
Proceedings of the Workshop on Frontiers in Linguistically Annotated Corpora 2006, pages 86–93,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Corpus annotation by generation

Elke Teich
TU Darmstadt

Darmstadt, Germany
teich@linglit.tu-darmstadt.de

John A. Bateman
Universiẗat Bremen
Bremen, Germany

bateman@uni-bremen.de

Richard Eckart
TU Darmstadt

Darmstadt, Germany
eckart@linglit.tu-darmstadt.de

Abstract

As the interest in annotated corpora is
spreading, there is increasing concern with
using existing language technology for
corpus processing. In this paper we ex-
plore the idea of using natural language
generationsystems for corpus annotation.
Resources for generation systems often fo-
cus on areas of linguistic variability that
are under-represented in analysis-directed
approaches. Therefore, making use of
generation resources promises some sig-
nificant extensions in the kinds of anno-
tation information that can be captured.
We focus here on exploring the use of
the KPML (Komet-Penman MultiLingual)
generation system for corpus annotation.
We describe the kinds of linguistic infor-
mation covered inKPML and show the
steps involved in creating a standardXML

corpus representation fromKPML ’s gener-
ation output.

1 Introduction

Many high-quality, theory-rich language process-
ing systems can potentially be applied to corpus
processing. However, the application of exist-
ing language technology, such as lexical and/or
grammatical resources as well as parsers, turns out
not to be as straightforward as one might think
it should be. Using existing computational lexi-
cons or thesauri, for instance, can be of limited
value because they do not contain the domain-
specific vocabulary that is needed for a partic-
ular corpus. Similarly, most existing grammat-
ical resources for parsing have restrictedcover-
age in precisely those areas of variation that are
now most in need of corpus-supported investiga-
tion (e.g., predicate-argument structure, informa-
tion structure, rhetorical structure). Apart from
limited coverage, further issues that may impede

the ready application of parsers in corpus process-
ing include:

• Annotation relevance. Specialized, theory-
specific parsers (also called ‘deep parsers’;
e.g., LFG or HPSG parsers) have been built
with theoretical concerns in mind rather than
appliability to unrestricted text. They may
thus produce information that is not annota-
tionally relevant (e.g., many logically equiv-
alent readings of a single clause).

• Usability. Deep parsers are highly complex
tools that require expert knowledge. The ef-
fort in acquiring this expert knowledge may
be too high relative to the corpus processing
task.

• Completeness. Simple parsers (commonly
called ‘shallow parsers’), on the other
hand, produce only one type of anno-
tationally relevant information (e.g., PoS,
phrase/dependency structure). Other desir-
able kinds of information are thus lack-
ing (e.g., syntactic functions, semantic roles,
theme-rheme).

• Output representation. Typically, a parsing
output is represented in a theory-specific way
(e.g., in the case ofLFG or HPSG parsers,
a feature structure). Such output does not
conform to the common practices in corpus
representation.1 Thus, it has to be mapped
onto one of the standardly used data mod-
els for corpora (e.g., annotation graphs (Bird
and Liberman, 2001) or multi-layer hier-
archies (Sperberg-McQueen and Huitfeldt,
2001; Teich et al., 2001)) and transformed
to a commonly employed format, typically
XML .

1This is in contrast to the output representation of shal-
low parsers which have often been developed with the goal
of corpus processing.

86



In spite of these difficulties, there is a general
consensus that the reward for exploring deep pro-
cessing techniques to build up small to medium-
scale corpus resources lies in going beyond the
kinds of linguistic information typically covered
by treebanks (cf. (Baldwin et al., 2004; Cahill et
al., 2002; Frank et al., 2003)).

In this paper, we would like to contribute to this
enterprise by adding a novel, yet complementary
perspective on theory-rich, high-quality corpus an-
notation. In a reappraisal of the potential contribu-
tion of natural language generation technology for
providing richly annotated corpora, we explore the
idea of annotation by generation. Although this
may at first glance seem counter-intuitive, in fact a
generator, similar to a parser, creates rather com-
plex linguistic descriptions (which are ultimately
realized as strings). In our current investigations,
we are exploring the use of these complex linguis-
tic descriptions for creating annotations. We be-
lieve that this may offer a worthwhile alternative
or extension of corpus annotation methods which
may alleviate some of the problems encountered
in parsing-based approaches.

