
Proceedings of the Ninth International Workshop on Parsing Technologies (IWPT), pages 115–124,
Vancouver, October 2005. c©2005 Association for Computational Linguistics

Head-Driven PCFGs with Latent-Head Statistics

Detlef Prescher
Institute for Logic, Language and Computation

University of Amsterdam
prescher@science.uva.nl

Abstract

Although state-of-the-artparsers for nat-
ural language are lexicalized, it was re-
cently shown that anaccurateunlexical-
ized parser for the Penn tree-bank can be
simply read off a manually refined tree-
bank. Whilelexicalizedparsers often suf-
fer from sparse data,manual mark-upis
costly and largely based on individual lin-
guistic intuition. Thus, across domains,
languages, and tree-bank annotations, a
fundamental question arises: Is it possible
to automaticallyinduce anaccurateparser
from a tree-bank without resorting to full
lexicalization? In this paper, we show how
to induce head-driven probabilistic parsers
with latent heads from a tree-bank. Our
automatically trained parser has a perfor-
mance of 85.7% (LP/LR F1), which is al-
ready better than that of earlylexicalized
ones.

1 Introduction

State-of-the-art statistical parsers for natural lan-
guage are based on probabilistic grammars acquired
from transformed tree-banks. The method of trans-
forming the tree-bank is of major influence on the
accuracy and coverage of the statistical parser. The
most important tree-bank transformation in the lit-
erature is lexicalization: Each node in a tree is la-
beled with its head word, the most important word of
the constituent under the node (Magerman (1995),
Collins (1996), Charniak (1997), Collins (1997),
Carroll and Rooth (1998), etc.). It turns out, how-
ever, that lexicalization is not unproblematic: First,

there is evidence that full lexicalization does not
carry over across different tree-banks for other lan-
guages, annotations or domains (Dubey and Keller,
2003). Second, full lexicalization leads to a serious
sparse-data problem, which can only be solved by
sophisticated smoothing and pruning techniques.

Recently, Klein and Manning (2003) showed that
a carefully performed linguistic mark-up of the tree-
bank leads to almost the same performance results as
lexicalization. This result is attractive since unlexi-
calized grammars are easy to estimate, easy to parse
with, and time- and space-efficient: Klein and Man-
ning (2003) do not smooth grammar-rule probabil-
ities, except unknown-word probabilities, and they
do not prune since they are able to determine the
most probable parse of eachfull parse forest. Both
facts are noteworthy in the context of statistical pars-
ing with a tree-bank grammar. A drawback of their
method is, however, that manual linguistic mark-up
is not based on abstract rules but rather on individual
linguistic intuition, which makes it difficult to repeat
their experiment and to generalize their findings to
languages other than English.

Is it possible to automatically acquire a more re-
fined probabilistic grammar from a given tree-bank
without resorting to full lexicalization? We present
a novel method that is able to induce a parser that
is located between two extremes: a fully-lexicalized
parser on one sideversusan accurate unlexicalized
parser based on a manually refined tree-bank on the
other side.

In short, our method is based on the same lin-
guistic principles of headedness as other methods:
We do believe that lexical information represents
an important knowledge source. To circumvent
data sparseness resulting from full lexicalization

115

with words, we simply follow the suggestion of
various advanced linguistic theories, e.g. Lexical-
Functional Grammar (Bresnan and Kaplan, 1982),
where more complex categories based on feature
combinations represent the lexical effect. We com-
plement this by a learning paradigm: lexical entries
carry latent information to be used as head informa-
tion, and this head information is induced from the
tree-bank.

In this paper, we study two different latent-head
models, as well as two different estimation meth-
ods: The first model is built around completely hid-
den heads, whereas the second one uses relatively
fine-grained combinations of Part-Of-Speech (POS)
tags with hidden extra-information; The first esti-
mation method selects a head-driven probabilistic
context-free grammar (PCFG) by exploiting latent-
head distributions for each node in the tree-bank,
whereas the second one is more traditional, reading
off the grammar from the tree-bank annotated with
the most probable latent heads only. In other words,
both models and estimation methods differ in the de-
gree of information incorporated into them as prior
knowledge. In general, it can be expected that the
better (sharper or richer, or more accurate) the in-
formation is, the better the induced grammar will
be. Our empirical results, however, are surprising:
First, estimation with latent-head distributions out-
performs estimation with most-probable-head anno-
tation. Second, modeling with completely hidden
heads is almost as good as modeling with latent
heads based on POS tags, and moreover, results in
much smaller grammars.

