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Abstract

We present a corrective model for recov-
ering non-projective dependency struc-
tures from trees generated by state-of-the-
art constituency-based parsers. The con-
tinuity constraint of these constituency-
based parsers makes it impossible for
them to posit non-projective dependency
trees. Analysis of the types of depen-
dency errors made by these parsers on a
Czech corpus show that the correct gov-
ernor is likely to be found within a local
neighborhood of the governor proposed
by the parser. Our model, based on a
MaxEnt classifier, improves overall de-
pendency accuracy by .7% (a 4.5% reduc-
tion in error) with over 50% accuracy for
non-projective structures.

1 Introduction

Statistical parsing models have been shown to
be successful in recovering labeled constituencies
(Collins, 2003; Charniak and Johnson, 2005; Roark
and Collins, 2004) and have also been shown to
be adequate in recovering dependency relationships
(Collins et al., 1999; Levy and Manning, 2004;
Dubey and Keller, 2003). The most successful mod-
els are based on lexicalized probabilistic context
free grammars (PCFGs) induced from constituency-
based treebanks. The linear-precedence constraint
of these grammars restricts the types of dependency

structures that can be encoded in such trees.1 A
shortcoming of the constituency-based paradigm for
parsing is that it is inherently incapable of repre-
senting non-projective dependencies trees (we de-
fine non-projectivity in the following section). This
is particularly problematic when parsing free word-
order languages, such as Czech, due to the frequency
of sentences with non-projective constructions.

In this work, we explore a corrective model which
recovers non-projective dependency structures by
training a classifier to select correct dependency
pairs from a set of candidates based on parses gen-
erated by a constituency-based parser. We chose to
use this model due to the observations that the de-
pendency errors made by the parsers are generally
local errors. For the nodes with incorrect depen-
dency links in the parser output, the correct gov-
ernor of a node is often found within a local con-
text of the proposed governor. By considering al-
ternative dependencies based on local deviations of
the parser output we constrain the set of candidate
governors for each node during the corrective proce-
dure. We examine two state-of-the-art constituency-
based parsers in this work: the Collins Czech parser
(1999) and a version of the Charniak parser (2001)
that was modified to parse Czech.

Alternative efforts to recover dependency struc-
ture from English are based on reconstructing the
movement traces encoded in constituency trees
(Collins, 2003; Levy and Manning, 2004; Johnson,
2002; Dubey and Keller, 2003). In fact, the fea-

1In order to correctly capture the dependency structure, co-
indexed movement traces are used in a form similar to govern-
ment and Binding theory, GPSG, etc.
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Figure 1: Examples of projective and non-projective trees. The trees on the left and center are both projec-
tive. The tree on the right is non-projective.

tures we use in the current model are similar to those
proposed by Levy and Manning (2004). However,
the approach we propose discards the constituency
structure prior to the modeling phase; we model cor-
rective transformations of dependency trees.

The technique proposed in this paper is similar to
that of recent parser reranking approaches (Collins,
2000; Charniak and Johnson, 2005); however, while
reranking approaches allow a parser to generate a
likely candidate set according to a generative model,
we consider a set of candidates based on local per-
turbations of the single most likely tree generated.
The primary reason for such an approach is that we
allow dependency structures which would never be
hypothesized by the parser. Specifically, we allow
for non-projective dependencies.

The corrective algorithm proposed in this paper
shares the motivation of the transformation-based
learning work (Brill, 1995). We do consider local
transformations of the dependency trees; however,
the technique presented here is based on a generative
model that maximizes the likelihood of good depen-
dents. We consider a finite set of local perturbations
of the tree and use a fixed model to select the best
tree by independently choosing optimal dependency
links.

In the remainder of the paper we provide a defini-
tion of a dependency tree and the motivation for us-
ing such trees as well as a description of the particu-
lar dataset that we use in our experiments, the Prague
Dependency Treebank (PDT). In Section 3 we de-
scribe the techniques used to adapt constituency-
based parsers to train from and generate dependency
trees. Section 4 describes corrective modeling as
used in this work and Section 4.2 describes the par-

ticular features with which we have experimented.
Section 5 presents the results of a set of experiments
we performed on data from the PDT.

