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Abstract

We describe probabilistic models for a
chart generator based on HPSG. Within
the research field of parsing with lex-
icalized grammars such as HPSG, re-
cent developments have achieved efficient
estimation of probabilistic models and
high-speed parsing guided by probabilis-
tic models. The focus of this paper is
to show that two essential techniques –
model estimation on packed parse forests
and beam search during parsing – are suc-
cessfully exported to the task of natural
language generation. Additionally, we re-
port empirical evaluation of the perfor-
mance of several disambiguation models
and how the performance changes accord-
ing to the feature set used in the models
and the size of training data.

1 Introduction

Surface realization is the final stage of natural lan-
guage generation which receives a semantic rep-
resentation and outputs a corresponding sentence
where all words are properly inflected and ordered.
This paper presents log-linear models to address the
ambiguity which arises when HPSG (Head-driven
Phrase Structure Grammar (Pollard and Sag, 1994))
is applied to sentence generation. Usually a single
semantic representation can be realized as several
sentences. For example, consider the following two
sentences generated from the same input.

� The complicated language in the huge new law
has muddied the fight.

� The language in the huge new law complicated
has muddied the fight.

The latter is not an appropriate realization because
“complicated” tends to be wrongly interpreted to
modify “law”. Therefore the generator needs to se-
lect a candidate sentence which is more fluent and
easier to understand than others.

In principle, we need to enumerate all alternative
realizations in order to estimate a log-linear model
for generation. It therefore requires high compu-
tational cost to estimate a probabilistic model for a
wide-coverage grammar because there are consider-
able ambiguities and the alternative realizations are
hard to enumerate explicitly. Moreover, even after
the model has been estimated, to explore all possible
candidates in runtime is also expensive. The same
problems also arise with HPSG parsing, and recent
studies (Tsuruoka et al., 2004; Miyao and Tsujii,
2005; Ninomiya et al., 2005) proposed a number of
solutions including the methods of estimating log-
linear models using packed forests of parse trees and
pruning improbable candidates during parsing.

The aim of this paper is to apply these techniques
to generation. Since parsing and generation both
output the best probable tree under some constraints,
we expect that techniques that work effectively in
parsing are also beneficial for generation. First, we
enabled estimation of log-linear models with less
cost by representing a set of generation trees in a
packed forest. The forest representation was ob-
tained by adopting chart generation (Kay, 1996; Car-
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roll et al., 1999) where ambiguous candidates are
packed into an equivalence class and mapping a
chart into a forest in the same way as parsing. Sec-
ond, we reduced the search space in runtime by
adopting iterative beam search (Tsuruoka and Tsu-
jii, 2004) that efficiently pruned improbable candi-
dates. We evaluated the generator on the Penn Tree-
bank (Marcus et al., 1993), which is highly reliable
corpus consisting of real-world texts.

Through a series of experiments, we compared
the performance of several disambiguation mod-
els following an existing study (Velldal and Oepen,
2005) and examined how the performance changed
according to the size of training data, the feature set,
and the beam width. Comparing the latter half of the
experimental results with those on parsing (Miyao
and Tsujii, 2005), we investigated similarities and
differences between probabilistic models for parsing
and generation. The results indicated that the tech-
niques exported from parsing to generation worked
well while the effects were slightly different in de-
tail.

The Nitrogen system (Langkilde and Knight,
1998; Langkilde, 2000) maps semantic relations to a
packed forest containing all realizations and selects
the best one with a bigram model. Our method ex-
tends their approach in that we can utilize syntactic
features in the disambiguation model in addition to
the bigram.

