
Proceedings of the ACL Workshop on Computational Approaches to Semitic Languages, pages 9–16,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

A finite-state morphological grammar of Hebrew

Shlomo Yona
Department of Computer Science

University of Haifa
31905 Haifa, Israel

shlomo@cs.haifa.ac.il

Shuly Wintner
Department of Computer Science

University of Haifa
31905 Haifa, Israel

shuly@cs.haifa.ac.il

Abstract

Morphological analysis is a crucial com-
ponent of several natural language pro-
cessing tasks, especially for languages
with a highly productive morphology,
where stipulating a full lexicon of sur-
face forms is not feasible. We describe
HAMSAH (HAifa Morphological System
for Analyzing Hebrew), a morphological
processor for Modern Hebrew, based on
finite-state linguistically motivated rules
and a broad coverage lexicon. The set
of rules comprehensively covers the mor-
phological, morpho-phonological and or-
thographic phenomena that are observable
in contemporary Hebrew texts. Reliance
on finite-state technology facilitates the
construction of a highly efficient, com-
pletely bidirectional system for analysis
and generation. HAMSAH is currently
the broadest-coverage and most accurate
freely-available system for Hebrew.

1 Hebrew morphology: the challenge

Hebrew, like other Semitic languages, has a rich
and complex morphology. The major word forma-
tion machinery is root-and-pattern, where roots are
sequences of three (typically) or more consonants,
calledradicals, and patterns are sequences of vow-
els and, sometimes, also consonants, with “slots”
into which the root’s consonants are being inserted
(interdigitation). Inflectional morphology is highly
productive and consists mostly of suffixes, but some-
times of prefixes or circumfixes.

As an example of root-and-pattern morphology,
consider the Hebrew1 rootsg.d.l andr.e.m and the
patternshCCCh and CiCwC, where the ‘C’s indi-
cate the slots. When the roots combine with these
patterns the resulting lexemes arehgdlh, gidwl,
hremh, riewm, respectively. After the root com-
bines with the pattern, some morpho-phonological
alternations take place, which may be non-trivial:
for example, thehtCCCwt pattern triggers assimi-
lation when the first consonant of the root ist or
d : thus, d.r.e+htCCCwt yields hdrewt. The same
pattern triggers metathesis when the first radical iss
or e: s.d.r+htCCCwt yields hstdrwt rather than the
expectedhtsdrwt. Frequently, root consonants such
asw or i are altogether missing from the resulting
form. Otherweakparadigms include roots whose
first radical isn and roots whose second and third
radicals are identical. Thus, the rootsq.w.m, g.n.n,
n.p.l and i.c.g, when combining with thehCCCh
pattern, yield the seemingly similar lexemeshqmh,
hgnh, hplh andhcgh, respectively.

The combination of a root with a pattern produces
a base(or a lexeme), which can then be inflected in
various forms. Nouns, adjectives and numerals in-
flect for number (singular, plural and, in rare cases,
also dual) and gender (masculine or feminine). In
addition, all these three types of nominals have two
phonologically distinct forms, known as theabso-
lute andconstructstates. Unfortunately, in the stan-
dard orthography approximately half of the nomi-

1To facilitate readability we sometimes use a transliteration
of Hebrew using ASCII characters:

a b g d h w z x v i k
� � � � � � � � � � �
l m n s y p c q r e t
� � � � { � � � � � �

9

nals appear to have identical forms in both states,
a fact which substantially increases the ambigu-
ity. In addition, nominals take pronominal suffixes
which are interpreted as possessives. These inflect
for number, gender and person:spr+h→sprh “her
book”, spr+km→sprkm “your book”, etc. As ex-
pected, these processes involve certain morphologi-
cal alternations, as inmlkh+h→mlkth “her queen”,
mlkh+km→mlktkm “your queen”. Verbs inflect for
number, gender and person (first, second and third)
and also for a combination of tense and aspect,
which is traditionally analyzed as having the values
past, present, future, imperative and infinite. Verbs
can also take pronominal suffixes, which in this case
are interpreted as direct objects, but such construc-
tions are rare in contemporary Hebrew of the regis-
ters we are interested in.

