
ACL-05

Feature Engineering
for Machine Learning
in Natural Language

Processing

Proceedings of the Workshop

29 June 2005
University of Michigan

Ann Arbor, Michigan, USA

Production and Manufacturing by
Omnipress Inc.
Post Office Box 7214
Madison, WI 53707-7214

Sponsorship gratefully received from
Microsoft Research
One Microsoft Way
Redmond, Washington 98052, USA

c©2005 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
75 Paterson Street, Suite 9
New Brunswick, NJ 08901
USA
Tel: +1-732-342-9100
Fax: +1-732-342-9339
acl@aclweb.org

ii

Introduction

The ACL 2005 Workshop on Feature Engineering for Machine Learning in Natural Language
Processing is an opportunity to explore the various dimensions of feature engineering for problems
that are of interest to the ACL community. Feature Engineering encompasses feature design, feature
selection, feature induction, studies of feature impact (including feature ablation studies), and related
topics. In 2003, there was a NIPS workshop on feature engineering (“Feature Extraction and Feature
Selection”), but the focus was not on NLP problems specifically. Also, although the various aspects of
feature engineering have been dealt with at times in various ACL forums, until now, to our knowledge,
the spotlight has never been shone directly on this topic specifically for NLP and language technology
problems. We feel that now is the time to look more closely.

As experience with machine learning for solving natural language processing tasks accumulates in the
field, practitioners are finding that feature engineering is as critical as the choice of machine learning
algorithm, if not more so. Feature engineering significantly affects the performance of systems and
deserves greater attention. Also, in the wake of the shift in our field away from knowledge engineering
and of the successes of data-driven and statistical methods, researchers are likely to make further
progress by incorporating additional, sometimes familiar, sources of knowledge as features. Feature
design may benefit from expert insight even where the relative merits of features must be assessed
through empirical techniques from data. Although some experience in the area of feature engineering is
to be found in the theoretical machine learning community, the particular demands of natural language
processing leave much to be discovered.

In the call for papers, we expressed our intent of bringing together practitioners of NLP, machine
learning, information extraction, speech processing, and related fields with the goal of sharing
experimental evidence for successful approaches to feature engineering. Judging by the quality and
diversity of the submissions received, we believe we have succeeded, and the resulting program should
be of great interest to many researchers in the ACL community. We hope that the workshop will
contribute to the distillation of best practices and to the discovery of new sources of knowledge and
features previously untapped.

We also extend an open invitation to the reader to continue investigation in all aspects of feature
engineering for machine learning in NLP, including:

• Novel methods for discovering or inducing features, such as mining the web for closed classes,
useful for indicator features.

• Comparative studies of different feature selection algorithms for NLP tasks.

• Error analysis tools that help researchers to identify ambiguous cases that could be disambiguated
by the addition of features.

• Error analysis of various aspects of feature induction, selection, representation.

• Issues with representation, e.g., strategies for handling hierarchical representations, including
decomposing to atomic features or by employing statistical relational learning.

iii

• Techniques used in fields outside NLP that prove useful in NLP.

• The impact of feature selection and feature design on such practical considerations as training
time, experimental design, domain independence, and evaluation.

• Analysis of feature engineering and its interaction with specific machine learning methods
commonly used in NLP.

• Ensemble methods employing diverse types of features.

• Studies of methods for inducing a feature set, for example by iteratively expanding a base feature
set.

• Issues with representing and combining real-valued and categorical features for NLP tasks.

We anticipate that contributions in these areas will move the field of NLP and language technologies
forward, with greater system performance and further insight into our own data and perhaps language
itself.

We wish to thank all of the researchers who submitted papers to the workshop. Also, thanks go
to the entire program committee (see next page) and those who assisted them in their reviewing
responsibilities.

Best regards,

Eric Ringger, Microsoft Research (USA)

20 May 2005

iv

Organizer:

Eric Ringger, Microsoft Research (USA)

Program Committee:

Eric Ringger, Microsoft Research (USA)
Simon Corston-Oliver, Microsoft Research (USA)
Kevin Duh, University of Washington (USA)
Matthew Richardson, Microsoft Research (USA)
Oren Etzioni, University of Washington (USA)
Andrew McCallum, University of Massachusetts at Amherst (USA)
Dan Bikel, IBM Research (USA)
Olac Fuentes, INAOE (Mexico)
Christopher Manning, Stanford University (USA)
Kristina Toutanova , Stanford University (USA)
Hideki Isozaki, NTT Communication Science Laboratories (Japan)
Caroline Sporleder, University of Edinburgh (UK)

Additional Reviewers:

Thamar Solorio, INAOE (Mexico)

Invited Speaker:

Andrew McCallum, University of Massachusetts at Amherst (USA)

v

Table of Contents

A Novel Machine Learning Approach for the Identification of Named Entity Relations
Tianfang Yao and Hans Uszkoreit .1

Feature Engineering and Post-Processing for Temporal Expression Recognition Using Conditional
Random Fields

Sisay Fissaha Adafre and Maarten de Rijke .9

Temporal Feature Modification for Retrospective Categorization
Robert Liebscher and Richard K. Belew .17