From the perspective of using a lexicalized gram-
mar developed for parsing and importing pars-
ing techniques, our method is similar to the fol-
lowing approaches. The Fergus system (Banga-
lore and Rambow, 2000) uses LTAG (Lexicalized
Tree Adjoining Grammar (Schabes et al., 1988))
for generating a word lattice containing realizations
and selects the best one using a trigram model.
White and Baldridge (2003) developed a chart gen-
erator for CCG (Combinatory Categorial Gram-
mar (Steedman, 2000)) and proposed several tech-
niques for efficient generation such as best-first
search, beam thresholding and chunking the input
logical forms (White, 2004). Although some of the
techniques look effective, the models to rank can-
didates are still limited to simple language mod-
els. Carroll et al. (1999) developed a chart gen-
erator using HPSG. After the generator outputs all
the sentences the grammar allows, the ranking mod-
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Figure 1: PASs for “He bought the book.”

ule (Velldal and Oepen, 2005) selects the best one
using a log-linear model. Their model is trained us-
ing only 864 sentences where all realizations can be
explicitly enumerated.

As a grammar is extended to support more lin-
guistic phenomena and to achieve higher cover-
age, the number of alternative realizations increases
and the enumeration requires much higher compu-
tational cost. Moreover, using a variety of syntactic
features also increases the cost. By representing a
set of realizations compactly with a packed forest,
we trained the models with rich features on a large
corpus using a wide-coverage grammar.

2 Background

This section describes background of this work in-
cluding the representation of the input to our gener-
ator, the algorithm of chart generation, and proba-
bilistic models for HPSG.

2.1 Predicate-argument structures

The grammar we adopted is the Enju grammar,
which is an English HPSG grammar extracted from
the Penn Treebank by Miyao et al. (2004). In
parsing a sentence with the Enju grammar, seman-
tic relations of words is output included in a parse
tree. The semantic relations are represented by a
set of predicate-argument structures (PASs), which
in turn becomes the input to our generator. Figure
1 shows an example input to our generator which
corresponds to the sentence “He bought the book.”,
which consists of four predicates. REL expresses
the base form of the word corresponding to the pred-
icate. INDEX expresses a semantic variable to iden-
tify each word in the set of relations. ARG1 and
ARG2 express relationships between the predicate
and its arguments, e.g., the circled part in Figure 1
shows “he” is the subject of “buy” in this example.
The other constraints in the parse tree are omitted
in the input for the generator. Since PASs abstract
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away superficial differences, generation from a set
of PASs contains ambiguities in the order of modi-
fiers like the example in Section 1 or the syntactic
categories of phrases. For example, the PASs in Fig-
ure 1 can generate the NP, “the book he bought.”

When processing the input PASs, we split a single
PAS into a set of relations like (1) representing the
first PAS in Figure 1.
���������
	�������������
	�������������������	������ �"!#������$�	

(1)

This representation is very similar to the notion of
HLDS (Hybrid Logic Dependency Semantics) em-
ployed by White and Baldridge (2003), which is
a related notion to MRS (Minimal Recursion Se-
mantics) employed by Carroll et al. (1999). The
most significant difference between our current in-
put representation (not PAS itself) and the other rep-
resentations is that each word corresponds to exactly
one PAS while words like infinitival “to” have no
semantic relations in HLDS. This means that “The
book was bought by him.” is not generated from the
same PASs as Figure 1 because there must be the
PASs for “was” and “by” to generate the sentence.

We currently adopt this constraint for simple im-
plementation, but it is possible to use the input where
PASs for words like “to” are removed. As proposed
and implemented in the previous studies (Carroll
et al., 1999; White and Baldridge, 2003), handling
such inputs is feasible by modification in chart gen-
eration described in the following section. The algo-
rithms proposed in this paper can be integrated with
their algorithms although the implementation is left
for future research.

2.2 Chart generation

Chart generation is similar to chart parsing, but what
an edge covers is the semantic relations associated
with it. We developed a CKY-like generator which
deals with binarized grammars including the Enju.
Figure 2 shows a chart for generating “He bought
the book.” First, lexical edges are assigned to each
PAS. Then the following loop is repeated from %'&!

to the cardinality of the input.
� Apply binary rules to existing edges to generate

new edges holding % PASs.