These matters are complicated further due to two
sources: first, the standard Hebrew orthography
leaves most of the vowels unspecified. It does not
explicate[a] and [e], does not distinguish between
[o] and [u] and leaves many of the[i] vowels un-
specified. Furthermore, the single letter� w is used
both for the vowels[o] and [u] and for the con-
sonant[v], whereas� i is similarly used both for
the vowel[i] and for the consonant[y]. On top of
that, the script dictates that many particles, includ-
ing four of the most frequent prepositions (b “in”,
k “as”, l “to” and m “from”), the definite article
h “the”, the coordinating conjunctionw “and” and
some subordinating conjunctions (such ase “that”
andke “when”), all attach to the words which imme-
diately follow them. Thus, a form such asebth can
be read as a lexeme (the verb “capture”, third per-
son singular feminine past), ase+bth “that+field”,
e+b+th “that+in+tea”,ebt+h “her sitting” or even as
e+bt+h “that her daughter”. When a definite nomi-
nal is prefixed by one of the prepositionsb, k or l,
the definite articleh is assimilated with the prepo-
sition and the resulting form becomes ambiguous as
to whether or not it is definite:bth can be read either
asb+th “in tea” or asb+h+th “in the tea”.

An added complexity stems from the fact that
there exist two main standards for the Hebrew
script: one in which vocalization diacritics, known
asniqqud “dots”, decorate the words, and another
in which the dots are missing, and other characters
represent some, but not all of the vowels. Most of the

texts in Hebrew are of the latter kind; unfortunately,
different authors use different conventions for the
undotted script. Thus, the same word can be writ-
ten in more than one way, sometimes even within
the same document, again adding to the ambiguity.

In light of the above, morphological analysis of
Hebrew forms is a non-trivial task. Observe that
simply stipulating a list of surface forms is not a vi-
able option, both because of the huge number of po-
tential forms and because of the complete inability
of such an approach to handle out-of-lexicon items;
the number of such items in Hebrew is significantly
larger than in European languages due to the combi-
nation of prefix particles with open-class words such
as proper names. The solution must be a dedicated
morphological analyzer, implementing the morpho-
logical and orthographic rules of the language.

Several morphological processors of Hebrew have
been proposed, including works by Choueka (1980;
1990), Ornan and Kazatski (1986), Bentur et al.
(1992) and Segal (1997); see a survey in Wintner
(2004). Most of them are proprietary and hence can-
not be fully evaluated. However, the main limitation
of existing approaches is that they are ad-hoc: the
rules that govern word formation and inflection are
only implicit in such systems, usually intertwined
with control structures and general code. This makes
the maintenance of such systems difficult: correc-
tions, modifications and extensions of the lexicon
are nearly impossible. An additional drawback is
that all existing systems can be used for analysis but
not for generation. Finally, the efficiency of such
systems depends on the quality of the code, and is
sometimes sub-optimal.

2 Finite-state technology

Finite-state technology(Beesley and Karttunen,
2003) solves the three problems elegantly. It pro-
vides a language of extended regular expressions
which can be used to define very natural linguis-
tically motivated grammar rules. Such expressions
can then be compiled into finite-state networks (au-
tomata and transducers), on which efficient algo-
rithms can be applied to implement both analysis
and generation. Using this methodology, a computa-
tional linguist can design rules which closely follow
standard linguistic notation, and automatically ob-

10

tain a highly efficient morphological processor.
While the original Two-Level formulation

(Koskenniemi, 1983) of finite-state technology
for morphology was not particularly well suited
to Semitic languages (Lavie et al., 1988), mod-
ifications of the Two-Level paradigm and more
advanced finite-state implementations have been
applied successfully to a variety of Semitic lan-
guages, including Ancient Akkadian (Kataja and
Koskenniemi, 1988), Syriac (Kiraz, 2000) and
Arabic. In a number of works, Beesley (1996;
1998; 2001) describes a finite-state morphological
analyzer of Modern Standard Arabic which handles
both inflectional and derivational morphology,
including interdigitation. In the following section
we focus on a particular finite-state toolbox which
was successfully used for Arabic.

