
Proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing, pages 134–137,
Sydney, July 2006.c©2006 Association for Computational Linguistics

On Closed Task of Chinese Word Segmentation: An Improved CRF
Model Coupled with Character Clustering and
Automatically Generated Template Matching

Richard Tzong-Han Tsai, Hsieh-Chuan Hung, Cheng-Lung Sung,
Hong-Jie Dai, and Wen-Lian Hsu

Intelligent Agent Systems Lab
Institute of Information Science, Academia Sinica

No. 128, Sec. 2, Academia Rd., 115 Nankang, Taipei, Taiwan, R.O.C.
{thtsai,yabt,clsung,hongjie,hsu}@iis.sinica.edu.tw

Abstract

This paper addresses two major prob-
lems in closed task of Chinese word
segmentation (CWS): tagging sentences
interspersed with non-Chinese words,
and long named entity (NE) identifica-
tion. To resolve the former, we apply K-
means clustering to identify non-Chinese
characters, and then adopt a two-tagger
architecture: one for Chinese text and the
other for non-Chinese text. For the latter
problem, we apply postprocessing to our
CWS output using automatically gener-
ated templates. The experiment results
show that, when non-Chinese characters
are sparse in the training corpus, our
two-tagger method significantly im-
proves the segmentation of sentences
containing non-Chinese words. Identifi-
cation of long NEs and long words is
also enhanced by template-based post-
processing. In the closed task of
SIGHAN 2006 CWS, our system
achieved F-scores of 0.957, 0.972, and
0.955 on the CKIP, CTU, and MSR cor-
pora respectively.

1 Introduction

Unlike Western languages, Chinese does not
have explicit word delimiters. Therefore, word
segmentation (CWS) is essential for Chinese
text processing or indexing. There are two main
problems in the closed CWS task. The first is to
identify and segment non-Chinese word se-
quences in Chinese documents, especially in a
closed task (described later). A good CWS sys-
tem should be able to handle Chinese texts pep-

pered with non-Chinese words or phrases. Since
non-Chinese language morphologies are quite
different from that of Chinese, our approach
must depend on how many non-Chinese words
appear, whether they are connected with each
other, and whether they are interleaved with
Chinese words. If we can distinguish non-
Chinese characters automatically and apply dif-
ferent strategies, the segmentation performance
can be improved. The second problem in closed
CWS is to correctly identify longer NEs. Most
ML-based CWS systems use a five-character
context window to determine the current charac-
ter’s tag. In the majority of cases, given the con-
straints of computational resources, this com-
promise is acceptable. However, limited by the
window size, these systems often handle long
words poorly.

In this paper, our goal is to construct a general
CWS system that can deal with the above prob-
lems. We adopt CRF as our ML model.

2 Chinese Word Segmentation System

2.1 Conditional Random Fields

Conditional random fields (CRFs) are undirected
graphical models trained to maximize a condi-
tional probability (Lafferty et al., 2001). A lin-
ear-chain CRF with parameters Λ={λ1, λ2, …}
defines a conditional probability for a state se-
quence y = y1 …yT , given that an input sequence
x = x1 …xT is

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑∑

=
−Λ

T

t k
ttkk tyyf

Z
P

1
1),,,(exp1)|(xxy

x

λ ,(1)

where Zx is the normalization factor that makes
the probability of all state sequences sum to one;
fk(yt-1, yt, x, t) is often a binary-valued feature
function and λk is its weight. The feature

134

functions can measure any aspect of a state
transition, yt-1→yt, and the entire observation
sequence, x, centered at the current time step, t.
For example, one feature function might have
the value 1 when yt-1 is the state B, yt is the state
I, and tx is the character “国”.

2.2 Character Clustering

In many cases, Chinese sentences may be inter-
spersed with non-Chinese words. In a closed
task, there is no way of knowing how many lan-
guages there are in a given text. Our solution is
to apply a clustering algorithm to find homoge-
neous characters belonging to the same character
clusters. One general rule we adopted is that a
language’s characters tend to appear together in
tokens. In addition, character clusters exhibit
certain distinct properties. The first property is
that the order of characters in some pairs can be
interchanged. This is referred to as exchange-
ability. The second property is that some charac-
ters, such as lowercase characters, can appear in
any position of a word; while others, such as
uppercase characters, cannot. This is referred to
as location independence. According to the gen-
eral rule, we can calculate the pairing frequency
of characters in tokens by checking all tokens in
the corpus. Assuming the alphabet is Σ, we first
need to represent each character as a |Σ|-
dimensional vector. For each character ci, we use
vj to represent its j-dimension value, which is
calculated as follows:

r
jiijj ffv)],)[min(1(αα −+= ’ (2),

where fij denotes the frequency with which ci and
cj appear in the same word when ci’s position
precedes that of cj. We take the minimum value
of fij and fji because even when ci and cj have a
high co-occurrence frequency, if either fij or fji is
low, then one order does not occur often, so vj’s
value will be low. We use two parameters to
normalize vj within the range 0 to 1; α is used to
enlarge the gap between non-zero and zero fre-
quencies, and γ is used to weaken the influence
of very high frequencies.