� Apply unary rules to the new edges generated
in the previous process.

� Store the edges generated in the current loop
into the chart1.

In Figure 2, boxes in the chart represent ( �*)+)�, , which
contain edges covering the same PASs, and solid
arrows represent rule applications. Each edge is
packed into an equivalence class and stored in a cell.
Equivalence classes are identified with their signs
and the semantic relations they cover. Edges with
different strings (e.g., NPs associated with “a big
white dog” and “a white big dog”) can be packed
into the same equivalence class if they have the same
feature structure.

In parsing, each edge must be combined with its
adjacent edges. Since there is no such constraint
in generation, the combinations of edges easily ex-
plodes. We followed two partial solutions to this
problem by Kay (1996).

The one is indexing edges with the semantic vari-
ables (e.g., circled

$
in Figure 2). For example, since

the SUBCAT feature of the edge for “bought the
book” specifies that it requires an NP with an in-
dex

�
, we can find the required edges efficiently by

checking the edges indexed with
�

.
The other is prohibiting proliferation of gram-

matically correct, but unusable sub-phrases. Dur-
ing generating the sentence “Newspaper reports said
that the tall young Polish athlete ran fast”, sub-
phrases with incomplete modifiers such as “the tall
young athlete” or “the young Polish athlete” do not
construct the final output, but slow down the gener-
ation because they can be combined with the rest of
the input to construct grammatically correct phrases
or sentences. Carroll et al. (1999) and White (2004)
proposed different algorithms to address the same
problem. We adopted Kay’s simple solution in the
current ongoing work, but logical form chunking
proposed by White is also applicable to our system.

2.3 Probabilistic models for generation with
HPSG

Some existing studies on probabilistic models for
HPSG parsing (Malouf and van Noord, 2004; Miyao
and Tsujii, 2005) adopted log-linear models (Berger
et al., 1996). Since log-linear models allow us to

1To introduce an edge with no semantic relations as men-
tioned in the previous section, we need to combine the edges
with edges having no relations.
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Figure 2: The chart for “He bought the book.”

use multiple overlapping features without assuming
independence among features, the models are suit-
able for HPSG parsing where feature structures with
complicated constraints are involved and dividing
such constraints into independent features is diffi-
cult. Log-linear models have also been used for
HPSG generation by Velldal and Oepen (2005). In
their method, the probability of a realization � given
a semantic representation

,
is formulated as

��� � ��� , 	 & ���
 �
	��� ����� � � 	�		��������������

���
 � 	 �� � ��� � �"! 	�	

�

where
� � � � 	 is a feature function observed in � ,

 �
is

the weight of
�"�

, and # ��, 	 represents the set of all
possible realizations of

,
. To estimate

 �
, pairs of� � � # ��, 	�	 are needed, where � is the most preferred

realization for
,
. Their method first automatically

generates a paraphrase treebank, where $%� � , � # ��, 	'&
are enumerated. Then, a log-linear model is trained
with this treebank, i.e., each

 �
is estimated so as to

maximize the likelihood of training data. As well
as features used in their previous work on statistical
parsing (Toutanova and Manning, 2002), an addi-
tional feature that represents sentence probabilities

of 4-gram model is incorporated. They showed that
the combined model outperforms the model without
the 4-gram feature.

3 Disambiguation models for chart
generation

3.1 Packed representation of a chart

As mentioned in Section 2.3, to estimate log-linear
models for HPSG generation, we need all alterna-
tive derivation trees ( ��, 	 generated from the input

,
.

However, the size of ( ��,
	 is exponential to the cardi-
nality of

,
and they cannot be enumerated explicitly.

This problem is especially serious in wide-coverage
grammars because such grammars are designed to
cover a wide variety of linguistic phenomena, and
thus produce many realizations. In this section, we
present a method of making the estimation tractable
which is similar to a technique developed for HPSG
parsing.

