
Proceedings of the Workshop on Annotating and Reasoning about Time and Events, pages 1–8,
Sydney, July 2006.c©2006 Association for Computational Linguistics

The stages of event extraction

David Ahn
Intelligent Systems Lab Amsterdam

University of Amsterdam
ahn@science.uva.nl

Abstract

Event detection and recognition is a com-
plex task consisting of multiple sub-tasks
of varying difficulty. In this paper, we
present a simple, modular approach to
event extraction that allows us to exper-
iment with a variety of machine learning
methods for these sub-tasks, as well as to
evaluate the impact on performance these
sub-tasks have on the overall task.

1 Introduction

Events are undeniably temporal entities, but they
also possess a rich non-temporal structure that is
important for intelligent information access sys-
tems (information retrieval, question answering,
summarization, etc.). Without information about
whathappened,where, and towhom, temporal in-
formation about an event may not be very useful.

In the available annotated corpora geared to-
ward information extraction, we see two mod-
els of events, emphasizing these different aspects.
On the one hand, there is the TimeML model, in
which an event is a word that points to a node
in a network of temporal relations. On the other
hand, there is the ACE model, in which an event
is a complex structure, relating arguments that are
themselves complex structures, but with only an-
cillary temporal information (in the form of tem-
poral arguments, which are only noted when ex-
plicitly given). In the TimeML model, every event
is annotated, because every event takes part in the
temporal network. In the ACE model, only “in-
teresting” events (events that fall into one of 34
predefined categories) are annotated.

The task of automatically extracting ACE
events is more complex than extracting TimeML

events (in line with the increased complexity of
ACE events), involving detection of event anchors,
assignment of an array of attributes, identification
of arguments and assignment of roles, and deter-
mination of event coreference. In this paper, we
present a modular system for ACE event detection
and recognition. Our focus is on the difficulty and
importance of each sub-task of the extraction task.
To this end, we isolate and perform experiments
on each stage, as well as evaluating the contribu-
tion of each stage to the overall task.

In the next section, we describe events in the
ACE program in more detail. In section 3, we pro-
vide an overview of our approach and some infor-
mation about our corpus. In sections 4 through 7,
we describe our experiments for each of the sub-
tasks of event extraction. In section 8, we compare
the contribution of each stage to the overall task,
and in section 9, we conclude.

2 Events in the ACE program

The ACE program1 provides annotated data, eval-
uation tools, and periodic evaluation exercises for
a variety of information extraction tasks. There are
five basic kinds of extraction targets supported by
ACE: entities, times, values, relations, and events.
The ACE tasks for 2005 are more fully described
in (ACE, 2005). In this paper, we focus on events,
but since ACE events are complex structures in-
volving entities, times, and values, we briefly de-
scribe these, as well.

ACE entities fall into seven types (person, or-
ganization, location, geo-political entity, facility,
vehicle, weapon), each with a number of subtypes.
Within the ACE program, a distinction is made be-
tween entities and entity mentions (similarly be-

1http://www.nist.gov/speech/tests/ace/

1



tween event and event mentions, and so on). An
entity mention is a referring expression in text (a
name, pronoun, or other noun phrase) that refers
to something of an appropriate type. An entity,
then, is either the actual referent, in the world,
of an entity mention or the cluster of entity men-
tions in a text that refer to the same actual entity.
The ACE Entity Detection and Recognition task
requires both the identification of expressions in
text that refer to entities (i.e., entity mentions) and
coreference resolution to determine which entity
mentions refer to the same entities.

There are also ACE tasks to detect and recog-
nize times and a limited set of values (contact in-
formation, numeric values, job titles, crime types,
and sentence types). Times are annotated accord-
ing to the TIMEX2 standard, which requires nor-
malization of temporal expressions (timexes) to an
ISO-8601-like value.