Using Semantic and Syntactic Graphs for Call Classification
Dilek Hakkani-T̈ur, Gokhan Tur and Ananlada Chotimongkol .24

Feature-Based Segmentation of Narrative Documents
David Kauchak and Francine Chen .32

Identifying non-referential it: a machine learning approach incorporating linguistically motivated pat-
terns

Adriane Boyd, Whitney Gegg-Harrison and Donna Byron .40

Engineering of Syntactic Features for Shallow Semantic Parsing
Alessandro Moschitti, Bonaventura Coppola, Daniele Pighin and Roberto Basili48

Automatic identification of sentiment vocabulary: exploiting low association with known sentiment
terms

Michael Gamon and Anthony Aue .57

Studying Feature Generation from Various Data Representations for Answer Extraction
Dan Shen, Geert-Jan M. Kruijff and Dietrich Klakow .65

vii

Conference Program

Wednesday, June 29, 2005

8:45–9:00 Opening Remarks

Session W4.1: Classification

A Novel Machine Learning Approach for the Identification of Named Entity Rela-
tions
Tianfang Yao and Hans Uszkoreit

Feature Engineering and Post-Processing for Temporal Expression Recognition Us-
ing Conditional Random Fields
Sisay Fissaha Adafre and Maarten de Rijke

Temporal Feature Modification for Retrospective Categorization
Robert Liebscher and Richard K. Belew

10:30–11:00 Break

11:00–12:00 Invited Talk by Andrew McCallum

Using Semantic and Syntactic Graphs for Call Classification
Dilek Hakkani-T̈ur, Gokhan Tur and Ananlada Chotimongkol

12:30–14:00 Lunch

Session W4.2: Discourse and Syntax

Feature-Based Segmentation of Narrative Documents
David Kauchak and Francine Chen

Identifying non-referential it: a machine learning approach incorporating linguis-
tically motivated patterns
Adriane Boyd, Whitney Gegg-Harrison and Donna Byron

Engineering of Syntactic Features for Shallow Semantic Parsing
Alessandro Moschitti, Bonaventura Coppola, Daniele Pighin and Roberto Basili

15:30–16:00 Break

ix

Wednesday, June 29, 2005 (continued)

Session W4.3: Feature Sources

Automatic identification of sentiment vocabulary: exploiting low association with known
sentiment terms
Michael Gamon and Anthony Aue

Studying Feature Generation from Various Data Representations for Answer Extraction
Dan Shen, Geert-Jan M. Kruijff and Dietrich Klakow

x

Proceedings of the ACL Workshop on Feature Engineering for Machine Learning in NLP, pages 1–8,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

A Novel Machine Learning Approach for the Identification of

Named Entity Relations

Tianfang Yao Hans Uszkoreit
Department of Computer Science and

 Engineering
Department of Computational Linguistics and

Phonetics
Shanghai Jiao Tong University Saarland University

Shanghai, 200030, China Saarbruecken, 66041, Germany
yao-tf@cs.sjtu.edu.cn uszkoreit@coli.uni-sb.de

Abstract

In this paper, a novel machine learning
approach for the identification of named
entity relations (NERs) called positive
and negative case-based learning
(PNCBL) is proposed. It pursues the im-
provement of the identification perform-
ance for NERs through simultaneously
learning two opposite cases and auto-
matically selecting effective multi-level
linguistic features for NERs and non-
NERs. This approach has been applied to
the identification of domain-specific and
cross-sentence NERs for Chinese texts.
The experimental results have shown that
the overall average recall, precision, and
F-measure for 14 NERs are 78.50%,
63.92% and 70.46% respectively. In addi-
tion, the above F-measure has been en-
hanced from 63.61% to 70.46% due to
adoption of both positive and negative
cases.

1 Introduction

The investigation for Chinese information extrac-
tion is one of the topics of the project COLLATE
dedicated to building up the German Competence
Center for Language Technology. After accom-
plishing the task concerning named entity (NE)
identification, we go on studying identification

issues for named entity relations (NERs). As an
initial step, we define 14 different NERs based on
six identified NEs in a sports domain based Chi-
nese named entity recognition system (Yao et al.,
2003). In order to learn NERs, we annotate the
output texts from this system with XML. Mean-
while, the NER annotation is performed by an in-
teractive mode.

The goal of the learning is to capture valuable
information from NER and non-NER patterns,
which is implicated in different features and helps
us identify NERs and non-NERs. Generally speak-
ing, because not all features we predefine are im-
portant for each NER or non-NER, we should
distinguish them by a reasonable measure mode.
According to the selection criterion we propose -
self-similarity, which is a quantitative measure for
the concentrative degree of the same kind of NERs
or non-NERs in the corresponding pattern library,
the effective feature sets - general-character feature
(GCF) sets for NERs and individual-character fea-
ture (ICF) sets for non-NERs are built. Moreover,
the GCF and ICF feature weights serve as a pro
portion determination of the features’ degree of
importance for identifying NERs against non-
NERs. Subsequently, identification thresholds can
also be determined.
 In the NER identification, we may be confronted
with the problem that an NER candidate in a new
case matches more than one positive case, or both
positive and negative cases. In such situations, we
have to employ a vote to decide which existing

1

case environment is more similar to the new case.
In addition, a number of special circumstances
should be also considered, such as relation conflict
and relation omission.

