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Abstract

This paper classifies six publicly avail-
able biomedical corpora according to var-
ious corpus design features and charac-
teristics. We then present usage data for
the six corpora. We show that corpora
that are carefully annotated with respect
to structural and linguistic characteristics
and that are distributed in standard for-
mats are more widely used than corpora
that are not. These findings have implica-
tions for the design of the next generation
of biomedical corpora.

1 Introduction

A small number of data sets for evaluating the per-
formance of biomedical language processing (BLP)
systems on a small number of task types have been
made publicly available by their creators (Blaschke
et al. 19991, Craven and Kumlein 19992, Puste-
jovsky et al. 20023, Franzén et al. 20024, Collier
et al. 19995, Tanabe et al. 20056). From a biolog-
ical perspective, a number of these corpora (PDG,
GENIA, Medstract, Yapex, GENETAG) are excep-
tionally well curated. From the perspective of sys-

1We refer to this corpus as the Protein Design Group (PDG)
corpus.

2We refer to this as the University of Wisconsin corpus.
3The Medstract corpus.
4The Yapex corpus.
5The GENIA corpus.
6Originally the BioCreative Task 1A data set, now known as

the GENETAG corpus.

tem evaluation, a number of these corpora (Wiscon-
sin, GENETAG) are very well designed, with large
numbers of both positive and negative examples for
system training and testing. Despite the positive at-
tributes of all of these corpora, they vary widely in
their external usage rates: some of them have been
found very useful in the natural language process-
ing community outside of the labs that created them,
as evinced by their high rates of usage in system
construction and evaluation in the years since they
have been released. In contrast, others have seen lit-
tle or no use in the community at large. These data
sets provide us with an opportunity to evaluate the
consequences of a variety of approaches to biomed-
ical corpus construction. We examine these corpora
with respect to a number of design features and other
characteristics, and look for features that character-
ize widely used—and infrequently used—corpora.
Our findings have implications for how the next gen-
eration of biomedical corpora should be constructed,
and for how the existing corpora can be modified to
make them more widely useful.

2 Materials and methods

Table 1 lists the publicly available biomedical cor-
pora of which we are aware. We omit discussion
here of the corpus currently in production by the
University of Pennsylvania and the Children’s Hos-
pital of Philadelphia (Kulick et al. 2004), since it is
not yet available in finished form. We also omit text
collections from our discussion. By text collection
we mean textual data sets that may include metadata
about documents, but do not contain mark-up of the
document contents. So, the OHSUMED text collec-

38



Table 1: Name, date, genre, and size for the six cor-
pora. Size is in words.

Name date genre size

PDG 1999 Sentences 10,291
Wisconsin 1999 Sentences 1,529,731
GENIA 1999 Abstracts 432,560
MEDSTRACT 2001 Abstracts 49,138
Yapex 2002 Abstracts 45,143
GENETAG 2004 Sentences 342,574

Table 2: Low- and high-level tasks to which the six
corpora are applicable. SS is sentence segmentation,
T is tokenization, and POS is part-of-speech tagging.
EI is entity identification, IE is information extrac-
tion, A is acronym/abbreviation definition, and C is
coreference resolution.

Name SS T POS EI IE A C

PDG � �

Wisconsin � �

GENIA � � � �

Medstract � � �

Yapex �

GENETAG �

tion (Hersh et al. 1994) and the TREC Genomics
track data sets (Hersh and Bhupatiraju 2003, Hersh
et al. 2004) are excluded from this work, although
their utility in information retrieval is clear.

Table 1 lists the corpora, and for each corpus,
gives its release date (or the year of the correspond-
ing publication), the genre of the contents of the cor-
pus, and the size of the corpus7 .

The left-hand side of Table 2 lists the data sets
and, for each one, indicates the lower-level general
language processing problems that it could be ap-
plied to, either as a source of training data or for
evaluating systems that perform these tasks. We
considered here sentence segmentation, word tok-
enization, and part-of-speech (POS) tagging.

