
Proceedings of the Workshop on Linguistic Distances, pages 63–72,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Study of Some Distance Measures for Language and Encoding
Identification

Anil Kumar Singh
Language Technologies Research Centre

International Institute of Information Technology
Hyderabad, India

anil@research.iiit.net

Abstract

To determine how close two language
models (e.g., n-grams models) are, we
can use several distance measures. If we
can represent the models as distributions,
then the similarity is basically the simi-
larity of distributions. And a number of
measures are based on information theo-
retic approach. In this paper we present
some experiments on using such similar-
ity measures for an old Natural Language
Processing (NLP) problem. One of the
measures considered is perhaps a novel
one, which we have called mutual cross
entropy. Other measures are either well
known or based on well known measures,
but the results obtained with them vis-a-
vis one-another might help in gaining an
insight into how similarity measures work
in practice.
The first step in processing a text is to
identify the language and encoding of its
contents. This is a practical problem since
for many languages, there are no uni-
versally followed text encoding standards.
The method we have used in this paper
for language and encoding identification
uses pruned character n-grams, alone as
well augmented with word n-grams. This
method seems to give results comparable
to other methods.

1 Introduction
Many kinds of models in NLP can be seen as dis-
tributions of a variable. For various NLP prob-
lems, we need to calculate the similarity of such
models or distributions. One common example of

this is the n-grams model. We might have sev-
eral reference data sets and then we may want to
find out which of those matches most closely with
a test data set. The problem of language and en-
coding identification can be represented in these
terms. One of the most important questions then
is which similarity measure to use. We can expect
that the performance obtained with the similarity
measure will vary with the specific problem and
the kind of model used or some other problem spe-
cific details. Still, it will be useful to explore how
these measures relate to each other.

The measures we are going to focus on in this
paper are all very simple ones and they all try to
find the similarity of two models or distributions in
a (more or less) information theoretic way, except
the out of rank measure proposed by Cavnar and
Trenkle (Cavnar and Trenkle, 1994).

This work had started simply as an effort to
build a language and encoding identification tool
specifically for South Asian languages. During the
course of this work, we experimented with various
similarity measures and some of the results we ob-
tained were at least a bit surprising. One of the
measures we used was something we have called
mutual cross entropy and its performance for the
current problem was better than other measures.

Before the content of a Web page or of any kind
of text can be processed for computation, its lan-
guage and encoding has to be known. In many
cases this language-encoding is not known before-
hand and has to be determined automatically. For
languages like Hindi, there is no standard encod-
ing followed by everyone. There are many well
known web sites using their own proprietary en-
coding. This is one of the biggest problems in ac-
tually using the Web as a multilingual corpus and
for enabling a crawler to search the text in lan-

63



guages like Hindi. This means that the content in
these languages, limited as it is, is invisible not
just to people (which could be just due to lack of
display support or unavailability of fonts for a par-
ticular encoding) but even to crawlers.

The problem of language identification is sim-
ilar to some other problems in different fields
and the techniques used for one such problem
have been found to be effective for other prob-
lems too. Some of these problems are text cate-
gorization (Cavnar and Trenkle, 1994), cryptanal-
ysis (Beesley, 1988) and even species identifi-
cation (Dunning, 1994) from genetic sequences.
This means that if something works for one of
these problems, it is likely to work for these other
problems.

It should be noted here that the identifica-
tion problem here is that of identifying both lan-
guage and encoding. This is because (especially
for South Asian languages) the same encoding
can be used for more than one languages (ISCII
for all Indian languages which use Brahmi-origin
scripts) and one language can have many encod-
ings (ISCII, Unicode, ISFOC, typewriter, pho-
netic, and many other proprietary encodings for
Hindi).

In this paper we describe a method based
mainly on character n-grams for identifying the
language-encoding pair of a text. The method
requires some training text for each language-
encoding, but this text need not have the same con-
tent. A few pages (2500-10000 words) of text in a
particular language-encoding is enough. A pruned
character based n-grams model is created for each
language-encoding. A similar model is created for
the test data too and is compared to the training
models. The best match is found using a similar-
ity measure. A few (5-15) words of test data seems
to be enough for identification in most cases.