ACE events, like ACE entities, are restricted
to a range of types. Thus, not all events in a
text are annotated—only those of an appropriate
type. The eight event types (with subtypes in
parentheses) are Life (Be-Born, Marry, Divorce,
Injure, Die), Movement (Transport), Transaction
(Transfer-Ownership, Transfer-Money), Business
(Start-Org, Merge-Org, Declare-Bankruptcy, End-
Org), Conflict (Attack, Demonstrate), Contact
(Meet, Phone-Write), Personnel (Start-Position,
End-Position, Nominate, Elect), Justice (Arrest-
Jail, Release-Parole, Trial-Hearing, Charge-Indict,
Sue, Convict, Sentence, Fine, Execute, Extradite,
Acquit, Appeal, Pardon). Since there is nothing
inherent in the task that requires the two levels of
type and subtype, for the remainder of the paper,
we will refer to the combination of event type and
subtype (e.g., Life:Die) as the event type.

In addition to their type, events have four other
attributes (possible values in parentheses): modal-
ity (Asserted, Other), polarity (Positive, Nega-
tive), genericity (Specific, Generic), tense (Past,
Present, Future, Unspecified).

The most distinctive characteristic of events
(unlike entities, times, and values, but like rela-
tions) is that they have arguments. Each event type
has a set of possible argument roles, which may be
filled by entities, values, or times. In all, there are
35 role types, although no single event can have all
35 roles. A complete description of which roles go
with which event types can be found in the anno-
tation guidelines for ACE events (LDC, 2005).

Events, like entities, are distinguished from
their mentions in text. An event mention is a span
of text (anextent, usually a sentence) with a dis-
tinguishedanchor(the word that “most clearly ex-
presses [an event’s] occurrence” (LDC, 2005)) and
zero or more arguments, which are entity men-
tions, timexes, or values in the extent. An event is
either an actual event, in the world, or a cluster of
event mentions that refer to the same actual event.
Note that the arguments of an event are the enti-
ties, times, and values corresponding to the entity
mentions, timexes, and values that are arguments
of the event mentions that make up the event.

The official evaluation metric of the ACE pro-
gram is ACE value, a cost-based metric which
associates a normalized, weighted cost to system
errors and subtracts that cost from a maximum
score of 100%. For events, the associated costs
are largely determined by the costs of the argu-
ments, so that errors in entity, timex, and value
recognition are multiplied in event ACE value.
Since it is useful to evaluate the performance of
event detection and recognition independently of
the recognition of entities, times, and values, the
ACE program includes diagnostic tasks, in which
partial ground truth information is provided. Of
particular interest here is the diagnostic task for
event detection and recognition, in which ground
truth entities, values, and times are provided. For
the remainder of this paper, we use this diagnos-
tic methodology, and we extend it to sub-tasks
within the task, evaluating components of our
event recognition system using ground truth out-
put of upstream components. Furthermore, in our
evaluating our system components, we use the
more transparent metrics of precision, recall, F-
measure, and accuracy.

3 Our approach to event extraction

3.1 A pipeline for detecting and recognizing
events

Extracting ACE events is a complex task. Our goal
with the approach we describe in this paper is to
establish baseline performance in this task using a
relatively simple, modular system. We break down
the task of extracting events into a series of clas-
sification sub-tasks, each of which is handled by a
machine-learned classifier.

1. Anchor identification: finding event anchors
(the basis for event mentions) in text and as-
signing them an event type;

2



2. Argument identification: determining which
entity mentions, timexes, and values are ar-
guments of each event mention;

3. Attribute assignment: determining the values
of the modality, polarity, genericity, and tense
attributes for each event mention;

4. Event coreference: determining which event
mentions refer to the same event.

In principle, these four sub-tasks are highly inter-
dependent, but for the approach described here,
we do not model all these dependencies. Anchor
identification is treated as an independent task. Ar-
gument finding and attribute assignment are each
dependent only on the results of anchor identifica-
tion, while event coreference depends on the re-
sults of all of the other three sub-tasks.

To learn classifiers for the first three tasks, we
experiment with TiMBL2, a memory-based (near-
est neighbor) learner (Daelemans et al., 2004),
and MegaM3, a maximum entropy learner (Daumé
III, 2004). For event coreference, we use only
MegaM, since our approach requires probabilities.
In addition to comparing the performance of these
two learners on the various sub-tasks, we also ex-
periment with the structure of the learning prob-
lems for the first two tasks.