The generation system we are using is theKPML

(Komet-Penman MultiLingual; (Bateman, 1997))
system. One potential advantage ofKPML over
other generation systems and over many parsing
systems is its multi-stratal design. The kinds
of linguistic information included inKPML range
from formal-syntactic (PoS, phrase structure) to
functional-syntactic (syntactic functions), seman-
tic (semantic roles/frames) and discoursal (e.g.,
theme-rheme, given-new). Also, sinceKPML has
been applied to generate texts from a broad spec-
trum of domains, its lexicogrammatical resources
cover a wide variety of registers—another poten-
tial advantage in the analysis of unrestricted text.

As well as our general concern with investigat-
ing the possible benefits of applying generation
resources to the corpus annotation task, we are
also more specifically concerned with a series of
experiments involving theKPML system as such.
Here, for example, we are working towards the
construction of “treebanks” based on the theory of
Systemic-Functional Linguistics (SFL; (Halliday,
2004)), so as to be able to empirically test some of
SFL’s hypotheses concerning patterns of instantia-
tion of the linguistic system in authentic texts. An-
notating the variety of linguistic categories given
in SFL manually is very labor-intensive and an au-

tomated approach is clearly called for. We are also
working towards a more detailed comparison of
the coverage of the lexicogrammatical resources
of KPML with those of parsing systems that are
similarly theoretically-dedicated (e.g., theHPSG-
based English Resource Grammar (ERG) (Copes-
take and Flickinger, 2002) contained in LinGO
(Oepen et al., 2002)). Thus, the idea presented
here is also motivated by the need to provide a ba-
sis for comparing grammar coverage across pars-
ing and generation systems more generally.

The remainder of the paper is organized as fol-
lows. First, we present the main features of the
KPML system (Section 2). Second, we describe the
steps involved in annotation by generation, from
the generation output (KPML internal generation
record) to anXML representation and its refine-
ment to anXML multi-layer representation (Sec-
tion 3). Section 4 concludes the paper with a criti-
cal assessment of the proposed approach and a dis-
cussion of the prospects for application in the con-
struction of corpora comparable in size and qual-
ity to existing treebanks (such as, for example, the
Penn Treebank for English (Marcus et al., 1993)
or theTIGER Treebank for German (Brants et al.,
2002)). Since our description here has the status
of a progress report of work still in its beginning
stages, we cannot yet provide the results of de-
tailed evaluation. In the final section, therefore, we
emphasize the concrete steps that we are currently
taking in order to be able carry out the detailed
evaluations necessary.

2 Natural language generation with
KPML

The KPML system is a mature grammar devel-
opment environment for supporting large-scale
grammar engineering work for natural language
generation using multilingual systemic-functional
grammars (Bateman et al., 2005). Grammars
within this framework consist of large lattices of
grammatical features, each of which brings con-
straints on syntactic structure. The features are
also linked back to semantic configurations so that
they can be selected appropriately when given a
semantic specification as input. The result of gen-
erating with a systemic-functional grammar with
KPML is then a rich feature-based representation
distributed across a relatively simple structural
backbone. Each node of the syntactic represen-
tation corresponds to an element of structure and

87



typically receives on the order of 50-100 linguistic
features, called thefeature selection. Since within
systemic-functional grammars, it is the features
of the feature selection that carry most of the de-
scriptive load, we can see each feature selection as
an exhaustive description of its associated syntac-
tic constituent. Generation withinKPML normally
proceeds on the basis of a semantic input specifi-
cation which triggers particular feature selections
from the grammar via a mediating linguistic ontol-
ogy.