We emphasize that our task is to automatically in-
duce a more refined grammar based on a few linguis-
tic principles. With automatic refinement it is harder
to guarantee improved performance than with man-
ual refinements (Klein and Manning, 2003) or with
refinements based on direct lexicalization (Mager-
man (1995), Collins (1996), Charniak (1997), etc.).
If, however, our refinement provides improved per-
formance then it has a clear advantage: it is automat-
ically induced, which suggests that it is applicable
across different domains, languages and tree-bank
annotations.

Applying our method to the benchmark Penn tree-
bank Wall-Street Journal, we obtain a refined proba-
bilistic grammar that significantly improves over the

original tree-bank grammar and that shows perfor-
mance that is on par with early work on lexicalized
probabilistic grammars. This is a promising result
given the hard task of automatic induction of im-
proved probabilistic grammars.

2 Head Lexicalization

As previously shown (Charniak (1997), Collins
(1997), Carroll and Rooth (1998), etc.), Context-
Free Grammars (CFGs) can be transformed to lexi-
calized CFGs, provided that a head-marking scheme
for rules is given. The basic idea is that the head
marking on rules is used to project lexical items up
a chain of nodes. Figure 1 displays an example.

In this Section, we focus on the approaches of
Charniak (1997) and Carroll and Rooth (1998).
These approaches are especially attractive for us for
two reasons: First, both approaches make use of an
explicit linguistic grammar. By contrast, alternative
approaches, like Collins (1997), apply an additional
transformation to each tree in the tree-bank, splitting
each rule into small parts, which finally results in a
new grammar covering many more sentences than
the explicit one. Second, Charniak (1997) and Car-
roll and Rooth (1998) rely on almost the same lex-
icalization technique. In fact, the significant differ-
ence between them is that, in one case, a lexicalized
version of thetree-bank grammaris learned from
a corpus of trees (supervised learning), whereas, in
the other case, a lexicalized version of amanually
written CFG is learned from a a text corpus (un-
supervised learning). As we will see in Section 3,
our approach is a blend of these approaches in that
it aims at unsupervised learning of a (latent-head-)
lexicalized version of the tree-bank grammar.

Starting with Charniak (1997), Figure 2 displays
an internal rule as it is used in the parse in Figure1,
and its probability as defined by Charniak. Here, H
is the head-child of the rule, which inherits the head
h from its parent C. The children D1:d1, . . ., Dm:dm

and Dm+1:dm+1, . . ., Dm+n:dm+n are left and right
modifiers of H. Eithern or m may be zero, and
n = m = 0 for unary rules. Because the probabil-
ities occurring in Charniak’s definition are already
so specific that there is no real chance of obtaining
the data empirically, they are smoothed by deleted
interpolation:

116

S:rose

NP:profits

ADJ:Corporate

Corporate

N:profits

profits

VP:rose

V:rose

rose

PUNC:.

.

Internal Rules:
S:rose −→ NP:profits VP:rose PUNC:.
NP:profits−→ ADJ:Corporate N:profits
VP:rose −→ V:rose

Lexical Rules:
ADJ:Corporate−→ Corporate
N:profits −→ profits
V:rose −→ rose
PUNC:. −→ .