In this work we use XFST (Beesley and Kart-
tunen, 2003), an extended regular expression lan-
guage augmented by a sophisticated implementation
of several finite-state algorithms, which can be used
to compactly store and process very large-scale net-
works. XFST grammars define a binary relation (a
transduction) on sets of strings: a grammar maps
each member of a (possibly infinite) set of strings,
known as thesurface, or lower language, to a set
of strings (thelexical, or upper language). The
idea is that the surface language defines all and only
the grammatical words in the language; and each
grammatical word is associated with a set of lexical
strings which constitutes itsanalyses. As an exam-
ple, the surface stringebth may be associated by the
grammar with the set of lexical strings, or analyses,
depicted in figure 1.

XFST enables the definition ofvariables, whose
values, ordenotations, are sets of strings, or lan-
guages. Grammars can set and use those variables
by applying a variety ofoperators. For example, the
concatenationoperator (unfortunately indicated by
a space) can be used to concatenate two languages:
the expression ‘A B’ denotes the set of strings ob-
tained by concatenating the strings inA with the
strings inB. Similarly, the operator ‘| ’ denotes set
union, ‘&’ denotes intersection, ‘˜ ’ set complement,
‘ - ’ set difference and ‘* ’ Kleene closure; ‘$A’ de-
notes the set of strings containing at least one in-
stance of a string fromA as a substring. The empty
string is denoted by ‘0’ and ‘?’ stands for any alpha-

bet symbol. Square brackets are used for bracketing.
In addition to sets of strings, XFST enables the

definition of binary relations over such sets. By de-
fault, every set is interpreted as the identity relation,
whereby each string is mapped to itself. But re-
lations can be explicitly defined using a variety of
operators. The ‘.x. ’ operator denotes cross prod-
uct: the expression ‘A.x.B ’ denotes the relation in
which each string inA is mapped to each string inB.
An extremely useful operation is composition: de-
noted by ‘.o. ’, it takes tworelations, A andB, and
produces a new relation of pairs(a, c) such that there
exists someb that(a, b) is a member ofA and(b, c)
is a member ofB.

Finally, XFST provides also severalreplacerules.
Expressions of the form ‘A->B || L _ R ’ de-
note the relation obtained by replacing strings from
A by strings fromB, whenever the former occur
in the context of strings fromL on the left and
R on the right. Each of the context markers can
be replaced by the special symbol ‘.#. ’, indicat-
ing a word boundary. For example, the expression
‘ [h]->[t] || ? _ .#. ’ replaces occurrences
of ‘h’ by ‘ t ’ whenever the former occurs before the
end of a word. Composing this example rule on an
(identity) relation whose strings are various words
results in replacing finalh with final t in all the
words, not affecting the other strings in the relation.

XFST supports diverse alphabets. In particular, it
supports UTF-8 encoding, which we use for Hebrew
(although subsequent examples use a transliteration
to facilitate readability). Also, the alphabet can in-
cludemulti-character symbols; in other words, one
can define alphabet symbols which consist of several
(print) characters, e.g., ‘number ’ or ‘ tense ’. This
comes in handy whentagsare defined, see below.
Characters with special meaning (such as ‘+’ or ‘ [’)
can be escaped using the symbol ‘%’. For example,
the symbol ‘%+’ is a literal plus sign.

Programming in XFST is different from program-
ming in high level languages. While XFST rules
are very expressive, and enable a true implementa-
tion of some linguistic phenomena, it is frequently
necessary to specify, within the rules, information
that is used mainly for “book-keeping”. Due to
the limited memory of finite-state networks, such
information is encoded intags, which are multi-
character symbols attached to strings. These tags