The method has been evaluated using various
similarity measures and for different test sizes. We
also consider two cases, one in which the pruned
character n-grams model is used alone, and the
other in which it is augmented with a word n-gram
model.

2 Previous Work

Language identification was one of the first natural
language processing (NLP) problems for which a
statistical approach was used.

Ingle (Ingle, 1976) used a list of short words

in various languages and matched the words in the
test data with this list. Such methods based on lists
of words or letters (unique strings) were meant for
human translators and couldn’t be used directly for
automatic language identification. They ignored
the text encoding, since they assumed printed text.
Even if adapted for automatic identification, they
were not very effective or scalable.

However, the earliest approaches used for au-
tomatic language identification were based on the
above idea and could be called ‘translator ap-
proaches’. Newman (Newman, 1987), among oth-
ers, used lists of letters, especially accented letters
for various languages and identification was done
by matching the letters in the test data to these
lists.

Beesley’s (Beesley, 1988) automatic language
identifier for online texts was based on mathemat-
ical language models developed for breaking ci-
phers. These models basically had characteristic
letter sequences and frequencies (‘orthographical
features’) for each language, making them similar
to n-grams models. The insights on which they are
based, as Beesley points out, have been known at
least since the time of Ibn ad-Duraihim who lived
in the 14th century. Beesley’s method needed 6-64
K of training data and 10-12 words of test data. It
treats language and encoding pair as one entity.

Adams and Resnik (Adams and Resnik, 1997)
describe a client-server system using Dunning’s
n-grams based algorithm (Dunning, 1994) for a
variety of tradeoffs available to NLP applications
like between the labelling accuracy and the size
and completeness of language models. Their sys-
tem dynamically adds language models. The sys-
tem uses other tools to identify the text encoding.
They use 5-grams with add-k smoothing. Training
size was 1-50 K and test size above 50 characters.
Some pruning is done, like for frequencies up to 3.

Some methods for language identification use
techniques similar to n-gram based text catego-
rization (Cavnar and Trenkle, 1994) which calcu-
lates and compares profiles of n-gram frequencies.
This is the approach nearest to ours. Such meth-
ods differ in the way they calculate the likelihood
that the test data matches with one of the profiles.
Beesley’s method simply uses word-wise proba-
bilities of ‘digram’ sequences by multiplying the
probabilities of sequences in the test string. Oth-
ers use some distance measure between training
and test profiles to find the best match.

64



Cavnar also mentions that top 300 or so n-grams
are almost always highly correlated with the lan-
guage, while the lower ranked n-grams give more
specific indication about the text, namely the topic.
The distance measure used by Cavnar is called
‘out-of-rank’ measure and it sums up the differ-
ences in rankings of the n-grams found in the test
data as compared to the training data. This is
among the measures we have tested.

The language model used by Combrinck and
Botha (Combrinck and Botha, 1994) is also based
on bigram or trigram frequencies (they call them
‘transition vectors’). They select the most dis-
tinctive transition vectors by using as measure the
ratio of the maximum percentage of occurrences
to the total percentage of occurrences of a transi-
tion vector. These distinctive vectors then form the
model.

Dunning (Dunning, 1994) also used an n-grams
based method where the model selected is the one
which is most likely to have generated the test
string. Giguet (Giguet, 1995b; Giguet, 1995a) re-
lied upon grammatically correct words instead of
the most common words. He also used the knowl-
edge about the alphabet and the word morphology
via syllabation. Giguet tried this method for tag-
ging sentences in a document with the language
name, i.e., dealing with multilingual documents.

Another method (Stephen, 1993) was based on
‘common words’ which are characteristic of each
language. This methods assumes unique words
for each language. One major problem with this
method was that the test string might not contain
any unique words.

Cavnar’s method, combined with some heuris-
tics, was used by Kikui (Kikui, 1996) to identify
languages as well as encodings for a multilingual
text. He relied on known mappings between lan-
guages and encodings and treated East Asian lan-
guages differently from West European languages.

Kranig (Muthusamy et al., 1994) and (Simon,
2005) have reviewed and evaluated some of the
well known language identification methods. Mar-
tins and Silva (Martins and Silva, 2005) describe
a method similar to Cavnar’s but which uses a dif-
ferent similarity measure proposed by Jiang and
Conrath (Jiang and Conrath, 1997). Some heuris-
tics are also employed.

