
Proceedings of the Ninth International Workshop on Parsing Technologies (IWPT), pages 125–132,
Vancouver, October 2005. c©2005 Association for Computational Linguistics

A Classifier-Based Parser with Linear Run-Time Complexity

Kenji Sagae and Alon Lavie
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213

{sagae,alavie}@cs.cmu.edu

Abstract

We present a classifier-based parser that
produces constituent trees in linear time.
The parser uses a basic bottom-up shift-
reduce algorithm, but employs a classifier
to determine parser actions instead of a
grammar. This can be seen as an exten-
sion of the deterministic dependency
parser of Nivre and Scholz (2004) to full
constituent parsing. We show that, with
an appropriate feature set used in classifi-
cation, a very simple one-path greedy
parser can perform at the same level of
accuracy as more complex parsers. We
evaluate our parser on section 23 of the
WSJ section of the Penn Treebank, and
obtain precision and recall of 87.54% and
87.61%, respectively.

1 Introduction

Two classifier-based deterministic dependency
parsers for English have been proposed recently
(Nivre and Scholz, 2004; Yamada and Matsumoto,
2003). Although they use different parsing algo-
rithms, and differ on whether or not dependencies
are labeled, they share the idea of greedily pursu-
ing a single path, following parsing decisions made
by a classifier. Despite their greedy nature, these
parsers achieve high accuracy in determining de-
pendencies. Although state-of-the-art statistical
parsers (Collins, 1997; Charniak, 2000) are more
accurate, the simplicity and efficiency of determi-

nistic parsers make them attractive in a number of
situations requiring fast, light-weight parsing, or
parsing of large amounts of data. However, de-
pendency analyses lack important information con-
tained in constituent structures. For example, the
tree-path feature has been shown to be valuable in
semantic role labeling (Gildea and Palmer, 2002).

We present a parser that shares much of the
simplicity and efficiency of the deterministic de-
pendency parsers, but produces both dependency
and constituent structures simultaneously. Like the
parser of Nivre and Scholz (2004), it uses the basic
shift-reduce stack-based parsing algorithm, and
runs in linear time. While it may seem that the
larger search space of constituent trees (compared
to the space of dependency trees) would make it
unlikely that accurate parse trees could be built
deterministically, we show that the precision and
recall of constituents produced by our parser are
close to those produced by statistical parsers with
higher run-time complexity.

One desirable characteristic of our parser is its
simplicity. Compared to other successful ap-
proaches to corpus-based constituent parsing, ours
is remarkably simple to understand and implement.
An additional feature of our approach is its modu-
larity with regard to the algorithm and the classifier
that determines the parser’s actions. This makes it
very simple for different classifiers and different
sets of features to be used with the same parser
with very minimal work. Finally, its linear run-
time complexity allows our parser to be considera-
bly faster than lexicalized PCFG-based parsers.
On the other hand, a major drawback of the classi-
fier-based parsing framework is that, depending on

125

the classifier used, its training time can be much
longer than that of other approaches.

Like other deterministic parsers (and unlike
many statistical parsers), our parser considers the
problem of syntactic analysis separately from part-
of-speech (POS) tagging. Because the parser
greedily builds trees bottom-up in one pass, con-
sidering only one path at any point in the analysis,
the task of assigning POS tags to words is done
before other syntactic analysis. In this work we
focus only on the processing that occurs once POS
tagging is completed. In the sections that follow,
we assume that the input to the parser is a sentence
with corresponding POS tags for each word.

2 Parser Description

Our parser employs a basic bottom-up shift-reduce
parsing algorithm, requiring only a single pass over
the input string. The algorithm considers only

trees with unary and binary branching. In order to
use trees with arbitrary branching for training, or
generating them with the parser, we employ an
instance of the transformation/detransformation
process described in (Johnson, 1998). In our case,
the transformation step involves simply converting
each production with n children (where n > 2) into
n – 1 binary productions. Trees must be lexical-
ized1, so that the newly created internal structure of
constituents with previous branching of more than
two contains only subtrees with the same lexical
head as the original constituent. Additional non-
terminal symbols introduced in this process are
clearly marked. The transformed (or “binarized”)
trees may then be used for training. Detransforma-
tion is applied to trees produced by the parser.
This involves the removal of non-terminals intro-