The right-hand side of Table 2 shows the higher-

7Sizes are given in words. Published descriptions of
the corpora don’t generally give size in words, so this
data is based on our own counts. See the web site at
http://compbio.uchsc.edu/corpora for details on how we did the
count for each corpus.

level tasks to which the various corpora can be
applied. We considered here entity identifica-
tion, information (relation) extraction, abbrevia-
tion/acronym definition, and coreference resolution.
(Information retrieval is approached via text collec-
tions, versus corpora.) These tasks are directly re-
lated to the types of semantic annotation present
in each corpus. The three EI-only corpora (GE-
NIA, Yapex, GENETAG) are annotated with seman-
tic classes of relevance to the molecular biology do-
main. In the case of the Yapex and GENETAG cor-
pora, this annotation uses a single semantic class,
roughly equivalent to the gene or gene product. In
the case of the GENIA corpus, the annotation re-
flects a more sophisticated, if not widely used, on-
tology. The Medstract corpus uses multiple seman-
tic classes, including gene, protein, cell type, and
molecular process. In all of these cases, the se-
mantic annotation was carefully curated, and in one
(GENETAG) it includes alternative analyses. Two
of the corpora (PDG, Wisconsin) are indicated in Ta-
ble 2 as being applicable to both entity identification
and information extraction tasks. From a biologi-
cal perspective, the PDG corpus has exceptionally
well-curated positive examples. From a linguistic
perspective, it is almost unannotated. For each sen-
tence, the entities are listed, but their locations in
the text are not indicated, making them applicable
to some definitions of the entity identification task
but not others. The Wisconsin corpus contains both
positive and negative examples. For each example,
entities are listed in a normalized form, but without
clear pointers to their locations in the text, making
this corpus similarly difficult to apply to many defi-
nitions of the entity identification task.

The Medstract corpus is unique among these in
being annotated with coreferential equivalence sets,
and also with acronym expansions.

All six corpora draw on the same subject matter
domain—molecular biology—but they vary widely
with respect to their level of semantic restriction
within that relatively broad category. One (GE-
NIA) is restricted to the subdomain of human
blood cell transcription factors. Another (Yapex)
combines data from this domain with abstracts
on protein binding in humans. The GENETAG
corpus is considerably broader in topic, with all
of PubMed/MEDLINE serving as a potential data
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Table 3: External usage rates. The systems column
gives the count of the number of systems that actu-
ally used the dataset, as opposed to publications that
cited the paper but did not use the data itself. Age is
in years as of 2005.

Name age systems

GENIA 6 21
GENETAG 1 8
Yapex 3 6
Medstract 4 3
Wisconsin 6 1
PDG 6 0

source. The Medstract corpus contains biomedical
material not apparently related to molecular biology.
The PDG corpus is drawn from a very narrow subdo-
main on protein-protein interactions. The Wiscon-
sin corpus is composed of data from three separate
sub-domains: protein-protein interactions, subcellu-
lar localization of proteins, and gene/disease associ-
ations.

Table 3 shows the number of systems built out-
side of the lab that created the corpus that used each
of the data sets described in Tables 1 and 2. The
counts in this table reflect work that actually used
the datasets, versus work that cites the publication
that describes the data set but doesn’t actually use
the data set. We assembled the data for these counts
by consulting with the creators of the data sets and
by doing our own literature searches8 . If a system is
described in multiple publications, we count it only
once, so the number of systems is slightly smaller
than the number of publications.

3 Results

Even without examining the external usage data, two
points are immediately evident from Tables 1 and 2:

� Only one of the currently publicly available
corpora (GENIA) is suitable for evaluating per-
formance on basic preprocessing tasks.

8In the cases of the two corpora for which we found only
zero or one external usage, this search was repeated by an expe-
rienced medical librarian, and included reviewing 67 abstracts
or full papers that cite Blaschke et al. (1999) and 37 that cite
Craven and Kumlein (1999).

� These corpora include only a very limited range
of genres: only abstracts and roughly sentence-
sized inputs are represented.

