essentially the following top-down The tree-distance measures work with an elabora-
algorithm: tion of the original questions and answers. (Lev-
enshtein, 1966) defined the 1 dimensional precur-
sor of tree distance, which works directly on the
2 word sequences for the answer and question.
For two sequencess, t, and vertical (or hori-
zontal) tree encodingktree(s) andl_tree(t), if

Str(node, rank) :
assign weight /rank to node
for each daughted

o,(y,2) €7)
3Note that if one minimises also over sub-parts of the tar-

“Thus a target wild-card is somewhat like a target self-

get, you do not get an interesting notion, as the minimum willeffacer, but one which also licenses the classification of a

inevitably involve at most one node of source and target.
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s structural weightingS7 R has been used: size of

a node reflects the weight. 4 of the nodes in the
np v source represent the use of an auxiliary verb, and
receive low weight, changing the optimum match
to one covering the whole source tree. There is
some price paid in matching the dissimilar subject

process

nps.

sub tree matching dist=3.6

Figure 1: Sub tree example

we definell(s,t), asA(l_tree(s),l_tree(t)), and
m(s,t), asd(l_tree(s),l tree(t)), thenIl and 7
coincide with the standarsbquence edit distance

andsub-sequence edit distance. As special cases

of A andé, IT and~ inherit the triangle inequality e €mprocan
property. _ _
To illustrate some of the tree-distance defini-  Figure 2: Structurally weighted example

tions, in the following example, & distance of _ _ o

3 between 2 trees is obtained, assuming unit costs F19Ure 3 continues the example, but this time
for deletions (shown in red and double outline), in-IN the subject position there is a sub-tree which is
sertions (shown in green and double outline), ang!2ssified as a wild-cardp tree, and it matches at
substitutions (shown in blue and linked with an ar-O COSt With the subject np in the source tree.

row):
@ whole tree matching dist=3.0

Note also in this picture that nodes that are mapped
without a relabelling are shown at the same hori-
zontal level, with no linking arrow.

Figure 1 shows a sub-tree example)— The
source tree nodes which do not belong to the cho-
sen sub-tree are shown in grey. The lowest vp sub-
tree in the source is selected, and mapped to the
vp in the target. The remaining target nodes must Figure 3: Wild-card example
be inserted, but this costs less than a match which
starts higher and necessitates some deletions andThe basis of the algorithm used to calculdte
substitutions. is thezhangShasha algorithifzhang and Shasha,

Figure 2 shows a sub-tree example where thd989): the Appendix summarises it. The im-
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plementation is based on code implementifig binary-case to the alignment-based, difference-

(Fontana et al., 2004), adapting it to allowing forcounting perspective of the edit-distances: di-

the § and 4 variants andl’(x), S/, andA/T pa-  viding I1*(a,b), the symmetric difference, by

rameters, and to generate the human-readable dig|-°|b*|> does not give a measure with maxi-

plays of the alignments (such as seen in figures 1,&hum value 1 for the disjoint case, and does not

and 3). give the reverse of a ranking by Cosine similaFity.
Below we shall usé to denote the Cosine dis-

tance.

Assessing answer/question similarity by variants

of tree distance or sequence edit-distance, meards T he Question Answering Tasks

Elt]r?t dlstancle will not be \;]vp?-order |crj1varc|jant_. For a given representation(parse trees, word se-
gretare as?imeasurltlasubvl Ic baredvllqor -oraer Incjuences etc.), and distance measdyreve shall
variant, SOmetimes Calletken-Daseneasures. — yqqarically take a Question Answering by Dis-

These measures are usually couched weetor tance (QAD) task to be given by a set of queries,

representation of questions and answers, wher& and for each queny, a corpus of potential an-

vector dimensions are words from (some cho-SWer sentence€OR,,. For each: € COR,, the

sen enumeration) of words (see (Salton and Les‘%ystem determined(r(a), 7(¢)), the distance be-