Next, we apply the K-means algorithm to
generate candidate cluster sets composed of K
clusters (Hartigan et al., 1979). Different K’s,
α’s, and γ’s are used to generate possible charac-
ter cluster sets. Our K-means algorithm uses the
cosine distance.

After obtaining the K clusters, we need to se-
lect the N1 best character clusters among them.
Assuming the angle between the cluster centroid
vector and (1, 1, ... , 1) is θ, the cluster with the

largest cosine θ will be removed. This is because
characters whose co-occurrence frequencies are
nearly all zero will be transformed into vectors
very close to (α, α, ... , α); thus, their centroids
will also be very close to (α, α, ... , α), leading to
unreasonable clustering results.

After removing these two types of clusters,
for each character c in a cluster M, we calculate
the inverse relative distance (IRDist) of c using
(3):

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

∑
),cos(

),(cos
log)IRDist(

mc

mc
c

i
i , (3)

where mi stands for the centroid of cluster Mi,
and m stands for the centroid of M.

We then calculate the average inverse dis-
tance for each cluster M. The N1 best clusters are
selected from the original K clusters.

The above K-means clustering and character
cluster selection steps are executed iteratively
for each cluster set generated from K-means
clustering with different K’s, α’s, and γ’s.

After selecting the N1 best clusters for each
cluster set, we pool and rank them according to
their inner ratios. Each cluster’s inner ratio is
calculated by the following formula:

∑

∑
−

−

=
∈

ji

ji

cc
ji

Mcc
ji

cc

cc
M

,

,

),occurence(co

),occurence(co
)inner(

 , (4)
where co-occurrence(ci, cj) denotes the fre-
quency with which characters ci and cj co-occur
in the same word.

To ensure that we select a balanced mix of
clusters, for each character in an incoming clus-
ter M, we use Algorithm 1 to check if the fre-
quency of each character in C∪M is greater
than a threshold τ.

Algorithm 1 Balanced Cluster Selection
Input: A set of character clusters P={M1 , . . . , MK}
 Number of selections N2,
Output: A set of clusters Q={ '

1M , . . . , '
2NM }.

1: C={}
2: sort the clusters in P by their inner ratios;
3: while |C|<=N2 do
4: pick the cluster M that has highest inner ratio;
5: for each character c in M do
6: if the frequency of c in C∪M is over thresh-
old τ
7: P←P－M;
8: continue;
9 : else

135

10: C←C∪M;
11: P←P－M;
12: end;
13: end;
14: end

The above algorithm yields the best N1 clus-
ters in terms of exchangeability. Next, we exe-
cute the above procedures again to select the
best N2 clusters based on their location inde-
pendence and exchangeability. However, for
each character ci, we use vj to denote the value of
its j-th dimension. We calculate vj as follows:

r
jijiijijj ffffv)]',,',)[min(1(' αα −+= , (5)

where ijf stands for the frequency with which ci
and cj appear in the same word when ci is the
first character; and f’ij stands for the frequency
with which ci and cj co-occur in the same word
when ci precedes cj but not in the first position.
We choose the minimum value from ijf , f’ij, jif ,
and f’ji because if ci and cj both appear in the
first position of a word and their order is ex-
changeable, the four frequency values, including
the minimum value, will all be large enough.
Type Cluster Inner (K, α, γ)

,.0123456789 0.94 (10, 0.60, 0.16)
EX

-/ABCDEFGHIKLMNOPR
STUVWabcdefghiklmnoprst
uvwxy

0.93 (10, 0.70, 0.16)

－／ABCDEFGHIKLMNO
PRSTUVWabcdefghiklmno
prstvwxy

0.84 (10, 0.50, 0.25)EL

０１２３４５６７８９ 0.76 (10, 0.50, 0.26)

Table 1. Clustering Results of the CTU corpus

Our next goal is to create the best hybrid of
the above two cluster sets. The set selected for
exchangeability is referred to as the EX set,
while the set selected for both exchangeability
and location independence is referred to as the
EL set. We create a development set and use the
best first strategy to build the optimal cluster set
from EX∪EL. The EX and EL for the CTU
corpus are shown in Table 1.

2.3 Handling Non-Chinese Words

Non-Chinese characters suffer from a serious
data sparseness problem, since their frequencies
are much lower than those of Chinese characters.
In bigrams containing at least one non-Chinese
character (referred as non-Chinese bigrams), the
problem is more serious. Take the phrase “約莫
20 歲” (about 20 years old) for example. “2” is
usually predicted as I, (i.e., “約莫” is connected

with “2”) resulting in incorrect segmentation,
because the frequency of “2” in the I class is
much higher than that of “2” in the B class, even
though the feature C-2C-1=”約莫” has a high
weight for assigning “2” to the B class.

Traditional approaches to CWS only use one
general tagger (referred as the G tagger) for
segmentation. In our system, we use two CWS
taggers. One is a general tagger, similar to the
traditional approaches; the other is a specialized
tagger designed to deal with non-Chinese words.
We refer to the composite tagger (the general
tagger plus the specialized tagger) as the GS
tagger.

