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Abstract

It is hard to come up with a general formalisation of
the problem of content determination in natural lan-
guage generation because of the degree of domain-
dependence that is involved. This paper presents
a novel way of looking at a class of content deter-
mination problems in terms of a non-standard kind
of inference, which we call natural language di-
rected inference. This is illustrated through exam-
ples from a system under development to present
parts of ontologies in natural language. Natural lan-
guage directed inference represents an interesting
challenge to research in automated reasoning and
natural language processing.

1 Introduction: Content Determination in
NLG

Content determination in natural language generation (NLG)
is the task of determining relevant material to be included in a
natural language text. Usually this is taken to involve in addi-
tion some planning of the overall structure of the text, as this
will affect whether particular combinations of content will be
able to be coherently realised. Because the details of con-
tent determination depend on characteristics of the applica-
tion domain and in general every NLG system has a different
domain or goals, there has been little success in coming up
with general models of the structure of this process. In par-
ticular, reference architectures for NLG have relatively little
to say about it [Mellish et al., 2004].

It is useful to distinguish between two broad classes of
content determination problems. “Top-down” problems have
specific goals in terms, for instance, of convincing or persuad-
ing the reader about something. These have typically been
addressed through the framework of planning (e.g. [Moore,
1994]), where content is sought to fill in requirements of plan-
ning operators. Here the requirement to build a successful ar-
gument of some kind drives the process. On the other hand,
“bottom-up” problems require the production of a more gen-
eral expository or descriptive text that puts together informa-
tion to satisfy more diffuse goals. For these problems text
coherence is more imporant than which particular arguments
or points are made. For instance, the ILEX project aimed to

emulate a museum curator telling a good story to link together
a sequence of selected exhibits. It was argued that a more op-
portunistic approach to content determination was needed for
this sort of application [Mellish et al., 1998].

In this paper, we concentrate primarily on the “bottom-up”
type of content determination problem. But what makes con-
tent determination hard in either case is largely the fact that
two different “worlds” are involved – the domain model and
the linguistic world. Content determination is selecting mate-
rial from the (not necessarily very linguistic) domain model,
e.g. facts, rules and numbers, in the hope that it will permit a
coherent realisation as a text. In between the domain model
Θ and the set of possible texts Text sits a possibly non-trivial
mapping ρ (“realisation”):

ρ : {θ|θ is content selected from Θ} → 2Text

The problem is that since ρ may be complex, it will be hard
to judge which content will yield the most successful text.
Meteer [1992] pointed out that this “generation gap” in the
worst case will mean that content is formulated which is not
expressible in language at all. This is also related to the
“problem of logical form equivalence” [Shieber, 1993] which
arises because from a domain point of view two logically
equivalent formulae are interchangeable and so it is a mat-
ter of chance which of the many logically equivalent formu-
lae is given to a realiser. ρ must therefore be able to choose
between realisations corresponding to all formulae logically
equivalent to its input.

The problems raised by Meteer and Shieber do not, how-
ever, always arise in practice. In many applications, the pos-
sible forms of θ are restricted enough and close enough to a
linguistic representation that one can be sure that there will
always be at least one value for ρ. Also ρ doesn’t have to
map onto all possible texts – one can artificially limit the ex-
tent to which realisation diverges from what is suggested by
the surface form of the input. All NLG systems adopt these
sorts of simplications.

In the next two sections, we show how realisation and con-
tent determination initially worked in our project to present
ontologies in natural language. In section 4 we then consider
limitations of this approach to content determination, which
gives rise to the novel idea of treating content determination
as a kind of inference, natural language directed inference.
We then outline our initial steps to implement this process



and how it relates to existing work in automated reasoning
and natural language generation.

2 Realisation from Ontology Axioms
Our current research addresses the problem of presenting
parts of OWL DL [McGuinness and van Harmelen, 2004]
ontologies in natural language. This will extend existing
approaches to generating from simpler DLs (e.g. [Wagner
et al., 1999]) by taking into account the fact that in a lan-
guage like OWL DL a concept is described more by a set
of constraints than by a frame-like definition. For instance,
the bottom of Figure 1 shows a set of axioms relevant to
the concept TemporalRegion in an example ontology. Be-
cause there may be a number of axioms providing differ-
ent facts about a concept, the information cannot in gen-
eral be presented in a single sentence but requires an ex-
tended text with multiple sentences, the overall structure hav-
ing to be planned so as to be coherent as a discourse. Our
work is also different from other work which generates text
about individuals described using ontologies [Wilcock, 2003;
Bontcheva and Wilks, 2004], in that it presents the ontology
class axioms themselves.