11

[+verb][+id]9430[+base]ebt[+root]ebt[+binyan]+Pa’al[+agr]+3p/F/Sg[+tense]+past
[+verb][+id]1541[+base]ebh[+root]ebh[+binyan]+Pa’al[+agr]+3p/F/Sg[+tense]+past
[+conj]e[+prep]b[+noun][+id]19804[+base]th[+gender]+M[+number]+Sg[+construct]+true
[+conj]e[+prep]b[+noun][+id]19804[+base]th[+gender]+M[+number]+Sg[+construct]+false
[+conj]e[+prep]b[+defArt][+noun][+id]19804[+base]th[+gender]+M[+number]+Sg[+construct]+false
[+conj]e[+noun][+id]19130[+base]bth[+gender]+F[+number]+Sg[+construct]+false
[+conj]e[+noun][+id]1379[+base]bt[+gender]+F[+number]+Sg[+construct]+false[+poss]+3p/F/Sg
[+noun][+id]17280[+base]ebt[+gender]+F[+number]+Sg[+construct]+false[+poss]+3p/F/Sg

Figure 1: The analyses of the surface string���� ebth

can be manipulated by the rules and thus propa-
gate information among rules. For example, nouns
are specified fornumber, and the number feature
is expressed as a concatenation of the tagnumber
with the multi-character symbol+singular or
+plural . Rules which apply to plural nouns only
can use this information: ifnouns is an XFST vari-
able denoting the set of all nouns, then the expres-
sion $[number %+plural] .o. nouns de-
notes only the plural nouns. Once all linguistic pro-
cessing is complete, “book-keeping” tags are erased.

3 A morphological grammar of Hebrew

The importance of morphological analysis as a pre-
liminary phase in a variety of natural language pro-
cessing applications cannot be over-estimated. The
lack of good morphological analysis and disam-
biguation systems for Hebrew is reported as one of
the main bottlenecks of a Hebrew to English ma-
chine translation system (Lavie et al. (2004)). The
contribution of our system is manyfold:

• HAMSAH is the broadest-coverage and most
accurate publicly available morphological an-
alyzer of Modern Hebrew. It is based on a
lexicon of over 20,000 entries, which is con-
stantly being updated and expanded, and its set
of rules cover all the morphological, morpho-
phonological and orthographic phenomena ob-
served in contemporary Hebrew texts. Com-
pared to Segal (1997), our rules are probably
similar in coverage but our lexicon is signif-
icantly larger. HAMSAH also supports non-
standard spellings which are excluded from the
work of Segal (1997).

• The system is fully reversible: it can be used
both for analysis and for generation.

• Due to the use of finite-state technology, the

system is highly efficient. While the network
has close to 2 million states and over 2 million
arcs, its compiled size is approximately 4Mb
and analysis is extremely fast (between 50
and 100 words per second).

• Morphological knowledge is expressed through
linguistically motivated rules. To the best of
our knowledge, this is the first formal grammar
for the morphology of Modern Hebrew.

The system consists of two main components: a
lexiconrepresented in Extensible Markup Language
(XML), and a set of finite-state rules, implemented
in XFST. The use of XML supports standardization,
allows a format that is both human and machine
readable, and supports interoperability with other
applications. For compatibility with the rules, the
lexicon is automatically converted to XFST by ded-
icated programs. We briefly describe the lexicon in
section 3.1 and the rules in section 3.2.

3.1 The lexicon

The lexicon is a list of lexical entries, each with a
base(citation) form and a uniqueid. The base form
of nouns and adjectives is the absolute singular mas-
culine, and for verbs it is the third person singu-
lar masculine, past tense. It is listed in dotted and
undotted script as well as using a one-to-one Latin
transliteration. Figure 2 depicts the lexical entry of
the wordbli “without”. In subsequent examples we
retain only the transliteration forms and suppress the
Hebrew ones.

<item dotted=" ���" id="4917"
translit="bli" undotted=" ���">

<conjunction type="coord"/>
</item>

Figure 2: The lexical entry ofbli “without”

12

The lexicon specifies morpho-syntactic features
(such as gender or number), which can later be used
by parsers and other applications. It also lists sev-
eral lexical proerties which are specifically targeted
at morphological analysis. A typical example is the
feminine suffix of adjectives, which can be one of
h, it or t, and cannot be predicted from the base
form. The lexicon lists information pertaining to
non-default behavior with idiosyncratic entries.