2 Syntactic Dependency Trees and the
Prague Dependency Treebank

A dependency tree is a set of nodes Ω =
{w0, w1, . . . , wk} where w0 is the imaginary root
node2 and a set of dependency links G =
{g1, . . . , gk} where gi is an index into Ω represent-
ing the governor of wi. In other words g3 = 1 in-
dicates that the governor of w3 is w1. Finally, every
node has exactly one governor except for w0, which
has no governor (the tree constraints).3 The index of
the nodes represents the surface order of the nodes
in the sequence (i.e., wi precedes wj in the sentence
if i < j).

A tree is projective if for every three nodes: wa,
wb, and wc where a < b < c; if wa is governed by
wc then wb is transitively governed by wc or if wc

is governed by wa then wb is transitively governed
by wa.4 Figure 1 shows examples of projective and
non-projective trees. The rightmost tree, which is
non-projective, contains a subtree consisting of wa

and wc but not wb; however, wb occurs between wa

and wc in the linear ordering of the nodes. Projec-
tivity in a dependency tree is akin to the continuity
constraint in a constituency tree; such a constraint is

2The imaginary root node simplifies notation.
3The dependency structures here are very similar to those

described by Mel’čuk (1988); however the nodes of the depen-
dency trees discussed in this paper are limited to the words of
the sentence and are always ordered according to the surface
word-order.

4Node wa is said to transitively govern node wb if wb is a
descendant of wa in the dependency tree.
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implicitly imposed by trees generated from context
free grammars (CFGs).

Strict word-order languages, such as English, ex-
hibit non-projective dependency structures in a rel-
atively constrained set of syntactic configurations
(e.g., right-node raising). Traditionally, these move-
ments are encoded in syntactic analyses as traces.
In languages with free word-order, such as Czech,
constituency-based representations are overly con-
strained (Sgall et al., 1986). Syntactic dependency
trees encode syntactic subordination relationships
allowing the structure to be non-specific about the
underlying deep representation. The relationship
between a node and its subordinates expresses a
sense of syntactic (functional) entailment.

In this work we explore the dependency struc-
tures encoded in the Prague Dependency Treebank
(Hajič, 1998; Böhmová et al., 2002). The PDT 1.0
analytical layer is a set of Czech syntactic depen-
dency trees; the nodes of which contain the word
forms, morphological features, and syntactic anno-
tations. These trees were annotated by hand and
are intended as an intermediate stage in the annota-
tion of the Tectogrammatical Representation (TR),
a deep-syntactic or syntacto-semantic theory of lan-
guage (Sgall et al., 1986). All current automatic
techniques for generating TR structures are based on
syntactic dependency parsing.

When evaluating the correctness of dependency
trees, we only consider the structural relationships
between the words of the sentence (unlabeled depen-
dencies). However, the model we propose contains
features that are considered part of the dependency
rather than the nodes in isolation (e.g., agreement
features). We do not propose a model for correctly
labeling dependency structures in this work.

3 Constituency Parsing for Dependency
Trees

A pragmatic justification for using constituency-
based parsers in order to predict dependency struc-
tures is that currently the best Czech dependency-
tree parser is a constituency-based parser (Collins et
al., 1999; Zeman, 2004). In fact both Charniak’s
and Collins’ generative probabilistic models con-

tain lexical dependency features.5 From a gener-
ative modeling perspective, we use the constraints
imposed by constituents (i.e., projectivity) to enable
the encapsulation of syntactic substructures. This di-
rectly leads to efficient parsing algorithms such as
the CKY algorithm and related agenda-based pars-
ing algorithms (Manning and Schütze, 1999). Addi-
tionally, this allows for the efficient computation of
the scores for the dynamic-programming state vari-
ables (i.e., the inside and outside probabilities) that
are used in efficient statistical parsers. The computa-
tional complexity advantages of dynamic program-
ming techniques along with efficient search tech-
niques (Caraballo and Charniak, 1998; Klein and
Manning, 2003) allow for richer predictive models
which include local contextual information.

In an attempt to extend a constituency-based pars-
ing model to train on dependency trees, Collins
transforms the PDT dependency trees into con-
stituency trees (Collins et al., 1999). In order to
accomplish this task, he first normalizes the trees
to remove non-projectivities. Then, he creates ar-
tificial constituents based on the parts-of-speech of
the words associated with each dependency node.
The mapping from dependency tree to constituency
tree is not one-to-one. Collins describes a heuristic
for choosing trees that work well with his parsing
model.