Figure 1: Parse tree, and a list of the rules it contains (Charniak, 1997)

C:h

D1:d1 · · · Dm:dm H:h Dm+1:dm+1 · · · Dm+n:dm+n

pCHARNIAK97(this local tree) = p(r | C, h, Cp) ×
∏n+m

i=1 p(di | Di, C, h)

(r is the unlexicalized rule,
Cp is C’s parent category)

Figure 2: Internal rule, and its probability (Charniak, 1997)

p(r | C, h, Cp) = λ1 · p̂(r | C, h, Cp)
+ λ2 · p̂(r | C, h)
+ λ3 · p̂(r | C, class(h))
+ λ4 · p̂(r | C, Cp)
+ λ5 · p̂(r | C)

p(d | D, C, h) = λ1 · p̂(d | D, C, h)
+ λ2 · p̂(d | D, C, class(h))
+ λ3 · p̂(d | D, C)
+ λ4 · p̂(d | D)

Here, class(h) denotes a class for the head word
h. Charniak takes these word classes from anex-
ternal distributional clustering model, but does not
describe this model in detail.

An at a first glance different lexicalization tech-
nique is described in Carroll and Rooth (1998). In
their approach, a grammar transformation is used
to lexicalize a manually written grammar. The key
step for understanding their model is to imagine that
the rule in Figure 2 is transformed to asub-tree, the
one displayed in Figure 3. After this transformation,
the sub-tree probability is simply calculated with the

PCFG’s standard model; The result is also displayed
in the figure. Comparing this probability with the
probability that Charniak assigns to the rule itself,
we see that the subtree probability equals the rule
probability1. In other words, both probability mod-
els are based on the same idea for lexicalization, but
the type of the corpora they are estimated from differ
(treesversussentences).

In more detail, Table 1 displays all four grammar-
rule types resulting from the grammar transforma-
tion of Carroll and Rooth (1998). The underlying
entities from the original CFG are: The starting sym-
bol S (also the starting symbol of the transform),
the internal rule C−→D1 . . .Dm H Dm+1 . . .Dm+n,
and the lexical rule C−→ w. From these, the
context-free transforms are generated as displayed
in the table (for all possible head wordsh andd, and
for all non-head children D=D1, . . ., Dm+n). Fig-
ure 4 displays an example parse on the basis of the

1at least, if we ignore Charniak’s conditioning on C’s parent
category Cp for the moment; Note that C’s parent category is
available in the tree-bank, but may not occur in the left-hand
sides of the rules of a manually written CFG

117

C:h

D1:C:h · · ·

D1:d1

Dm:C:h

Dm:dm

H:h Dm+1:C:h · · ·

Dm+1:dm+1

Dm+n:C:h

Dm+n:dm+n

pSTANDARD-PCFG(this sub-tree)

= p(D1 :C :h . . . Dm :C :h H :h Dm+1 :C :h . . . Dm+n :C : h | C :h) ×
∏

m+n

i=1 p(Di :di | Di :C :h)

= p(D1 . . . Dm H Dm+1 . . . Dm+n | C, h) ×
∏

m+n

i=1 p(di | Di, C, h)

= p(r | C, h) ×
∏

m+n

i=1 p(di | Di, C, h)

(r is the unlexicalized rule)

Figure 3: Transformed internal rule, and its standard-PCFG probability (Carroll and Rooth, 1998)

S −→ S:h (Starting Rules)
C:h −→ D1:C:h . . . Dm:C:h H:h Dm+1:C:h . . . Dm+n:C:h (Lexicalized Rules)
D:C:h −→ D:d (Dependencies)
C:w −→ w (Lexical Rules)

Table 1: Context-free rule types in the transform (Carroll and Rooth, 1998)

S

S:rose

NP:S:rose

NP:profits

ADJ:NP:profits

ADJ:Corporate

Corporate

N:profits

profits

VP:rose

V:rose

rose

PUNC:S:rose

PUNC:.

.

Starting Rule:
S−→ S:rose

Lexicalized Rules:
S:rose −→ NP:S:rose VP:rose PUNC:S:rose
NP:profits−→ ADJ:NP:profits N:profits
VP:rose −→ V:rose

Dependencies:
NP:S:rose −→ NP:profits
PUNC:S:rose −→ PUNC:.
ADJ:NP:profits−→ ADJ:Corporate

Lexical Rules:
ADJ:Corporate−→ Corporate
N:profits −→ profits
V:rose −→ rose
PUNC:. −→ .