The features captured in a systemic-functional
generation resource are drawn from the four com-
ponents of functional meaning postulated within
systemic-functional grammar: the ideational, ex-
pressing content-related decisions, the logical, ex-
pressing logical dependencies, the interpersonal,
expressing interactional, evaluative and speech act
information, and the textual, expressing how each
element contributes to an unfolding text. It is in
this extremely rich combination of features that
we see significant value in exploring the re-use of
such grammars for annotation purposes and cor-
pus enrichment.

For annotation purposes, we employ some
of the alternative modes of generation that
are provided by the full grammar development
environment—it is precisely these that allow for
ready incorporation and application within the cor-
pus annotation task. One of the simplest ways in
which generation can be achieved during grammar
development, for example, is by directly select-
ing linguistic features from the grammar. This can
therefore mimic directly the task of annotation: if
we consider a target sentence (or other linguistic
unit) to be annotated, then selecting the necessary
features to generate that unit is equivalent to anno-
tating that unit in a corpus with respect to a very
extensive set of corpus annotation features.

Several additional benefits immediately acrue
from the use of a generator for this task. First,
the generatoractually constructs the sentence(or
other unit) as determined by the feature selection.
This means that it is possible to obtain immedi-
ate feedback concerning the correctness and com-
pleteness of the annotation choices with respect to
the target. A non-matching structure can be gener-
ated if: (a) an inappropriate linguistic feature has
been selected, (b) the linguistic resources do not
cover the target to be annotated, or (c) a combina-
tion of these. In order to minimise the influence

of (b), we only work with large-scale grammatical
resources whose coverage is potentially sufficient
to cover most of the target corpus. Further cor-
pus instances that lie beyond the capabilities of the
generation grammar used are an obvious source of
requirements for extensions to that grammar.

Second, the architecture of theKPML system
also allows for other kinds of annotation support.
During grammar development it is often required
that guidance is given directly to the semantics-
grammar linking mappings: this is achieved by
providing particular ‘answers’ to pre-defined ‘in-
quiries’. This allows for a significantly more
abstract and ‘intention’-near interaction with the
grammatical resource that can be more readily
comprehensible to a user than the details of the
grammatical features. This option is therefore also
available for annotation.

Moreover, the semantic specifications used rely
on a specified linguistic ontology that defines par-
ticular semantic types. These types can also be
used directly in order to constrain whole collec-
tions of grammatical features. Providing this kind
of guidance during annotation can also, on the one
hand, simplify the process of annotation while, on
the other, produce a semantic level of annotation
for the corpus.

In the following sections, we see a selection of
these layers of information working in annotation
in more detail, showing that the kinds of informa-
tion produced during generation corresponds ex-
tremely closely to the kinds of rich annotations
currently being targetted for sophisticated corpus
presentation.

3 Creating corpus annotations from
KPML output

3.1 KPML output

The output produced byKPML when being used
for generation is a recursive structure with the cho-
sen lexical items at the leaves. Figure 1 shows the
output tree for the sample sentence “However they
will step up their presence in the next year”.

The nodes of this structure may be freely an-
notated by the user or application system to con-
tain further information: e.g., for passing through
hyperlinks and URLs directly with the semantics
when generating hypertext. Most users simply see
the result of flattening this structure into a string:
the generated sentence or utterance.

This result retains only a fraction of the in-

88



Figure 1: Tree generated by KPML

formation that is employed by the generator dur-
ing generation. Therefore, since we are using
the grammar development environment rather than
simply the generator component, we also have the
possibility of working directly with the internal
structures thatKPML employs for display and de-
bugging of resources during development. These
internal structures contain a complete record of
the information provided to the generation pro-
cess and the generator decisions (including which
grammatical features have been selected) that have
been made during the construction of each unit.
This internal record structure is again a recursive
structure corresponding directly to the syntactic
structure of the generated result and with each
node having the information slots:

constituent:
{identifier, \\ unique id for the unit

concept, \\ link to the semantic concept expressed
spelling, \\ the substring for this portion of structure
gloss, \\ a label for use in inter-lineal glosses
features, \\ the set of grammatical features for this unit
lexeme, \\ the lexeme chosen to cover this unit (if any)
annotation, \\ user-specified information
functions \\ the grammatical functions the unit expresses

}

An extract from such an internal record structure
encoded inXML is given in the Appendix (5.1).