In this section, we give an example of how ρ complicates
the reasoning about appropriate content, by showing that al-
though the ρ that we are developing is relatively simple, it
nevertheless complicates decisions about the complexity of
what can be presented in a sentence.

Given an axiom to be expressed as a sentence (we discuss
in section 3 how such axioms are selected), our realisation
approach uses rules with simple recursive structural patterns
and assembles text with grammatically-annotated templates1.
The idea is that we will collect rules for special case expres-
sions that can be realised relatively elegantly in language as
well as having generic rules that ensure that every possible
structure can be handled. Optimal English will arise from de-
tecting the part of speech of any class and role names which
are English words (as well as cases such as multiple word
names and roles such as “hasX”, “Xof” where X is a noun),
and we have been able to obtain this information with rea-
sonable quality automatically using WordNet2. Unless such
conventions are used in the ontology definition or the reader
is familiar with some of the ontology terms, it will not be pos-
sible to convey any useful information to them without extra

1Note that our initial approach is to see how much can be
achieved with no restrictions on the ontology (as long as it is ex-
pressed in legal OWL DL) and only generic linguistic resources
(such as WordNet [Miller, 1995]). This is partly because there is
a need to present parts of current ontologies, which often come with
no consistent commenting or linguistic annotations, and partly so
that we can then make informed recommendations about what kinds
of extra annotations would be valuable in the ontologies of the fu-
ture. Also, note that the term “realisation” will be taken here to in-
clude elements of “microplanning” which, for instance, introduces
appropriate pronominalisation.

2We cannot guarantee that the ontology writer will use such
mnemonic names (if not, then generation will have to use the less op-
timised templates), but we should exploit these cases when they arise
(and our investigations have shown that they are extremely common
in human-written ontologies).
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Figure 1: Graph of axioms

domain-specific resources.
A given axiom may match multiple rules and therefore

have multiple possible realisations. For instance, the axiom:

Student ≡ Person u ∃Supervisor.Academic

would be mapped to “A student is a person with at least
one academic supervisor”, which exploits knowledge of the
lexical categories of the names used, but another possibility
would be something like “Something in class student is some-
thing in class person with at least one value for the role super-
visor which is something in class academic” (this might have
been the only possibility if the class names had been arbitrary
identifiers such as “Class1” and “Class2”.).

Where a logical formula has multiple realisations, a mea-
sure of linguistic complexity of the results can be used to se-
lect a preferred one. Currently we measure linguistic com-
plexity as the number of words in the English string gen-
erated. Better measures will take into account the shape of
the parse tree. Notice that linguistic complexity does not di-
rectly mirror the complexity of the formula, but depends on ρ
and whatever linguistic resources underlie it. Although more
complex formulae tend to yield more complex linguistic out-
put, linguistic complexity is also affected by:

• The extent to which special-case shorter rules match
some of its subexpressions

• The extent to which class and role names can be inter-
preted as English words of relevant classes

• Whether a recursive linguistic structure uses left, right
or centre embedding [Miller and Isard, 1964]

The linguistic complexity of a formula is obtained by taking
the linguistic complexity of the realisation that is least com-
plex. Again, although there is a correlation with the complex-
ity of the formula, the relevant complexity for deciding, for
instance, whether a formula can be presented in a single sen-
tence, is a linguistic one which needs to take ρ into account.



What is a Temporal Region?

[One kind of Temporal Region is a Time Interval.]

[A Perdurant can happen at a Time Interval.]

[nothing is both a Temporal Region and an Abstract Region.]but[An Abstract Region is also a kind of Region]

[A Temporal Region is a kind of Region.] 