Figure 4: Transformed parse tree, and a list of the rules it contains (Carroll and Rooth, 1998)

118

transformed grammar. It is noteworthy that although
Carroll and Rooth (1998) learn from a text corpus
of about 50 million words, it is still necessary to
smooth the rule probabilities of the transform. Un-
like Charniak (1997), however, they do not use word
classes in their back-off scheme.

To summarize, the major problem of full-
lexicalization techniques is that they lead to serious
sparse-data problems. For both models presented in
this section, a large number|T | of full word forms
makes it difficult to reliably estimate the probability
weights of theO(|T |2) dependencies and theO(|T |)
lexicalized rules.

A linguistically naive approach to this problem
is to use POS tags as heads to decrease the num-
ber of heads. From a computational perspective,
the sparse data problem would then be completely
solved since the number|POS| of POS tags is tiny
compared to the number|T | of full-word forms.
Although we will demonstrate that parsing results
benefit already from this naive lexicalization rou-
tine, we expect that (computationally and linguisti-
cally) optimal head-lexicalized models are arranged
around a number|HEADS| of head elements such
that|POS| ≤ |HEADS| << |T | .

3 Latent-Head Models

This section defines two probability models over the
trees licensed by a head-lexicalized CFG with latent
head-information, thereby exploiting three simple
linguistic principles: (i) all rules have head mark-
ers, (ii) information is projected up a chain of cat-
egories marked as heads, (iii) lexical entries carry
latent head values which can be learned. Moreover,
two estimation methods for the latent-head models
are described.

Head-Lexicalized CFGs with Latent Heads

Principles (i) and (ii) are satisfied by all head lexical-
ized models we know of, and clearly, they are also
satisfied by the model of Carroll and Rooth (1998).
Principle (iii), however, deals with latent informa-
tion for lexical entries, which is beyond the capabil-
ity of this model. To see this, remember that lex-
ical rules C−→ w are unambiguously transformed
to C:w −→ w. Because this transformation is unam-
biguous, latent information does not play a role in it.

It is surprisingly simple, however, to satisfy princi-
ple (iii) with slightly modified versions of Carroll
and Rooth’s transformation of lexical rules. In the
following, we present two of them:

Lexical-Rule Transformation (Model 1): Trans-
form each lexical rule C−→ w to a set of rules, hav-
ing the form C:h −→ w, whereh ∈ {1, . . . , L}, and
L is a free parameter.

Lexical-Rule Transformation (Model 2): Trans-
form each lexical rule C−→ w to a set of rules,
having the form C:h −→ w, whereh ∈ {C} ×
{1, . . . , L}, andL is a free parameter.

Both models introduce latent heads for lexical en-
tries. The difference is that Model 1 introduces com-
pletely latent headsh, whereas Model 2 introduces
headsh on the basis of the POS tag C of the word
w: each such head is a combination of C with an ab-
stract extra-information. Figure 5 gives an example.
Because we still apply Carroll and Rooth’s gram-
mar transformation scheme to the non-lexical rules,
latent heads are percolated up a path of categories
marked as heads.

Although our modifications are small, their ef-
fect is remarkable. In contrast to Carroll and Rooth
(1998), where an unlexicalized tree is unambigu-
ously mapped to asingletransform, our models map
an unlexicalized tree tomultipletransforms (for free
parameters≥ 2). Note also that although latent in-
formation is freely introduced at the lexical level, it
is not freely distributed over the nodes of the tree.
Rather, the space of latent heads for a tree is con-
strained according the linguistic principle of head-
edness. Finally, for the caseL = 1, our models per-
form unambiguous transformations: in Model 1 the
transformation makes no relevant changes, whereas
Model 2 performs unambiguous lexicalization with
POS tags. In the rest of the paper, we show how to
learn models with hidden, richer, and more accurate
head-information from a tree-bank, ifL ≥ 2.