2 Definition of Relations

An NER may be a modifying / modified, dominat-
ing / dominated, combination, collocation or even
cross-sentence constituent relationship between
NEs. Considering the distribution of different
kinds of NERs, we define 14 different NERs based
on six identified NEs in the sports domain shown
in Table 1.

Table 1. NER Category

In order to further indicate the positions of NEs

in an NER, we define a general frame for the
above NERs and give the following example using
this description:

Definition 1 (General Frame of NERs):
NamedEntityRelation (NamedEntity1, Paragraph-
SentenceNamedEntityNo1; NamedEntity2, Para-
graphSentenceNamedEntityNo2)

Example 1:

广东宏远队
1
客场以３比０击败广州太阳神队。

The Guangdong Hongyuan Team defeated the Guangzhou
Taiyangshen Team by 3: 0 in the guest field.

In the sentence we observe that there exist two

NERs. According to the general frame, the first
NER description is HT_VT(广 州 太 阳 神 队

(Guangzhou Taiyangshen Team), 1-1-2; 广东宏远

队(Guangdong Hongyuan Team), 1-1-1) and the
other is WT_LT(广 东 宏 远 队 (Guangdong

1 The underlining of Chinese words means that an NE consists of these words.

Hongyuan Team), 1-1-1; 广州太阳神(Guangzhou
Taiyangshen Team), 1-1-2).

In this example, two NERs represent dominating
/ dominated and collocation relationships sepa-
rately: namely, the first relation HT_VT gives the
collocation relationship for the NE “Guangdong
Hongyuan Team” and the noun “guest field”. This
implies that “Guangdong Hongyuan Team” is a
guest team. Adversely, “Guangzhou Taiyangshen
Team” is a host team; the second relation WT_LT
indicates dominating / dominated relationship be-
tween “Guangdong Hongyuan Team” and
“Guangzhou Taiyangshen Team” by the verb “de-
feat”. Therefore, “Guangdong Hongyuan Team”
and “Guangzhou Taiyangshen Team” are the win-
ning and losing team, respectively.

NER Cate-
gory Explanation

PS_TM The membership of a person in a sports team.
PS_CP A person takes part in a sports competition.

PS_CPC The origin location of a person.

PS_ID A person and her / his position in a sports team or
other occasions.

HT_VT The home and visiting teams in a sports competition.
WT_LT The winning and losing team name in a sports match.
DT_DT The names of two teams which draw a match.
TM_CP A team participates in a sports competition.

TM_CPC It indicates where a sports team comes from.
ID_TM The position of a person employed by a sports team.
CP_DA The staged date for a sports competition.
CP_TI The staged time for a sports competition.

CP_LOC It gives the location where a sports match is held.
LOC_ CPC The location ownership (LOC belongs to CPC).

3 Positive and Negative Case-Based
Learning

The positive and negative case-based learning
(PNCBL) belongs to supervised statistical learning
methods (Nilsson, 1996). Actually, it is a variant of
memory-based learning (Stanfill and Waltz, 1986;
Daelemans, 1995; Daelemans et al., 2000). Unlike
memory-based learning, PNCBL does not simply
store cases in memory but transforms case forms
into NER and non-NER patterns. Additionally, it
stores not only positive cases, but also negative
ones. Here, it should be clarified that the negative
case we mean is a case in which two or more NEs
do not stand in any relationships with each other,
i.e, they bear non-relationships which are also in-
vestigated objects in which we are interested.

During the learning, depending on the average
similarity of features and the self-similarity of
NERs (also non-NERs), the system automatically
selects general or individual-character features
(GCFs or ICFs) to construct a feature set. It also
determines different feature weights and identifica-
tion thresholds for different NERs or non-NERs.
Thus, the learning results provide an identification
references for the forthcoming NER identification.

3.1 Relation Features

Relation features, by which we can effectively
identify different NERs, are defined for capturing
critical information of the Chinese language. Ac-
cording to the features, we can define NER / non-

2

NER patterns. The following essential factors mo-
tivate our definition for relation features:

• The relation features should be selected
from multiple linguistic levels, i.e., mor-
phology, grammar and semantics (Cardie,
1996);

• They can help us to identify NERs using
positive and negative case-based machine
learning as their information do not only
deal with NERs but also with non-NERs;

and
• They should embody the crucial information

of Chinese language processing (Dang et al.,
2002), such as word order, the context of
words, and particles etc.

There are a total of 13 relation features shown

in Table 2, which are empirically defined accord-
ing to the above motivations. It should be ex-
plained that in order to distinguish feature names
from element names of the NER / non-NER pat-
terns, we add a capital letter “F” in the ending of
feature names. In addition, a sentence group in
the following definitions can contain one or mul-
tiple sentences. In other words, a sentence group
must end with a stop, semicolon, colon, exclama-
tion mark, or question mark.

Feature

Category Explanation

SGTF The type of a sentence group in which there exists a
relation.

NESPF The named entities of a relevant relation are located in
the same sentence or different sentences.

NEOF The order of the named entities of a relevant relation.