To support annotation, we make use of theXML -
export capabilities ofKPML (cf. (Bateman and
Hartley, 2000)) in order to provide these com-
pleted structures in a form suitable for passing on
to the next stage of corpus annotation within an
XML -based multi-layer framework.

3.2 XML multi-layer representation

Systemic-functional analysis is inherently multi-
dimensional in thatSFL adopts more than one view
on a linguistic unit. Here, we focus on three anno-
tationally relevant dimensions: axis (features and
functions), unit (clause, group/phrase, word, mor-
pheme) and metafunction (ideational, logical, in-
terpersonal and textual). Each metafunction may
chunk up a given string (e.g., a clause unit) in

Figure 2: Generation output viewed as multi-layer
annotation

<sfglayer metafunction="IDEATIONAL">
However,
<segment functions="AGENT">they</segment>
will step up
<segment functions="DIRECTCOMPLEMENT GOAL MEDIUM">

their presence
</segment>
<segment functions="TIMELOCATIVE">

in the next year
</segment>
.

</sfglayer>

Figure 3: Metafunction+Function layers

different ways, thus potentially creating overlap-
ping hierarchies. This is depicted schematically
for the running example in Figure 2. For instance,
in this example, according to the textual meta-
function, “however they” constitutes a segment
(Theme) and according to the interpersonal meta-
function, “they will” constitutes another segment
(Mood).

In order to be able to use theKPML output for
annotation purposes, we adopt a multi-layer model
that allows the representation of these different de-
scriptional dimensions as separate layers superim-
posed on a given string (cf. (Teich et al., 2005)).
The transformation from theKPML output to the
concrete multi-layer model adopted is defined in
XSLT.

From the KPML internal record structure we
use the information slots of identifier, spelling,
features, and functions. Each entry in the func-
tion slot is associated with one metafunctional as-
pect. For each metafunctional aspect, an annota-
tion layer is created for each constituent unit (e.g.,
a clause) holding all associated functions together
with the substrings they describe (see Figure 3 for
the ideational functions contained in the clause in
the running example).

An additional layer holds the complete con-
stituent structure of the clause (cf. Figure 4 for the
corresponding extract from the running example),

89



<constituent unit="-TOP-"
selexp="LEXICAL-VERB-TERM-RESOLUTION...">
<token features="HOWEVER">However,</token>
<constituent unit="TOPICAL"

selexp="THEY-PRONOUN...">
<token features="THEY PLURAL-FORM">they</token>

</constituent>
<token features="OUTCLASSIFY-REDUCED...">will</token>
<token features="DO-VERB...">step up</token>
<constituent unit="DIRECTCOMPLEMENT"

selexp="NOMINAL-TERM-RESOLUTION OBLIQUE...">
<constituent unit="DEICTIC"

selexp="THEIR GENITIVE NONSUPERLATIVE...">
<token features="THEIR PLURAL-FORM">their</token>

</constituent>
<token features="...COMMON-NOUN...">presence</token>

</constituent>
<constituent unit="TIMELOCATIVE"

selexp="IN STRONG-INCLUSIVE UNORDERED...">
<token features="IN">in</token>
<constituent unit="MINIRANGE"

selexp="NOMINAL-TERM-RESOLUTION...">
<token features="THE">the</token>
<constituent unit="STATUS"

selexp="QUALITY-TERM-RESOLUTION...">
<token features="...ADJECTIVE">next</token>

</constituent>
<token features="...COMMON-NOUN...">year .</token>

</constituent>
</constituent>

</constituent>

Figure 4: Constituent+Feature layer

i.e., the phrasal constituents and their features:

<constituent unit="..." selexp="...">
</constituent>

and the tokens and their (lexical) features:

<token features="..."> ... </token>

Thus, theKPML generation output, which di-
rectly reflects the trace of the generation process,
is reorganized into a meaningful corpus represen-
tation. Information not relevant to annotation can
be ignored without loss of information concerning
the linguistic description. The resulting represen-
tation for the running example is shown in the Ap-
pendix (5.2).2

4 Discussion

Although it is clear that the kind of informational
structures produced during generation with more
developedKPML grammars align quite closely
with that targetted by sophisticated corpus anno-
tation, there are several issues that need to be ad-
dressed in order to turn this process into a prac-
tical annotation alternative. Those which we are
currently investigating centre around usability and
coverage.