Unsupervised Estimation of Head-Lexicalized
CFGs with Latent Heads

In the following, we define two methods for es-
timating latent-head models. The main difficulty
here is that the rules of a head-lexicalized CFG

119

S

S:hV

NP:S:hV

NP:hN

ADJ:NP:hN

ADJ:hADJ

Corporate

N:hN

profits

VP:hV

V:hV

rose

PUNC:S:hV

PUNC:hPUNC

.

Starting Rule:
S−→ S:hV

Lexicalized Rules:
S:hV −→ NP:S:hV VP:hV PUNC:S:hV
NP:hN −→ ADJ:NP:hN N:hN
VP:hV −→ V:hV

Dependencies:
NP:S:hV −→ NP:hN
PUNC:S:hV −→ PUNC:hPUNC
ADJ:NP:hN −→ ADJ:hADJ

Lexical Rules:
ADJ:hADJ −→ Corporate
N:hN −→ profits
V:hV −→ rose
PUNC:hPUNC −→ .

Model 1 (Completely Latent Heads):
hADJ, hN, hV, and hPUNC ∈ {1, . . . , L}

Model 2 (Latent Heads Based on POS Tags):
hADJ ∈ {ADJ} × {1, . . . , L}
hN ∈ {N} × {1, . . . , L}
hV ∈ {V} × {1, . . . , L}
hPUNC ∈ {PUNC} × {1, . . . , L}

Number of Latent-Head Types =

{

L for Model 1
|POS| × L for Model 2 (L is a free parameter)

Figure 5: Parse tree with latent heads, and a list of the rules it contains.

120

Initialization: Generate a randomly initialized distributionp0 for the rules ofGLEX (a head-
lexicalized CFG with latent heads as previously defined).

Iterations:
(1) for eachi = 1, 2, 3, . . ., numberof iterationsdo
(2) setp = pi−1

(3) E step: Generate a lexicalized tree-bankTLEX, by
- running over all unlexicalized treest of the original tree-bank
- generating the finite setGLEX(t) of the lexicalized transforms oft
- allocating the frequency c(t′) = c(t) · p(t′ | t) to the lexicalized treest′ ∈ GLEX(t)

[Here,c(t) is the frequency oft in the original tree-bank]
(4) M step: Read the tree-bank grammar offTLEX, by

- calculating relative frequencieŝp for all rules ofGLEX as occurring inTLEX

(5) setpi = p̂
(6) end

Figure 6: Grammar induction algorithm (EM algorithm)

with latent heads cannot be directly estimated from
the tree-bank (by counting rules) since the latent
heads are not annotated in the trees. Faced with this
incomplete-data problem, we apply the Expectation-
Maximization (EM) algorithm developed for these
type of problems (Dempster et al., 1977). For details
of the EM algorithm, we refer to the numerous tuto-
rials on EM (e.g. Prescher (2003)). Here, it suffices
to know that it is a sort of meta algorithm, result-
ing for each incomplete-data problem in an iterative
estimation method that aims at maximum-likelihood
estimation on the data. Disregarding the fact that we
implement a dynamic-programming version for our
experiments (running in linear time in the size of the
trees in the tree-bank (Prescher, 2005)), the EM al-
gorithm is here as displayed in Figure 6. Beside this
pure form of the EM algorithm, we also use a variant
where the original tree-bank is annotated with most
probable heads only. Here is a characterization of
both estimation methods:

Estimation from latent-head distributions: The
key steps of the EM algorithm produce a lexicalized
tree-bankTLEX, consisting of all lexicalized versions
of the original trees (E-step), and calculate the prob-
abilities for the rules ofGLEX on the basis ofTLEX

(M-step). Clearly, all lexicalized trees inGLEX(t)
differ only in the heads of their nodes. Thus, EM
estimation uses the original tree-bank, where each
node can be thought of as annotated with alatent-

head distribution.

Estimation from most probable heads: By con-
trast, a quite different scheme is applied in Klein and
Manning (2003): extensive manual annotation en-
riches the tree-bank with information, but no trees
are added to the tree-bank. We borrow from this
scheme in that we take the best EM model to cal-
culate the most probable head-lexicalized versions
of the trees in the original tree-bank. After collect-
ing this Viterbi-style lexicalized tree-bank, the ordi-
nary tree-bank estimation yields another estimate of
GLEX. Clearly, this estimation method uses the orig-
inal tree-bank, where each node can be thought of
annotated with themost probable latent head.