When estimating log-linear models, we map ( ��, 	
in the chart into a packed representation called a fea-
ture forest, intuitively an “AND-OR” graph. Miyao
and Tsujii (2005) represented a set of HPSG parse
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Figure 3: Feature forest for “He bought the book.”

trees using a feature forest and succeeded in esti-
mating � ��� � � 	 given a sentence � and a parse tree

�
using dynamic programming without unpacking the
chart. If ( ��, 	 is represented in a feature forest in
generation, � ��� � ,
	 can also be estimated in the same
way.

Figure 3 shows a feature forest representing the
chart in Figure 2. Each node corresponds to either
a lexical entry or a tuple of $ ��� � ��� � � � & where

���
,���

and
� �

are respectively the mother edge, the left
daughter, and the right daughter in a single rule ap-
plication. Nodes connected by dotted lines repre-
sent OR-nodes, i.e., equivalence classes in the same
cell. Feature functions are assigned to OR-nodes.
By doing so, we can capture important features for
disambiguation in HPSG, i.e., combinations of a
mother and its daughter(s). Nodes connected by
solid arrows represent AND-nodes corresponding to
the daughters of the parent node. By using feature
forests, we can efficiently pack the node generated
more than once in the set of trees. For example, the
nodes corresponding to “the book” in “He bought
the book.” and “the book he bought” are identical
and described only once in the forest. The merits
of using forest representations in generation instead

of lattices or simple enumeration are discussed thor-
oughly by Langkilde (2000).

3.2 Model variation

We implemented and compared four different dis-
ambiguation models as Velldal and Oepen (2005)
did. Throughout the models, we assigned a score
called figure-of-merit (FOM) on each edge and cal-
culated the FOM of a mother edge by dynamic pro-
gramming. FOM represents the log probability of an
edge which is not normalized.

Baseline model We started with a simple baseline
model, � ��� � , 	 &�� � ��� � �+) � � 	 , where �
	 , is a PAS
in the input semantic representation

,
and

)
is a lexi-

cal entry assigned to � . The FOM of the mother edge� ������	
is computed simply as

� ������	 & � ����� 	�� ��� � 	
. All the other models use this model as a ref-

erence distribution (Miyao and Tsujii, 2005), i.e.,
 �

is estimated to maximize the likelihood of the train-
ing data �� , which is calculated with the following
equation.

�� � ��� � , 	 &��� ��� � �+) � � 	�� ���
 � 	��  ����� ��� 	�	

	�� � ��� �����
���
 � 	��  � ��� ��� ! 	�	
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Bigram model The second model is a log-linear
model with only one feature that corresponds to
bigram probabilities for adjacent word-pairs in the
sentence. We estimated a bigram language model
using a part of the British National Corpus as train-
ing data2. In the chart each edge is identified with
the first and last word in the phrase as well as
its feature structure and covered relations. When
two edges are combined,

� ��� � 	
is computed as� ������	 & � ����� 	  � ��� � 	 �  � � ��� ��� � � � � � � � 	 , where

is the weight of the bigram feature, � � is the
last word of the left daughter, � �

is the first word
of the right daughter, and � � ��� ��� � represents a log
probability of a bigram. Contrary to the method of
Velldal and Oepen (2005) where the input is a set
of sentences and ���
	 � ��� � is computed on a whole
sentence, we computed � � ��� ��� � on each phrase as
Langkilde (2000) did The language model can be
extended to % -gram if each edge holds last % � �
words although the number of edges increase.

Syntax model The third model incorporates a
variety of syntactic features and lexical features
where

� ������	
is computed as

� ����� 	  � ��� � 	 
	 �  � ��� ��� � � ��� � � � 	

. The feature set consists of com-
binations of atomic features shown in Table 1. The
atomic features and their combinations are imported
from the previous work on HPSG parsing (Miyao
and Tsujii, 2005). We defined three types of fea-
ture combinations to capture the characteristics of
binary and unary rule applications and root edges as
described below.