Poutsma’s (Poutsma, 2001) method is based on
Monte Carlo sampling of n-grams from the begin-
ning of the document instead of building a com-

plete model of the whole document. Sibun and
Reynar (Sibun and Reynar, 1996) use mutual in-
formation statistics or relative entropy, also called
Kullback-Leibler distance for language identifica-
tion. Souter et al.(Souter et al., 1994) compared
unique character string, common word and ’tri-
graph’ based approaches and found the last to be
the best.

Compression based approaches have also been
used for language identification. One example of
such an approach is called Prediction by Partial
Matching (PPM) proposed by Teahan (Teahan and
Harper, 2001). This approach uses cross entropy
of the test data with a language model and predicts
a character given the context.

3 Pruned Character N-grams
Like in Cavnar’s method, we used pruned n-grams
models of the reference or training as well as
test data. For each language-encoding pair, some
training data is provided. A character based n-
gram model is prepared from this data. N-grams
of all orders are combined and ranked according
to frequency. A certain number of them (say 1000)
with highest frequencies are retained and the rest
are dropped. This gives us the pruned charac-
ter n-grams model, which is used for language-
encoding identification.

As an attempt to increase the performance, we
also tried to augment the pruned character n-grams
model with a word n-gram model.

4 Distance Measures
Some of the measures we have experimented with
have already been mentioned in the section on pre-
vious work. The measures considered in this work
range from something as simple as log probabil-
ity difference to the one based on Jiang and Con-
rath (Jiang and Conrath, 1997) measure.

Assuming that we have two models or distribu-
tions P and Q over a variable X, the measures (sim)
are defined as below (p and q being probabilities
and r and s being ranks in models P and Q:

1. Log probability difference:

sim =
∑

x

(log p(x) − log q(x)) (1)

2. Absolute log probability difference:

sim =
∑

x

(abs(log p(x)) − abs(log q(x)))

(2)

65



3. Cross entropy:

sim =
∑

x

(p(x) ∗ log q(x)) (3)

4. RE measure (based on relative entropy or
Kullback-Leibler distance – see note below):

sim =
∑

x

p(x)
log p(x)

log q(x)
(4)

5. JC measure (based on Jiang and Conrath’s
measure) (Jiang and Conrath, 1997):

sim = A −B (5)

where,

A = 2 ∗
∑

x

(log p(x) + log q(x)) (6)

and,

B =
∑

x

log p(x) +
∑

x

log q(x) (7)

6. Out of rank measure (Cavnar and Trenkle,
1994):

sim =
∑

x

abs(r(x) − s(x)) (8)

7. MRE measure (based on mutual or symmet-
ric relative entropy, the original definition of
KL-distance given by Kullback and Leibler):

sim =
∑

x

p(x)
log p(x)

log q(x)
+

∑

x

q(x)
log q(x)

log p(x)
(9)

8. Mutual (or symmetric) cross entropy:

sim =
∑

x

(p(x)∗log q(x)+q(x)∗log p(x))

(10)

As can be noticed, all these measures, in a way,
seem to be information theoretic in nature. How-
ever, our focus in this work is more on the pre-
senting empirical evidence rather than discussing
mathematical foundation of these measures. The
latter will of course be interesting to look into.

NOTE:
We had initiallly experimented with relative en-

tropy or KL-distance as defined below (instead of
the RE measure mentioned above):

sim =
∑

x

p(x) log
p(x)

q(x)
(11)

Another measure we tried was DL measure
(based on Dekang Lin’s measure, on which the JC
measure is based):

sim =
A

B
(12)

where A and B are as given above.
The results for the latter measure were not very

good (below 50% in all cases) and the RE mea-
sure defined above performed better than relative
entropy. These results have not been reported in
this paper.

5 Mutual Cross Entropy
Cross entropy is a well known distance measure
used for various problems. Mutual cross entropy
can be seen as bidirectional or symmetric cross en-
tropy. It is defined simply as the sum of the cross
entropies of two distributions with each other.