Figure 2: Example text with coherence relations shown

3 Selecting Material
The designer of an ontology has chosen one of many pos-
sible logically equivalent ways to axiomatise their domain,
and this is important information. Therefore our initial ap-
proach worked from the axioms themselves without manipu-
lating them in any way.

We basically followed the same procedure for content de-
termination as in the ILEX system [O’Donnell et al., 2001].
Thus the axioms can be seen as forming a graph, where each
axiom is connected to the concepts it mentions (and where
there may also be other links for relations between axioms)
– see Figure 1. In this graph, routes between axioms cor-
respond to different possible transitions in a coherent text –
a text proceeds from one sentence to another by exploiting
shared entities or by virtue of a rhetorical relation between
the sentences3.

A possible hand-generated text from the above axioms,
showing the coherence relations which hold by virtue of
shared entities or a rhetorical relation (the latter shown in
dashes) is shown in Figure 2.

Assuming for the moment that a user has asked the ques-
tion What is X?, where X is some class used in the ontology,
selecting the axioms to express in the answer involves a best-
first search for axioms, starting at the entity X. Each axiom is
evaluated according to:

• how close it is (in terms of edges of the graph) to the
concept X, and

• how intrinsically interesting, important and understand-
able it is.

• how few times is has already been presented

Following ILEX, these three measures are multiplied together
and, for a text of length n, the n facts with the highest mea-
sures are selected for inclusion. The first component of the
measure ensures that the retrieved axioms are relevant to the
question to be answered. In terms of this, the best axioms
to use are ones directly involving the class X. On the other

3The ILEX model makes use of the idea that there may be rhetor-
ical relations, such as concession or background, between facts
which could potentially be expressed in a text. It is however not
immediately clear how they arise in our context. It seems that it
may be plausible to say, for instance, “Although students are people
and lecturers are people, lecturers and students are disjoint”, but the
general principles for this need to be worked out.

hand, axioms that are only indirectly involved with X can be
selected if they score well according to the second compo-
nent (or if there are not enough closer axioms). The fact that
there is a path between X and each chosen axiom ensures that
there is a way of linking the two in a coherent text, by pro-
gressively moving the focus entity of the text to new entities
in the axioms already expressed or through expressing rhetor-
ical relations.

The second component of the evaluation score for axioms
can be used to make the system sensitive to the user, for in-
stance by preferring axioms that involve concepts known to
the user or axioms that have not previously been told to them.
We have not yet exploited this feature. The third component
penalises axioms that have already been presented.

4 Natural Language Directed Inference
The content determination approach just described, which se-
lects from among the provided axioms, suffers from a number
of deficiencies:

Over-complex sentences: The axioms may not package the
available information appropriately for natural language
sentences. On the one hand, an axiom may be too
complex to express in a single sentence (as determined
by applying ρ and measuring the linguistic complex-
ity). In this case, it might be appropriate to present a
“weaker” (axiom). For instance, instead of expressing
X ≡ Y t Z t . . . one might express Y v X (if it men-
tions the entities needed for coherence with the rest of
the text).

Repetitive sentences: On the other hand, the axioms may
give rise to sentences that are short and repetitive. Thus,
rather than using three sentences to express:

Student v Person
Student v UnEmployed
Student v ∃Supervisor.Academic

one could combine them all into a formula realised as
“a student is an unemployed person with at least one
academic supervisor”. In NLG, the process of build-
ing such complex sentences is known as “aggregation”
[Shaw, 1995]. This kind of aggregation could be imple-
mented by combining the axioms together before reali-
sation is performed, but success can only be measured
by looking at the linguistic complexity of the result.



Inappropriate focus: An axiom may be expressed in a way
that, when realised, places inappropriate emphasis on
entities. For instance, an axiom X v Y could be re-
alised by “An X is a kind of Y”, whereas the equivalent
Y w X could be realised by “Y’s include X’s”. The
latter would be much better than the former at a point in
a text that is discussing the properties of Y. The above
example of “weakening” also has the effect of changing
the likely subject of the sentence produced. Sometimes
the text will be better if one can switch around the mate-
rial in an axiom to emphasise different material.