4 Experiments

This section presents empirical results across our
models and estimation methods.

Data and Parameters

To facilitate comparison with previous work, we
trained our models on sections 2-21 of the WSJ sec-
tion of the Penn tree-bank (Marcus et al., 1993). All
trees were modified such that: The empty top node
got the category TOP, node labels consisted solely
of syntactic category information, empty nodes (i.e.
nodes dominating the empty string) were deleted,
and words in rules occurring less than 3 times in
the tree-bank were replaced by (word-suffix based)

121

baseline

L=2
L=5
L=10

Estimation from most probable heads
Model 1

(completely latent)

(15 400) 73.5
(17 900) 76.3
(22 800) 80.7
(28 100) 83.3

∆=9.8

Model 2
(POS+latent)

(25 000) 78.9
(32 300) 81.1
(46 200) 83.3
(58 900) 82.6

∆=4.4

Estimation from head distributions
Model 1

(completely latent)

(15 400) 73.5
(25 900) 76.9
(49 200) 82.0
(79 200) 84.6

∆=11.1

Model 2
(POS+latent)

(25 000) 78.9
(49 500) 81.6

(116 300) 84.9
(224 300) 85.7

∆=6.8

Table 2: Parsing results in LP/LR F1 (the baseline isL = 1)

unknown-word symbols. No other changes were
made.

On this tree-bank, we trained several head-
lexicalized CFGs with latent-heads as described in
Section 3, but smoothed the grammar rules using
deleted interpolation; We also performed some pre-
liminary experiments without smoothing, but after
observing that about 3000 trees of our training cor-
pus were allocated a zero-probability (resulting from
the fact that too many grammar rules got a zero-
probability), we decided to smooth all rule proba-
bilities.

We tried to find optimal starting parameters by re-
peating the whole training process multiple times,
but we observed that starting parameters affect fi-
nal results only up to 0.5%. We also tried to find
optimal iteration numbers by evaluating our models
after each iteration step on a held-out corpus, and
observed that the best results were obtained with 70
to 130 iterations. Within a wide range from 50 to
200 iteration, however, iteration numbers affect fi-
nal results only up to 0.5%

Empirical Results

We evaluated on a parsing task performed on Sec-
tion 22 of the WSJ section of the Penn tree-bank. For
parsing, we mapped all unknown words to unknown
word symbols, and applied the Viterbi algorithm as
implemented in Schmid (2004), exploiting its abil-
ity to deal with highly-ambiguous grammars. That
is, we did not use any pruning or smoothing routines
for parsing sentences. We then de-transformed the
resulting maximum-probability parses to the format
described in the previous sub-section. That is, we
deleted the heads, the dependencies, and the start-

ing rules. All grammars were able to exhaustively
parse the evaluation corpus. Table 2 displays our re-
sults in terms of LP/LR F1 (Black and al., 1991).
The largest number per column is printed in italics.
The absolutely largest number is printed in boldface.
The numbers in brackets are the number of gram-
mar rules (without counting lexical rules). The gain
in LP/LR F1 per estimation method and per model
is also displayed (∆). Finally, the average training
time per iteration ranges from 2 to 4 hours (depend-
ing on bothL and the type of the model). The aver-
age parsing time is 10 seconds per sentence, which
is comparable to what is reported in Klein and Man-
ning (2003).

5 Discussion

First of all, all model instances outperform the base-
line, i.e., the original grammar (F1=73.5), and the
head-lexicalized grammar with POS tags as heads
(F1=78.9). The only plausible explanation for these
significant improvements is that useful head classes
have been learned by our method. Moreover, in-
creasingL consistently increases F1 (except for
Model 2 estimated from most probable heads;L =
10 is out of the row). We thus argue that the granu-
larity of the current head classes is not fine enough;
Further refinement may lead to even better latent-
head statistics.