1 If needed, constituent head-finding rules such as those men-
tioned in Collins (1996) may be used.

 Transform

 NP

 NP NP*

 PP NP*

 NP PP

 Det Adj N P N NP

 The big dog with fleas Det Adj N P N

 The big dog with fleas

 Detransform

Figure 1: An example of the binarization transform/detransform. The original tree (left) has one
node (NP) with four children. In the transformed tree, internal structure (marked by nodes with as-
terisks) was added to the subtree rooted by the node with more than two children. The word “dog”
is the head of the original NP, and it is kept as the head of the transformed NP, as well as the head of
each NP* node.

126

duced in the transformation process, producing
trees with arbitrary branching. An example of
transformation/detransformation is shown in figure
1.

2.1 Algorithm Outline

The parsing algorithm involves two main data
structures: a stack S, and a queue W. Items in S
may be terminal nodes (POS-tagged words), or
(lexicalized) subtrees of the final parse tree for the
input string. Items in W are terminals (words
tagged with parts-of-speech) corresponding to the
input string. When parsing begins, S is empty and
W is initialized by inserting every word from the
input string in order, so that the first word is in
front of the queue.

Only two general actions are allowed: shift and
reduce. A shift action consists only of removing
(shifting) the first item (POS-tagged word) from W
(at which point the next word becomes the new
first item), and placing it on top of S. Reduce ac-
tions are subdivided into unary and binary cases.
In a unary reduction, the item on top of S is
popped, and a new item is pushed onto S. The new
item consists of a tree formed by a non-terminal
node with the popped item as its single child. The
lexical head of the new item is the same as the
lexical head of the popped item. In a binary reduc-
tion, two items are popped from S in sequence, and
a new item is pushed onto S. The new item con-
sists of a tree formed by a non-terminal node with
two children: the first item popped from S is the
right child, and the second item is the left child.
The lexical head of the new item is either the lexi-
cal head of its left child, or the lexical head of its
right child.

If S is empty, only a shift action is allowed. If
W is empty, only a reduce action is allowed. If
both S and W are non-empty, either shift or reduce
actions are possible. Parsing terminates when W is
empty and S contains only one item, and the single
item in S is the parse tree for the input string. Be-
cause the parse tree is lexicalized, we also have a
dependency structure for the sentence. In fact, the
binary reduce actions are very similar to the reduce
actions in the dependency parser of Nivre and
Scholz (2004), but they are executed in a different
order, so constituents can be built. If W is empty,
and more than one item remain in S, and no further
reduce actions take place, the input string is re-
jected.

2.2 Determining Actions with a Classifier

A parser based on the algorithm described in the
previous section faces two types of decisions to be
made throughout the parsing process. The first
type concerns whether to shift or reduce when both
actions are possible, or whether to reduce or reject
the input when only reduce actions are possible.
The second type concerns what syntactic structures
are created. Specifically, what new non-terminal is
introduced in unary or binary reduce actions, or
which of the left or right children are chosen as the
source of the lexical head of the new subtree pro-
duced by binary reduce actions. Traditionally,
these decisions are made with the use of a gram-
mar, and the grammar may allow more than one
valid action at any single point in the parsing proc-
ess. When multiple choices are available, a gram-
mar-driven parser may make a decision based on
heuristics or statistical models, or pursue every
possible action following a search strategy. In our
case, both types of decisions are made by a classi-
fier that chooses a unique action at every point,
based on the local context of the parsing action,
with no explicit grammar. This type of classifier-
based parsing where only one path is pursued with
no backtracking can be viewed as greedy or deter-
ministic.

In order to determine what actions the parser
should take given a particular parser configuration,
a classifier is given a set of features derived from
that configuration. This includes, crucially, the
two topmost items in the stack S, and the item in
front of the queue W. Additionally, a set of context
features is derived from a (fixed) limited number
of items below the two topmost items of S, and
following the item in front of W. The specific fea-
tures are shown in figure 2.

The classifier’s target classes are parser actions
that specify both types of decisions mentioned
above. These classes are:

• SHIFT: a shift action is taken;

• REDUCE-UNARY-XX: a unary reduce ac-
tion is taken, and the root of the new subtree
pushed onto S is of type XX (where XX is a
non-terminal symbol, typically NP, VP, PP,
for example);

• REDUCE-LEFT-XX: a binary reduce action
is taken, and the root of the new subtree
pushed onto S is of non-terminal type XX.

