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Abstract 

This paper addresses two major prob-
lems in closed task of Chinese word 
segmentation (CWS): tagging sentences 
interspersed with non-Chinese words, 
and long named entity (NE) identifica-
tion. To resolve the former, we apply K-
means clustering to identify non-Chinese 
characters, and then adopt a two-tagger 
architecture: one for Chinese text and the 
other for non-Chinese text. For the latter 
problem, we apply postprocessing to our 
CWS output using automatically gener-
ated templates. The experiment results 
show that, when non-Chinese characters 
are sparse in the training corpus, our 
two-tagger method significantly im-
proves the segmentation of sentences 
containing non-Chinese words. Identifi-
cation of long NEs and long words is 
also enhanced by template-based post-
processing. In the closed task of 
SIGHAN 2006 CWS, our system 
achieved F-scores of 0.957, 0.972, and 
0.955 on the CKIP, CTU, and MSR cor-
pora respectively.  

1 Introduction 

Unlike Western languages, Chinese does not 
have explicit word delimiters. Therefore, word 
segmentation (CWS) is essential for Chinese 
text processing or indexing. There are two main 
problems in the closed CWS task. The first is to 
identify and segment non-Chinese word se-
quences in Chinese documents, especially in a 
closed task (described later). A good CWS sys-
tem should be able to handle Chinese texts pep-

pered with non-Chinese words or phrases. Since 
non-Chinese language morphologies are quite 
different from that of Chinese, our approach 
must depend on how many non-Chinese words 
appear, whether they are connected with each 
other, and whether they are interleaved with 
Chinese words. If we can distinguish non-
Chinese characters automatically and apply dif-
ferent strategies, the segmentation performance 
can be improved. The second problem in closed 
CWS is to correctly identify longer NEs. Most 
ML-based CWS systems use a five-character 
context window to determine the current charac-
ter’s tag. In the majority of cases, given the con-
straints of computational resources, this com-
promise is acceptable. However, limited by the 
window size, these systems often handle long 
words poorly. 

In this paper, our goal is to construct a general 
CWS system that can deal with the above prob-
lems. We adopt CRF as our ML model. 

2 Chinese Word Segmentation System 

2.1 Conditional Random Fields 

Conditional random fields (CRFs) are undirected 
graphical models trained to maximize a condi-
tional probability (Lafferty et al., 2001). A lin-
ear-chain CRF with parameters Λ={λ1, λ2, …} 
defines a conditional probability for a state se-
quence y = y1 …yT , given that an input sequence 
x = x1 …xT  is 
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where Zx is the normalization factor that makes 
the probability of all state sequences sum to one; 
fk(yt-1, yt, x, t) is often a binary-valued feature 
function and λk is its weight. The feature 
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functions can measure any aspect of a state 
transition, yt-1→yt, and the entire observation 
sequence, x, centered at the current time step, t. 
For example, one feature function might have 
the value 1 when yt-1 is the state B, yt is the state 
I, and tx  is the character “国”. 

2.2 Character Clustering 

In many cases, Chinese sentences may be inter-
spersed with non-Chinese words. In a closed 
task, there is no way of knowing how many lan-
guages there are in a given text. Our solution is 
to apply a clustering algorithm to find homoge-
neous characters belonging to the same character 
clusters. One general rule we adopted is that a 
language’s characters tend to appear together in 
tokens. In addition, character clusters exhibit 
certain distinct properties. The first property is 
that the order of characters in some pairs can be 
interchanged. This is referred to as exchange-
ability. The second property is that some charac-
ters, such as lowercase characters, can appear in 
any position of a word; while others, such as 
uppercase characters, cannot. This is referred to 
as location independence. According to the gen-
eral rule, we can calculate the pairing frequency 
of characters in tokens by checking all tokens in 
the corpus. Assuming the alphabet is Σ, we first 
need to represent each character as a |Σ|-
dimensional vector. For each character ci, we use 
vj to represent its j-dimension value, which is 
calculated as follows: 

r
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where fij denotes the frequency with which ci and 
cj appear in the same word when ci’s position 
precedes that of cj. We take the minimum value 
of fij and fji because even when ci and cj have a 
high co-occurrence frequency, if either fij or fji is 
low, then one order does not occur often, so vj’s 
value will be low. We use two parameters to 
normalize vj within the range 0 to 1; α is used to 
enlarge the gap between non-zero and zero fre-
quencies, and γ is used to weaken the influence 
of very high frequencies. 

Next, we apply the K-means algorithm to 
generate candidate cluster sets composed of K 
clusters (Hartigan et al., 1979). Different K’s, 
α’s, and γ’s are used to generate possible charac-
ter cluster sets. Our K-means algorithm uses the 
cosine distance. 