Second, estimation from head distributions con-
sistently outperforms estimation from most probable
heads (for both models). Although coarse-grained
models clearly benefit from POS information in the
heads (L = 1, 2, 5), it is surprising that thebest
models with completely latent heads are on a par
with or almost as good as thebestones using POS

122

LP LR F1 Exact CB
Model 1 (this paper) 84.8 84.4 84.6 26.4 1.37
Magerman (1995) 84.9 84.6 1.26
Model 2 (this paper) 85.7 85.7 85.7 29.3 1.29
Collins (1996) 86.3 85.8 1.14
Matsuzaki etal. (2005) 86.6 86.7 1.19
Klein and Manning (2003) 86.9 85.7 86.3 30.9 1.10
Charniak (1997) 87.4 87.5 1.00
Collins (1997) 88.6 88.1 0.91

Table 3: Comparison with other parsers (sentences of length≤ 40)

as head information.

Finally, our absolutely best model (F1=85.7) com-
bines POS tags with latent extra-information (L =
10) and is estimated from latent-head distributions.
Although it also has the largest number of gram-
mar rules (about 224 300), it is still much smaller
than fully-lexicalized models. The best model with
completely latent heads, however, leads to almost
the same performance (F1=84.6), and has the further
advantage of having significantly fewer rules (only
about 79 200). Moreover, it is the model which
leads to the largest gain compared to the baseline
(∆ = 11.1).

In the rest of the section, we compare our method
to related methods. To start with performance val-
ues, Table 3 displays previous results on parsing
Section 23 of the WSJ section of the Penn tree-bank.
Comparison indicates that our best model is already
better than the early lexicalized model of Mager-
man (1995). It is a bit worse than the unlexical-
ized PCFGs of Klein and Manning (2003) and Mat-
suzaki et al. (2005), and of course, it is also worse
than state-of-the-art lexicalized parsers (experience
shows that evaluation results on sections 22 and 23
do not differ much).

Beyond performance values, we believe our for-
malism and methodology have the following attrac-
tive features: first, our models incorporate con-
text and lexical information collected from the
whole tree-bank. Information is bundled into ab-
stract heads of higher-order information, which re-
sults in a drastically reduced parameter space. In
terms of Section 2, our approach does not aim at
improving the approximation of rule probabilities
p(r|C, h) and dependency probabilitiesp(d|D, C, h)

by smoothing. Rather, our approach induces head
classes for the wordsh and d from the tree-bank
and aims at a exact calculation of rule proba-
bilities p(r|C, class(h)) and dependency probabil-
ities p(class(d)|D, C, class(h)). This is in sharp
contrast to the smoothed fixed-word statistics in
most lexicalized parsing models derived from sparse
data (Magerman (1995), Collins (1996), Char-
niak (1997), etc.). Particularly, class-based depen-
dency probabilitiesp(class(d)|D, C, class(h)) in-
duced from the tree-bank are not exploited by most
of these parsers.

Second, our method results in anautomaticlin-
guistic mark-up of tree-bank grammars. In contrast,
manual linguistic mark-up of the tree-bank like in
Klein and Manning (2003) is based on individual
linguistic intuition and might be cost and time in-
tensive.

Third, our method can be thought of as a new lex-
icalization scheme of CFG based on the notion of
latent head-information, or as a successful attempt
to incorporate lexical classes into parsers, combined
with a new word clustering method based on the
context represented by tree structure. It thus com-
plements and extends the approach of Chiang and
Bikel (2002), who aim at discovering latent head
markersin tree-banks to improve manually written
head-percolation rules.