127

Additionally, the head of the new subtree is
the same as the head of the left child of the
root node;

• REDUCE-RIGHT-XX: a binary reduce ac-
tion is taken, and the root of the new subtree
pushed onto S is of non-terminal type XX.
Additionally, the head of the new subtree is
the same as the head of the right child of the
root node.

2.3 A Complete Classifier-Based Parser than
Runs in Linear Time

When the algorithm described in section 2.1 is
combined with a trained classifier that determines
its parsing actions as described in section 2.2, we
have a complete classifier-based parser. Training
the parser is accomplished by training its classifier.
To that end, we need training instances that consist
of sets of features paired with their classes corre-

Let:

 S(n) denote the nth item from the top of the stack S, and
 W(n) denote the nth item from the front of the queue W.

Features:

• The head-word (and its POS tag) of: S(0), S(1), S(2), and S(3)

• The head-word (and its POS tag) of: W(0), W(1), W(3) and W(3)

• The non-terminal node of the root of: S(0), and S(1)

• The non-terminal node of the left child of the root of: S(0), and S(1)

• The non-terminal node of the right child of the root of: S(0), and S(1)

• The non-terminal node of the left child of the root of: S(0), and S(1)

• The non-terminal node of the left child of the root of: S(0), and S(1)

• The linear distance (number of words apart) between the head-words of S(0) and S(1)

• The number of lexical items (words) that have been found (so far) to be dependents of
the head-words of: S(0), and S(1)

• The most recently found lexical dependent of the head of the head-word of S(0) that is
to the left of S(0)’s head

• The most recently found lexical dependent of the head of the head-word of S(0) that is
to the right of S(0)’s head

• The most recently found lexical dependent of the head of the head-word of S(0) that is
to the left of S(1)’s head

• The most recently found lexical dependent of the head of the head-word of S(0) that is
to the right of S(1)’s head

Figure 2: Features used for classification. The features described in items 1 – 7 are more di-
rectly related to the lexicalized constituent trees that are built during parsing, while the fea-
tures described in items 8 – 13 are more directly related to the dependency structures that are
built simultaneously to the constituent structures.

128

sponding to the correct parsing actions. These in-
stances can be obtained by running the algorithm
on a corpus of sentences for which the correct
parse trees are known. Instead of using the classi-
fier to determine the parser’s actions, we simply
determine the correct action by consulting the cor-
rect parse trees. We then record the features and
corresponding actions for parsing all sentences in
the corpus into their correct trees. This set of fea-
tures and corresponding actions is then used to
train a classifier, resulting in a complete parser.

When parsing a sentence with n words, the
parser takes n shift actions (exactly one for each
word in the sentence). Because the maximum
branching factor of trees built by the parser is two,
the total number of binary reduce actions is n – 1,
if a complete parse is found. If the input string is
rejected, the number of binary reduce actions is
less than n – 1. Therefore, the number of shift and
binary reduce actions is linear with the number of
words in the input string. However, the parser as
described so far has no limit on the number of
unary reduce actions it may take. Although in
practice a parser properly trained on trees reflect-
ing natural language syntax would rarely make
more than 2n unary reductions, pathological cases
exist where an infinite number of unary reductions
would be taken, and the algorithm would not ter-
minate. Such cases may include the observation in
the training data of sequences of unary productions
that cycle through (repeated) non-terminals, such
as A->B->A->B. During parsing, it is possible that
such a cycle may be repeated infinitely.

This problem can be easily prevented by limit-
ing the number of consecutive unary reductions
that may be made to a finite number. This may be
the number of non-terminal types seen in the train-
ing data, or the length of the longest chain of unary
productions seen in the training data. In our ex-
periments (described in section 3), we limited the
number of consecutive unary reductions to three,
although the parser never took more than two
unary reduction actions consecutively in any sen-
tence. When we limit the number of consecutive
unary reductions to a finite number m, the parser
makes at most (2n – 1)m unary reductions when
parsing a sentence of length n. Placing this limit
not only guarantees that the algorithm terminates,
but also guarantees that the number of actions
taken by the parser is O(n), where n is the length of
the input string. Thus, the parser runs in linear

time, assuming that classifying a parser action is
done in constant time.