Misleading partial information: It may be better to present
some of the consequences of an axiom, given the rest
of the theory, rather than the axiom itself. For instance,
instead of presenting

Student v ∃supervisor.Academic

in an ontology which also has the axiom
functional(supervisor), it would be more infor-
mative to present the consequence

Student v = 1 supervisor.Academic

Indeed, with number restrictions a reader can draw false
implicatures (in the sense of [Grice, 1975]) if only par-
tial information is presented. In this case, a scalar im-
plicature [Levinson, 1983] is involved. A reader, on be-
ing told that “a student has at least one academic su-
pervisor”, will naturally assume that they could have
more than one, or that they could have other supervi-
sors belonging to other classes. Similarly, on being told
“a supervisor of a student is always an academic”, one
will assume that there can be more than one supervi-
sor (otherwise the text would have said “the supervisor
. . .”). Some of the principles at work here may be simi-
lar to those encountered in cooperative question answer-
ing [Gaasterland et al., 1992].

The only way to overcome these limitations is to enable con-
tent determination to select material in more ways than just
choosing an axiom. It must always choose to express some-
thing that is true, given the logical theory, and content deter-
mination will therefore be a form of inference. In general, in
fact, we could consider using any logical consequence of the
axioms. However, not all logical consequences are equally
good. The formulae that are presented should:
1. Soundness: follow from the original logical theory (set of

axioms)

2. Relevance: contribute information relevant to the goal of
the text. For instance, if the goal is to answer the ques-
tion “what is concept X?” then the formulae should be
about X or other concepts which shed light on X.

3. Conservatism: be not very different from the original ax-
ioms (and so capture some of the intent behind those
axioms)

4. Complexity: have appropriate linguistic complexity (sec-
tion 2)

5. Coherence: satisfy linguistic coherence constraints (i.e.
be linked to other selected material by the kinds of re-
lations discussed in section 3).

6. Novelty: not have already been expressed (and not be tau-
tologies). There is no point in weakening axioms to the
point that nothing new is expressed, or in presenting the
same material many times.

7. Fullness: be complete, to the extent that they don’t sup-
port false implicatures

8. User-orientation: be in accord with user model prefer-
ences (as in section 3)

We call the kind of inference required to find such logical
consequences natural language directed inference (NLDI). It
is a kind of forwards inference with very specific goals, which
arise from its use for natural language generation.

Although we have motivated NLDI through our own par-
ticular content determination problem, this may be a useful
way to view content determination in general, as long as the
starting point can be viewed as some kind of logical theory,
Θ, there is an available realisation relation ρ and an evaluation
function eval for linguistic outputs, which takes into account
the above desiderata. In this case, content determination can
be viewed as the problem of determining

argmax(θ such that Θ|=θ) max{eval(t)|t ∈ ρ(θ)}

The process of enumerating promising consequences of Θ
for this optimisation is certainly a form of logical inference.
But its goal is unlike standard goals of automated reasoning
and is shaped by the idiosyncracies of the requirements for
natural language output. There is an interesting parallel here
with the work of [Sripada et al., 2003]. Sripada et al found
that, for generating natural language summaries of time se-
ries data, standard data analysis algorithms such as segmenta-
tion had to be modified. They characterised the extra require-
ments that forced these modifications in terms of the Gricean
maxims of cooperative communication [Grice, 1975]. Our
8 desiderata above could also be thought of as cases of the
Gricean maxims.

5 Techniques for NLDI
Unfortunately, standard refutation-based approaches to in-
ference rely on having a precisely specified inference goal,
whose negation is incompatible with the axioms. For DLs,
the standard tableaux methods [Horrocks, 1998] have simi-
lar properties. NLDI does not have an inference goal that
can be expressed in structural terms, so even approaches to
“matching” cannot straightforwardly be used to derive lin-
guistically appropriate results. NLDI is more akin to other
“non-standard” types of inference, perhaps to approximation
[Brandt et al., 2002], though again the target logical language
is without a simple formal characterisation. Perhaps the clos-
est approach we are aware of is meta-level control of infer-
ence, where factors outside of the logic (e.g. other kinds of
descriptions of the shapes of logical formulae) are used to
guide inference [Bundy and Welham, 1981].