Our motivation for using ‘mutual’ cross entropy
was that many similarity measures like cross en-
tropy and relative entropy measure how similar
one distribution is to the other. This will not neces-
sary mean the same thing as measuring how sim-
ilar two distributions are to each other. Mutual
information measures this bidirectional similarity,
but it needs joint probabilities, which means that
it can only be applied to measure similarity of
terms within one distribution. Relative entropy or
Kullback-Leibler measure is applicable, but as the
results show, it doesn’t work as well as expected.

Note that some authors treat relative entropy
and mutual information interchangeably. They are
very similar in nature except that one is applicable
for one variable in two distributions and the other
for two variables in one distribution.

Our guess was that symmetric measures may
give better results as both the models give some in-
formation about each other. This seems to be sup-
ported by the results for cross entropy, but (asym-
metric) cross entropy and RE measures also gave
good results.

6 The Algorithm
The foundation of the algorithm for identifying the
language and encoding of a text or string has al-
ready been explained earlier. Here we give a sum-
mary of the algorithm we have used. The parame-
ters for the algorithm and their values used in our
experiments reported here have also been listed.
These parameters allow the algorithm to be tuned

66



Table 1: DESCRIPTION OF DATA SETS
Names Total Count

Languages Afrikaans (1), Assamese (1), Bengali (2), Bulgarian (1), Catalan (1)
Czech (1), Danish (1), Dutch (1), English (1), Esperanto (1)
Finnish (1), French (1), German (1), Gujarati (2), Hindi (8)
Icelandic (1), Iloko (1), Iroquoian (1), Italian (1), Kannada (1)
Khasi (1), Latin (1), Malayalam (1), Marathi (5), Modern Greek (1)
Nahuatl (1), Norwegian (1), Oriya (2), Polish (1), Portugues (1)
Punjabi (1), Romanian (1), Russian (1), Serbian (1), Spanish (1)
Tagalog (1), Tamil (1), Telugu (1), Welsh (1) 39

Encodings UTF8 (7), ISO-8859-1 (16), ISO-8859-2 (1), US-ASCII (4)
Windows-1251 (2), Windows-1250 (1), ISCII (10), ISFOCB (1)
ITrans (1), Shusha (1), Typewriter (1), WX (1), Gopika (1)
Govinda (1), Manjusha (1), Saamanaa (1), Subak (1)
Akruti Sarala (1), Webdunia (1) 19

Counts in parenthesis represent the extra ambiguity for that language or encoding.
For example, Hindi (8) means that 8 different encodings were tested for Hindi.

Language-Encoding Pairs: 53
Minimum training data size: 16035 characters (2495 words)

Maximum training data size: 650292 characters (102377 words)
Average training data size: 166198 characters (22643 words)

Confusable Languages: Assamese/Bengali/Oriya, Dutch/Afrikaans, Norwegian/Danish,
Spanish/Tagalog, Hindi/Marathi, Telugu/Kannada/Malayalam, Latin/Franch

Table 2: NUMBER OF TEST SETS
Size Number
100 22083
200 10819
500 4091

1000 1867
2000 1524

All test data 840

or customized for best performance. Perhaps they
can even be learned by using some approach as the
EM algorithm.

1. Train the system by preparing character
based and word based (optional) n-grams
from the training data.

2. Combine n-grams of all orders (Oc for char-
acters and Ow for words).

3. Sort them by rank.

4. Prune by selecting only the top Nc charac-
ter n-grams and Nw word n-grams for each
language-encoding pair.

5. For the given test data or string, calculate
the character n-gram based score simc with
every model for which the system has been
trained.

6. Select the t most likely language-encoding
pairs (training models) based on this charac-
ter based n-gram score.

7. For each of the t best training models, calcu-
late the score with the test model. The score
is calculated as:

score = simc + a ∗ simw (13)

where c and w represent character based and
word based n-grams, respectively. And a is
the weight given to the word based n-grams.
In our experiment, this weight was 1 for the
case when word n-grams were considered
and 0 when they were not.

8. Select the most likely language-encoding pair
out of the t ambiguous pairs, based on the
combined score obtained from word and
character based models.