3 Similarities to Previous Work

As mentioned before, our parser shares similarities
with the dependency parsers of Yamada and Ma-
tsumoto (2003) and Nivre and Scholz (2004) in
that it uses a classifier to guide the parsing process
in deterministic fashion. While Yamada and Ma-
tsumoto use a quadratic run-time algorithm with
multiple passes over the input string, Nivre and
Scholz use a simplified version of the algorithm
described here, which handles only (labeled or
unlabeled) dependency structures.

Additionally, our parser is in some ways similar
to the maximum-entropy parser of Ratnaparkhi
(1997). Ratnaparkhi’s parser uses maximum-
entropy models to determine the actions of a shift-
reduce-like parser, but it is capable of pursuing
several paths and returning the top-K highest scor-
ing parses for a sentence. Its observed time is lin-
ear, but parsing is somewhat slow, with sentences
of length 20 or more taking more than one second
to parse, and sentences of length 40 or more taking
more than three seconds. Our parser only pursues
one path per sentence, but it is very fast and of
comparable accuracy (see section 4). In addition,
Ratnaparkhi’s parser uses a more involved algo-
rithm that allows it to work with arbitrary branch-
ing trees without the need of the binarization
transform employed here. It breaks the usual re-
duce actions into smaller pieces (CHECK and
BUILD), and uses two separate passes (not includ-
ing the POS tagging pass) for determining chunks
and higher syntactic structures separately.

Finally, there have been other deterministic
shift-reduce parsers introduced recently, but their
levels of accuracy have been well below the state-
of-the-art. The parser in Kalt (2004) uses a similar
algorithm to the one described here, but the classi-
fication task is framed differently. Using decision
trees and fewer features, Kalt’s parser has signifi-
cantly faster training and parsing times, but its ac-
curacy is much lower than that of our parser.
Kalt’s parser achieves precision and recall of about
77% and 76%, respectively (with automatically
tagged text), compared to our parser’s 86% (see
section 4). The parser of Wong and Wu (1999)
uses a separate NP-chunking step and, like Ratna-
parkhi’s parser, does not require a binary trans-

129

form. It achieves about 81% precision and 82%
recall with gold-standard tags (78% and 79% with
automatically tagged text). Wong and Wu’s parser
is further differentiated from the other parsers
mentioned here in that it does not use lexical items,
working only from part-of-speech tags.

4 Experiments

We conducted experiments with the parser de-
scribed in section 2 using two different classifiers:
TinySVM (a support vector machine implementa-
tion by Taku Kudo)2, and the memory-based
learner TiMBL (Daelemans et al., 2004). We
trained and tested the parser on the Wall Street
Journal corpus of the Penn Treebank (Marcus et
al., 1993) using the standard split: sections 2-21
were used for training, section 22 was used for de-
velopment and tuning of parameters and features,
and section 23 was used for testing. Every ex-
periment reported here was performed on a Pen-
tium IV 1.8GHz with 1GB of RAM.

Each tree in the training set had empty-node
and function tag information removed, and the

2 http://chasen.org/~taku/software/TinySVM

trees were lexicalized using similar head-table
rules as those mentioned in (Collins, 1996). The
trees were then converted into trees containing
only unary and binary branching, using the binari-
zation transform described in section 2. Classifier
training instances of features paired with classes
(parser actions) were extracted from the trees in the
training set, as described in section 2.3. The total
number of training instances was about 1.5 million.

The classifier in the SVM-based parser (de-
noted by SVMpar) uses the polynomial kernel with
degree 2, following the work of Yamada and Ma-
tsumoto (2003) on SVM-based deterministic de-
pendency parsing, and a one-against-all scheme for
multi-class classification. Because of the large
number of training instances, we used Yamada and
Matsumoto’s idea of splitting the training instances
into several parts according to POS tags, and train-
ing classifiers on each part. This greatly reduced
the time required to train the SVMs, but even with
the splitting of the training set, total training time
was about 62 hours. Training set splitting comes
with the cost of reduction in accuracy of the parser,
but training a single SVM would likely take more
than one week. Yamada and Matsumoto experi-
enced a reduction of slightly more than 1% in de-