3.1 Training a Constituency-based Parser

We consider two approaches to creating projec-
tive trees from dependency trees exhibiting non-
projectivities. The first is based on word-reordering
and is the model that was used with the Collins
parser. This algorithm identifies non-projective
structures and deterministically reorders the words
of the sentence to create projective trees. An alter-
native method, used by Charniak in the adaptation
of his parser for Czech6 and used by Nivre and Nils-
son (2005), alters the dependency links by raising
the governor to a higher node in the tree whenever

5Bilexical dependencies are components of both the Collins
and Charniak parsers and effectively model the types of syntac-
tic subordination that we wish to extract in a dependency tree.
(Bilexical models were also proposed by Eisner (Eisner, 1996)).
In the absence of lexicalization, both parsers have dependency
features that are encoded as head-constituent to sibling features.

6This information was provided by Eugene Charniak in a
personal communication.
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Figure 2: Statistical distribution of correct governor positions in the Charniak (left) and Collins (right) parser output of parsed
PDT development data.

a non-projectivity is observed. The trees are then
transformed into Penn Treebank style constituen-
cies using the technique described in (Collins et al.,
1999).

Both of these techniques have advantages and dis-
advantages which we briefly outline here:

Reordering The dependency structure is preserved,
but the training procedure will learn statistics
for structures over word-strings that may not be
part of the language. The parser, however, may
be capable of constructing parses for any string
of words if a smoothed grammar is being used.

Governor–Raising The dependency structure is
corrupted leading the parser to incorporate ar-
bitrary dependency statistics into the model.
However, the parser is trained on true sen-
tences, the words of which are in the correct
linear order. We expect the parser to predict
similar incorrect dependencies when sentences
similar to the training data are observed.

Although the results presented in (Collins et al.,
1999) used the reordering technique, we have exper-
imented with his parser using the governor–raising
technique and observe an increase in dependency ac-
curacy. For the remainder of the paper, we assume
the governor–raising technique.

The process of generating dependency trees from
parsed constituency trees is relatively straight-

forward. Both the Collins and Charniak parsers pro-
vide head-word annotation on each constituent. This
is precisely the information that we encode in an un-
labeled dependency tree, so the dependency struc-
ture can simply be extracted from the parsed con-
stituency trees. Furthermore, the constituency labels
can be used to identify the dependency labels; how-
ever, we do not attempt to identify correct depen-
dency labels in this work.

3.2 Constituency-based errors

We now discuss a quantitative measure for the types
of dependency errors made by constituency-based
parsing techniques. For node wi and the correct gov-
ernor wg∗i the distance between the two nodes in the
hypothesized dependency tree is:

dist(wi, wg∗i )

=

⎧⎪⎨
⎪⎩

d(wi, wg∗i ) iff wg∗i is ancestor of wi

d(wi, wg∗i ) iff wg∗i is sibling/cousin of wi

−d(wi, wg∗i ) iff wg∗i is descendant of wi

Ancestor, sibling, cousin, and descendant have the
standard interpretation in the context of a tree. The
dependency distance d(wi, wg∗i ) is the minimum
number of dependency links traversed on the undi-
rected path from wi to wg∗i in the hypothesized de-
pendency tree. The definition of the dist function
makes a distinction between paths through the par-
ent of wi (positive values) and paths through chil-
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CORRECT(W )
1 Parse sentence W using the constituency-based parser
2 Generate a dependency structure from the constituency tree
3 for wi ∈ W
4 do for wc ∈ N (wgh

i
) // Local neighborhood of proposed governor

5 do l(c) ← P (g∗i = c|wi,N (wgh
i
))

6 g
′
i ← arg maxc l(c) // Pick the governor in which we are most confident

Table 1: Corrective Modeling Procedure

dren of wi (negative values). We found that a vast
majority of the correct governors were actually hy-
pothesized as siblings or grandparents (a dist values
of 2) – an extreme local error.