After obtaining the K clusters, we need to se-
lect the N1 best character clusters among them. 
Assuming the angle between the cluster centroid 
vector and (1, 1, ... , 1) is θ, the cluster with the 

largest cosine θ will be removed. This is because 
characters whose co-occurrence frequencies are 
nearly all zero will be transformed into vectors 
very close to (α, α, ... , α); thus, their centroids 
will also be very close to (α, α, ... , α), leading to 
unreasonable clustering results. 

After removing these two types of clusters, 
for each character c in a cluster M, we calculate 
the inverse relative distance (IRDist) of c using 
(3): 
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where mi stands for the centroid of cluster Mi, 
and m stands for the centroid of M.  

We then calculate the average inverse dis-
tance for each cluster M. The N1 best clusters are 
selected from the original K clusters.   

The above K-means clustering and character 
cluster selection steps are executed iteratively 
for each cluster set generated from K-means 
clustering with different K’s, α’s, and γ’s.  

After selecting the N1 best clusters for each 
cluster set, we pool and rank them according to 
their inner ratios. Each cluster’s inner ratio is 
calculated by the following formula: 
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where co-occurrence(ci, cj) denotes the fre-
quency with which characters  ci and cj co-occur 
in the same word. 

To ensure that we select a balanced mix of 
clusters, for each character in an incoming clus-
ter M, we use Algorithm 1 to check if the fre-
quency of each character in C∪M is greater 
than a threshold τ. 
 

Algorithm 1 Balanced Cluster Selection 
Input: A set of character clusters P={M1 ,  . . .  , MK} 
          Number of selections N2, 
Output: A set of clusters Q={ '

1M  ,  . . .  , '
2NM }. 

 
1: C={} 
2: sort the clusters in P by their inner ratios; 
3: while |C|<=N2 do 
4:     pick the cluster M that has highest inner ratio; 
5:     for each character c in M do 
6:          if the frequency of c in C∪M is over thresh-
old τ 
7:                 P←P－M; 
8:                 continue; 
9 :        else 
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10:               C←C∪M; 
11:               P←P－M; 
12:        end; 
13:   end; 
14: end 
 

The above algorithm yields the best N1 clus-
ters in terms of exchangeability. Next, we exe-
cute the above procedures again to select the 
best  N2 clusters based on their location inde-
pendence and exchangeability. However, for 
each character ci, we use vj to denote the value of 
its j-th dimension. We calculate vj as follows: 

r
jijiijijj ffffv )]',,',)[min(1(' αα −+= ,      (5) 

where ijf  stands for the frequency with which ci 
and cj appear in the same word when ci is the 
first character; and f’ij stands for the frequency 
with which ci and cj co-occur in the same word 
when ci precedes cj  but not in the first position. 
We choose the minimum value from ijf , f’ij, jif , 
and f’ji  because if ci and cj both appear in the 
first position of a word and their order is ex-
changeable, the four frequency values, including 
the minimum value, will all be large enough. 
Type Cluster Inner (K, α, γ) 

,.0123456789 0.94 (10, 0.60, 0.16)
EX 
 

-/ABCDEFGHIKLMNOPR 
STUVWabcdefghiklmnoprst 
uvwxy 

0.93 (10, 0.70, 0.16)

－／ABCDEFGHIKLMNO 
PRSTUVWabcdefghiklmno 
prstvwxy 

0.84 (10, 0.50, 0.25)EL 

０１２３４５６７８９ 0.76 (10, 0.50, 0.26)

Table 1. Clustering Results of the CTU corpus 

Our next goal is to create the best hybrid of 
the above two cluster sets. The set selected for 
exchangeability is referred to as the EX set, 
while the set selected for both exchangeability 
and location independence is referred to as the 
EL set. We create a development set and use the 
best first strategy to build the optimal cluster set 
from EX∪EL. The EX and EL for the CTU 
corpus are shown in Table 1. 

2.3 Handling Non-Chinese Words 

Non-Chinese characters suffer from a serious 
data sparseness problem, since their frequencies 
are much lower than those of Chinese characters. 
In bigrams containing at least one non-Chinese 
character (referred as non-Chinese bigrams), the 
problem is more serious. Take the phrase “約莫  
20 歲” (about 20 years old) for example. “2” is 
usually predicted as I, (i.e., “約莫” is connected 

with “2”) resulting in incorrect segmentation, 
because the frequency of “2” in the I class is 
much higher than that of “2” in the B class, even 
though the feature C-2C-1=”約莫” has a high 
weight for assigning “2” to the B class. 

Traditional approaches to CWS only use one 
general tagger (referred as the G tagger) for 
segmentation. In our system, we use two CWS 
taggers. One is a general tagger, similar to the 
traditional approaches; the other is a specialized 
tagger designed to deal with non-Chinese words. 
We refer to the composite tagger (the general 
tagger plus the specialized tagger) as the GS 
tagger. 