 Precision Recall Dependency Time (min)

Charniak 89.5 89.6 92.1 28

Collins 88.3 88.1 91.5 45

Ratnaparkhi 87.5 86.3 Unk Unk

Y&M - - 90.3 Unk

N&S - - 87.3 21

MBLpar 80.0 80.2 86.3 127

SVMpar 87.5 87.6 90.3 11

Table 1: Summary of results on labeled precision and recall of constituents, dependency accu-
racy, and time required to parse the test set. The parsers of Yamada and Matsumoto (Y&M) and
Nivre and Scholz (N&S) do not produce constituent structures, only dependencies. “unk” indi-
cates unknown values. Results for MBLpar and SVMpar using correct POS tags (if automatically
produced POS tags are used, accuracy figures drop about 1.5% over all metrics).

130

pendency accuracy due to training set splitting, and
we expect that a similar loss is incurred here.

When given perfectly tagged text (gold tags ex-
tracted from the Penn Treebank), SVMpar has la-
beled constituent precision and recall of 87.54%
and 87.61%, respectively, and dependency accu-
racy of 90.3% over all sentences in the test set.
The total time required to parse the entire test set
was 11 minutes. Out of more than 2,400 sen-
tences, only 26 were rejected by the parser (about
1.1%). For these sentences, partial analyses were
created by combining the items in the stack in flat
structures, and these were included in the evalua-
tion. Predictably, the labeled constituent precision
and recall obtained with automatically POS-tagged
sentences were lower, at 86.01% and 86.15%. The
part-of-speech tagger used in our experiments was
SVMTool (Giménez and Márquez, 2004), and its
accuracy on the test set is 97%.

The MBL-based parser (denoted by MBLpar)
uses the IB1 algorithm, with five nearest
neighbors, and the modified value difference met-
ric (MVDM), following the work of Nivre and
Scholz (2004) on MBL-based deterministic de-
pendency parsing. MBLpar was trained with all
training instances in under 15 minutes, but its ac-
curacy on the test set was much lower than that of
SVMpar, with constituent precision and recall of
80.0% and 80.2%, and dependency accuracy of
86.3% (24 sentences were rejected). It was also
much slower than SVMpar in parsing the test set,
taking 127 minutes. In addition, the total memory
required for running MBLpar (including the classi-
fier) was close to 1 gigabyte (including the trained
classifier), while SVMpar required only about 200
megabytes (including all the classifiers).

Table 1 shows a summary of the results of our
experiments with SVMpar and MBLpar, and also
results obtained with the Charniak (2000) parser,
the Bikel (2003) implementation of the Collins
(1997) parser, and the Ratnaparkhi (1997) parser.
We also include the dependency accuracy from
Yamada and Matsumoto’s (2003) SVM-based de-
pendency parser, and Nivre and Scholz’s (2004)
MBL-based dependency parser. These results
show that the choice of classifier is extremely im-
portant in this task. SVMpar and MBLpar use the
same algorithm and features, and differ only on the
classifiers used to make parsing decisions. While
in many natural language processing tasks different
classifiers perform at similar levels of accuracy, we

have observed a dramatic difference between using
support vector machines and a memory-based
learner. Although the reasons for such a large dis-
parity in results is currently the subject of further
investigation, we speculate that a relatively small
difference in initial classifier accuracy results in
larger differences in parser performance, due to the
deterministic nature of the parser (certain errors
may lead to further errors). We also believe classi-
fier choice to be one major source of the difference
in accuracy between Nivre and Scholz’s parser and
Yamada and Matsumoto’s parser.

While the accuracy of SVMpar is below that of
lexicalized PCFG-based statistical parsers, it is
surprisingly good for a greedy parser that runs in
linear time. Additionally, it is considerably faster
than lexicalized PCFG-based parsers, and offers a
good alternative for when fast parsing is needed.
MBLpar, on the other hand, performed poorly in
terms of accuracy and speed.