Adjectives inflect regularly, with few exceptions.
Their citation form is the absolute singular mascu-
line, which is used to generate the feminine form,
the masculine plural and the feminine plural. An
additional dimension is status, which can be ab-
solute or construct. Figure 3 lists the lexicon en-
try of the adjectiveyilai “supreme”: its feminine
form is obtained by adding thet suffix (hence
feminine="t"). Other features are determined
by default. This lexicon entry yieldsyilai, yilait, yi-
laiim, yilaiwt etc.

<item id="13852" translit="yilai">
<adjective feminine="t" />

</item>

Figure 3: A lexicon item foryilai “supreme”

Similarly, the citation form of nouns is the ab-
solute singular masculine form. Hebrew has gram-
matical gender, and the gender of nouns that denote
animate entities coincides with their natural gender.
The lexicon specifies the feminine suffix via thefem-
inine attribute. Nouns regularly inflect for number,
but some nouns have only a plural or only a singu-
lar form. The plural suffix (im for masculine,wt for
feminine by default) is specified through theplural
attribute. Figure 4 demonstrates a masculine noun
with an irregular plural suffix,wt.

<item id="5044" translit="ewlxn">
<noun gender="masculine"

number="singular"
plural="wt" /></item>

Figure 4: A lexicon item for the nounewlxn “table”

Closed-class words are listed in the lexicon in a
similar manner, where the specific category deter-
mines which attributes are associated with the cita-

tion form. For example, some adverbs inflect for
person, number and gender (e.g.,lav “slowly”), so
this is indicated in the lexicon. The lexicon also
specifies the person, number and gender of pro-
nouns, the type of proper names (location, person,
organization), etc. The lexical representation of
verbs is more involved and is suppressed for lack
of space.

Irregularities are expressed directly in the lexi-
con, in the form of additional or alternative lexi-
cal entries. This is facilitated through the use of
three optional elements in lexicon items:add, re-
place and remove. For example, the nounchriim
“noon” is also commonly spelledchrim, so the addi-
tional spelling is specified in the lexicon, along with
the standard spelling, usingadd. As another exam-
ple, consider Segolate nouns such asbwqr “morn-
ing”. Its plural form isbqrim rather than the default
bwqrim; such stem changing behavior is specified
in the lexicon usingreplace. Finally, the verbykwl
“can” does not have imperative inflections, which
are generated by default for all verbs. To prevent the
default behavior, the superfluous forms areremoved.

The processing of irregular lexicon entries re-
quires some explanation. Lexicon items containing
add, removeand replaceelements are included in
the general lexicon without theadd, removeandre-
placeelements, which are listed in special lexicons.
The general lexicon is used to build a basic morpho-
logical finite-state network. Additional networks are
built using the same set of rules for theadd, remove
andreplacelexicons. The final network is obtained
by subtracting theremovenetwork from the general
one (using the set difference operator), adding the
add network (using the set union operator), and fi-
nally applyingpriority union with the replacenet-
work. This final finite-state network contains only
and all the valid inflected forms.

The lexicon is represented in XML, while the
morphological analyzer is implemented in XFST,
so the former has to be converted to the latter. In
XFST, a lexical entry is a relation which holds be-
tween the surface form of the lemma and a set of
lexical strings. As a surface lemma is processed by
the rules, its associated lexical strings are manipu-
lated to reflect the impact of inflectional morphol-
ogy. The surface string of XFST lexical entries is the
citation form specified in the XML lexicon. Figure 5

13

lists the XFST representation of the lexical entry of
the wordbli, whose XML representation was listed
in figure 2.

[+negation][+id]21542[+undotted]
���[+translit]bli

Figure 5: The lexicon item ofbli in XFST

3.2 Morphological and orthographic rules

In this section we discuss the set of rules which
constitute the morphological grammar, i.e., the im-
plementation of linguistic structures in XFST. The
grammar includes hundreds of rules; we present a
small sample, exemplifying the principles that gov-
ern the overall organization of the grammar. The
linguistic information was collected from several
sources (Barkali, 1962; Zdaqa, 1974; Alon, 1995;
Cohen, 1996; Schwarzwald, 2001; Schwarzwald,
2002; Ornan, 2003).