67



Table 3: PRECISION FOR VARIOUS MEASURES AND TEST SIZES
Precision

Test Size (characters) LPD ALPD CE RE CT JC MRE MCE
100 CN 91.00 90.69 96.13 98.51 78.92 97.71 98.26 97.64

CWN 94.31 94.15 97.50 75.54 81.63 98.35 94.16 98.38
200 CN 94.46 94.37 97.72 99.35 91.24 99.05 99.24 99.05

CWN 96.52 96.52 98.85 90.54 92.79 99.21 91.13 99.39
500 CN 96.24 96.24 98.39 99.68 96.41 99.58 99.63 99.63

CWN 98.19 97.80 99.46 94.65 96.82 99.63 98.78 99.85
1000 CN 97.18 96.81 98.81 99.78 97.73 99.89 99.73 99.95

CWN 98.21 98.21 99.68 96.64 98.05 99.89 99.40 100.00
2000 CN 95.01 94.21 98.20 99.40 95.21 99.33 99.20 99.47

CWN 96.74 97.14 99.47 94.01 95.81 99.40 96.67 99.60
All available CN 82.50 88.57 98.33 99.88 94.76 99.88 99.76 100.00

test data CWN 89.88 94.64 99.88 94.76 96.55 99.88 97.86 100.00
CN: Character n-grams only, CWN: Character n-grams plus word n-grams

To summarize, the parameters in the above
method are:

1. Character based n-gram models Pc and Qc

2. Word based n-gram models Pw and Qw

3. Orders Oc and Ow of n-grams models

4. Number of retained top n-grams Nc and Nw

(pruning ranks for character based and word
based n-grams, respectively)

5. Number t of character based models to be
disambiguated by word based models

6. Weight a of word based models

Parameters 3 to 6 can be used to tune the per-
formace of the identification system. The results
reported in this paper used the following values of
these parameters:

1. Oc = 4

2. Ow = 3

3. Nc = 1000

4. Nw = 500

5. t = 5

6. a = 1

There is, of course, the type of similarity score,
which can also be used to tune the performance.
Since MCE gave the best overall performance in
our experiments, we have selected it as the default
score type.

7 Implementation

The language and encoding tool has been imple-
mented as a small API in Java. This API uses an-
other API to prepare pruned character and word
n-grams which was developed as part of another
project. A graphical user interface (GUI) has also
been implemented for identifying the languages
and encodings of texts, files, or batches of files.
The GUI also allows a user to easily train the tool
for a new language-encoding pair. The tool will be
modified to work in client-server mode for docu-
ments from the Internet.

From implementation point of view, there are
some issues which can significantly affect the per-
formance of the system:

1. Whether the data should be read as text or as
a binary file.

2. The assumed encoding used for reading the
text, both for training and testing. For ex-
ample, if we read UTF8 data as ISO-8859-1,
there will be errors.

3. Whether the tranining models should be read
every time they are needed or be kept in
memory.

4. If training models are stored (even if they are
only read at the beginning and then kept in
memory), as will have to be done for practical
applications, how should they be stored: as
text or in binary files?

68



To take care of these issues, we adopted the fol-
lowing policy:

1. For preparing character based models, we
read the data as binary files and the charac-
ters are read as bytes and stored as numbers.
For word based models, the data is read as
text and the encoding is assumed to be UTF8.
This can cause errors, but it seems to be the
best (easy) option as we don’t know the ac-
tual encoding. A slightly more difficult op-
tion to implement would be to use charac-
ter based models to guess the encoding and
then build word based models using that as
the assumed encoding. The problem with this
method will be that no programming environ-
ment supports all possible encodings. Note
that since we are reading the text as bytes
rather than characters for preparing ‘charac-
ter based n-grams’, technically we should say
that we are using byte based n-grams mod-
els, but since we have not tested on multi-byte
encodings, a byte in our experiments was al-
most always a character, except when the en-
coding was UTF8 and the byte represented
some meta-data like the script code. So, for
practical purposes, we can say that we are us-
ing character based n-grams.

2. Since after pruning, the size of the models
(character as well as word) is of the order of
50K, we can afford to keep the training mod-
els in memory rather than reading them every
time we have to identify the language and en-
coding of some data. This option is naturally
faster. However, for some applications where
language and encoding identification is to be
done rarely or where there is a memory con-
straint, the other option can be used.