5 Conclusion and Future Work

We have presented a simple shift-reduce parser
that uses a classifier to determine its parsing ac-
tions and runs in linear time. Using SVMs for
classification, the parser has labeled constituent
precision and recall higher than 87% when using
the correct part-of-speech tags, and slightly higher
than 86% when using automatically assigned part-
of-speech tags. Although its accuracy is not as
high as those of state-of-the-art statistical parsers,
our classifier-based parser is considerably faster
than several well-known parsers that employ
search or dynamic programming approaches. At
the same time, it is significantly more accurate
than previously proposed deterministic parsers for
constituent structures.

We have also shown that much of the success
of a classifier-based parser depends on what classi-
fier is used. While this may seem obvious, the dif-
ferences observed here are much greater than what
would be expected from looking, for example, at
results from chunking/shallow parsing (Zhang et
al., 2001; Kudo and Matsumoto, 2001; Veenstra
and van den Bosch, 2000).

Future work includes the investigation of the ef-
fects of individual features, the use of additional
classification features, and the use of different clas-
sifiers. In particular, the use of tree features seems
appealing. This may be accomplished with SVMs

131

using a tree kernel, or the tree boosting classifier
BACT described in (Kudo and Matsumoto, 2004).
Additionally, we plan to investigate the use of the
beam strategy of Ratnaparkhi (1997) to pursue
multiple parses while keeping the run-time linear.

References
Charniak, E. 2000. A maximum-entropy-inspired

parser. Proceedings of the First Annual Meeting of
the North American Chapter of the Association for
Computational Linguistics. Seattle, WA.

Collins, M. 1997. Three generative, lexicalized models
for statistical parsing. Proceedings of the 35th An-
nual Meeting of the Association for Computational
Linguistics (pp. 16-23). Madrid, Spain.

Daelemans, W., Zavrel, J., van der Sloot, K., and van
den Bosch, A. 2004. TiMBL: Tilburg Memory
Based Learner, version 5.1, reference guide. ILK Re-
search Group Technical Report Series no. 04-02,
2004.

Gildea, D., and Palmer, M. 2002. The necessity of syn-
tactic parsing for predicate argument recognition.
Proceedings of the 40th Annual Meeting of the Asso-
ciation for Computational Linguistics (pp. 239-246).
Philadelphia, PA.

Kalt, T. 2004. Induction of greedy controllers for de-
terministic treebank parsers. Proceedings of the
2004 Conference on Empirical Methods in Natural
Language Processing. Barcelona, Spain.

Kudo, T., and Matsumoto, Y. 2004. A boosting algo-
rithm for classification of semi-structured text. Pro-
ceedings of the 2004 Conference on Empirical
Methods in Natural Language Processing. Barce-
lona, Spain.

Kudo, T., and Matsumoto, Y. 2001. Chunking with
support vector machines. Proceedings of the Second
Meeting of the North American Chapter of the Asso-
ciation for Computational Linguistics. Pittsburgh,
PA.

Johnson, M. 1998. PCFG models of linguistic tree rep-
resentations. Computational Linguistics, 24:613-632.

Marcus, M. P., Santorini, B., and Marcinkiewics, M. A.
1993. Building a large annotated corpus of English:
the Penn Treebank. Computational Linguistics, 19.

Nivre, J., and Scholz, M. 2004. Deterministic depend-
ency parsing of English text. Proceedings of the 20th
International Conference on Computational Linguis-
tics (pp. 64-70). Geneva, Switzerland.

Ratnaparkhi, A. 1997. A linear observed time statistical
parser based on maximum entropy models. Proceed-
ings of the Second Conference on Empirical Methods
in Natural Language Processing. Providence, Rhode
Island.

Veenstra, J., van den Bosch, A. 2000. Single-classifier
memory-based phrase chunking. Proceedings of
Fourth Workshop on Computational Natural Lan-
guage Learning (CoNLL 2000). Lisbon, Portugal.

Wong, A., and Wu. D. 1999. Learning a lightweight
robust deterministic parser. Proceedings of the Sixth
European Conference on Speech Communication and
Technology. Budapest.

Yamada, H., and Matsumoto, Y. 2003. Statistical de-
pendency analysis with support vector machines.
Proceedings of the Eighth International Workshop on
Parsing Technologies. Nancy, France.

Zhang, T., Damerau, F., and Johnson, D. 2002. Text
chunking using regularized winnow. Proceedings of
the 39th Annual Meeting of the Association for Com-
putational Linguistics. Tolouse, France.

132