1_968))', In the §|mplest case the values on eacRNeen the representationséndg, then uses this

dimensions are ifi0, 1}, denoting presence or ab- to sortCOR, into A,. This sorting is then evalu-
1 w

sence of a word. lie is vector product and™ 0 i the following way. Ifi, A, is thecorrect

is the set of words in a sequenaethend e b = jnqver then theorrect-answer-ranks the rank
la® N b*|, for the binary vectors representind, of . in A.:
(& q-

b*. Three well known measures based on this are
given below, both in terms vectors, and for binary
vectors, the equivalent formulation with sets:

2.3 Order invariant measures

| {a € Ay : d(r(a),r(q)) < d(r(ac),r(q))} |

Dice 2Geb)/(Ged)+ (5. D) whilst the correct-answer-cutoffs the proportion
— 2(a® N b))/ (ja®] + [b*]) of A, cut off by the correct answe :
Jaccard @'(b')/fm'b@‘)*/(b‘ o )’b) o€ A, : d(r(a), 7(@)) < d(r(ad), @)} | / | A |
= (|a a
Cosine (Geb)/(G@ead)?(beb)® Lowervalues for this connote better performance.
= (la® 0 b¥])/((|a®])*2(|6¥])°®) Another figure of merit is theeciprocal correct-
These measursimilarity. not difference. ranain answer-rank Higher values of this connote better
Y, ' ging performance.

for 1 for identical a®,b*, to O for disjoint. In

. . Lo Note the notion of answerhood is not one requir-
the binary case, Dice/Jaccard similarity can be .
: : ing answers to be the sub-sentential phrases asso-
related to the alignment-based, difference count-. . . .
. . o ciated with wh-phrases in the question. Also not
ing perspective of the edit-distances. If we de-

) . all the questions are wh-questions.
fine I1¥(a, b) as|a™ U b¥| — |a™ N b™| — the size d d

of the symmetric differencéetweens® andb® — Note also that the set of candidate answers

. . L i r he answer-to- ry distan
this can be seen as a set-based version of edit dlrg-ORq s sorted by the answer-to-query distance,

tance, which (i) considers mappings on the sets o (r(a),r(q)), not the query-to-answer distance,
words,a®, b, not the sequences b, and (ii) sets d(r(q),r(a)). The intuition is that the queries are

e . short and the answers longer, with sub-part that re-
replacement cost to infinity. A difference measure ger, P

(ranging from O for identicak®,b* to 1 for dis- alI}/rEgmzlr?;tr:z,?cnesvgfer'some of the above men-
joint) results ifl1*(a, b) is divided by|a®| + [b*| P

- .. tion istance m res on 2 examples of QAD
(resp.|a™ U b™]|) and this difference measures will tioned distance measures on 2 examples of Q

give the reverse of a ranking by Dice (resp. Jac:%1Sks has been measured:

card) similarity. GNU Library Manual QAD Task: in
The Cosine is a measure of thangle be- this caseQ is a set of 88 hand-created

tween the vectorg, E, and is not relatable in the —M
8if the vectors are normalised by their length, then you

SI1*(a, b) could be equivalently defined &si — b)|? can show|(@/|@| — b/|b|)|? reverses the Cosine ranking
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queries, andCOR,, shared by all the nal node labels are inflected forms of words, not
queries, is the sentences of the manual  base forms. For the structural weighting algo-

of the GNU C Library (| COR, |~ rithm, STR, the necessary node distinctions are
31, 000). furnished directly by the parser. For the question
The TREC 11 QAD task: In this parses, a set of transformations is applied to the

case Q was the 500 questions of the parses direcjtly given by the parser, V\{hiCh compa-
TREC11 QA track (Voorhees and Buck- rqble to therinity parser, re-orde_r .auxnlary inver-
land, 2002), whose answers are drawn sion, and place a tree in the position of a gap.
from a large corpus of newspaper arti-
cles. COR, was taken to be the sen-
tences of the top 50 from the top-1000
ranking of articles provided by TREC11 As a kind of sanity-check on the idea of the us-