NEVPF

The relative position between the verbs and the named
entities of a relevant relation. The verbs of a relevant
relation mean that they occur in a sentence where the
relation is embedded.

NECF
The context of named entities. The context only embod-
ies a word or a character preceding or following the
current named entity.

VSPF The verbs are located in the same sentence or different
sentences in which there is a relevant relation.

NEPPOF
The relative order between parts-of-speech of particles
and named entities. The particles occur within the
sentences where the relation is embedded.

NEPF The parts-of-speech of the named entities of a relevant
relation.

NECPF The parts-of-speech of the context for the named enti-
ties associated with a relation.

SPF The sequence of parts-of-speech for all sentence con-
stituents within a relation range.

VVF The valence expression of verbs in the sentence(s)
where there is a relation embedded.

NECTF The concepts of the named entities of a relevant relation
from HowNet (Dong and Dong, 2000).

VCTF The concepts of the verbs of a relevant relation from
HowNet.

Table 2. Feature Category

In 13 features, three features (NECF, NECPF
and NEPF) belong to morphological features, three
features (NEOF, SPF and SGTF) are grammatical
features, four features (NEPPOF, NESPF, NEVPF
and VSPF) are associated with not only morphol-
ogy but also grammar, and three features (NECTF,
VCTF and VVF) are semantic features.

Every feature describes one or more properties
of a relation. Through the feature similarity calcu-
lation, the quantitative similarity for two relations
can be obtained, so that we can further determine
whether a candidate relation is a real relation.
Therefore, the feature definition plays an important
role for the relation identification. For instance,
NECF can capture the noun 客场 (the guest field,
it means that the guest team attends a competition
in the host team’s residence.) and also determine
that the closest NE by this noun is 广东宏远队
(the Guangdong Hongyuan Team). On the other
hand, NEOF can fix the sequence of two relation-
related NEs. Thus, another NE 广州太阳神队 (the
Guangzhou Taiyangshen Team) is determined.
Therefore, these two features reflect the properties
of the relation HT_VT.

3.2 Relation and Non-Relation Patterns

A relation pattern describes the relationships be-
tween an NER and its features. In other words, it
depicts the linguistic environment in which NERs
exist.

Definition 2 (Relation Pattern): A relation pat-
tern (RP) is defined as a 14-tuple: RP = (NO, RE,
SC, SGT, NE, NEC, VERB, PAR, NEP, NECP, SP,
VV, NECT, VCT) where NO represents the num-
ber of a RP; RE is a finite set of relation expres-
sions; SC is a finite set for the words in the
sentence group except for the words related to
named entities; SGT is a sentence group type; NE
is a finite set for named entities in the sentence
group; NEC is a finite set that embodies the con-
text of named entities; VERB is a finite set that in-
cludes the sequence numbers of verbs and
corresponding verbs; NEP is a finite set of named
entities and their POS tags; NECP is a finite set
which contains the POS tags of the context for
named entities; SP is a finite set in which there are
the sequence numbers as well as corresponding
POS tags and named entity numbers in a sentence
group; VV is a finite set comprehending the posi-

3

tion of verbs in a sentence and its valence con-
straints from Lexical Sports Ontology which is
developed by us; NECT is a finite set that has the
concepts of named entities in a sentence group; and
VCT is a finite set which gives the concepts of
verbs in a sentence group.

Example 2:

据新华社北京３月２６日电全国足球甲Ｂ联赛今天进行

了第二轮赛事的５场比赛，广东宏远队客场以３比０击

败广州太阳神队，成为唯一一支两战全胜的队伍，暂居

积分榜榜首。
According to the news from Xinhua News Agency Beijing on
March 26th: National Football Tournament (the First B
League) today held five competitions of the second round,
The Guangdong Hongyuan Team defeats the Guangzhou
Taiyangshen Team by 3: 0 in the guest field, becoming the
only team to win both matches, and temporarily occupying
the first place of the entire competition.

Relation Pattern:
NO = 34;
RE = {(CP_DA, NE1-3, NE1-2), (CP_TI, NE1-3, NE1-4), …,
(WT_LT, NE2-1, NE2-2)}
SC = {(1, 据, according_to, Empty, AccordingTo), (2, 新华

社 , Xinhua/Xinhua_News_agency, Empty, institu-
tion/news/ProperName/China), …, (42, 。 , ., Empty,
{punc})};
SGT = multi-sentences;
NE = {(NE1-1, 3, LN, {(1, 北京)}), (NE1-2, 4, Date, {(1, ３),
(2, 月), (3, ２６), (4, 日)}), ..., (NE2-2, 26, TN, {(1, 广州),
(2, 太阳神), (3, 队)})};
NEC = {(NE1-1, 新华社,３), (NE1-2, 北京, 电), ..., (NE2-2,
击败, ，) };
VERB = {(8, 进行), (25, 击败), ..., (39, 居)}
PAR = {(1, 据), (9, 了), ..., (38, 暂)};
NEP = {(NE1-1, {(1, N5)}), (NE1-2, {(1, M), (2, N), (3, M),
(4, N)}), ..., (NE2-2, {(1, N5), (2, N), (3, N)})};
NECP = {(NE1-1, N, M), (NE1-2, N5, N), …, (NE2-2, V,
W)};
SP = {(1, P), (2, N), (3, NE1-1), ..., (42, W)};
VV = {(V_8, {Agent|fact/compete|CT, -Time|time|DT}),
(V_25, {Agent|human/mass|TN, Patient|human/mass|TN}),...,
(V_39, {Agent|human/sport|PN, Agent|human/mass|TN})};
NECT = {(NE1-1, place/capital/ProperName/China), (NE1-2,
Empty+celestial/unit/time+Empty+ celestial/time/time/
morning), …, (NE2-2, place/city/ProperName/China+
Empty+community/human/mass)};
VCT = {(V_8, GoForward/GoOn/Vgoingon), (V_25, de-
feat), …, (V_39, reside/situated)}