Finally, the method can also be viewed as an ex-
tension offactorial HMMs(Ghahramani and Jordan,
1995) to PCFGs: the node labels on trees are en-
riched with a latent variable and the latent variables
are learned by EM. Matsuzaki et al. (2005) inde-
pendently introduce a similar approach and present
empirical results that rival ours. In contrast to us,

123

they do not use anexplicit linguistic grammar, and
they do not attempt toconstrain the space of la-
tent variablesby linguistic principles. As a conse-
quence, our best models are three orders of mag-
nitude more space efficient than theirs (with about
30 000 000 parameters). Therefore, parsing with
their models requires sophisticated smoothing and
pruning, whereas parsing with ours does not. More-
over, we calculate the most probable latent-head-
decorated parse and delete the latent heads in a post-
processing step. This is comparable to what they call
’Viterbi complete tree’ parsing. Under this regime,
our parser is on a par with theirs (F1=85.5). This
suggests that both models have learned a compara-
ble degree of information, which is surprising, be-
cause we learn latent heads only, whereas they aim
at learning general features. Crucially, a final 1%
improvement comes from selecting most-probable
parses by bagging all complete parses with the same
incomplete skeleton beforehand; Clearly, a solu-
tion to this NP-Complete problem (Sima’an, 2002)
can/should be also incorporated into our parser.

6 Conclusion

We introduced a method for inducing a head-driven
PCFG with latent-head statistics from a tree-bank.
The automatically trained parser is time and space
efficient and achieves a performance already better
than early lexicalized ones. This result suggests that
our grammar-induction method can be successfully
applied across domains, languages, and tree-bank
annotations.

Acknowledgment

This work was supported by the Netherlands Orga-
nization for Scientific Research, NWO project no.
612.000.312, ’Learning Stochastic Tree-Grammars
from Tree-banks’. I also would like to thank Yoav
Seginer and Jelle Zuidema and the anonymous re-
viewers. A special thanks goes to Khalil Sima’an.

References

Ezra Black and al. 1991. A procedure for quantitatively
comparing the syntactic coverage of English gram-
mars. InProc. of DARPA-91.

Joan Bresnan and Ronald M. Kaplan. 1982. Lexical

functional grammar: A formal system for grammati-
cal representation. InThe Mental Representation of
Grammatical Relations. MIT Press.

Glenn Carroll and Mats Rooth. 1998. Valence induction
with a head-lexicalized PCFG. InProc. of EMNLP-3.

Eugene Charniak. 1997. Parsing with a context-free
grammar and word statistics. InProc. of AAAI-97.

David Chiang and D. Bikel. 2002. Recovering latent
information in treebanks. InProc. of COLING-02.

Michael Collins. 1996. A new statistical parser based on
bigram lexical dependencies. InProc. of ACL-96.

Michael Collins. 1997. Three generative, lexicalised
models for statistical parsing. InProc. of ACL-97.

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977.
Maximum likelihood from incomplete data via theEM
algorithm.J. Royal Statist. Soc., 39(B).

Amit Dubey and Frank Keller. 2003. Probabilistic pars-
ing for German using sister-head dependencies. In
Proc. of ACL-03.

Zoubin Ghahramani and Michael Jordan. 1995. Factorial
Hidden Markov Models. Technical report, MIT.

Dan Klein and Christopher D. Manning. 2003. Accurate
unlexicalized parsing. InProc. of ACL-03.

David M. Magerman. 1995. Statistical decision-tree
models for parsing. InProc. of ACL-95.

Mitch Marcus, Beatrice Santorini, and Mary
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn treebank.Computational
Linguistics, 19(2).

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii.
2005. Probabilistic CFG with latent annotations. In
Proc. of ACL-05.

Detlef Prescher. 2003. A Tutorial on the Expectation-
Maximization Algorithm Including Maximum-
Likelihood Estimation and EM Training of Proba-
bilistic Context-Free Grammars. Presented at the15th
European Summer School in Logic, Language and
Information (ESSLLI).

Detlef Prescher. 2005. Inducing Head-Driven PCFGs
with Latent Heads: Refining a Tree-bank Grammar for
Parsing. InProc. of the 16th European Conference on
Machine Learning.

Helmut Schmid. 2004. Efficient parsing of highly am-
biguous context-free grammars with bit vectors. In
Proc. of COLING-04.

Khalil Sima’an. 2002. Computational complexity of
probabilistic disambiguation.Grammars, 5(2).

124