3. It seems to be better to store the training mod-
els in binary format since we don’t know the
actual encoding and the assumed encoding
for storing may be wrong. We tried both
options and the results were worse when we
stored the models as text.

Our identification tool provides customizability
with respect to all the parameters mentioned in this
and the previous section.

8 Evaluation
Evaluation was performed for all the measures
listed earlier. These are repeated here with a code

for easy reference in table-3.

• LPD: Log probability difference

• ALPD: Absolute log probability difference

• CE: Cross entropy

• RE: RE measure based on relative entropy

• JC: JC measure (based on Jiang and Con-
rath’s measure)

• CT: Cavnar and Trenkle’s out of rank mea-
sure

• MRE: MRE measure based on mutual (sym-
metric) relative entropy

• MCE: Mutual (symmetric) cross entropy

We tested on six different sizes in terms of char-
acters, namely 100, 200, 500, 1000, 2000, and all
the available test data (which was not equal for
various language-encoding pairs). The number of
language-encoding pairs was 53 and the minimum
number of test data sets was 840 when we used
all available test data. In other cases, the number
was naturally larger as the test files were split in
fragments (see table-2).

The languages considered ranged from Es-
peranto and Modern Greek to Hindi and Telugu.
For Indian languages, especially Hindi, several en-
codings were tested. Some of the pairs had UTF8
as the encoding, but the information from UTF8
byte format was not explicitly used for identifi-
cation. The number of languages tested was 39
and number encodings was 19. Total number of
language-encoding pairs was 53 (see table-1).

The test and training data for about half of
the pairs was collected from web pages (such as
Gutenberg). For Indian languages, most (but not
all) data was from what is known as the CIIL cor-
pus.

We didn’t test on various training data sizes.
The size of the training data ranged from 2495 to
102377 words, with more on the lower side than
on the higher.

Note that we have considered the case where
both the language and the encoding are unknown,
not where one of them is known. In the latter case,
the performance can only improve. Another point
worth mentioning is that the training data was not
very clean, i.e., it had noise (such as words or sen-
tences from other languages). Error details have
been given in table-4.

69



Table 4: ERROR DETAILS
Language-Encoding Identified As
Afrikaans::ISO-8859-1 Dutch::ISO-8859-1 (9)
Assamese::ISCII Bengali::ISCII (6), Oriya::ISCII (113)
Bengali::ISCII Hindi::ISCII (2), Oriya::ISCII (193)
Bulgarian::Windows-1251 Marathi::ISCII (6)
Catalan::ISO-8859-1 Latin::ISO-8859-1 (4)
Danish::ISO-8859-1 Norwegian::ISO-8859-1 (7)
Dutch::ISO-8859-1 Afrikaans::ISO-8859-1 (4)
English::ASCII Icelandic::UTF8 (36)
Esperanto::UTF8 Danish::ISO-8859-1 (5), Italian::ISO-8859-1 (1)
French::ISO-8859-1 Catalan::ISO-8859-1 (6)
German::ISO-8859-1 Dutch::ISO-8859-1 (4), Latin::ISO-8859-1 (3)
Hindi::ISCII English::ASCII (14), Marathi::ISCII (20)
Hindi::Isfocb Dutch::ISO-8859-1 (4), English::ASCII (6)
Hindi::Phonetic-Shusha English::ASCII (14)
Hindi::Typewriter English::ASCII (12)
Hindi::UTF8 Marathi::UTF8 (82)
Hindi::WX English::ASCII (8)
Hindi::Webdunia French::ISO-8859-1 (2), Gujarati::Gopika (9)
Icelandic::UTF8 Dutch::ISO-8859-1 (3), Latin::ISO-8859-1 (2)
Iloko::ISO-8859-1 Tagalog::ISO-8859-1 (18)
Iroquoian::ISO-8859-1 French::ISO-8859-1 (7)
Italian::ISO-8859-1 Catalan::ISO-8859-1 (2)
Kannada::ISCII Malayalam::ISCII (9)
Latin::ISO-8859-1 Catalan::ISO-8859-1 (3), Dutch::ISO-8859-1 (85)