Examination of Table 3 makes another point im-
mediately clear. The currently publicly available
corpora fall into two groups: ones that have had a
number of external applications (GENIA, GENE-
TAG, and Yapex), and ones that have not (Medstract,
Wisconsin, and PDG). We now consider a number
of design features and other characteristics of these
corpora that might explain these groupings9 .

3.1 Effect of age

We considered the very obvious hypothesis that it
might be length of time that a corpus has been avail-
able that determines the amount of use to which it
has been put. (Note that we use the terms “hypothe-
sis” and “effect” in a non-statistical sense, and there
is no significance-testing in the work reported here.)
Tables 1 and 3 show clearly that this is not the case.
The age of the PDG, Wisconsin, and GENIA data
is the same, but the usage rates are considerably
different—the GENIA corpus has been much more
widely used. The GENETAG corpus is the newest,
but has a relatively high usage rate. Usage of a cor-
pus is determined by factors other than the length of
time that it has been available.

3.2 Effect of size

We considered the hypothesis that size might be the
determinant of the amount of use to which a corpus
is put—perhaps smaller corpora simply do not pro-
vide enough data to be helpful in the development
and validation of learning-based systems. We can

9Three points should be kept in mind with respect to this
data. First, although the sample includes all of the corpora that
we are aware of, it is small. Second, there is a variety of po-
tential confounds related to sociological factors which we are
aware of, but do not know how to quantify. One of these is the
effect of association between a corpus and a shared task. This
would tend to increase the usage of the corpus, and could ex-
plain the usage rates of GENIA and GENETAG, although not
that of Yapex. Another is the effect of association between a
corpus and an influential scientist. This might tend to increase
the usage of the corpus, and could explain the usage rate of
GENIA, although not that of GENETAG. Finally, there may
be interactions between any of these factors, or as a reviewer
pointed out, there may be a separate explanation for the usage
rate of each corpus in this study. Nevertheless, the analysis of
the quantifiable factors presented above clearly provides useful
information about the design of successful corpora.
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reject this hypothesis: the Yapex corpus is one of
the smallest (a fraction of the size of the largest, and
only roughly a tenth of the size of GENIA), but has
achieved fairly wide usage. The Wisconsin corpus
is the largest, but has a very low usage rate.

3.3 Effect of structural and linguistic
annotation

We expected a priori that the corpus with the most
extensive structural and linguistic annotation would
have the highest usage rate. (In this context, by
structural annotation we mean tokenization and sen-
tence segmentation, and by linguistic annotation we
mean POS tagging and shallow parsing.) There isn’t
a clear-cut answer to this.

The GENIA corpus is the only one with curated
structural and POS annotation, and it has the highest
usage rate. This is consistent with our initial hypoth-
esis.

On the other hand, the Wisconsin corpus could
be considered the most “deeply” linguistically an-
notated, since it has both POS annotation and—
unique among the various corpora—shallow pars-
ing. It nevertheless has a very low usage rate. How-
ever, the comparison is not clearcut, since both the
POS tagging and the shallow parsing are fully au-
tomatic and not manually corrected. (Additionally,
the shallow parsing and the tokenization on which
it is based are somewhat idiosyncratic.) It is clear
that the Yapex corpus has relatively high usage de-
spite the fact that it is, from a linguistic perspective,
very lightly annotated (it is marked up for entities
only, and nothing else). To our surprise, structural
and linguistic annotation do not appear to uniquely
determine usage rate.

3.4 Effect of format

Annotation format has a large effect on usage. It
bears repeating that these six corpora are distributed
in six different formats—even the presumably sim-
ple task of populating the Size column in Table 1
required writing six scripts to parse the various data
files. The two lowest-usage corpora are annotated in
remarkably unique formats. In contrast, the three
more widely used corpora are distributed in rela-
tively more common formats. Two of them (GENIA
and Yapex) are distributed in XML, and one of them
(GENIA) offers a choice for POS tagging informa-

tion between XML and the whitespace-separated,
one-token-followed-by-tags-per-line format that is
common to a number of POS taggers and parsers.
The third (GENETAG) is distributed in the widely
used slash-attached format (e.g. sense/NN).