2To improve readability, we provide the integrated repre-
sentation rather than the stand-off representation which aligns
the different layers by using character offsets.

Usability/effort. Users need to be trained in pro-
viding information to guide the generation pro-
cess. This guidance is either in the form of di-
rect selections of grammatical features, in which
case the user needs to know when the features ap-
ply, or in the form of semantic specifications, in
which case the user needs information concerning
the appropriate semantic classification according
to the constructs of the linguistic ontology. One of
the methods by which the problem of knowing the
import of grammatical features may be alleviated
is to link each feature with sets of already anno-
tated/generated corpus examples. Thus, if a user
is unsure concerning a feature, she can call for
examples to be displayed in which the particular
linguistic unit carrying the feature is highlighted.
Even more useful is a further option which shows
not only examples containing the feature, butcon-
trasting examples showing where the feature has
applied and where it has not. This provides users
with online training during the use of the system
for annotation. The mechanisms for showing ex-
amples and contrasting sets of generated sentences
for each feature were originally provided as part
of a teaching aid built on top ofKPML: this allows
students to explore a grammar by means of the ef-
fects that each set of contrasting features brings
for generated structures. For complex grammars
this appears to offer a viable alternative to precise
documentation—especially for less skilled users.

Coverage. When features have been selected, it
may still be the case that the correct target string
has not been generated due to limited coverage
of grammar and/or semantics. This is indicative
of the need to extend the grammatical resources
further. A further alternative that we are explor-
ing is to allow users to specify the correspondence
between the units generated and the actual target
string more flexibly. This is covered by two cases:
(i) that additional material is in the target string
that was not generated, and (ii) that the surface
order of constituents is not exactly that produced
by the generator. In both cases we can refine the
stand-off annotation so that the structural result
of generation can be linked to the actual string.
Thus manual correction consists of minor align-
ment statements between generated structure and
string.

Certain other information that may not be avail-
able to the generator, such as lexical entries, can be
constructed semi-automatically on-the-fly, again

90



using the information produced in the generation
process (i.e., by collecting the lexical classifica-
tion features and adding lexemes containing those
features). This method can be applied for all open
word classes.
Next steps. In our future work, we will be car-
rying out an extensive annotation experiment with
the prediction that annotation time is not higher
than for interactive annotation from a parsing per-
spective. TIGER, for example, reports 10 min-
utes per sentence as an average annotation time.
We expect an experiencedKPML user to be sig-
nificantly faster because the process of generation
or feature selection explicitly leads the annotator
through precisely those features that are relevant
and possible given the connectivity of the feature
lattice defined by the grammar. Annotation then
proceeds first by selecting the features that apply
and then by aligning the generated structure with
the corpus instance: both potentially rather rapid
stages. Also, we would expect to achieve similar
coverage as reported by (Baldwin et al., 2004) for
ERG when applied to a random 20,000 string sam-
ple of theBNC due to the coverage of the existing
grammars.

The results of such investigations will beSFL-
treebanks, analogous to such treebanks produced
using dependency approaches,LFG, HPSG, etc.
These treebanks will then support the subsequent
learning of annotations for automatic processing.

Acknowledgment. This work was partially supported
by Hessischer Innovationsfondof TU Darmstadt andPACE
(Partners for the Advancement of Collaborative Engineering
Education:www.pacepartners.org ).