The grammar consists of specific rules for every
part of speech category, which are applied to the ap-
propriate lexicons. For each category, a variable is
defined whose denotation is the set of all lexical en-
tries of that category. Combined with the category-
specific rules, we obtain morphological grammars
for every category (not including idiosyncrasies).
These grammars are too verbose on the lexical side,
as they contain all the information that was listed in
the lexicon. Filters are therefore applied to the lexi-
cal side to remove the unneeded information.

Our rules support surface forms that are made of
zero or more prefix particles, followed by a (pos-
sibly inflected) lexicon item. Figure 6 depicts the
high-level organization of the grammar (recall from
section 2 that ‘.o. ’ denotes composition). The vari-
able inflectedWord denotes a union of all the
possible inflections of the entire lexicon. Similarly,
prefixes is the set of all the possible sequences
of prefixes. When the two are concatenated, they
yield a language of all possible surface forms, vastly
over-generating. On the upper side of this language
a prefix particle filter is composed, which enforces
linguistically motivated constraints on the possible
combinations of prefixes with words. On top of
this another filter is composed, which handles “cos-
metic” changes, such as removing “book-keeping”

tags. A similar filter is applied to the the lower side
of the network.

tagAffixesFilter
.o.
prefixesFilters
.o.
[prefixes inflectedWord]
.o.
removeTagsFilter

Figure 6: A high level view of the analyzer

As an example, consider the feminine singular
form of adjectives, which is generated from the
masculine singular by adding a suffix, eitherh, it
or t. Some idiosyncratic forms have no masculine
singular form, but do have a feminine singular form,
for examplehrh “pregnant”. Therefore, as figure 7
shows, singular feminine adjectives are either ex-
tracted verbatim from the lexicon or generated from
the singular masculine form by suffixation. The rule
[%+feminine <- ? || %+gender _]
changes the gender attribute tofeminine for the
inflected feminine forms. This is a special form of
a replace rule which replaces any symbol (‘?’) by
the multi-character symbol ‘+feminine ’, in the
context of occurring after ‘+gender ’. The right
context is empty, meaninganything.

define feminineSingularAdjective [
[$[%+gender [%+feminine]]

.o. adjective] |
[%+feminine <- ? || %+gender _]
.o. [sufH | sufT | sufIT]

];

Figure 7: Feminine adjectives

Figure 8 shows how the suffixh (the value of the
variableHE) is used in the inflection. The default
is not to add an additionalh if the masculine ad-
jective already terminates with it, as inmwrh “male
teacher”→mwrh “female teacher”. This means that
exceptions to this default, such asgbwh “tall, m” →
gbwhh “tall, f”, are being improperly treated. Such
forms are explicitly listed in the lexicon as idiosyn-
crasies (using the add/replace/remove mechanism),
and will be corrected at a later stage. The suffixest

14

andit are handled in a similar way.

define sufH [
[[$[%+feminine %+h] .o.

masculineSingularAdjective]
[0 .x. addedHE]]

.o. [addedHE -> 0 || HE _ .#.]

.o. [addedHE -> HE]
];

Figure 8: Adding the suffixh

Figure 9 shows how plural nouns with thewt suf-
fix are processed. On the lower side some condi-
tional alternations are performed before the suffix is
added. The first alternation rule replacesiih with
ih at the end of a word, ensuring that nouns wrttent
with a spuriousi such aseniih “second” are properly
inflected aseniwt “seconds” rather thaneniiwt. The
second alternation rule removes finalt to ensure that
a singular noun such asmeait “truck” is properly in-
flected to its plural formmeaiwt. The third ensures
that nouns ending inwt such assmkwt “authority”
are properly inflected assmkwiwt. Of course, ir-
regular nouns such asxnit “spear”, whose plural is
xnitwt rather thanxniwt, are lexically specified and
handled separately. Finally, a finalh is removed by
the fourth rule, and subsequently the plural suffix is
concatenated.

define pluralWTNoun [
[

[%+plural <- %+singular || %+number _]
.o. $[%+number %+singular]
.o. $[%+plural %+wt]
.o. noun
.o. [YOD YOD HE -> YOD HE || _ .#.]
.o. [ALEF YOD TAV -> ALEF YOD || _ .#.]
.o. [VAV TAV -> VAV YOD || _ .#.]
.o. [[HE|TAV] -> 0 || _ .#.]