French::ISO-8859-1 (28)
Malayalam::ISCII Tamil::ISCII (3)
Marathi::ISCII Hindi::ISCII (13)
Marathi::Manjusha English::ASCII (1)
Marathi::UTF8 Hindi::UTF8 (30)
Nahuatl::ISO-8859-1 English::ASCII (2)
Norwegian::ISO-8859-1 Danish::ISO-8859-1 (69)
Oriya::ISCII Assamese::ISCII (5), Bengali::ISCII (70), Hindi::ISCII (7)
Portugues::ISO-8859-1 Catalan::ISO-8859-1 (4)
Punjabi::ISCII Assamese::ISCII (2), Hindi::ISCII (1)
Romanian::US-ASCII Italian::ISO-8859-1 (2)
Russian::Windows-1251 Portugues::ISO-8859-1 (12)
Spanish::ISO-8859-1 Portugues::ISO-8859-1 (2), Tagalog::ISO-8859-1 (44)
Tagalog::ISO-8859-1 English::ASCII (37), Khasi::US-ASCII (15)
Telugu::ISCII Hindi::ISCII (15), Kannada::ISCII (21), Malayalam::ISCII (2)

These error were for MCE, both with and without word models for
all the test data sizes from 200 to all available data. Most of the

errors were for smaller sizes, i.e., 100 and 200 characters.

70



9 Results

The results are presented in table-3. As can be
seen almost the measures gave at least moderately
good results. The best results on the whole were
obtained with mutual cross entropy. The JC mea-
sure gave almost equally good results. Even a sim-
ple measure like log probability difference gave
surprisingly good results.

It can also be observed from table-3 that the size
of the test data is an important factor in perfor-
mance. More test data gives better results. But this
does not always happen, which too is surprising.
It means some other factors also come into play.
One of these factors seem to whether the train-
ing data for different models is of equal size or
not. Another factor seems to be noise in the data.
This seems to affect some measures more than the
others. For example, LPD gave the worst perfor-
mance when all the available test data was used.
For smaller data sets, noise is likely to get isolated
in some data sets, and therefore is less likely to
affect the results.

Using word n-grams to augment character n-
grams improved the performance in most of the
cases, but for measures like JC, RE, MRE and
MCE, there wasn’t much scope for improvement.
In fact, for smaller sizes (100 and 200 charac-
ters), word models actually reduced the perfor-
mance for these better measures. This means ei-
ther that word models are not very good for better
measures, or we have not used them in the best
possible way, even though intuitively they seem to
offer scope for improvement when character based
models don’t perform perfectly.

10 Issues and Enhancements

Although the method works very well even on lit-
tle test and training data, there are still some is-
sues and possible enhancements. One major issue
is that Web pages quite often contain text in more
than one language-encoding. An ideal language-
encoding identification tool should be able to mark
which parts of the page are in which language-
encoding.

Another possible enhancement is that in the
case of Web pages, we can also take into account
the language and encoding specified in the Web
page (HTML). Although it may not be correct for
non-standard encodings, it might still be useful for
differentiating between very close encodings like

ASCII and ISO-8859-1 which might seem identi-
cal to our tool.

If the text happens to be in Unicode, then it
might be possible to identify at least the encod-
ing (the same encoding might be used for more
than one languages, e.g., Devanagari for Hindi,
Sanskrit and Marathi) without using a statistical
method. This might be used for validating the re-
sult from the statistical method.

Since every method, even the best one, has
some limitations, it is obvious that for practical
applications we will have to combine several ap-
proaches in such a way that as much of the avail-
able information is used as possible and the var-
ious approaches complement each other. What is
left out by one approach should be taken care of by
some other approach. There will be some issues
in combining various approaches like the order in
which they have to used, their respective priorities
and their interaction (one doesn’t nullify the gains
from another).

It will be interesting to apply the same method
or its variations on text categorization or topic
identification and other related problems. The dis-
tance measures can also be tried for other prob-
lems.