One advantage of NLDI is that it does not have to be a com-
plete inference procedure, though in general the more logical
consequences of the original axioms it can find, the more pos-
sible texts will be considered and the higher the quality of the
one chosen.



Realisation 

Evaluation

Inference

Ontology Axioms

Text

Feedback score Final result

Possible sequence of formulae

Figure 3: Overgeneration Architecture

The approach to NLDI we are currently working on is in-
spired by the idea of “overgeneration” approaches to NLG, as
used, for instance, by those using statistical models [Langk-
ilde and Knight, 1998] and instance-based search [Varges and
Mellish, 2001]. In this approach, instead of attempting to in-
telligently order the relevant choices to come up with an op-
timal text, an NLG system consciously enumerates a large
number of possible texts (in a cheap way) and then chooses
between them using a linguistically-aware evaluation func-
tion of some kind (the eval of NLDI). Our approach differs
from these others, however, in that, whereas the other sys-
tems implement overgeneration of surface forms, we consider
overgeneration of possible content.

Figure 3 shows the architecture of our system under de-
velopment. The simple inference system implements a beam
search among possible sets of content for generating texts,
where each state in the search space is a sequence of formu-
lae. In logical terms, each sequence represents a conjunction
that follows from the input axioms. The resulting text for any
such sequence (i.e. the result of applying ρ) will be the re-
sult of realising the elements of the sequence, in order, as the
sentences of the text.

At each point in the search, the current state can give rise
to new states in two possible ways:

1. One of the original axioms is added to the end of the
sequence.

2. The final formula of the sequence is replaced by a for-
mula inferred from it (given the whole axiom set) by one
inference step

The inference steps represent simple ways of modifying a for-
mula to something close to it which follows from the com-
plete set of axioms and which may yield a more appropriate
realisation. We have currently implemented a small number
of relevant steps, including steps for aggregation, disaggrega-
tion and elimination of disjunctions.

Whenever a new state in the search space is generated, it is
sent to the realisation component (which implements ρ) and
from there through an evaluation function (which implements
eval). The evaluation function takes into account the average
deviation of the sentence lengths (in words) from an “ideal”
sentence length and some other heuristics (see below). This
is used as feedback to drive the search of the inference com-
ponent in a best-first manner. The search terminates when
the best scoring state is one element longer that the desired
number of sentences for the text, at which point its sequence
of formulae, apart from the last one, is returned. The ex-

ploration to a length longer than the desired one ensures that
other states shorter than or equal to the desired length have a
chance to be explored.

Our approach makes initial attempts to address the desider-
ata of NLDI by constraining the search in the following ways:

1. Soundness: All new formulae are derived by sound rules
of inference from the existing axioms and so are true.

2. Relevance: Only axioms which might affect the interpre-
tation of the class asked about are ever considered (the
rest are discarded at the start of the process). For the
purposes of this, we use the conservative relevant-only
translation of [Tsarkov et al., 2004] to discard axioms
that cannot be relevant to the question.

3. Conservatism: Inferred formulae are based on individual
axioms, and shorter inferences are enumerated before
longer ones.

4. Complexity: The complexity of the best realisations is
used to order the search candidates. Candidates which
are inappropriate for realisation do not match the reali-
sation rules and so are not considered.

5. Coherence: When a new axiom is added to a sequence, it
is constrained in its realisation to have a subject which
is a class mentioned in the previous element of the se-
quence. The subject of the first element of the sequence
must be the class which is the subject of the original
question. Also the evaluation function has a preference
for the first sentence with a given class as subject to be
an “is a” type sentence.

6. Novelty: In order to prevent information being presented
more than once, only one logical consequence of any
given axiom is ever included in a sequence. This is im-
plemented via a simple way of tracking the axioms that
have contributed to each formula. This makes the as-
sumption that the original axioms are logically indepen-
dent.

7. Fullness: Formulae are closed with respect to cardinality
information before being added to the lists.

8. User-orientation: We don’t currently take this into ac-
count, but intend to reward formulae that contain class
and role names already familiar to the user (e.g. used
in answers to previous questions, or appearing earlier in
the answer to the current question).

All of these are relatively crude measures, which nevertheless
give some appropriate direction to the process.