4 Relating Parse Quality to Retrieval
Perfor mance

for each question|(COR, |~ 1000). ing syntactic structures in retrieving answers, we
Answer correctness was determined us-  performed some experiments in which we var-
ing the TREC11 answer regular expres- ied the sophistication of the parse trees that the
sions. parsers could produce, the expectation being that

the less sophisticated the parse, the less successful

For the tree-distance measures, 2 parsing sySgould be question-answering performance. The
tems have been used. For convenience of refefaft-hand data in Table 1 refers to various reduc-
ence, we will call the first parser, tiiénity parser.  tjons of the linguistic knowledge bases of thia-
This is a home-grown parser combining a disamity parserhin50= random removal of 56 subset,
biguating part-of-speech tagger with a bottom-Upmanual= manual removal of a subsdtat = en-
chartparser, refering to CFG-like syntax rules andjrely flat parsesgold = hand-correction of query
a subcategorisation system somewhat in a categ@arses and their correct answers). The right-hand
rial grammar style. Right-branching analyses argjata in Table 1 refers to experiments in which the
prefered and a final selection of edges from alkepertoire of moves available to the Collins parser,
available is made using a leftmost/longest selecys defined by its grammar file, was reduced to dif-
tion strategy — there is always an output regardlesgrent sized random subsets of itself.
of whether there is a single input-encompassing Figyre 4 shows the empirical cumulative den-

edge. Preterminal node labels are a combinatiogity function (ecdf) of thecorrect-answer-cutoff
of a main functor with other feature terms, but thegptained with the weighted sub-tree with wild

replacement cost functioR is set to ignore the cards measure. For each possible valuef

feature terms. _Terminal node labels are base formgprrect-answer-cutoffit plots the percentage of
of words, not inflected forms. For the structural gyeries with acorrect-answer-cutofi c.

weighting algorithm,S7R, the necessary node
distinctions are furnished directly by the parser for
vp, and by a small set of structure matching rules
for other structures (nps, pps etc). The structure
output for wh-questions are essentially deep strug-
tures, re-ordering an auxiliary inversion, and plact
ing a tree in the position of a gap.

The Collins parser (Collins, 1999Mpdel 3
variant) is a probabilistic parser, using a model of
trees as built top-down with a repertoire of moves| E
learnt from the Penn Treebank. The pretermina|l (9"
node labels are a combination of a Penn Tree==.
bank label with other I.nforma_tlo_n pgrtalnlng to the Figure 4: Success vs Cut-off for different parse settings:
head/complement/adjunct distinction, but the re-; = correct-answer-cutoffy = proportion of queries whose
placement cost functiof® is set to ignore all but correct-answer-cutofi< = (ranking by weighted sub-tree

the Penn Treebank part of the label. The termjith wild cards) (Library task)

)
0.8

0.4

"http://iwww.gnu.org What these experiments show is that the ques-
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Table 1:Distribution of Correct Cutoffacross query se® in different parse settings. Left-hand data =
GNU task, trinity parser, right-hand data = TREC11 task, ICd parser

Parsing| 1st Qu. Median Mean 3rd Qu. Parsing| 1stQu. Median Mean 3rd Qu.
flat 0.1559 0.2459 0.2612 0.392( 55 0.3157 0.6123 0.5345 0.766400
manual | 0.0215 0.2103 0.2203 0.392¢ 75 0.02946 0.1634 0.2701 0.4495
thin50 | 0.01418 0.02627 0.157 0.2930 85 0.0266 0.1227 0.2501 0.4380
full 0.00389 0.04216 0.1308 0.2198 100 0.01256 0.08306 0.2097 0.2901
gold 0.00067 0.0278 0.1087 0.1669

tion answering performance is a function of the so-been made here.
phistication of the parses that the parsers are able The sub-traversal measure, using structural

to produce. weighting, lexical emphasis, and wild-cards per-
) ) forms betterrr = 0.150) than the sub-sequence
5 Comparing Distance Measures measure rr = 0.09), which in turn performs

Table 2 gives results on the Library task, using thebetter than the basic sub-traversal measure, with-

trinity parser, for some variations of the distanceOL_Jth structural weighting, IeX|cal_emp.haS|s or
measure wild-cards (nrr = 0.076). The cosine distance,

Considering the results in 2, the best perform-e’ performed best.