In the remainder of this paper, we present exper-
iments for each of these sub-tasks (sections 4– 7),
focusing on each task in isolation, and then look at
how the sub-tasks affect performance in the over-
all task (section 8). First, we discuss the prepro-
cessing of the corpus required for our experiments.

3.2 Preprocessing the corpus

Because of restrictions imposed by the organiz-
ers on the 2005 ACE program data, we use only
the ACE 2005 training corpus, which contains 599
documents, for our experiments. We split this cor-
pus into training and test sets at the document-
level, with 539 training documents and 60 test
documents. From the training set, another 60 doc-
uments are reserved as a development set, which
is used for parameter tuning by MegaM. For the
remainder of the paper, we will refer to the 539
training documents as the training corpus and the
60 test documents as the test corpus.

For our machine learning experiments, we need
a range of information in order to build feature

2http://ilk.uvt.nl/timbl/
3http://www.isi.edu/˜hdaume/megam/

vectors. Since we are interested only in perfor-
mance on event extraction, we follow the method-
ology of the ACE diagnostic tasks and use the
ground truth entity, timex2, and value annotations
both for training and testing. Additionally, each
document is tokenized and split into sentences us-
ing a simple algorithm adapted from (Grefenstette,
1994, p. 149). These sentences are parsed using
the August 2005 release of the Charniak parser
(Charniak, 2000)4. The parses are converted into
dependency relations using a method similar to
(Collins, 1999; Jijkoun and de Rijke, 2004). The
syntactic annotations thus provide access both to
constituency and dependency information. Note
that with respect to these two sources of syntactic
information, we use the wordheadambiguously to
refer both to the head of a constituent (i.e., the dis-
tinguished word within the constituent from which
the constituent inherits its category features) and
to the head of a dependency relation (i.e., the word
on which the dependent in the relation depends).

Since parses and entity/timex/value annotations
are produced independently, we need a strategy for
matching (entity/timex/value) mentions to parses.
Given a mention, we first try to find a single con-
stituent whose offsets exactly match the extent of
the mention. In the training and development data,
there is an exact-match constituent for 89.2% of
the entity mentions. If there is no such constituent,
we look for a sequence of constituents that match
the mention extent. If there is no such sequence,
we back off to a single word, looking first for a
word whose start offset matches the start of the
mention, then for a word whose end offset matches
the end of the mention, and finally for a word that
contains the entire mention. If all these strategies
fail, then no parse information is provided for the
mention. Note that when a mention matches a se-
quence of constituents, the head of the constituent
in the sequence that is shallowest in the parse tree
is taken to be the (constituent) head of the entire
sequence. Given a parse constituent, we take the
entity type of that constituent to be the type of the
smallest entity mention overlapping with it.

4 Identifying event anchors

4.1 Task structure

We model anchor identification as a word classifi-
cation task. Although an event anchor may in prin-
ciple be more than one word, more than 95% of

4ftp://ftp.cs.brown.edu/pub/nlparser/

3



the anchors in the training data consist of a single
word. Furthermore, in the training data, anchors
are restricted in part of speech (to nouns: NN,
NNS, NNP; verbs: VB, VBZ, VBP, VBG, VBN,
VBD, AUX, AUXG, MD; adjectives: JJ; adverbs:
RB, WRB; pronouns: PRP, WP; determiners: DT,
WDT, CD; and prepositions: IN). Thus, anchor
identification for a document is reduced to the task
of classifying each word in the document with an
appropriate POS tag into one of 34 classes (the 33
event types plus a None class for words that are
not an event anchor).

The class distribution for these 34 classes is
heavily skewed. In the 202,135 instances in
the training data, the None class has 197,261
instances, while the next largest class (Con-
flict:Attack) has only 1410 instances. Thus, in ad-
dition to modeling anchor identification as a sin-
gle multi-class classification task, we also try to
break down the problem into two stages: first, a
binary classifier that determines whether or not a
word is an anchor, and then, a multi-class classi-
fier that determines the event type for the positive
instances from the first task. For this staged task,
we train the second classifier on the ground truth
positive instances.