Here, we refer to all characters in the selected 
clusters as non-Chinese characters. In the devel-
opment stage, the best-first feature selector de-
termines which clusters will be used. Then, we 
convert each sentence in the training data and 
test data into a normalized sentence. Each non-
Chinese character c is replaced by a cluster rep-
resentative symbol σM, where c is in the cluster 
M. We refer to the string composed of all σM as 
F. If the length of F is more than that of W, it 
will be shortened to W. The normalized sentence 
is then placed in one file, and the non-Chinese 
character sequence is placed in another. Next, 
we use the normalized training and test file for 
the general tagger, and the non-Chinese se-
quence training and test file for the specialized 
tagger. Finally, the results of these two taggers 
are combined. 

The advantage of this approach is that it re-
solves the data sparseness problem in non-
Chinese bigrams. Consider the previous example 
in which σ stands for the numeral cluster. Since 
there is a phrase “約莫 8 年”  in the training data, 
C-1C0= “莫 8” is still an unknown bigram using 
the G tagger. By using the GS tagger, however, 
“約莫 20 歲” and “約莫 8 年” will be converted 
as “約莫 σσ歲” and “約莫 σ年”, respectively. 
Therefore, the bigram feature C-1C0=“莫 σ” is no 
longer unknown. Also, since σ in “莫 σ” is 
tagged as B, (i.e., “莫” and “σ” are separated), 
“莫” and “σ” will be separated in  “約莫 σσ歲”. 

2.4 Generating and Applying Templates 

Template Generation 

We first extract all possible word candidates 
from the training set. Given a minimum word 
length L, we extract all words whose length is 
greater than or equal to L, after which we align 
all word pairs. For each pair, if more than fifty 
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percent of the characters are identical, a template 
will be generated to match both words in the pair. 

Template Filtering 

We have two criteria for filtering the extracted 
templates. First, we test the matching accuracy 
of each template t on the development set. This 
is calculated by the following formula: 

strings matched all of #
separators no with strings matched of #

)( =tA . 

In our system, templates whose accuracy is 
lower than the threshold τ1 are discarded. For the 
remaining templates, we apply two different 
strategies. According to our observations of the 
development set, most templates whose accu-
racy is less than τ2 are ineffective. To refine such 
templates, we employ the character class infor-
mation generated by character clustering to im-
pose a class limitation on certain template slots. 
This regulates the potential input and improves 
the precision. Consider a template with one or 
more wildcard slots. If any string matched with 
these wildcard slots contains characters in dif-
ferent clusters, this template is also discarded.  

Template-Based Post-Processing (TBPP) 

After the generated templates have been filtered, 
they are used to match our CWS output and 
check if the matched tokens can be combined 
into complete words. If a template’s accuracy is 
greater than τ2, then all separators within the 
matched strings will be eliminated; otherwise, 
for a template t with accuracy between τ1 and τ2, 
we eliminate all separators in its matched string 
if no substring matched with t’s wildcard slots 
contains characters in different clusters. Resul-
tant words of less than three characters in length 
are discarded because CRF performs well with 
such words. 

3 Experiment 

3.1 Dataset 

We use the three larger corpora in SIGHAN 
Bakeoff 2006: a Simplified Chinese corpus pro-
vided by Microsoft Research Beijing, and two 
Traditional Chinese corpora provided by Aca-
demia Sinica in Taiwan and the City University 
of Hong Kong respectively. Details of each cor-
pus are listed in Table 2. 

Training Size Test SizeCorpus 
Types Words Types Words

CKIP 141 K 5.45 M 19 K 122 K
City University (CTU) 69 K 1.46 M 9 K 41 K

Microsoft Research (MSR) 88 K 2.37 M 13 K 107 K

Table 2. Corpora Information 

3.2 Results 

Table 3 lists the best combination of n-gram fea-
tures used in the G tagger. 

Uni-gram Bigram  
C-2, C-1, C0, C1 C-2C-1, C-1C0, C0C1, C-3C-1, C-2C0, C-1C1

Table 3. Best Combination of N-gram Features 

Table 4 compares the baseline G tagger and the 
enhanced GST tagger. We observe that the GST 
tagger outperforms the G tagger on all three cor-
pora. 

Conf R P F ROOV RIV 
CKIP-g 0.958 0.949 0.954 0.690 0.969 
CKIP-gst 0.961 0.953 0.957 0.658 0.974 
CTU-g 0.966 0.967 0.966 0.786 0.973 
CTU-gst 0.973 0.972 0.972 0.787 0.981 
MSR-g 0.949 0.957 0.953 0.673 0.959 
MSR-gst 0.953 0.956 0.955 0.574 0.966 

Table 4 Performance Comparison of the G Tag-
ger and the GST Tagger  

4 Conclusion  

The contribution of this paper is two fold. First, 
we successfully apply the K-means algorithm to 
character clustering and develop several cluster 
set selection algorithms for our GS tagger. This 
significantly improves the handling of sentences 
containing non-Chinese words as well as the 
overall performance. Second, we develop a post-
processing method that compensates for the 
weakness of ML-based CWS on longer words. 
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