ing measurerGrr = 0.27) was the sub-traversal 6 Djscussion

distance,d, assigning weights structurally using _

STR, with lexical emphasi€£EX, and treating a FOr the parsers used, you could easily have 2
gap position as anp wild card. This slightly out Sentences with completely different words, and
performs the sub-tree measute(mrr = 0.25).  Very different meanings, but which would have the

An alternative approach to discounting parts ofS&me pre-terminal syntactic structure: the preter-
the answer tree, allowing any sub-tree of the anMinal syntactic structure is not a function of the

swer the option to delete for free\(W = Str o meaning. Give'n this, it is perhaps not surpri;-
Lex,T(x) = np_gap,S/\ = V)) performs con- N9 that th_ere will be cases 'Fhat the sequence dis-
siderably worserfurr = 0.16). Presumably thisis tance easily spots as dissimilar, but which the tree
because it is too enthusiastic to assemble the queffStance measure, without any lexical emphasis,
tree from disparate parts of the answer tree. ByVill regard as quite similar, and this perhaps ex-
comparisong andd can only assembly the query p!alns why, without any lexical empha&s, the tree-
tree from parts of the answer tree that are mordlistance measure performs at similar level to, or
closely connected. worse than, the sub-sequence distance measure.
The tree-distance measures 6) using struc- With some kind of lexical emphasis in place,
tural weights, lexical emphasis and wild cardsthe tree-distance measures out-perform the sub-

(mrr = 0.27) out-perform the sub-sequence mea-S€duence measures. We can speculate as to the
sure,r (mrr = 0.197). It also out-performs the €ason for this. There are two kinds of case

cosine measure) (mrr = 0.190). But7 andd where the tree-distance measures could be ex-

either out-perform or perform at about the samd?€ctéd to spot a similarity which the sequence-
level as the tree-distance measure if the lexicafliStance measures will fail to spot. One is when
emphasis is removed (sééWW = Str, T(x) = the questllon and answer are more or Ies§ simi-
np_gap), mrr = 0.160). lar on their head words, but differ in determiners,
The tree-distance measure works better if uxiliaries and adjuncts. The sequence distance
structural weighting is usedh(rr — 0.09) than Mmeasure will pay more of a pr'ice for these'differ-
if it is not (mrr = 0.04), ences than the structurally weighted tree-distance.

The tree-distance measufevorks better with Another kind of case is when the answer supplies
wild-cards (se@d(W = Str,T(x) = np_gap) words which match a wild-card in the middle of

mrr = 0.160, than without (se@(W = Str), the query tree, as might happen for example in:

mrr = 0.090). Q: what do child processes inherit from their par-
. ent processes
Table 3 glve_s some results on the TRI_EC]']' task, 4 a child process inherits the owner and permis-
using the Collins parser. Fewer comparisons have  sions from the ancestor process
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Table 2: For different distance measures (Library task, trinity gar), distrution of correct-answer-

cutoff, mean reciprocal rankurr

cutoff

distance type 1st Qu. Median Mean | mrr

5(W = Str o Lex, T(%) = np_gap) 8.630-05 8.944-04 2.460-02 0.270
O0(W = Str o Lex, T (%) = np_gap) 9.414e-05 1.428e-03 7.133e-0D.255
m bases 1.569e-04 2.087e-03 5.181e-0D.197
0 bases 1.569e-04 8.630e-04 1.123e-02D.190
AW = Str o Lex,T(x) = np_gap,S/\ =V¥) 4.080e-04 9.352-03 5.853-02 0.160
0(W = Str,T(x) = np_gap) 3.923e-04 1.964e-02 1.162e-0D.160
o(W = Str) 5.060e-03 3.865e-02 1.303e-0D.090
0 1.324e-03 1.046e-01 1.852e-0D.040
A 8.398e-02 2.633e-01 3.531e-0D.003

Table 3:For different distance measures (TREC task, collins parser distribution of correct-answer-
cutoff and mean reciprocal ranki{rr)

cutoff
distance type 1st Qu. Median Mean | mrr
f forms 7.847e-03 2.631le-02 1.068e-p0.167
5(W = Str o Lex, T(%) = np_gap) 8.452e-03 4.898e-02 1.558e-0D1.150
m forms 2.113e-02 7.309-02 2.051e-0D.092
5 1.815e-02 1.030e-01 3.269e-01.076