3.5 Effect of semantic annotation

The data in Table 2 and Table 3 are consistent with
the hypothesis that semantic annotation predicts us-
age. The claim would be that corpora that are
built specifically for entity identification purposes
are more widely used than corpora of other types,
presumably due to a combination of the importance
of the entity identification task as a prerequisite to
a number of other important applications (e.g. in-
formation extraction and retrieval) and the fact that
it is still an unsolved problem. There may be some
truth to this, but we doubt that this is the full story:
there are large differences in the usage rates of the
three EI corpora, suggesting that semantic annota-
tion is not the only relevant design feature. If this
analysis is in fact correct, then certainly we should
see a reduction in the use of all three of these corpora
once the EI problem is solved, unless their semantic
annotations are extended in new directions.

3.6 Effect of semantic domain

Both the advantages and the disadvantages of re-
stricted domains as targets for language processing
systems are well known, and they seem to balance
out here. The scope of the domain does not affect
usage: both the low-use and higher-use groups of
corpora contain at least one highly restricted domain
(GENIA in the high-use group, and PDG in the low-
use group) and one broader domain (GENETAG in
the high-use group, and Wisconsin in the lower-use
group).

4 Discussion

The data presented in this paper show clearly that ex-
ternal usage rates vary widely for publicly available
biomedical corpora. This variability is not related
to the biological relevance of the corpora—the PDG
and Wisconsin corpora are clearly of high biologi-
cal relevance as evinced by the number of systems
that have tackled the information extraction tasks
that they are meant to support. Additionally, from a
biological perspective, the quality of the data in the

41



PDG corpus is exceptionally high. Rather, our data
suggest that basic issues of distribution format and
of structural and linguistic annotation seem to be the
strongest predictors of how widely used a biomed-
ical corpus will be. This means that as builders of
of data sources for BLP, we can benefit from the ex-
tensive experience of the corpus linguistics world.
Based on that experience, and on the data that we
have presented in this paper, we offer a number of
suggestions for the design of the next generation of
biomedical corpora.

We also suggest that the considerable invest-
ments already made in the construction of the less-
frequently-used corpora can be protected by modify-
ing those corpora in accordance with these sugges-
tions.

Leech (1993) and McEnery and Wilson (2001),
coming from the perspective of corpus linguistics,
identify a number of definitional issues and design
maxims for corpus construction. Some of these are
quite relevant to the current state of biomedical cor-
pus construction. We frame the remainder of our
discussion in terms of these issues and maxims.

4.1 Level of annotation

From a definitional point of view, annotation is one
of the distinguishing points of a corpus, as opposed
to a text collection. Perhaps the most salient char-
acteristic of the currently publicly available corpora
is that from a linguistic or language processing per-
spective, with the exception of GENIA and GENE-
TAG, they are barely annotated at all. For example,
although POS tagging has possibly been the sine qua
non of the usable corpus since the earliest days of
the modern corpus linguistic age, five of the six cor-
pora listed in Table 2 either have no POS tagging
or have only automatically generated, uncorrected
POS tags. The GENIA corpus, with its carefully cu-
rated annotation of sentence segmentation, tokeniza-
tion, and part-of-speech tagging, should serve as a
model for future biomedical corpora in this respect.
It is remarkable that with just these levels of anno-
tation (in addition to its semantic mark-up), the GE-
NIA corpus has been applied to a wide range of task
types other than the one that it was originally de-
signed for. Eight papers from COLING 2004 (Kim
et al. 2004) used it for evaluating entity identifica-
tion tasks. Yang et al. (2002) adapted a subset of

the corpus for use in developing and testing a coref-
erence resolution system. Rinaldi et al. (2004) used
it to develop and test a question-answering system.
Locally, it has been used in teaching computational
corpus linguistics for the past two years. We do not
claim that it has not required extension for some of
these tasks—our claim is that it is its annotation on
these structural and linguistic levels, in combination
with its format, that has made these extensions prac-
tical.