4.2 Features for event anchors

We use the following set of features for all config-
urations of our anchor identification experiments.

• Lexical features: full word, lowercase word,
lemmatized word, POS tag, depth of word in
parse tree

• WordNet features: for each WordNet POS
categoryc (from N, V, ADJ, ADV):

– If the word is in catgoryc and there is a
corresponding WordNet entry, the ID of
the synset of first sense is a feature value

– Otherwise, if the word has an entry in
WordNet that is morphologically related
to a synset of categoryc, the ID of the
related synset is a feature value

• Left context (3 words): lowercase, POS tag

• Right context (3 words): lowercase, POS tag

• Dependency features: if the candidate word
is the dependent in a dependency relation, the
label of the relation is a feature value, as are

the dependency head word, its POS tag, and
its entity type

• Related entity features: for each en-
tity/timex/value typet:

– Number of dependents of candidate
word of typet

– Label(s) of dependency relation(s) to
dependent(s) of typet

– Constituent head word(s) of depen-
dent(s) of typet

– Number of entity mentions of type t
reachable by some dependency path
(i.e., in same sentence)

– Length of path to closest entity mention
of typet

4.3 Results

In table 1, we present the results of our anchor
classification experiments (precision, recall and F-
measure). The all-at-once conditions refer to ex-
periments with a single multi-class classifier (us-
ing either MegaM or TiMBL), while the split con-
ditions refer to experiments with two staged clas-
sifiers, where we experiment with using MegaM
and TiMBL for both classifiers, as well as with
using MegaM for the binary classification and
TiMBL for the multi-class classification. In ta-
ble 2, we present the results of the two first-stage
binary classifiers, and in table 3, we present the
results of the two second-stage multi-class classi-
fiers on ground truth positive instances. Note that
we always use the default parameter settings for
MegaM, while for TiMBL, we setk (number of
neighbors to consider) to 5, we use inverse dis-
tance weighting for the neighbors and weighted
overlap, with information gain weighting, for all
non-numeric features.

Both for the all-at-once condition and for multi-
class classification of positive instances, the near-
est neighbor classifier performs substantially bet-
ter than the maximum entropy classifier. For bi-
nary classification, though, the two methods per-
form similarly, and staging either binary classi-
fier with the nearest neighbor classifier for posi-
tive instances yields the best results. In practical
terms, using the maximum entropy classifier for
binary classification and then the TiMBL classifier
to classify only the positive instances is the best
solution, since classification with TiMBL tends to
be slow.

4



Precision Recall F
All-at-once/megam 0.691 0.239 0.355
All-at-once/timbl 0.666 0.540 0.596
Split/megam 0.589 0.417 0.489
Split/timbl 0.657 0.551 0.599
Split/megam+timbl 0.725 0.513 0.601

Table 1: Results for anchor detection and classifi-
cation

Precision Recall F
Binary/megam 0.756 0.535 0.626
Binary/timbl 0.685 0.574 0.625

Table 2: Results for anchor detection (i.e., binary
classification of anchor instances)

5 Argument identification

5.1 Task structure

Identifying event arguments is a pair classification
task. Each event mention is paired with each of the
entity/timex/value mentions occurring in the same
sentence to form a single classification instance.
There are 36 classes in total: 35 role types and a
None class. Again, the distribution of classes is
skewed, though not as heavily as for the anchor
task, with 20,556 None instances out of 29,450
training instances. One additional consideration
is that no single event type allows arguments of
all 36 possible roles; each event type has its own
set of allowable roles. With this in mind, we ex-
periment with treating argument identification as
a single multi-class classification task and with
training a separate multi-class classifier for each
event type. Note that all classifiers are trained us-
ing ground truth event mentions.

5.2 Features for argument identification

We use the following set of features for all our ar-
gument classifiers.