Here, we refer to all characters in the selected
clusters as non-Chinese characters. In the devel-
opment stage, the best-first feature selector de-
termines which clusters will be used. Then, we
convert each sentence in the training data and
test data into a normalized sentence. Each non-
Chinese character c is replaced by a cluster rep-
resentative symbol σM, where c is in the cluster
M. We refer to the string composed of all σM as
F. If the length of F is more than that of W, it
will be shortened to W. The normalized sentence
is then placed in one file, and the non-Chinese
character sequence is placed in another. Next,
we use the normalized training and test file for
the general tagger, and the non-Chinese se-
quence training and test file for the specialized
tagger. Finally, the results of these two taggers
are combined.

The advantage of this approach is that it re-
solves the data sparseness problem in non-
Chinese bigrams. Consider the previous example
in which σ stands for the numeral cluster. Since
there is a phrase “約莫 8 年” in the training data,
C-1C0= “莫 8” is still an unknown bigram using
the G tagger. By using the GS tagger, however,
“約莫 20 歲” and “約莫 8 年” will be converted
as “約莫 σσ歲” and “約莫 σ年”, respectively.
Therefore, the bigram feature C-1C0=“莫 σ” is no
longer unknown. Also, since σ in “莫 σ” is
tagged as B, (i.e., “莫” and “σ” are separated),
“莫” and “σ” will be separated in “約莫 σσ歲”.

2.4 Generating and Applying Templates

Template Generation

We first extract all possible word candidates
from the training set. Given a minimum word
length L, we extract all words whose length is
greater than or equal to L, after which we align
all word pairs. For each pair, if more than fifty

136

percent of the characters are identical, a template
will be generated to match both words in the pair.

Template Filtering

We have two criteria for filtering the extracted
templates. First, we test the matching accuracy
of each template t on the development set. This
is calculated by the following formula:

strings matched all of #
separators no with strings matched of #

)(=tA .

In our system, templates whose accuracy is
lower than the threshold τ1 are discarded. For the
remaining templates, we apply two different
strategies. According to our observations of the
development set, most templates whose accu-
racy is less than τ2 are ineffective. To refine such
templates, we employ the character class infor-
mation generated by character clustering to im-
pose a class limitation on certain template slots.
This regulates the potential input and improves
the precision. Consider a template with one or
more wildcard slots. If any string matched with
these wildcard slots contains characters in dif-
ferent clusters, this template is also discarded.

Template-Based Post-Processing (TBPP)

After the generated templates have been filtered,
they are used to match our CWS output and
check if the matched tokens can be combined
into complete words. If a template’s accuracy is
greater than τ2, then all separators within the
matched strings will be eliminated; otherwise,
for a template t with accuracy between τ1 and τ2,
we eliminate all separators in its matched string
if no substring matched with t’s wildcard slots
contains characters in different clusters. Resul-
tant words of less than three characters in length
are discarded because CRF performs well with
such words.

3 Experiment

3.1 Dataset

We use the three larger corpora in SIGHAN
Bakeoff 2006: a Simplified Chinese corpus pro-
vided by Microsoft Research Beijing, and two
Traditional Chinese corpora provided by Aca-
demia Sinica in Taiwan and the City University
of Hong Kong respectively. Details of each cor-
pus are listed in Table 2.

Training Size Test SizeCorpus
Types Words Types Words

CKIP 141 K 5.45 M 19 K 122 K
City University (CTU) 69 K 1.46 M 9 K 41 K

Microsoft Research (MSR) 88 K 2.37 M 13 K 107 K

Table 2. Corpora Information

3.2 Results

Table 3 lists the best combination of n-gram fea-
tures used in the G tagger.

Uni-gram Bigram
C-2, C-1, C0, C1 C-2C-1, C-1C0, C0C1, C-3C-1, C-2C0, C-1C1

Table 3. Best Combination of N-gram Features

Table 4 compares the baseline G tagger and the
enhanced GST tagger. We observe that the GST
tagger outperforms the G tagger on all three cor-
pora.

Conf R P F ROOV RIV
CKIP-g 0.958 0.949 0.954 0.690 0.969
CKIP-gst 0.961 0.953 0.957 0.658 0.974
CTU-g 0.966 0.967 0.966 0.786 0.973
CTU-gst 0.973 0.972 0.972 0.787 0.981
MSR-g 0.949 0.957 0.953 0.673 0.959
MSR-gst 0.953 0.956 0.955 0.574 0.966

Table 4 Performance Comparison of the G Tag-
ger and the GST Tagger

4 Conclusion

The contribution of this paper is two fold. First,
we successfully apply the K-means algorithm to
character clustering and develop several cluster
set selection algorithms for our GS tagger. This
significantly improves the handling of sentences
containing non-Chinese words as well as the
overall performance. Second, we develop a post-
processing method that compensates for the
weakness of ML-based CWS on longer words.

References
Hartigan, J. A., & Wong, M. A. (1979). A K-means

Clustering Algorithm. Applied Statistics, 28, 100-
108.

Lafferty, J., McCallum, A., & Pereira, F. (2001).
Conditional Random Fields: Probabilistic Models
for Segmenting and Labeling Sequence Data. Pa-
per presented at the ICML-01.

137