Figure 2 shows a histogram of the fraction of
nodes whose correct governor was within a particu-
lar dist in the hypothesized tree. A dist of 1 indicates
the correct governor was selected by the parser; in
these graphs, the density at dist = 1 (on the x axis)
shows the baseline dependency accuracy of each
parser. Note that if we repaired only the nodes that
are within a dist of 2 (grandparents and siblings),
we can recover more than 50% of the incorrect de-
pendency links (a raw accuracy improvement of up
to 9%). We believe this distribution to be indirectly
caused by the governor raising projectivization rou-
tine. In the cases where non-projective structures
can be repaired by raising the node’s governor to its
parent, the correct governor becomes a sibling of the
node.

4 Corrective Modeling

The error analysis of the previous section suggests
that by looking only at a local neighborhood of the
proposed governor in the hypothesized trees, we can
correct many of the incorrect dependencies. This
fact motivates the corrective modeling procedure
employed here.

Table 1 presents the pseudo-code for the correc-
tive procedure. The set gh contains the indices of
governors as predicted by the parser. The set of gov-
ernors predicted by the corrective procedure is de-
noted as g

′
. The procedure independently corrects

each node of the parsed trees meaning that there
is potential for inconsistent governor relationships
to exist in the proposed set; specifically, the result-

ing dependency graph may have cycles. We em-
ploy a greedy search to remove cycles when they are
present in the output graph.

The final line of the algorithm picks the governor
in which we are most confident. We use the correct-
governor classification likelihood,
P (g∗i = j|wi,N (wgh

i
)), as a measure of the confi-

dence that wc is the correct governor of wi where
the parser had proposed wgh

i
as the governor. In ef-

fect, we create a decision list using the most likely
decision if we can (i.e., there are no cycles). If the
dependency graph resulting from the most likely de-
cisions does not result in a tree, we use the decision
lists to greedily select the tree for which the product
of the independent decisions is maximal.

Training the corrective model requires pairs of
dependency trees; each pair contains a manually-
annotated tree (i.e., the gold standard tree) and a tree
generated by the parser. This data is trivially trans-
formed into per-node samples. For each node wi in
the tree, there are |N (wgh

i
)| samples; one for each

governor candidate in the local neighborhood.

One advantage to the type of corrective algorithm
presented here is that it is completely disconnected
from the parser used to generate the tree hypotheses.
This means that the original parser need not be sta-
tistical or even constituency based. What is critical
for this technique to work is that the distribution of
dependency errors be relatively local as is the case
with the errors made by the Charniak and Collins
parsers. This can be determined via data analysis
using the dist metric. Determining the size of the lo-
cal neighborhood is data dependent. If subordinate
nodes are considered as candidate governors, then a
more robust cycle removal technique is be required.
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4.1 MaxEnt Estimation

We have chosen a MaxEnt model to estimate the
governor distributions, P (g∗i = j|wi,N (wgh

i
)). In

the next section we outline the feature set with which
we have experimented, noting that the features are
selected based on linguistic intuition (specifically
for Czech). We choose not to factor the feature vec-
tor as it is not clear what constitutes a reasonable
factorization of these features. For this reason we
use the MaxEnt estimator which provides us with
the flexibility to incorporate interdependent features
independently while still optimizing for likelihood.

The maximum entropy principle states that we
wish to find an estimate of p(y|x) ∈ C that maxi-
mizes the entropy over a sample set X for some set
of observations Y , where x ∈ X is an observation
and y ∈ Y is a outcome label assigned to that obser-
vation,

H(p) ≡ −
∑

x∈X,y∈Y

p̃(x)p(y|x) log p(y|x)

The set C is the candidate set of distributions from
which we wish to select p(y|x). We define this set
as the p(y|x) that meets a feature-based expectation
constraint. Specifically, we want the expected count
of a feature, f(x, y), to be equivalent under the dis-
tribution p(y|x) and under the observed distribution
p̃(y|x).

∑
x∈X,y∈Y

p̃(x)p(y|x)fi(x, y)

=
∑

x∈X,y∈Y

p̃(x)p̃(y|x)fi(x, y)

fi(x, y) is a feature of our model with which we
capture correlations between observations and out-
comes. In the following section, we describe a set of
features with which we have experimented to deter-
mine when a word is likely to be the correct governor
of another word.