] [0 .x. [VAV TAV]]
];

Figure 9: Plural nouns withwt suffix

The above rules only superficially demonstrate
the capabilities of our grammar. The bulk of the
grammar consists of rules for inflecting verbs, in-
cluding a complete coverage of the weak paradigms.
The grammar also contains rules which govern the
possible combinations of prefix particles and the
words they combine with.

4 Conclusion

We described a broad-coverage finite-state grammar
of Modern Hebrew, consisting of two main compo-
nents: a lexicon and a set of rules. The current un-
derlying lexicon includes over 20,000 items. The av-
erage number of inflected forms for a lexicon item
is 33 (not including prefix sequences). Due to the
use of finite-state technology, the grammar can be
used for generation or for analysis. It induces a very
efficient morphological analyzer: in practice, over
eighty words per second can be analyzed on a con-
temporary workstation.

For lack of space we cannot fully demonstrate the
output of the analyzer; refer back to figure 1 for
an example. HAMSAH is now used for a number
of projects, including as a front end for a Hebrew
to English machine translation system (Lavie et al.,
2004). It is routinely tested on a variety of texts,
and tokens with zero analyses are being inspected
manually. A systematic evaluation of the quality of
the analyzer is difficult due to the lack of available
alternative resources. Nevertheless, we conducted
a small-scale evaluation experiment by asking two
annotators to review the output produced by the an-
alyzer for a randomly chosen set of newspaper arti-
cles comprising of approximately 1000 word tokens.
The following table summarizes the results of this
experiment.

number %
tokens 959 100.00%
no analysis 37 3.86%
no correct analysis 41 4.28%
correct analysis produced 881 91.86%

The majority of the missing analyses are due to out-
of-lexicon items, particularly proper names.

In addition to maintenance and expansion of the
lexicon, we intend to extend this work in two main
directions. First, we are interested in automatic
methods for expanding the lexicon, especially for
named entities. Second, we are currently working on
a disambiguation module which will rank the analy-
ses produced by the grammar according to context-
dependent criteria. Existing works on part-of-speech
tagging and morphological disambiguation in He-
brew (Segal, 1999; Adler, 2004; Bar-Haim, 2005)
leave much room for further research. Incorpo-
rating state-of-the-art machine learning techniques

15

for morphological disambiguation to the output pro-
duced by the analyzer will generate an optimal sys-
tem which is broad-coverage, effective and accurate.

Acknowledgments

This work was funded by the Israeli Ministry of
Science and Technology, under the auspices of the
Knowledge Center for Processing Hebrew. We are
grateful to Yael Cohen-Sygal, Shira Schwartz and
Alon Itai for their help.

References

Meni Adler. 2004. Word-based statistical language mod-
eling: Two-dimensional approach. Thesis proposal,
Ben Gurion University, Beer Sheva, April.

Emmanuel Alon. 1995.Unvocalized Hebrew Writing:
The Structure of Hebrew Words in Syntactic Context.
Ben-Gurion University of the Negev Press. In Hebrew.

Roy Bar-Haim. 2005. Part-of-speech tagging for Hebrew
and other Semitic languages. Master’s thesis, Com-
puter Science Department, Technion, Haifa, Israel.

Shaul Barkali. 1962. Lux HaP’alim HaShalem (The
Complete Verbs Table). Reuven Mass, Jerusalem. In
Hebrew.

Kenneth R. Beesley and Lauri Karttunen. 2003.Finite-
State Morphology: Xerox Tools and Techniques.
CSLI, Stanford.