Analogous to the definition of the relation pat-
tern, a non-relation pattern is defined as follows:

Definition 3 (Non-Relation Pattern): A non-
relation pattern (NRP) is also defined as a 14-tuple:
NRP = (NO, NRE, SC, SGT, NE, NEC, VERB,
PAR, NEP, NECP, SP, VV, NECT, VCT), where
NRE is a finite set of non-relation expressions
which specify the nonexistent relations in a sen-
tence group. The definitions of the other elements

are the same as the ones in the relation pattern. For
example, if we build an NRP for the above sen-
tence group in Example 2, the NRE is listed in the
following:

NRE = {(CP_LOC, NE1-3, NE1-1), (TM_CPC, NE2-1,
NE1-1), ..., (DT_DT, NE2-1, NE2-2)}

In this sentence group, the named entity (CT) 全

国足球甲Ｂ联赛 (National Football Tournament
(the First B League)) does not bear the relation
CP_LOC to the named entity (LN) 北京 (Beijing).
This LN only indicates the release location of the
news from Xinhua News Agency.

As supporting means, the non-NER patterns also
play an important role, because in the NER pattern
library we collect sentence groups in which the
NER exists. If a sentence group only includes non-
NERs, obviously, it is excluded from the NER pat-
tern library. Thus the impact of positive cases can-
not replace the impact of negative cases. With the
help of non-NER patterns, we can remove misiden-
tified non-NERs and enhance the precision of NER
identification.

3.3 Similarity Calculation

In the learning, the similarity calculation is a ker-
nel measure for feature selection.

Definition 4 (Self-Similarity): The self-similarity
of a kind of NERs or non-NERs in the correspond-
ing library can be used to measure the concentra-
tive degree of this kind of relations or non-relations.
The value of the self-similarity is between 0 and 1.
If the self-similarity value of a kind of relation or
non-relation is close to 1, we can say that the con-
centrative degree of this kind of relation or non-
relation is very “tight”. Conversely, the concentra-
tive degree of that is very “loose”.

The calculation of the self-similarity for the
same kind of NERs is equal to the calculation for
the average similarity of the corresponding relation
features. Suppose R(i) is a defined NER in the
NER set (1 ≤ i ≤ 14). The average similarity for
this kind of NERs is defined as follows:

 Σ Sim (R(i)j, R(i)k)

 1≤ j, k ≤ m; j ≠ k

Simaverage(R(i)) = ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ (1)
 Sumrelation_pair(R(i)j, R(i)k)

where Sim (R(i)j, R(i)k) denotes the relation simi-
larity between the same kind of relations, R(i)j and

4

R(i)k. 1 ≤ j, k ≤ m, j ≠ k; m is the total number of
the relation R(i) in the NER pattern library. The
calculation of Sim(R(i)j, R(i)k) depends on differ-
ent features. Sumrelation_pair(R(i)j, R(i)k) is the sum of
calculated relation pair number. They can be calcu-
lated using the following formulas:

 Sumf

 Σ Sim (R(i)j, R(i)k) (ft)
 t = 1

Sim (R(i)j, R(i)k) = ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ (2) Sim
f(s) Sumf

 1 m = 2

Sumrelation_pair(R(i)j, R(i)k) = m ! (3)
 ⎯⎯⎯⎯⎯ m > 2 where R(i) is a defined relation in the NER set (1 ≤

i ≤ 14); n is the size of selected features, 1 ≤ s, t ≤ n;
and

 (m-2) ! * 2 !

In the formula (2), ft is a feature in the feature
set (1 ≤ t ≤ 13). Sumf is the total number of fea-
tures. The calculation formulas of Sim (R(i)j, R(i)k)
(ft) depend on different features. For example, if ft
is equal to NECF, Sim (R(i)j, R(i)k) (ft) is shown as
follows:

1 if all contexts of named

entities for two relations
 are the same

0.75 if only a preceding or
following context is not

 the same

Sim (R(i)

Sim (X(i)j, X(i)k) (NECF) = 0.5 if two preceding and / or
following contexts are

 not the same
0.25 if three preceding and / or

following contexts are
 not the same

0 if all contexts of named
entities for two relations
are not the same

 (4)

Notice that the similarity calculation for non-

NERs is the same as the above calculations.
Before describing the learning algorithm, we

want to define some fundamental conceptions re-
lated to the algorithm as follows:

Definition 5 (General-Character Feature): If the
average similarity value of a feature in a relation is
greater than or equal to the self-similarity of this
relation, it is called a General-Character Feature
(GCF). This feature reflects a common characteris-
tic of this kind of relation.