� � � � � �� & � ������� ���������"�����! " � ��$#���%�&+���(') *&+��+,������&������-&+��$#���%�. ���/'! 0. ��+,������. �����-.21
�43 � � �� & $ ������� ���(') ��+,���5� ���6� &

� ��7�7 � & $ �(') '��+,����� ���6� &
An example of extracted features is shown in Fig-

ure 4 where “bought the book” is combined with
its subject “he”. Since the mother edge is a root
edge, two features (

� ��7�7 �
and

� � � � � �8 ) are extracted
from this node. In the

� ��787 �
feature, the phrasal cat-

egory SYM becomes S (sentence), the head word
2The model estimation was done using the CMU-Cambridge

Statistical Language Modeling toolkit (Clarkson and Rosenfeld,
1997).
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Table 1: Atomic features
RULE the name of the applied schema
DIST the distance between the head words of

the daughters
COMMA whether a comma exists between daughters

and/or inside of daughter phrases
SPAN the number of words dominated by the phrase
SYM the symbol of the phrasal category

(e.g., NP, VP)
WORD the surface form of the head word

LE the lexical entry assigned to the head word

WORD becomes “bought”, and its lexical entry LE
becomes that of transitive verbs. In the

� � � � � �� fea-
ture, properties of the left and right daughters are
instantiated in addition to those of the mother edge.

Combined model The fourth and final model is
the combination of the syntax model and the bigram
model. This model is obtained by simply adding the
bigram feature to the syntax model.

4 Iterative beam search

For efficient statistical generation with a wide-
coverage grammar, we reduce the search space by
pruning edges during generation. We use beam
search where edges with low FOMs are pruned dur-
ing generation. We use two parameters, % and 9 :
in each cell, the generator prunes except for top %
edges, and edges whose FOMs are lower than that
of the top edge 9 are also pruned.

Another technique for achieving efficiency is it-
erative generation which is adopted from iterative
CKY parsing (Tsuruoka and Tsujii, 2004). When
beam width is too narrow, correct edges to consti-
tute a correct sentence may be discarded during gen-
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Table 2: Averaged generation time and accuracy by four models

Model Baseline Bigram Syntax Combined
Coverage (%) 91.15 90.15 90.75 90.56
Time (ms) 3512 4085 3821 4315
BLEU � � ���

�����	�
(89 sentences) 0.7776 0.7503 0.8195 0.7359��
 � � ���

����� ��
(179 sentences) 0.5544 0.6323 0.7339 0.7305���
 � � ���

����� ���
(326 sentences) 0.5809 0.6415 0.7735 0.7384����
 � � ���

����� !�
(412 sentences) 0.5863 0.6542 0.7835 0.7533

Total (1,006 sentences) 0.5959 0.6544 0.7733 0.7420

eration and it causes degradation in coverage, i.e.,
the ratio the generator successfully outputs a sen-
tence. The appropriate beam width depends on in-
puts and cannot be predefined. In iterative genera-
tion, the process of chart generation is repeated with
increasing beam width until a complete sentence is
generated or the beam width exceeds the predefined
maximum.

5 Experiments

In this section, we present five experiments: com-
parison among four models described in Section 3.2,
syntax models with different features, different cor-
pus sizes, different beam widths, and the distribution
of generation time. The bigram model was trained
using 100,000 sentences in the BNC. The unigram
and syntax model was trained using Section 02-21 of
the WSJ portion of the Penn Treebank (39,832 sen-
tences). Section 22 (1,700 sentences) and 23 (2,416
sentences) were used as the development and test
data, respectively.