References

T. Baldwin, E. M. Bender, D. Flickinger, A. Kim, and
S. Oepen. 2004. Road-testing the EnglishResource
Grammar over the British National Corpus. In
Proceedings of the 4th International Conference on
Language Resources and Evaluation (LREC) 2004,
Lisbon, Portugal.

J. A. Bateman and A. F. Hartley. 2000. Target
suites for evaluating the coverage of text generators.
In Proceedings of the 3rd International Conference
on Language Resources and Evaluation (LREC),
Athens, Greece.

J. A. Bateman, I. Kruijff-Korbayov́a, and G.-J. Krui-
jff. 2005. Multilingual resource sharing across
both related and unrelated languages: An imple-
mented, open-source framework for practical natu-
ral language generation.Research on Language and
Computation, 3(2):191–219.

J. A. Bateman. 1997. Enabling technology for multi-
lingual natural language generation: the KPML de-
velopment environment.Journal of Natural Lan-
guage Engineering, 3(1):15–55.

S. Bird and M. Liberman. 2001. A formal framework
for linguistic annotation. Speech Communication,
33(1-2):23–60.

S. Brants, S. Dipper, S. Hansen, W. Lezius, and
G. Smith. 2002. The TIGER treebank. InProceed-
ings of the Workshop on Treebanks and Linguistic
Theories, Sozopol.

A. Cahill, M. McCarthy, J. van Genabith, and A. Way.
2002. Automatic annotation of the Penn-Treebank
with LFG f-structure information. InProceedings of
the 3rd International Conference on Language Re-
sources and Evaluation (LREC) 2002, Las Palmas,
Spain.

A. Copestake and D. Flickinger. 2002. An open-source
grammar development environment and broad cov-
erage English grammar using HPSG. InProceed-
ings of the 2nd International Conference on Lan-
guage Resources and Evaluation (LREC), Athens,
Greece.

A. Frank, L. Sadler, J. van Genabith, and A. Way.
2003. From treebank resources to LFG f-structures.
Automatic f-structure annotation of treebank trees
and CFGs extracted from treebanks. In A. Abeille,
editor, Treebanks. Building and using syntactically
annotated corpora, pages 367–389. Kluwer Aca-
demic Publishers, Dordrecht, Boston, London.

MAK Halliday. 2004. Introduction to Functional
Grammar. Arnold, London.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz.
1993. Building a large annotated corpus of En-
glish: the Penn Treebank.Computational Linguis-
tics, 19(2):313–330.

S. Oepen, E. Callahan, D. Flickinger, C. D. Manning,
and K. Toutanova. 2002. LinGO Redwoods. A rich
and dynamic treebank for HPSG. InWorkshop on
Parser Evaluation, 3rd International Conference on
Language Resources and Evaluation (LREC), Las
Palmas, Spain.

C.M. Sperberg-McQueen and C. Huitfeldt. 2001.
GODDAG: A Data Structure for Overlapping Hi-
erarchies. InProceedings of PODDP’00 and
DDEP’00, New York.

E. Teich, S. Hansen, and P. Fankhauser. 2001. Rep-
resenting and querying multi-layer corpora. In
Proceedings of the IRCS Workshop on Linguistic
Databases, University of Pennsylvania, Philadel-
phia.

E. Teich, P. Fankhauser, R. Eckart, S. Bartsch, and
M. Holtz. 2005. Representing SFL-annotated cor-
pus resources. InProceedings of the 1st Computa-
tional Systemic Functional Workshop, Sydney, Aus-
tralia.

91



5 Appendix

5.1 Extract from generation record (clause level)
<example>

<name>REUTERS29</name>
<generatedForm>However, they will step up their presence in the next year.</generatedForm>
<targetForm>But they will step up their presence in the next year.</targetForm>
<structures><constituent id="G3324" semantics="STEP-3278">

<functions>
<function metafunction="UNKNOWN">SENTENCE</function></functions>

<features/>
<subconstituents><constituent id="G3308" semantics="RR62-3289">

<functions>
<function metafunction="TEXTUAL">TEXTUAL</function>
<function metafunction="TEXTUAL">CONJUNCTIVE</function></functions>