Definition 6 (Individual-Character Feature): An
Individual-Character Feature (ICF) means its aver-
age similarity value in a relation is less than or
equal to the self-similarity of this relation. This

feature depicts an individual property of this kind
of relation.

Definition 7 (Feature Weight): The weight of a
selected feature (GCF or ICF) denotes the impor-
tant degree of the feature in GCF or ICF set. It is
used for the similarity calculation of relations or
non-relations during relation identification.

averagef(s)(R(i))
w(R(i)) = ⎯⎯⎯⎯⎯⎯⎯⎯⎯ (5)

 n

 Σ Simaveragef(t)(R(i))
 t = 1

 Σ Sim (R(i)j, R(i)k) (f(s))
 1≤ j, k ≤ m; j ≠ k

Simaveragef(s)(R(i)) = ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ (6)
 Sumrelation_pair(R(i)j, R(i)k)

j, R(i)k) (f(s)) computes the feature simi-
larity of the feature f(s) between same kinds of
relations, R(i)j and R(i)k. 1 ≤ j, k ≤ m, j ≠ k; m is
the total number of the relation R(i) in the NER
pattern library. Sumrelation_pair(R(i)j, R(i)k) is the sum
of calculated relation pair numbers, which can be
calculated by the formula (3).

Definition 8 (Identification Threshold): If a can-
didate relation is regarded as a relation in the rela-
tion pattern library, the identification threshold of
this relation indicates the minimal similarity value
between them. It is calculated by the average of the
sum of average similarity values for selected fea-
tures:

 n

 Σ Simaveragef(t)(R(i))
 t = 1

 IdenThrh(R(i)) = ⎯⎯⎯⎯⎯⎯⎯⎯ (7)
 n

where n is the size of selected features, 1 ≤ t ≤ n.

Finally, the PNCBL algorithm is described as
follows:

1) Input annotated texts;
2) Transform XML format of texts into internal

data format;
3) Build NER and non-NER patterns;
4) Store both types of patterns in hash tables

and construct indexes for them;

5

5) Compute the average similarity for features
and self-similarity for NERs and non-NERs;

6) Select GCFs and ICFs for NERs and non-
NERs respectively;

7) Calculate weights for selected features;
8) Decide identification thresholds for every

NER and non-NER;
9) Store the above learning results.

4 Relation Identification

Our approach to NER identification is based on
PNCBL, it can utilize the outcome of learning for
further identifying NERs and removing non-NERs.

4.1 Optimal Identification Tradeoff

During the NER identification, the GCFs of NER
candidates match those of all of the same kind of
NERs in the NER pattern library. Likewise, the
ICFs of NER candidates compare to those of non-
NERs in the non-NER pattern library. The comput-
ing formulas in this procedure are listed as follows:

Sum(GCF)

i

Sim (R(i)can, R(i)j1) = Σ { wi (GCFk1) * Sim (R(i)can, R(i)j1) (GCFk1) }
 k1 = 1

and (8)

Sum(ICF)
i

Sim (R(i)can, NR(i)j2) = Σ { wi (ICFk2) * Sim (R(i)can, NR(i)j2) (ICFk2) }
 k2 = 1

 (9)
where R(i) represents the NERi, and NR(i) ex-
presses the non-NERi, 1≤ i ≤ 14. R(i)can is defined
as a NERi candidate. R(i)j1 and NR(i)j2 are the j1-th
NERi in the NER pattern library and the j2-th non-
NERi in the non-NER pattern library. 1 ≤ j1 ≤ Sum
(R(i)) and 1 ≤ j2 ≤ Sum (NR(i)). Sum (R(i)) and
Sum (NR(i)) are the total number of R(i) in the
NER pattern library and that of NR(i) in non-NER
pattern library respectively. wi (GCFk1) and wi
(ICFk2) mean the weight of the k1-th GCF for the
NERi and that of the k2-th ICF for the non-NERi.
Sum (GCF)i and Sum (ICF)i are the total number of
GCF for NERi and that of ICF for non-NERi sepa-
rately.

In matching results, we find that sometimes the
similarity values of a number of NERs or non-
NERs matched with NER candidates are all more
than the identification threshold. Thus, we have to
utilize a voting method to achieve an identification
tradeoff in our approach. For an optimal tradeoff,
we consider the final identification performance in
two aspects: i.e., recall and precision. In order to

enhance recall, as many correct NERs should be
captured as possible; on the other hand, in order to
increase precision, misidentified non-NERs should
be removed as accurately as possible.
 The voting refers to the similarity calculation
results between an NER candidate and NER / non-
NER patterns. It pays special attention to circum-
stances in which both results are very close. If this
happens, it exploits multiple calculation results to
measure and arrive at a final decision. Additionally,
notice that the impact of non-NER patterns is to
restrict possible misidentified non-NERs. On the
other hand, the voting assigns different thresholds
to different NER candidates (e.g. HT_VT, WT_LT,
and DT_DT or other NERs). Because the former
three NERs have the same kind of NEs, the identi-
fication for these NERs is more difficult than for
others. Thus, when voting, the corresponding
threshold should be set more strictly.