We incorporate the expected feature-count con-
straints into the maximum entropy objective using
Lagrange multipliers (additionally, constraints are
added to ensure the distributions p(y|x) are consis-
tent probability distributions):

H(p)

+
∑

i

αi

∑
x∈X,y∈Y

(
p̃(x)p(y|x)fi(x, y)

−p̃(x)p̃(y|x)fi(x, y)
)

+ γ
∑
y∈Y

p(y|x)− 1

Holding the αi’s constant, we compute the uncon-
strained maximum of the above Lagrangian form:

pα(y|x) =
1

Zα(x)
exp(

∑
i

αifi(x, y))

Zα(x) =
∑
y∈Y

exp(
∑

i

αifi(x, y))

giving us the log-linear form of the distributions
p(y|x) in C (Z is a normalization constant). Finally,
we compute the αi’s that maximize the objective
function:

−
∑
x∈X

p̃(x) log Zα(x) +
∑

i

αip̃(x, y)fi(x, y)

A number of algorithms have been proposed to ef-
ficiently compute the optimization described in this
derivation. For a more detailed introduction to max-
imum entropy estimation see (Berger et al., 1996).

4.2 Proposed Model

Given the above formulation of the MaxEnt estima-
tion procedure, we define features over pairs of ob-
servations and outcomes. In our case, the observa-
tions are simply wi, wc, and N (wgh

i
) and the out-

come is a binary variable indicating whether c = g∗i
(i.e., wc is the correct governor). In order to limit
the dimensionality of the feature space, we consider
feature functions over the outcome, the current node
wi, the candidate governor node wc and the node
proposed as the governor by the parser wgh

i
.

Table 2 describes the general classes of features
used. We write Fi to indicate the form of the current
child node, Fc for the form of the candidate, and Fg

as the form of the governor proposed by the parser.
A combined feature is denoted as LiTc and indicates
we observed a particular lemma for the current node
with a particular tag of the candidate.
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Feature Type Id Description
Form F the fully inflected word form as it appears in the data
Lemma L the morphologically reduced lemma
MTag T a subset of the morphological tag as described in (Collins et al., 1999)
POS P major part-of-speech tag (first field of the morphological tag)
ParserGov G true if candidate was proposed as governor by parser
ChildCount C the number of children
Agreement A(x, y) check for case/number agreement between word x and y

Table 2: Description of the classes of features used

In all models, we include features containing the
form, the lemma, the morphological tag, and the
ParserGov feature. We have experimented with dif-
ferent sets of feature combinations. Each combina-
tion set is intended to capture some intuitive linguis-
tic correlation. For example, the feature component
LiTc will fire if a particular child’s lemma Li is ob-
served with a particular candidate’s morphological
tag Tc. This feature is intended to capture phenom-
ena surrounding particles; for example, in Czech,
the governor of the reflexive particle se will likely
be a verb.

4.3 Related Work

Recent work by Nivre and Nilsson introduces a tech-
nique where the projectivization transformation is
encoded in the non-terminals of constituents dur-
ing parsing (Nivre and Nilsson, 2005). This al-
lows for a deterministic procedure that undoes the
projectivization in the generated parse trees, creat-
ing non-projective structures. This technique could
be incorporated into a statistical parsing frame-
work, however we believe the sparsity of such non-
projective configurations may be problematic when
using smoothed backed-off grammars. We suspect
that the deterministic procedure employed by Nivre
and Nilsson enables their parser to greedily consider
non-projective constructions when possible. This
may also explain the relatively low overall perfor-
mance of their parser.

A primary difference between the Nivre and Nils-
son approach and what we propose in this paper is
that of determining the projectivization procedure.
While we exploit particular side-effects of the pro-
jectivization procedure, we do not assume any par-
ticular algorithm. Additionally, we consider trans-

formations for all dependency errors where their
technique explicitly addresses non-projectivity er-
rors.

We mentioned above that our approach appears to
be similar to that of reranking for statistical parsing
(Collins, 2000; Charniak and Johnson, 2005). While
it is true that we are improving upon the output of the
automatic parser, we are not considering multiple al-
ternate parses. Instead, we consider a complete set
of alternate trees that are minimal perturbations of
the best tree generated by the parser. In the context
of dependency parsing, we do this in order to gen-
erate structures that constituency-based parsers are
incapable of generating (i.e., non-projectivities).