11 Conclusion
We have presented the results about some dis-
tance measures which can be applied to NLP prob-
lems. We also described a method for automati-
cally identifying the language and encoding of a
text using several measures including one called
‘mutual cross entropy’. All these measures are ap-
plied on character based pruned n-grams models
created from the training and the test data. There
is one such model for each of the known language-
encoding pairs. The character based models may
be augmented with word based models, which in-
creases the performance for not so good measures,
but doesn’t seem to have much effect for better
measures. Our method gives good performance on
a few words of test data and a few pages of training
data for each language-encoding pair. Out of the
measures considered, mutual cross entropy gave
the best results, but RE, MRE and JC measures
also performed almost equally well.

12 Acknowledgement
The author wishes to thank Preeti Pradhan, Nan-
dini Upasani and Anita Chaturvedi of Language

71



Technologies Research Centre, International Insti-
tute of Information Technology, Hyderabad, India
for helping in preparing the data for some of the
language-encoding pairs. The comments of re-
viewers also helped in improving the paper.

References
Gary Adams and Philip Resnik. 1997. A language

identification application built on the Java client-
server platform. In Jill Burstein and Claudia Lea-
cock, editors, From Research to Commercial Appli-
cations: Making NLP Work in Practice, pages 43–
47. Association for Computational Linguistics.

K. Beesley. 1988. Language identifier: A computer
program for automatic natural-language identifica-
tion on on-line text.

William B. Cavnar and John M. Trenkle. 1994. N-
gram-based text categorization. In Proceedings of
SDAIR-94, 3rd Annual Symposium on Document
Analysis and Information Retrieval, pages 161–175,
Las Vegas, US.

H. Combrinck and E. Botha. 1994. Automatic lan-
guage identification: Performance vs. complexity.
In Proceedings of the Sixth Annual South Africa
Workshop on Pattern Recognition.

Ted Dunning. 1994. Statistical identification of lan-
guage. Technical Report CRL MCCS-94-273, Com-
puting Research Lab, New Mexico State University,
March.

E. Giguet. 1995a. Categorization according to lan-
guage: A step toward combining linguistic knowl-
edge and statistic learning.

Emmanuel Giguet. 1995b. Multilingual sentence cate-
gorisation according to language. In Proceedings of
the European Chapter of the Association for Compu-
tational Linguistics, SIGDAT Workshop, From Text
to Tags: Issues in Multilingual Language Analysis,
Dublin, Ireland.

Norman C. Ingle. 1976. A language identification ta-
ble. In The Incorporated Linguist, 15(4).

Jay J. Jiang and David W. Conrath. 1997. Semantic
similarity based on corpus statistics and lexical tax-
onomy.

G. Kikui. 1996. Identifying the coding system and
language of on-line documents on the internet. In
COLING, pages 652–657.

Bruno Martins and Mario J. Silva. 2005. Language
identification in web pages. In Proceedings of ACM-
SAC-DE, the Document Engeneering Track of the
20th ACM Symposium on Applied Computing.

Y. K. Muthusamy, E. Barnard, and R. A. Cole. 1994.
Reviewing automatic language identification. In
IEEE Signal Processing Magazine.

Patricia Newman. 1987. Foreign language identifica-
tion - first step in the translation process. In Pro-
ceedings of the 28th Annual Conference of the Amer-
ican Translators Association., pages 509–516.

Arjen Poutsma. 2001. Applying monte carlo tech-
niques to language identification. In Proceedings of
CLIN.

P. Sibun and J. C. Reynar. 1996. Language identifi-
cation: Examining the issues. In In Proceedings of
SDAIR-96, the 5th Symposium on Document Analy-
sis and Information Retrieval., pages 125–135.

Kranig Simon. 2005. Evaluation of language identifi-
cation methods. In BA Thesis. Universitt Tbingens.

C. Souter, G. Churcher, J. Hayes, J. Hughes, and
S. Johnson. 1994. Natural language identification
using corpus-based models. In Hermes Journal of
Linguistics., pages 183–203.

Johnson Stephen. 1993. Solving the problem of lan-
guage recognition. In Technical Report. School of
Computer Studies, University of Leeds.

W. J. Teahan and D. J. Harper. 2001. Using compres-
sion based language models for text categorization.
In J. Callan, B. Croft and J. Lafferty (eds.), Work-
shop on Language Modeling and Information Re-
trieval., pages 83–88. ARDA, Carnegie Mellon Uni-
versity.

72