• Anchor word of event mention: full, lower-
case, POS tag, and depth in parse tree

Accuracy
Multi/megam 0.649
Multi/timbl 0.824

Table 3: Accuracy for anchor classification (i.e.,
multi-class classification of positive anchor in-
stances)

Precision Recall F
All-at-once/megam 0.708 0.430 0.535
All-at-once/timbl 0.509 0.453 0.480
CPET/megam 0.689 0.490 0.573
CPET/timbl 0.504 0.535 0.519

Table 4: Results for arguments

• Event type of event mention

• Constituent head word of entity mention:
full, lowercase, POS tag, and depth in parse
tree

• Determiner of entity mention, if any

• Entity type and mention type (name, pro-
noun, other NP) of entity mention

• Dependency path between anchor word and
constituent head word of entity mention, ex-
pressed as a sequence of labels, of words, and
of POS tags

5.3 Results

In table 4, we present the results for argument
identification. The all-at-once conditions refer
to experiments with a single classifier for all in-
stances. The CPET conditions refer to experi-
ments with a separate classifier for each event
type. Note that we use the same parameter settings
for MegaM and TiMBL as for anchor classifica-
tion, except that for TiMBL, we use the modified
value difference metric for the three dependency
path features.

Note that splitting the task into separate tasks
for each event type yields a substantial improve-
ment over using a single classifier. Unlike in the
anchor classification task, maximum entropy clas-
sification handily outperforms nearest-neighbor
classification. This may be related to the binariza-
tion of the dependency-path features for maximum
entropy training: the word and POS tag sequences
(but not the label sequences) are broken down into
their component steps, so that there is a separate
binary feature corresponding to the presence of a
given word or POS tag in the dependency path.

Table 5 presents results of each of the classi-
fiers restricted to Time-* arguments (Time-Within,
Time-Holds, etc.). These arguments are of partic-
ular interest not only because they provide the link
between events and times in this model of events,
but also because Time-* roles, unlike other role

5



Precision Recall F
All-at-once/megam 0.688 0.477 0.564
All-at-once/timbl 0.500 0.482 0.491
CPET/megam 0.725 0.451 0.556
CPET/timbl 0.357 0.404 0.379

Table 5: Results for Time-* arguments

Accuracy
megam 0.795
timbl 0.793
baseline 0.802
majority (in training) 0.773

Table 6: Genericity

types, are available to all event types. We see that,
in fact, the all-at-once classifiers perform better
for these role types, which suggests that it may be
worthwhile to factor out these role types and build
a classifier specifically for temporal arguments.

6 Assigning attributes

6.1 Task structure

In addition to the event type and subtype attributes,
(the event associated with) each event mention
must also be assigned values for genericity, modal-
ity, polarity, and tense. We train a separate classi-
fier for each attribute. Genericity, modality, and
polarity are each binary classification tasks, while
tense is a multi-class task. We use the same fea-
tures as for the anchor identification task, with the
exception of the lemmatized anchor word and the
WordNet features.

6.2 Results

The results of our classification experiments are
given in tables 6, 7, 8, and 9. Note that modal-
ity, polarity, and genericity are skewed tasks where
it is difficult to improve on the baseline majority
classification (Asserted, Positive, and Specific, re-
spectively) and where maximum entropy and near-
est neighbor classification perform very similarly.
For tense, however, both learned classifiers per-
form substantially better than the majority base-
line (Past), with the maximum entropy classifier
providing the best performance.

Accuracy
megam 0.750
timbl 0.759
baseline 0.738
majority (in training) 0.749

Table 7: Modality

Accuracy
megam 0.955
timbl 0.955
baseline 0.950
majority (in training) 0.967

Table 8: Polarity

7 Event coreference

7.1 Task structure

For event coreference, we follow the approach
to entity coreference detailed in (Florian et al.,
2004). This approach uses a mention-pair coref-
erence model with probabilistic decoding. Each
event mention in a document is paired with ev-
ery other event mention, and a classifier assigns
to each pair of mentions the probability that the
paired mentions corefer. These probabilities are
used in a left-to-right entity linking algorithm in
which each mention is compared with all already-
established events (i.e., event mention clusters) to
determine whether it should be added to an exist-
ing event or start a new one. Since the classifier
needs to output probabilities for this approach, we
do not use TiMBL, but only train a maximum en-
tropy classifier with MegaM.