<features>
<f>HOWEVER</f></features>

<subconstituents><string>However,</string></subconstituents>
</constituent><constituent id="G3310" semantics="PERSON-3291">

<functions>
<function metafunction="TEXTUAL">TOPICAL</function>
<function metafunction="INTERPERSONAL">SUBJECT</function>
<function metafunction="UNIFYING">ACTOR</function>
<function metafunction="IDEATIONAL">AGENT</function></functions>

<features/>
<subconstituents><constituent id="G3309" semantics="PERSON-3291">

<functions>
<function metafunction="LOGICAL">THING</function></functions>

<features>
<f>THEY</f>
<f>PLURAL-FORM</f></features>

<subconstituents><string>they </string></subconstituents>
</constituent>
</subconstituents>
</constituent><constituent id="G3311" semantics="ST59-3280-3297-3302">

<functions>
<function metafunction="LOGICAL">TEMPO0</function>
<function metafunction="INTERPERSONAL">FINITE</function></functions>

<features>
<f>OUTCLASSIFY-REDUCED</f>
<f>OUTCLASSIFY-NEGATIVE-AUX</f>
<f>FUTURE-AUX</f>
<f>PLURAL-FORM</f>
<f>THIRDPERSON-FORM</f></features>

<subconstituents><string>will </string></subconstituents>
</constituent><constituent id="G3312" semantics="STEP-3278">

<functions>
<function metafunction="UNIFYING">AUXSTEM</function>
<function metafunction="LOGICAL">VOICE</function>
<function metafunction="LOGICAL">LEXVERB</function>
<function metafunction="LOGICAL">PROCESS</function></functions>

<features>
<f>DO-VERB</f>
<f>EFFECTIVE-VERB</f>
<f>DISPOSAL-VERB</f>
<f>STEM</f></features>

<subconstituents><string>step up </string></subconstituents>
</constituent><constituent id="G3316" semantics="PRESENCE-3292-3306">

<functions>
<function metafunction="IDEATIONAL">DIRECTCOMPLEMENT</function>
<function metafunction="IDEATIONAL">GOAL</function>
<function metafunction="IDEATIONAL">MEDIUM</function></functions>

</constituent></subconstituents></constituent></structures>
<selectionexpressions>

<selexp sem="STEP-3278"><unit>-TOP-</unit><f>LEXICAL-VERB-TERM-RESOLUTION</f>
<f>DO-NEEDING-VERBS</f><f>AUXSTEM-VOICE</f><f>REAL</f><f>NON-MOTION-CLAUSE</f>
<f>PLURAL-FINITE</f><f>PLURAL-SUBJECT</f><f>TOPICAL-INSERT</f> ...

</selexp>
<selexp>...</selexp>
...

</selectionexpressions>
</example>

5.2 Multi-layer representation of generation record

Metafunction+Function layers

<sfglayer metafunction="UNKNOWN">
<segment functions="SENTENCE">

However, they will step up their presence in the next year .
</segment>

</sfglayer>

<sfglayer metafunction="UNIFYING">
However,
<segment functions="ACTOR">they</segment>
will
<segment functions="AUXSTEM">step up</segment>
their presence in the next year .

</sfglayer>

<sfglayer metafunction="TEXTUAL">
<segment functions="TEXTUAL CONJUNCTIVE">However,</segment>
<segment functions="TOPICAL">they</segment>
will step up their presence in the next year .

</sfglayer>

92



<sfglayer metafunction="LOGICAL">
However,
<segment functions="THING">they</segment>
<segment functions="TEMPO0">will</segment>
<segment functions="VOICE LEXVERB PROCESS">step up</segment>
<segment functions="THING">their</segment>
<segment functions="THING">presence</segment>
in the
<segment functions="QUALITY">next</segment>
<segment functions="THING">year .</segment>

</sfglayer>

<sfglayer metafunction="INTERPERSONAL">
However,
<segment functions="SUBJECT">they</segment>
<segment functions="FINITE">will</segment>
step up
<segment functions="DEICTIC">their</segment>
presence in
<segment functions="DEICTIC">the</segment>
next year .