4.1.1 Formatting choices and formatting
standardization

A basic desideratum for a corpus is recoverabil-
ity: it should be possible to map from the annotation
to the raw text. A related principle is that it should
be easy for the corpus user to extract all annotation
information from the corpus, e.g. for external stor-
age and processing: “in other words, the annotated
corpus should allow the maximum flexibility for ma-
nipulation by the user” (McEnery and Wilson, p.
33). The extent to which these principles are met
is a function of the annotation format. The currently
available corpora are distributed in a variety of one-
off formats. Working with any one of them requires
learning a new format, and typically writing code
to access it. At a minimum, none of the non-XML
corpora meet the recoverability criterion. None10 of
these corpora are distributed in a standoff annotation
format. Standoff annotation is the strategy of stor-
ing annotation and raw text separately (Leech 1993).
Table 4 contrasts the two. Non-standoff annota-
tion at least obscures—more frequently, destroys—
important aspects of the structure of the text itself,
such as which textual items are and are not imme-
diately adjacent. Using standoff annotation, there is
no information loss whatsoever. Furthermore, in the
standoff annotation strategy, the original input text
is immediately available in its raw form. In contrast,
in the non-standoff annotation strategy, the original
must be retrieved independently or recovered from
the annotation (if it is recoverable at all). The stand-
off annotation strategy was relatively new at the time
that most of the corpora in Table 1 were designed,
but by now has become easy to implement, in part

10The semantic annotation of the GENETAG corpus is in a
standoff format, but neither the tokenization nor the POS tag-
ging is.
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Table 4: Contrasting standoff and non-standoff an-
notation

Raw text

MLK2 has a role in vesicle formation

Non-standoff annotation

MLK2/NN has/VBZ a/DT role/NN in/IN
vesicle/NN formation/NN

Standoff annotation
� POS=“NN” start=0 end=3 �
� POS=“VBZ” start=5 end=7 �
� POS=“DT” start=9 end=9 �
� POS=“NN” start=11 end=14 �
� POS=“IN” start=16 end=17 �
� POS=“NN” start=19 end=25 �
� POS=“NN” start=27 end=35 �

due to the availability of tools such as the University
of Pennsylvania’s WordFreak (Morton and LaCivita
2003).

Crucially, this annotation should be based on
character offsets, avoiding a priori assumptions
about tokenization. See Smith et al. (2005) for an
approach to refactoring a corpus to use character off-
sets.

4.1.2 Guidelines

The maxim of documentation suggests that anno-
tation guidelines should be published. Further, ba-
sic data on who did the annotations and on their
level of agreement should be available. The cur-
rently available datasets mostly lack assessments of
inter-annotator agreement, utilize a small or unspec-
ified number of annotators, and do not provide pub-
lished annotation guidelines. (We note the Yang et
al. (2002) coreference annotation guidelines, which
are excellent, but the corresponding corpus is not
publicly available.) This situation can be remedied
by editors, who should insist on publication of all
of these. The GENETAG corpus is notable for the
detailed documentation of its annotation guidelines.
We suspect that the level of detail of these guidelines
contributed greatly to the success of some rule-based
approaches to the EI task in the BioCreative compe-
tition, which utilized an early version of this corpus.

4.1.3 Balance and representativeness

Corpus linguists generally strive for a well-
structured stratified sample of language, seeking to
“balance” in their data the representation of text
types, different sorts of authors, and so on. Within
the semantic domain of molecular biology texts,
an important dimension on which to balance is the
genre or text type.

As is evident from Table 1, the extant datasets
draw on a very small subset of the types of genres
that are relevant to BLP: we have not done a good
job yet of observing the principle of balance or rep-
resentativeness. The range of genres that exist in the
research (as opposed to clinical) domain alone in-
cludes abstracts, full-text articles, GeneRIFs, defini-
tions, and books. We suggest that all of these should
be included in future corpus development efforts.