7.2 Features for coreference classification

We use the following set of features for our
mention-pair classifier. Thecandidateis the ear-
lier event mention in the text, and theanaphoris
the later mention.

• CandidateAnchor+AnaphorAnchor, also
POS tag and lowercase

Accuracy
megam 0.633
timbl 0.613
baseline 0.535
majority (in training) 0.512

Table 9: Tense

6



Precision Recall F
megam 0.761 0.580 0.658
baseline 0.167 1.0 0.286

Table 10: Coreference

• CandidateEventType+AnaphorEventType

• Depth of candidate anchor word in parse tree

• Depth of anaphor anchor word in parse tree

• Distance between candidate and anchor, mea-
sured in sentences

• Number, heads, and roles of shared argu-
ments (same entity/timex/value w/same role)

• Number, heads, and roles of candidate argu-
ments that are not anaphor arguments

• Number, heads, and roles of anaphor argu-
ments that are not candidate arguments

• Heads and roles of arguments shared by can-
didate and anaphor in different roles

• CandidateModalityVal+AnaphorModalityVal,
also for polarity, genericity, and tense

7.3 Results

In table 10, we present the performance of our
event coreference pair classifier. Note that the
distribution for this task is also skewed: only
3092 positive instances of 42,736 total training in-
stances. Simple baseline of taking event mentions
of identical type to be coreferent does quite poorly.

8 Evaluation with ACE value

Table 11 presents results of performing the full
event detection and recognition task, swapping in
ground truth (gold) or learned classifiers (learned)
for the various sub-tasks (we also swap in major-
ity classifiers for the attribute sub-task). For the
anchor sub-task, we use the split/megam+timbl
classifier; for the argument sub-task, we use the
CPET/megam classifier; for the attribute sub-
tasks, we use the megam classifiers; for the coref-
erence sub-task, we use the approach outlined in
section 7. Since in our approach, the argument and
attribute sub-tasks are dependent on the anchor
sub-task and the coreference sub-task is depen-
dent on all of the other sub-tasks, we cannot freely
swap in ground truth—e.g., if we use a learned

classifier for the anchor sub-task, then there is no
ground truth for the corresponding argument and
attribute sub-tasks.

The learned coreference classifier provides a
small boost to performance over doing no coref-
erence at all (7.5% points for the condition in
which all the other sub-tasks use ground truth (1
vs. 8), 0.6% points when all the other sub-tasks
use learned classifiers (7 vs. 12)). From perfect
coreference, using ground truth for the other sub-
tasks, the loss in value is 11.4% points (recall that
maximum ACE value is 100%). Note that the dif-
ference between perfect coreference and no coref-
erence is only 18.9% points.

Looking at the attribute sub-tasks, the effects on
ACE value are even smaller. Using the learned
attribute classifiers (with ground truth anchors and
arguments) results in 4.8% point loss in value from
ground truth attributes (1 vs. 5) and only a 0.5%
point gain in value from majority class attributes
(4 vs. 5). With learned anchors and arguments, the
learned attribute classifiers result in a 0.4% loss in
value from even majority class attributes (3 vs. 7).

Arguments clearly have the greatest impact on
ACE value (which is unsurprising, given that ar-
guments are weighted heavily in event value). Us-
ing ground truth anchors and attributes, learned ar-
guments result in a loss of value of 35.6% points
from ground truth arguments (1 vs. 2). When the
learned coreference classifier is used, the loss in
value from ground truth arguments to learned ar-
guments is even greater (42.5%, 8 vs. 10).

Anchor identification also has a large impact on
ACE value. Without coreference but with learned
arguments and attributes, the difference between
using ground truth anchors and learned anchors is
22.2% points (6 vs. 7). With coreference, the dif-
ference is still 21.0% points (11 vs. 12).