</sfglayer>

<sfglayer metafunction="IDEATIONAL">
However,
<segment functions="AGENT">they</segment>
will step up
<segment functions="DIRECTCOMPLEMENT GOAL MEDIUM">

their presence
</segment>
<segment functions="TIMELOCATIVE">

<segment functions="MINORPROCESS">in</segment>
<segment functions="MINIRANGE">

the
<segment functions="STATUS">next</segment>
year .

</segment>
</segment>

</sfglayer>

Constituent+Feature layer

<constituent id="G3324" unit="-TOP-"
selexp="LEXICAL-VERB-TERM-RESOLUTION DO-NEEDING-VERBS AUXSTEM-VOICE REAL NON-MOTION-CLAUSE TOPICAL-INSERT ...">
<token features="HOWEVER">However,</token>
<constituent id="G3310" unit="TOPICAL"

selexp="THEY-PRONOUN NONDEMONSTRATIVE-SPECIFIC-PRONOUN NOMINATIVE NONSUPERLATIVE NONREPRESENTATION NONPARTITIVE ...">
<constituent id="G3309" unit="TOPICAL">

<token features="THEY PLURAL-FORM">they</token>
</constituent>

</constituent>
<token

features="OUTCLASSIFY-REDUCED OUTCLASSIFY-NEGATIVE-AUX FUTURE-AUX PLURAL-FORM THIRDPERSON-FORM">
will

</token>
<constituent id="G3312" unit="-TOP-">

<token features="DO-VERB EFFECTIVE-VERB DISPOSAL-VERB STEM">
step up

</token>
</constituent>
<constituent id="G3316" unit="DIRECTCOMPLEMENT"

selexp="NOMINAL-TERM-RESOLUTION OBLIQUE NONSUPERLATIVE NONREPRESENTATION NONPARTITIVE NONQUANTIFIED NOMINAL-GROUP ...">
<constituent id="G3314" unit="DEICTIC"

selexp="THEIR GENITIVE NONSUPERLATIVE NONREPRESENTATION NONPARTITIVE NONQUANTIFIED NOMINAL-GROUP ...">
<constituent id="G3313" unit="DEICTIC">

<token features="THEIR PLURAL-FORM">their</token>
</constituent>

</constituent>
<constituent id="G3315" unit="DIRECTCOMPLEMENT">

<token
features="OUTCLASSIFY-PROPERNOUN NOUN COMMON-NOUN COUNTABLE SINGULAR-FORM NOUN">
presence

</token>
</constituent>

</constituent>
<constituent id="G3323" unit="TIMELOCATIVE"

selexp="IN STRONG-INCLUSIVE UNORDERED TEMPORAL-PROCESS LOCATION-PROCESS SPATIO-TEMPORAL-PROCESS PREPOSITIONAL-PHRASE ...">
<token features="IN">in</token>
<constituent id="G3322" unit="MINIRANGE"

selexp="NOMINAL-TERM-RESOLUTION OBLIQUE NONSUPERLATIVE NONREPRESENTATION NONPARTITIVE NONQUANTIFIED NOMINAL-GROUP ...">
<token features="THE">the</token>
<constituent id="G3320" unit="STATUS"

selexp="QUALITY-TERM-RESOLUTION SIMPLEX-QUALITY NOTINTENSIFIED NONSCALABLE CONGRUENT-ADJECTIVAL-GROUP ...">
<constituent id="G3319" unit="STATUS">

<token features="OUTCLASSIFY-DEGREE-ADJ ADJ-NEUTRAL-FORM ADJECTIVE">
next

</token>
</constituent>

</constituent>
<constituent id="G3321" unit="MINIRANGE">

<token features="OUTCLASSIFY-PROPERNOUN NOUN COMMON-NOUN COUNTABLE SINGULAR-FORM NOUN">
year .

</token>
</constituent>

</constituent>
</constituent>

</constituent>

93