Kenneth R. Beesley. 1996. Arabic finite-state mor-
phological analysis and generation. InProceedings
of COLING-96, the 16th International Conference on
Computational Linguistics, Copenhagen.

Kenneth R. Beesley. 1998. Arabic morphology using
only finite-state operations. In Michael Rosner, ed-
itor, Proceedings of the Workshop on Computational
Approaches to Semitic languages, pages 50–57, Mon-
treal, Quebec, August. COLING-ACL’98.

Kenneth R. Beesley. 2001. Finite-state morphological
analysis and generation of Arabic at Xerox Research:
Status and plans in 2001. InACL Workshop on Arabic
Language Processing: Status and Perspective, pages
1–8, Toulouse, France, July.

Esther Bentur, Aviella Angel, Danit Segev, and Alon
Lavie. 1992. Analysis and generation of the nouns
inflection in Hebrew. In Uzzi Ornan, Gideon Arieli,
and Edit Doron, editors,Hebrew Computational Lin-
guistics, chapter 3, pages 36–38. Ministry of Science
and Technology. In Hebrew.

Yaacov Choueka. 1980. Computerized full-text retrieval
systems and research in the humanities: The Responsa
project.Computers and the Humanities, 14:153–169.

Yaacov Choueka. 1990. MLIM - a system for full, exact,
on-line grammatical analysis of Modern Hebrew. In
Yehuda Eizenberg, editor,Proceedings of the Annual
Conference on Computers in Education, page 63, Tel
Aviv, April. In Hebrew.

Haim A. Cohen. 1996. klalei ha-ktiv xasar ha-niqqud.
leshonenu la&am, special edition, May. In Hebrew.

Laura Kataja and Kimmo Koskenniemi. 1988. Finite-
state description of Semitic morphology: A case study
of Ancient Akkadian. InCOLING, pages 313–315.

George Anton Kiraz. 2000. Multitiered nonlinear mor-
phology using multitape finite automata: a case study
on Syriac and Arabic. Computational Linguistics,
26(1):77–105, March.

Kimmo Koskenniemi. 1983.Two-Level Morphology: a
General Computational Model for Word-Form Recog-
nition and Production. The Department of General
Linguistics, University of Helsinki.

Alon Lavie, Alon Itai, Uzzi Ornan, and Mori Rimon.
1988. On the applicability of two-level morphology
to the inflection of Hebrew verbs. InProceedings of
the International Conference of the ALLC, Jerusalem,
Israel.

Alon Lavie, Shuly Wintner, Yaniv Eytani, Erik Peterson,
and Katharina Probst. 2004. Rapid prototyping of a
transfer-based Hebrew-to-English machine translation
system. InProceedings of TMI-2004: The 10th Inter-
national Conference on Theoretical and Methodolog-
ical Issues in Machine Translation, Baltimore, MD,
October.

Uzzi Ornan and Wadim Kazatski. 1986. Analysis and
synthesis processes in Hebrew morphology. InPro-
ceedings of the 21 National Data Processing Confer-
ence. In Hebrew.

Uzzi Ornan. 2003.The Final Word. University of Haifa
Press, Haifa, Israel. In Hebrew.

Ora Schwarzwald. 2001.Moden Hebrew, volume 127
of Languages of the World/Materials. LINCOM EU-
ROPA.

Ora Schwarzwald. 2002.Studies in Hebrew Morphol-
ogy. The Open University of Israel.

Erel Segal. 1997. Morphological analyzer for unvo-
calized hebrew words. Unpublished work, available
from http://www.cs.technion.ac.il/-
˜erelsgl/hmntx.zip .

Erel Segal. 1999. Hebrew morphological analyzer for
Hebrew undotted texts. Master’s thesis, Technion, Is-
rael Institute of Technology, Haifa, October. In He-
brew.

Shuly Wintner. 2004. Hebrew computational linguis-
tics: Past and future.Artificial Intelligence Review,
21(2):113–138.

Yizxaq Zdaqa. 1974.Luxot HaPoal (The Verb Tables).
Kiryath Sepher, Jerusalem. In Hebrew.

16