Some of these genres have been shown to have
distinguishing characteristics that are relevant to
BLP. Abstracts and isolated sentences from them
are inadequate, and also unsuited to the opportuni-
ties that are now available to us for text data mining
with the recent announcement of the NIH’s new pol-
icy on availability of full-text articles (NIH 2005).
This policy will result in the public availability of
a large and constantly growing archive of current,
full-text publications. Abstracts and sentences are
inadequate in that experience has shown that signifi-
cant amounts of data are not found in abstracts at all,
but are present only in the full texts of articles, some-
times not even in the body of the text itself, but rather
in tables and figure captions (Shatkay and Feldman
2003). They are not suited to the upcoming opportu-
nities in that it is not clear that practicing on abstracts
will let us build the necessary skills for dealing with
the flood of full-text articles that PubMedCentral
is poised to deliver to us. Furthermore, there are
other types of data—GeneRIFs and domain-specific
dictionary definitions, for instance—that are fruit-
ful sources of biological knowledge, and which may
actually be easier to process automatically than ab-
stracts. Space does not permit justifying the impor-
tance of all of these genres, but we discuss the ratio-
nale for including full text at some length due to the
recent NIH announcement and due to the large body
of evidence that can currently be brought to bear on
the issue. A growing body of recent research makes
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two points clear: full-text articles are different from
abstracts, and full-text articles must be tapped if we
are to build high-recall text data mining systems.

Corney et al. (2004) looked directly at the effec-
tiveness of information extraction from full-text ar-
ticles versus abstracts. They found that recall from
full-text articles was more than double that from ab-
stracts. Analyzing the relative contributions of the
abstracts and the full articles, they found that more
than half of the interactions that they were able to
extract were found in the full text and were absent in
the abstract.

Tanabe and Wilbur (2002) looked at the perfor-
mance on full-text articles of an entity identification
system that had originally been developed and tested
using abstracts. They found different false positive
rates in the Methods sections compared to other sec-
tions of full-text articles. This suggests that full-text
articles, unlike abstracts, will require parsing of doc-
ument structure. They also noted a range of prob-
lems related to the wider range of characters (includ-
ing, e.g., superscripts and Greek letters) that occurs
in full-text articles, as opposed to abstracts.

Schuemie et al. (2004) examined a set of 3902
full-text articles from Nature Genetics and BioMed
Central, along with their abstracts. They found that
about twice as many MeSH concepts were men-
tioned in the full-text articles as in the abstracts.
They also found that full texts contained a larger
number of unique gene names than did abstracts,
with an average of 2.35 unique gene names in the
full-text articles, but an average of only 0.61 unique
gene names in the abstracts.

It seems clear that for biomedical text data min-
ing systems to reach anything like their full poten-
tial, they will need to be able to handle full-text in-
puts. However, as Table 1 shows, no publicly avail-
able corpus contains full-text articles. This is a defi-
ciency that should be remedied.

5 Conclusion

5.1 Best practices in biomedical corpus
construction

We have discussed the importance of recoverabil-
ity, publication of guidelines, balance and represen-
tativeness, and linguistic annotation. Corpus main-
tenance is also important. Bada et al. (2004) point

out the role that an organized and responsive main-
tenance plan has played in the success of the Gene
Ontology. It seems likely that the continued devel-
opment and maintenance reflected in the three ma-
jor releases of GENIA (Ohta et al. 2002, Kim et al.
2003) have contributed to its improved quality and
continued use over the years.

5.2 A testable prediction

We have interpreted the data on the characteristics
and usage rates of the various datasets discussed in
this paper as suggesting that datasets that are devel-
oped in accordance with basic principles of corpus
linguistics are more useful, and therefore more used,
than datasets that are not.

A current project at the University of Pennsyl-
vania and the Children’s Hospital of Philadelphia
(Kulick et al. 2004) is producing a corpus that fol-
lows many of these basic principles. We predict that
this corpus will see wide use by groups other than
the one that created it.

5.3 The next step: grounded references

The logical next step for BLP corpus construction
efforts is the production of corpora in which entities
and concepts are grounded with respect to external
models of the world (Morgan et al. 2004).

The BioCreative Task 1B data set construction ef-
fort provides a proof-of-concept of the plausibility
of building BLP corpora that are grounded with re-
spect to external models of the world, and in partic-
ular, biological databases. These will be crucial in
taking us beyond the stage of extracting information
about text strings, and towards mining knowledge
about known, biologically relevant entities.
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