Because the generator is still slow to gener-
ate long sentences, sentences with more than 20
words were not used. We converted the treebank
into HPSG-style derivation trees by the method of
Miyao et al. (2004) and extracted the semantic rela-
tions, which are used as the inputs to the generator.
The sentences where this conversion failed were also
eliminated although such sentences were few (about
0.3% of the eliminated data). The resulting training
data consisted of 18,052 sentences and the test data
consisted of 1,006 sentences. During training, un-
covered sentences – where the lexicon does not in-
clude the lexical entry to construct correct derivation
– were also ignored, while such sentences remained

in the test data. The final training data we can utilize
consisted of 15,444 sentences. The average sentence
length of the test data was 12.4, which happens to be
close to that of Velldal and Oepen (2005) though the
test data is different.

The accuracy of the generator outputs was eval-
uated by the BLEU score (Papineni et al., 2001),
which is commonly used for the evaluation of ma-
chine translation and recently used for the evalua-
tion of generation (Langkilde-Geary, 2002; Velldal
and Oepen, 2005). BLEU is the weighted average of
n-gram precision against the reference sentence. We
used the sentences in the Penn Treebank as the refer-
ence sentences. The beam width was increased from� % � 9 	 & ���������� 	

to
��!� �*����� 	

in two steps. The pa-
rameters were empirically determined using the de-
velopment set. All the experiments were conducted
on AMD Opteron servers with a 2.0-GHz CPU and
12-GB memory.

Table 2 shows the average generation time and the
accuracy of the models presented in Section 3. The
generation time includes time for the input for which
the generator could not output a sentence, while the
accuracy was calculated only in the case of success-
ful generation. All models succeeded in generation
for over 90% of the test data.

Contrary to the result of the Velldal and Oepen
(2005), the syntax model outperformed the com-
bined model. We observed the same result when we
varied the parameters for beam thresholding. This
is possibly just because the language model was not
trained enough as that of the previous research (Vell-
dal and Oepen, 2005) where the model was 4-gram
and trained with the entire BNC3.

3We could not use the entire corpus for training because of
a problem in implementation. This problem will be fixed in the
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Figure 5: Size of training data vs. performance

Table 3: Feature set vs. performance

Feature BLEU diff.
All 0.7734
-COMMA 0.7492 -0.0242
-DIST 0.7702 -0.0032
-LE 0.7423 -0.0311
-RULE 0.7709 -0.0025
-SPAN 0.7640 -0.0094
-SYM 0.7400 -0.0334
-WORD 0.7610 -0.0124
None 0.5959 -0.1775

Although the accuracy shown in Table 2 was
lower than that of Velldal and Oepen, there is lit-
tle point in direct comparison between the accuracy
of the two systems because the settings are consider-
ably different in terms of the grammar, the input rep-
resentation, and the training and test set. The algo-
rithm we proposed does not depend on our specific
setting and can be integrated and evaluated within
their setting. We used larger training data (15,444
sentences) and test data (1,006 sentences), compared
to their treebank of 864 sentences where the log-
linear models were evaluated by cross validation.
This is the advantage of adopting feature forests to
efficiently estimate the log-linear models.

Figure 5 shows the relationship between the size
of training data and the accuracy. All the following
experiments were conducted on the syntax model.
The accuracy seems to saturate around 4000 sen-
tences, which indicates that a small training set is
enough to train the current syntax model and that

future development.

Table 4: % vs. performance

% Coverage (%) Time (ms) BLEU
4 66.10 768 0.7685
8 82.91 3359 0.7654

12 87.89 7191 0.7735
16 89.46 11051 0.7738
20 90.56 15530 0.7723

Table 5: 9 vs. performance9 Coverage (%) Time (ms) BLEU
4.0 78.23 2450 0.7765
6.0 89.56 9083 0.7693
8.0 91.15 19320 0.7697

10.0 89.86 35897 0.7689

we could use an additional feature set to improve
the accuracy. Similar results are reported in pars-
ing (Miyao and Tsujii, 2005) while the accuracy sat-
urated around 16,000 sentences. When we use more
complicated features or train the model with longer
sentences, possibly the size of necessary training
data will increase.