Recent work by Smith and Eisner (2005) on con-
trastive estimation suggests similar techniques to
generate local neighborhoods of a parse; however,
the purpose in their work is to define an approxi-
mation to the partition function for log-linear esti-
mation (i.e., the normalization factor in a MaxEnt
model).

5 Empirical Results

In this section we report results from experiments on
the PDT Czech dataset. Approximately 1.9% of the
words’ dependencies are non-projective in version
1.0 of this corpus and these occur in 23.2% of the
sentences (Hajičová et al., 2004). We used the stan-
dard training, development, and evaluation datasets
defined in the PDT documentation for all experi-
ments.7 We use Zhang Lee’s implementation of the

7We have used PDT 1.0 (2002) data for the Charniak experi-
ments and PDT 2.0 (2005) data for the Collins experiments. We
use the most recent version of each parser; however we do not
have a training program for the Charniak parser and have used
the pretrained parser provided by Charniak; this was trained on
the training section of the PDT 1.0. We train our model on the
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Model Features Description
Count ChildCount count of children for the three nodes
MTagL TiTc, LiLc, LiTc, TiLc, TiPg conjunctions of MTag and Lemmas
MTagF TiTc, FiFc, FiTc, TiFc, TiPg conjunctions of MTag and Forms
POSL Pi, Pc, Pg, PiPcPg, PiPg, PcLc conjunctions of POS and Lemma
TTT TiTcTg conjunction of tags for each of the three nodes
Agr A(Ti, Tc), A(Ti, Tg) binary feature if case/number agree
Trig LiLgTc, TiLgTc, LiLgLc trigrams of Lemma/Tag

Table 3: Model feature descriptions.

Model Charniak Parse Trees Collins Parse Trees
Devel. Accuracy NonP Accuracy Devel. Accuracy NonP Accuracy

Baseline 84.3% 15.9% 82.4% 12.0%
Simple 84.3% 16.0% 82.5% 12.2%
Simple + Count 84.3% 16.7% 82.5% 13.8%
Simple + MtagL 84.8% 43.5% 83.2% 44.1%
Simple + MtagF 84.8% 42.2% 83.2% 43.2%
Simple + POS 84.3% 16.0% 82.4% 12.1%
Simple + TTT 84.3% 16.0% 82.5% 12.2%
Simple + Agr 84.3% 16.2% 82.5% 12.2%
Simple + Trig 84.9% 47.9% 83.1% 47.7%
All Features 85.0% 51.9% 83.5% 57.5%

Table 4: Comparative results for different versions of our model on the Charniak and Collins parse trees for
the PDT development data.

MaxEnt estimator using the L-BFGS optimization
algorithms and Gaussian smoothing.8

Table 4 presents results on development data for
the correction model with different feature sets. The
features of the Simple model are the form (F),
lemma (L), and morphological tag (M) for the each
node, the parser-proposed governor node, and the
candidate node; this model also contains the Parser-
Gov feature. In the table’s following rows, we show
the results for the simple model augmented with fea-
ture sets of the categories described in Table 2. Ta-
ble 3 provides a short description of each of the mod-
els. As we believe the Simple model provides the
minimum information needed to perform this task,

Collins trees via a 20-fold Jackknife training procedure.
8Using held-out development data, we determined a Gaus-

sian prior parameter setting of 4 worked best. The optimal num-
ber of training iterations was chosen on held-out data for each
experiment. This was generally in the order of a couple hun-
dred iterations of L-BFGS. The MaxEnt modeling implemen-
tation can be found at http://homepages.inf.ed.ac.
uk/s0450736/maxent_toolkit.html.

we experimented with the feature-classes as addi-
tions to it. The final row of Table 4 contains results
for the model which includes all features from all
other models.

We define NonP Accuracy as the accuracy for
the nodes which were non-projective in the original
trees. Although both the Charniak and the Collins
parser can never produce non-projective trees, the
baseline NonP accuracy is greater than zero. This
is due to the parser making mistakes in the tree such
that the originally non-projective node’s dependency
is projective.