4.2 Resolving NER Conflicts

In fact, although the voting is able to use similarity
computing results for yielding an optimal tradeoff,
there still remain some problems to be resolved.
The relation conflict is one of the problems, which
means that contradictory NERs occur in identifica-
tion results. For example:

(i) The same kind of relations with different ar-
gument position: e.g., the relations HT_VT,

HT_VT(ne1, no1; ne2, no2) and HT_VT(ne2, no2; ne1, no1)
occur in an identification result at the same time.

(ii) The different kinds of relations with same or

different argument positions: e.g., the relations
WT_LT and DT_DT,

WT_LT(ne1, no1; ne2, no2) and DT_DT(ne1, no1; ne2, no2)
appear simultaneously in an identification result.

The reason for a relation conflict lies in the si-
multaneous and successful matching of a pair of
NER candidates whose NEs are the same kind.
They do not compare and distinguish themselves
further. Considering the impact of NER and non-
NER patterns, we organize the conditions to re-
move one of the relations, which has lower average
similarity value with NER patterns or higher aver-
age similarity value with non-NER patterns.

4.3 Inferring Missing NERs

6

Due to a variety of reasons, some relations that
should appear in an identification result may be
missing. However, we can utilize some of the iden-
tified NERs to infer them. Of course, the prerequi-
site of the inference is that we suppose identified
NERs are correct and non-contradictory. For all
identified NERs, we should first examine whether
they contain missing NERs. After determining the
type of missing NERs, we may infer them - con-
taining the relation name and its arguments. For
instance, in an identification result, two NERs are:

PS_ID (ne1, no1; ne2, no2) and PS_TM (ne1, no1; ne3, no3)

In the above NER expressions, ne1 is a personal
name, ne2 is a personal identity, and ne3 is a team
name, because if a person occupies a position, i.e.,
he / she has a corresponding identity in a sports
team, that means the position or identity belongs to
this sports team. Accordingly, we can infer the fol-
lowing NER:

ID_TM (ne2, no2; ne3, no3)

5 Experimental Results and Evaluation

The main resources used for learning and identifi-
cation are NER and non-NER patterns. Before
learning, the texts from the Jie Fang Daily2 in 2001
were annotated based on the NE identification.
During learning, both pattern libraries are estab-
lished in terms of the annotated texts and Lexical
Sports Ontology. They have 142 (534 NERs) and
98 (572 non-NERs) sentence groups, respectively.

To test the performance of our approach, we
randomly choose 32 sentence groups from the Jie
Fang Daily in 2002, which embody 117 different
NER candidates.

For evaluating the effects of negative cases, we
made two experiments. Table 3 shows the average
and total average recall, precision, and F-measure
for the identification of 14 NERs only by positive
case-based learning. Table 4 demonstrates those by
PNCBL. Comparing the experimental results,
among 14 NERs, the F-measure values of the
seven NERs (PS_ID, ID_TM, CP_TI, WT_LT,
PS_CP, CP_DA, and DT_DT) in Table 4 are
higher than those of corresponding NERs in Table
3; the F-measure values of three NERs (LOC_CPC,
TM_CP, and PS_CP) have no variation; but the F-
measure values of other four NERs (PS_TM,

2 This is a local newspaper in Shanghai, China.

CP_LOC, TM_CPC, and HT_VT) in Table 4 are
lower than those of corresponding NERs in Table 3.
This shows the performances for half of NERs are
improved due to the adoption of both positive and
negative cases. Moreover, the total average F-
measure is enhanced from 63.61% to 70.46% as a
whole.

Relation

Type
Average
Recall

Average
Precision

Average
F-measure

LOC_CPC 100 91.67 95.65
TM_CP 100 87.50 93.33
PS_ID 100 84.62 91.67
PS_TM 100 72.73 84.21

CP_LOC 88.89 69.70 78.13
ID_TM 90.91 66.67 76.93
CP_TI 83.33 71.43 76.92
PS_CP 60 75 66.67

TM_CPC 100 42.50 59.65
HT_VT 71.43 38.46 50
WT_LT 80 30.77 44.45
PS_CPC 33.33 66.67 44.44
CP_DA 0 0 0
DT_DT 0 0 0

Total Ave. 71.99 56.98 63.61

Table 3: Identification Performance for 14 NERs

only by Positive Case-Based Learning

Relation
Type

Average
Recall

Average
Precision

Average
F-measure

LOC_CPC 100 91.67 95.65
TM_CP 100 87.50 93.33
CP_TI 100 75 85.71

PS_CPC 100 68.75 81.48
ID_TM 90.91 68.19 77.93
PS_ID 72.22 81.67 76.65

CP_LOC 88.89 66.67 76.19
PS_TM 80 65 71.72
CP_DA 100 50 66.67
DT_DT 66.67 66.67 66.67
PS_CP 60 75 66.67
WT_LT 60 37.50 46.15
HT_VT 42.86 30 35.30

TM_CPC 37.50 31.25 34.09
Total Ave. 78.50 63.92 70.46

Table 4: Identification Performance

for 14 NERs by PNCBL

Finally, we have to acknowledge that it is diffi-
cult to compare the performance of our method to
others because the experimental conditions and
corpus domains of other NER identification efforts
are quite different from ours. Nevertheless, we
would like to use the performance of Chinese NER
identification using memory-based learning (MBL)
(Zhang and Zhou, 2000) for a comparison with our
approach in Table 5. In the table, we select similar
NERs in our domain to correspond to the three
types of the relations (employee-of, product-of, and
location-of). From the table we can deduce that the

7

identification performance of relations for PNCBL
is roughly comparable to that of the MBL.