Overall, using the best learned classifiers for
the various subtasks, we achieve an ACE value
score of 22.3%, which falls within the range of
scores for the 2005 diagnostic event extraction
task (19.7%–32.7%).5 Note, though, that these
scores are not really comparable, since they in-
volve training on the full training set and testing
on a separate set of documents (as noted above,
the 2005 ACE testing data is not available for fur-
ther experimentation, so we are using 90% of the
original training data for training/development and

5For the diagnostic task, ground truth entities, values, and
times, are provided, as they are in our experiments.

7



anchors args attrs coref ACE value

1 gold gold gold none 81.1%
2 gold learned gold none 45.5%
3 learned learned maj none 22.1%
4 gold gold maj none 75.8%
5 gold gold learned none 76.3%
6 gold learned learned none 43.9%
7 learned learned learned none 21.7%
8 gold gold gold learned 88.6%
9 gold gold learned learned 79.4%
10 gold learned gold learned 46.1%
11 gold learned learned learned 43.3%
12 learned learned learned learned 22.3%

Table 11: ACE value

10% for the results presented here).

9 Conclusion and future work

In this paper, we have presented a system for ACE
event extraction. Even with the simple breakdown
of the task embodied by the system and the limited
feature engineering for the machine learned classi-
fiers, the performance is not too far from the level
of the best systems at the 2005 ACE evaluation.
Our approach is modular, and it has allowed us to
present several sets of experiments exploring the
effect of different machine learning algorithms on
the sub-tasks and exploring the effect of the differ-
ent sub-tasks on the overall performance (as mea-
sured by ACE value).

There is clearly a great deal of room for im-
provement. As we have seen, improving anchor
and argument identification will have the great-
est impact on overall performance, and the exper-
iments we have done suggest directions for such
improvement. For anchor identification, taking
one more step toward binary classification and
training a binary classifier for each event type (ei-
ther for all candidate anchor instances or only for
positive instances) may be helpful. For argument
identification, we have already discussed the idea
of modeling temporal arguments separately; per-
haps introducing a separate classifier for each role
type might also be helpful.

For all the sub-tasks, there is more feature en-
gineering that could be done (a simple example:
for coreference, boolean features corresponding to
identical anchors and event types). Furthermore,
the dependencies between sub-tasks could be bet-
ter modeled.

References

2005. The ACE 2005 (ACE05) evaluation plan.
http://www.nist.gov/speech/tests/
ace/ace05/doc/ace05-evalplan.v3.
pdf .

Eugene Charniak. 2000. A maximum-entropy-
inspired parser. InProceedings of the 1st Meeting
of NAACL, pages 132–139.

Michael Collins. 1999.Head-Driven Statistical Mod-
els for Natural Language Parsing. Ph.D. thesis,
University of Pennsylvania.

Walter Daelemans, Jakub Zavrel, Ko van der Sloot, and
Antal van den Bosch. 2004.TiMBL: Tilburg Mem-
ory Based Learner, version 5.1, Reference Guide.
University of Tilburg, ILK Technical Report ILK-
0402. http://ilk.uvt.nl/.

Hal Dauḿe III. 2004. Notes on CG and LM-BFGS
optimization of logistic regression. Paper available
at http://www.isi.edu/˜hdaume/docs/
daume04cg-bfgs.ps , August.

Radu Florian, Hany Hassan, Abraham Ittycheriah,
Hongyan Jing, Nanda Kambhatla, Xiaoqiang Luo,
Nicolas Nicolov, and Salim Roukos. 2004. A sta-
tistical model for multilingual entity detection and
tracking. InProceedings of HLT/NAACL-04.

Gregory Grefenstette. 1994.Explorations in Auto-
matic Thesaurus Discovery. Kluwer.

Valentin Jijkoun and Maarten de Rijke. 2004. Enrich-
ing the output of a parser using memory-based learn-
ing. In Proceedings of the 42nd Meeting of the ACL.

Linguistic Data Consortium, 2005.ACE (Automatic
Content Extraction) English Annotation Guidelines
for Events, version 5.4.3 2005.07.01 edition.

8