Alternatively, we report the Non-Projective Preci-
sion and Recall for our experiment suite in Table 5.
Here the numerator of the precision is the number
of nodes that are non-projective in the correct tree
and end up in a non-projective configuration; how-
ever, this new configuration may be based on incor-
rect dependencies. Recall is the obvious counterpart
to precision. These values correspond to the NonP
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Model Charniak Parse Trees Collins Parse Trees
Precision Recall F-measure Precision Recall F-measure

Baseline N/A 0.0% 0.000 N/A 0.0% 0.000
Simple 22.6% 0.3% 0.592 5.0% 0.2% 0.385
Simple + Count 37.3% 1.1% 2.137 16.8% 2.0% 3.574
Simple + MtagL 78.0% 29.7% 43.020 62.4% 35.0% 44.846
Simple + MtagF 78.7% 28.6% 41.953 62.0% 34.3% 44.166
Simple + POS 23.3% 0.3% 0.592 2.5% 0.1% 0.192
Simple + TTT 20.7% 0.3% 0.591 6.1% 0.2% 0.387
Simple + Agr 40.0% 0.5% 0.988 5.7% 0.2% 0.386
Simple + Trig 74.6% 35.0% 47.646 52.3% 40.2% 45.459
All Features 75.7% 39.0% 51.479 48.1% 51.6% 49.789

Table 5: Alternative non-projectivity scores for different versions of our model on the Charniak and Collins
parse trees.

accuracy results reported in Table 4. From these ta-
bles, we see that the most effective features (when
used in isolation) are the conjunctive MTag/Lemma,
MTag/Form, and Trigram MTag/Lemma features.

Model Dependency NonP
Accuracy Accuracy

Collins 81.6% N/A
Collins + Corrective 82.8% 53.1%
Charniak 84.4% N/A
Charniak + Corrective 85.1% 53.9%

Table 6: Final results on PDT evaluation datasets
for Collins’ and Charniak’s trees with and without
the corrective model

Finally, Table 6 shows the results of the full model
run on the evaluation data for the Collins and Char-
niak parse trees. It appears that the Charniak parser
fares better on the evaluation data than does the
Collins parser. However, the corrective model is
still successful at recovering non-projective struc-
tures. Overall, we see a significant improvement in
the dependency accuracy.

We have performed a review of the errors that
the corrective process makes and observed that the
model does a poor job dealing with punctuation.
This is shown in Table 7 along with other types of
nodes on which we performed well and poorly, re-
spectively. Collins (1999) explicitly added features
to his parser to improve punctuation dependency
parsing accuracy. The PARSEVAL evaluation met-

Top Five Good/Bad Repairs
Well repaired child se i si až jen
Well repaired false governor v však li na o
Well repaired real governor a je stát ba ,
Poorly repaired child , se na že -
Poorly repaired false governor a , však musı́ li
Poorly repaired real governor root sklo , je -

Table 7: Categorization of corrections and errors
made by our model on trees from the Charniak
parser. root is the artificial root node of the PDT
tree. For each node position (child, proposed parent,
and correct parent), the top five words are reported
(based on absolute count of occurrences). The par-
ticle ‘se’ occurs frequently explaining why it occurs
in the top five good and top five bad repairs.

Charniak Collins
Correct to incorrect 13.0% 20.0%
Incorrect to incorrect 21.6% 25.8%
Incorrect to correct 65.5% 54.1%

Table 8: Categorization of corrections made by our
model on Charniak and Collins trees.

ric for constituency-based parsing explicitly ignores
punctuation in determining the correct boundaries of
constituents (Harrison et al., 1991) and so should the
dependency evaluation. However, the reported re-
sults include punctuation for comparative purposes.
Finally, we show in Table 8 a coarse analysis of the
corrective performance of our model. We are repair-
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ing more dependencies than we are corrupting.

6 Conclusion

We have presented a Maximum Entropy-based cor-
rective model for dependency parsing. The goal is
to recover non-projective dependency structures that
are lost when using state-of-the-art constituency-
based parsers; we show that our technique recovers
over 50% of these dependencies. Our algorithm pro-
vides a simple framework for corrective modeling
of dependency trees, making no prior assumptions
about the trees. However, in the current model, we
focus on trees with local errors. Overall, our tech-
nique improves dependency parsing and provides
the necessary mechanism to recover non-projective
structures.
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