Table 3 shows the performance of syntax mod-
els with different feature sets. Each row represents
a model where one of the atomic features in Table
1 was removed. The “None” row is the baseline
model. The rightmost column represents the differ-
ence of the accuracy from the model trained with
all features. SYM, LE, and COMMA features had a
significant influence on the performance. These re-
sults are different from those in parsing reported by
Miyao and Tsujii (2005) where COMMA and SPAN
especially contributed to the accuracy. This observa-
tion implies that there is still room for improvement
by tuning the combination of features for generation.

We compared the performance of the generator
with different beam widths to investigate the effect
of iterative beam search. Table 4 shows the results
when we varied % , which is the number of edges,
while thresholding by FOM differences is disabled,
and Table 5 shows the results when we varied only9 , which is the FOM difference.

Intuitively, beam search may decrease the accu-
racy because it cannot explore all possible candi-
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Figure 6: Distribution of generation time

dates during generation. Iterative beam search is
more likely to decrease the accuracy than ordinary
beam search. However, the results show that the ac-
curacy did not drastically decrease at small widths.
Moreover, the accuracy of iterative beam search was
almost the same as that of % & !�

. On the other
hand, generation time significantly increased as % or9 increased, indicating that iterative beam search ef-
ficiently discarded unnecessary edges without loos-
ing the accuracy. Although the coverage increases as
the beam width increases, the coverage at % & !� or9 & �����

is lower than that of iterative beam search
(Table 2)4.

Finally, we examined the distribution of genera-
tion time without the limitation of sentence length
in order to investigate the strategy to improve the ef-
ficiency of the generator. Figure 6 is a histogram of
generation time for 500 sentences randomly selected
from the development set, where 418 sentences were
successfully generated and the average BLEU score
was 0.705. The average sentence length was 22.1
and the maximum length was 60, and the aver-
age generation time was 27.9 sec, which was much
longer than that for short sentences. It shows that a
few sentences require extremely long time for gen-
eration although about 70% of the sentences were
generated within 5 sec. Hence, the average time pos-
sibly decreases if we investigate what kind of sen-
tences require especially long time and improve the

4This is because the generator fails when the number of
edges exceeds 10,000. Since the number of edges significantly
increases when � or

�
is large, generation fails even if the cor-

rect edges are in the chart.

algorithm to remove such time-consuming fractions.
The investigation is left for future research.

The closest empirical evaluations on the same task
is that of Langkilde-Geary (2002) which reported
the performance of the HALogen system while the
approach is rather different. Hand-written mapping
rules are used to make a forest containing all can-
didates and the best candidate is selected using the
bigram model. The performance of the generator
was evaluated on Section 23 of the Penn Treebank
in terms of the number of ambiguities, generation
time, coverage, and accuracy. Several types of in-
put specifications were examined in order to mea-
sure how specific the input should be for generat-
ing valid sentences. One of the specifications named
“permute, no dir” is similar to our input in that the
order of modifiers is not determined at all. The gen-
erator produced outputs for 82.7% of the inputs with
average generation time 30.0 sec and BLEU score
0.757. The results of our last experiment are com-
parable to these results though the used section is
different.

6 Conclusion

We presented a chart generator using HPSG and de-
veloped log-linear models which we believe was es-
sential to develop a sentence generator. Several tech-
niques developed for parsing also worked in genera-
tion. The introduced techniques were an estimation
method for log-linear models using a packed for-
est representation of HPSG trees and iterative beam
search. The system was evaluated through applica-
tion to real-world texts. The experimental results
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showed that the generator was able to output a sen-
tence for over 90% of the test data when the data was
limited to short sentences. The accuracy was signif-
icantly improved by incorporating syntactic features
into the log-linear model. As future work we intend
to tune the feature set for generation. We also plan
to further increase the efficiency of the generator so
as to generate longer sentences.
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