This system has been implemented and tested informally
on examples from three different ontologies. For example, in
creating a 3-sentence text to answer “What is an Electrode?”
using a fuel cell ontology with 133 axioms, the relevance filter
first of all reduces the set of axioms to 31, which include:

(1) Electrode v Actuality
(2) Electrode v ∃contains.Catalyst
(3) Electrode v (∃contains.Support u

≤ 1 contains.>)
(4) domain(contains,

FuelCell t MEA t Electrode t Catalyst)



as well as other axioms such as Catalyst v
∃contains.ActiveMetal. If these 4 axioms were se-
lected unchanged and realised in this order (which by chance
happens to be quite a good order), then the following text
would result:

An Electrode is a kind of Actuality. An Elec-
trode always contains something which is a Cat-
alyst. An Electrode always contains something
which is a Support and always contains at most 1
thing. Only something which is a FuelCell, a MEA,
an Electrode or a Catalyst contains something.

Instead of this, our simple implementation of NLDI proceeds
as follows. The initial states are those axioms which when
realised will have Electrode in subject position, with a pref-
erence for those that will be realised as “an Electrode is a ...”.
Thus the state consisting of the one element sequence:

Electrode v Actuality

will be a favourite. This state can be developed in several
ways. For instance, another axiom could be aggregated with
this one (to give a sentence of the form “an Electrode is an
actuality which ...”). Another possibility is for this axiom to
be accepted in this form and for another axiom to be added
to the end of the sequence. This second possibility generates
the following state, among others:

Electrode v Actuality
Electrode v = 1 contains.Catalyst

(notice how more precise cardinality information has been at-
tached to axiom (2)). This state can be further developed by
adding a further axiom, or by applying an inference rule to
the last added formula. In this case, aggregation with axiom
(3) is possible, yielding:

Electrode v Actuality
Electrode v = 1 contains.(CatalystuSupport)

This state is further developed by adding new axioms to the
end, and so on. The final sequence of formulae selected is:

Electrode v Actuality
Electrode v = 1 contains.(CatalystuSupport)
domain(contains,

FuelCell t MEA t Electrode t Catalyst)

This is realised by the following short text:

An Electrode is a kind of Actuality. An Elec-
trode contains exactly one thing, which must be a
Catalyst and a Support. Only something which is
a FuelCell, a MEA, an Electrode or a Catalyst con-
tains something.

(This realisation relies on part-of-speech information which
can be obtained automatically from WordNet, apart from the
term “MEA”).

6 Discussion
Although NLG lacks a general account of content determi-
nation, one area of content determination that has been well
formalised is the problem of generating referring expressions.

Here the task is to find a distinguishing description of an en-
tity that it is true of the entity but not of any of the “distrac-
tors” in some current context. Recent work has formalised
NLG algorithms for referring expression generation in terms
of algorithms for finding an appropriate subgraph of a graph
representing the domain knowledge [Krahmer et al., 2003].
Given that the graphs involved are very similar to Concep-
tual Graphs [Sowa, 1984] and that the projection relation be-
tween Conceptual Graphs (an extended notion of subgraph) is
a kind of inference, it follows that these referring expression
algorithms can also be viewed as performing inference. As
work considers an increasing range of referring expressions
(e.g. using relations, logical connectives, plurals and even
quantifiers), the complexity of the inference required is forc-
ing researchers increasingly to depart from the original graph
matching approach. We believe that it may well prove pro-
ductive to view this as a case of NLDI, especially as (in spite
of the assumptions of most current work) logical complexity
and linguistic complexity are not always the same.

There are many issues to be addressed in the development
of a convincing approach to NLDI. For instance, it is neces-
sary to determine what kinds of inference steps are relevant
to the optimisation of linguistic properties. In our system, we
would certainly like to introduce unfolding operations to steer
the system towards using concepts that the reader is famil-
iar with. In addition, ideas from linear logic [Girard, 1987]
may be relevant to avoiding duplication in the information
conveyed. Finally, there are real questions about the ideal ar-
chitecture of an NLDI system. If the eval function or ρ is
expensive, then it may be necessary to interleave the evalua-
tion and the inference steps more than we have done, to the
extent that inference is directly aimed at achieving linguistic
effects.
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