The tree-distance measures will see these abese equating and discriminating advantages
similar, but the sub-sequence measure will pay avhich theoretically should accrue ﬁogactually
large price for words in the answer that match thewill do so, will depend on the accuracy of the pars-
gap position in the query. Thus one can argue thang: if there is too much bad parsing, then we will
the use of structural weighting, and wild-card treeshe equating that which we should keep apart, and
in the query analysis will tend to equate thingsdiscriminating that which we should equate.
which the sequence distance sees as dissimilar. |5 the two tasks, the relationship between the

Another possible reason that the tree-distanCgee-distance measures and the order-invariant co-
measure out-performs the sub-sequence meastife measure worked out differently. The reasons
is that it may be able to distinguish things whichyq, this are not clear at the moment. One pos-
the sequence distance will tend to treat as equivasipility is that our use of the Collins parser has
lent. A question might make the thematic role of yqt yet resulted in good enough parses, especially
some entity very clear, but use very few significaniyyestion parses — recall that the indication from
words as in: 4 was that improved parse quality will give better
retrieval performance. Also it is possible that rel-
ative to the queries in the Library task, the amount

Using tree distance will favour answer sen-Of word-order permutation between question and
tences withmalloc as the subject, such asal- answer is greater in the TREC task. This is also
loc returns a null pointer The basic problem for indicated by the fact that on the TREC task, the

the sequence distance here is that it does not hay/P-seéquence measure, falls considerably be-

much to work with and will only be able to parti- hind the cosine measuré, whereas for the Li-

tion the answer set into a small set of equivalenc@rary task they perform at similar levels.

classes. Some other researchers have also looked at
These are speculations as to why tree-distancthe use of tree-distance measures in semantically-

would out-perform sequence distance. Whetheoriented tasks. Punyakonok(2004) report work

what does malloc do ?
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using tree-distance to do question-answering osibilities.
the TREC11 data. Their work differs from that There are many possibilities to be explored in-
presented here in several ways. They take theolving adapting cost functions to enriched node
parse trees which are output by Collins parser andescriptions. Already mentioned above, is the pos-
convert them into dependency trees between thsibility to involve semantic information in the cost
leaves. They compute the distance from query tdunctions. Another avenue is introducing weight-
the answer, rather than from answer to query, usings based on corpus-derived statistics, essentially
ing essentially the variant of tree-distance that alimaking the distance comparision refer to extrin-
lows arbitrary sub-trees of the target to insert forsic factors. One open question is whether anal-
zero-cost. Presumably this directionality differ- ogously toidf, cost functions for (non-lexical)
ence is not a significant one, and with distancesiodes should depend on tree-bank frequencies.
calculated from answers to queries, this would cor- Another question needing further exploration is
respond to the variant that allows arbitrary sourcehe dependency-vs-constituency contrast. Interest-
sub-trees to delete with zero cost. The cost funcingly Punyakonok(2004) themselves speculate:
tions are parameterised to refer in the case of wild-
card replacements to (i) information derived from  each node in a tree represents only a
Named Entity recognisers so different kinds of wh ~ word in the sentence; we believe that ap-
wild-cards can be given low-cost replacment with ~ propriately combining nodes into mean-
vocabulary categorised as belong to the right kind ~ ingful phrases may allow our approach
by NE recognition and (ii) base-form information. to perform better.

There is no way to make a humerical compar- i _ _
ison because they took a different answer corpus We found working Wlth. constituency trees that
COR, — the articles containing the answers Sug_lt was the sub-trav_ersal distance measure that per-
gested by TREC11 participants — and a diﬁerentformed best, and it needs to be seen whether this
criterion of correctness — an answer was correct iPOIdS glso for dependency trees_. A_ISO _to he ex-
it belonged to an article which the TREC11 adju-plored is the role of structural weighting in a sys-

dicators judges to contain a correct answer. terX :;J_S'nlg deperignci/htrteis. id be int i
Their adaptation of cost functions to refer to es- inal spectiiation hat It would be ineresting

. . . . _to explore is whether one can use feed-back from
sentially semantic annotations of tree nodes is aﬁ P

avenue we intend to explore in future work. Whatfnerf%rir:arl]g:mcig ao?A:(-)If)aft?iT’ilt(ieass fsr Z'szs'grtr;ﬁ
this paper has sought to do is to investigate intrin- achine gorp P '
. . L an approach analogous to the use of the language-
sic syntactic parameters that might influence per- odel in parser trainin
formance. The hope is that these parameters stifl" P 9
play a role in an enriched system.
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swap = Flis — 1][j: — 1] + swap(is, j¢)
K. Zhang and D. Shasha. 1989. Simple fast algorithms delete = Flis — 1][ji] + delete(is)

for the editing distance between trees and related

- insert = Flis][jr — 1] + insert(ji)
problems. SIAM Journal of Computingl8:1245—
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case 2: eitherl(is) # I(z) orl(j:) # 1(5)
Appendix Flis][ge] = min of delete, insert, for + tree,
where
This appendix briefly summarises the algorithm swap, delete, insert as before and
to compute the tree-distance, based on (Zhang for + tree = Fli(is) — U[l(e) — 1] + T[is][je]

and Shasha, 1989) (see Section 2.1 for definition
of tree-distance). The algorithm operates on thq
left-to-right post-order traversals of trees. Given |n case 1, the ‘forests’ F(I(i),is) and

source and target trees and 7', the output is a f(1(4), j,) are both single trees and the computed
table 7, indexed vertically by the traversal &f  forest distance is transferred to the tree-distance
and horizontally by the traversal @f, and pOSi- table7. In case 2, at least one ﬂ(l(l)ﬂs) or
tion T[Z] []] is the tree-distance from the subtree F(l(]),]t) represents a forest of more than one
rooted at, to the’l" subtree rooted at. Thusthe tree. This means there is the possibility that the
bottom rlghthand corner of the table represents thﬂna| trees in the two forests are mapped to each
tree distance betweeiandT". other. This quantity is found from tHE table.

If k& is the index of a node of the tree, thedt- This formulation gives thevhole-treedistance
most leaf I(k), is the index of the leaf reached petweenS andT. For thesub-treedistance, you
by following the left-branch down. For a given take the minimum of the final column &F. For
leaf there is a highest node of which it is thethesub-traversakase, you do the same but on the
left-most leaf. Let such a node be callek@y- final iteration, you set the pure deletion column

root. Let KR(T) be the sequence dfey-roots of F to all Os, and take the minimum of the final
in 7. The algorithm is a doubly nested loop as-column of F.

cending throught the key-roots & and 7', in To accommodate wild-card target treasse
which for each pair of key-root§, j), a routine 1 in the above is extended to allo[i,][j;] =
tree_dist(i, j) updates the table. Flis|[5:] = 0 in casej, is the root of a wild-card

Supposei is any node ofS. Then for anyis  tree. To accommodate self-effacing source trees,

with (i) < i, < 14, the subsequence &f from  case 2 in the above is extended to also consider
I(i) to is can be seen asfarestof subtrees of5,  for + tree_del = Fli(is) — 1,7

denotedF'(1(i),is). tree_dist(i,j) creates a ta-
ble 7, indexed vertically fromi(z) to ¢ and hori-
zontally from!(j) to j, such thatF[is][j;] repre-
sents the distance between the fordsts(i), ;)
and F'(1(j), j¢). Also the F' table should be seen
as having an extra left-most column, representing
for eachis, 1(7) < is <1,theF(i(i),is) to ) map-
ping (pure deletion), and an extra uppermost row
representing for each for eagh I(j) < j: < j,
the() to F(I(5), j:) mapping (pure insertion).
tree_dist(i, 5){
initialize:
FU@0), ..., FEO = 1,...,i —1() + 1
FIORG) - FOG] = 1,5 = 1) + 1

loop: Vis, 1(i) < is < iVje, 1(§) < je < 7

{
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