Method Relation Type Recall Precision F-measure

employee-of 75.60 92.30 83.12

product-of 56.20 87.10 68.32 MBL&I
location-of 67.20 75.60 71.15

PS_TM
PS_CP
PS_ID

80
60

72.22

65
75

81.67

71.72
66.67
76.65

ID_TM
TM_CP

90.91
100

68.19
87.50

77.93
93.33 PNCBL&I

CP_LOC
PS_CPC
TM_CPC

88.89
100

37.50

66.67
68.75
31.25

76.19
81.48
34.09

Table 5: Performances for Relation Identification

(PNCBL&I vs. MBL&I)

6 Conclusion

In this paper, we propose a novel machine learning
and identification approach PNCBL&I. This ap-
proach exhibits the following advantages: (i) The
defined negative cases are used to improve the
NER identification performance as compared to
only using positive cases; (ii) All of the tasks,
building of NER and non-NER patterns, feature
selection, feature weighting and identification
threshold determination, are automatically com-
pleted. It is able to adapt the variation of NER and
non-NER pattern library; (iii) The information
provided by the relation features deals with multi-
ple linguistic levels, depicts both NER and non-
NER patterns, as well as satisfies the requirement
of Chinese language processing; (iv) Self-
similarity is a reasonable measure for the concen-
trative degree of the same kind of NERs or non-
NERs, which can be used to select general-
character and individual-character features for
NERs and non-NERs respectively; (v) The strate-
gies used for achieving an optimal NER identifica-
tion tradeoff, resolving NER conflicts, and
inferring missing NERs can further improve the
performance for NER identification; (vi) It can be
applied to sentence groups containing multiple sen-
tences. Thus identified NERs are allowed to cross
sentences boundaries.

The experimental results have shown that the
method is appropriate and effective for improving
the identification performance of NERs in Chinese.

Acknowledgement

This work is a part of the COLLATE project
under contract no. 01INA01B, which is supported
by the German Ministry for Education and Re-
search.

References
C. Cardie. 1996. Automating Feature Set Selection for

Case-Based Learning of Linguistic Knowledge. In
Proc. of the Conference on Empirical Methods in
Natural Language Processing. University of Pennsyl-
vania, Philadelphia, USA.

W. Daelemans. 1995. Memory-based lexical acquisition
and processing. In P. Steffens, editor, Machine
Translations and the Lexicon, Lecture Notes in Arti-
ficial Intelligence, pages 85-98. Springer Verlag.
Berlin, Germany.

W. Daelemans, A. Bosch, J. Zavrel, K. Van der Sloot,
and A. Vanden Bosch. 2000. TiMBL: Tilburg Mem-
ory Based Learner, Version 3.0, Reference Guide.
Technical Report ILK-00-01, ILK, Tilburg Univer-
sity. Tilburg, The Netherlands.
http://ilk.kub.nl/~ilk/papers/ilk0001.ps.gz.

H. Dang, C. Chia, M. Palmer and F. Chiou. 2002. Sim-
ple Features for Chinese Word Sence Disambigua-
tion. In Proc. of the 19th International Conference on
Computational Linguistics (COLING 2002), pages
204-210. Taipei, Taiwan.

Z. Dong and Q. Dong. 2000. HowNet.
http://www.keenage.com/zhiwang/e_zhiwang.html.

N. Nilsson. 1996. Introduction to Machine Learning: An
Early Draft of a Proposed Textbook. Pages 175-188.
http://robotics.stanford.edu/people/nilsson/mlbook.ht
ml.

C. Stanfill and D. Waltz. 1986. Toward memory-based
reasoning. Communications of the ACM, Vol.29,
No.12, pages 1213-1228.

T. Yao, W. Ding and G. Erbach. 2003. CHINERS: A
Chinese Named Entity Recognition System for the
Sports Domain. In: Proc. of the Second SIGHAN
Workshop on Chinese Language Processing (ACL
2003 Workshop), pages 55-62. Sapporo, Japan.

Y. Zhang and J. Zhou. 2000. A trainable method for
extracting Chinese entity names and their relations.
In Proc. of the Second Chinese Language Processing
Workshop (ACL 2000 Workshop), pages 66-72.
Hongkong, China.

8

Proceedings of the ACL Workshop on Feature Engineering for Machine Learning in NLP, pages 9–16,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Feature Engineering and Post-Processing for Temporal Expression
Recognition Using Conditional Random Fields

Sisay Fissaha Adafre Maarten de Rijke
Informatics Institute, University of Amsterdam

Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
sfissaha,mdr@science.uva.nl

Abstract

We present the results of feature engineer-
ing and post-processing experiments con-
ducted on a temporal expression recogni-
tion task. The former explores the use of
different kinds of tagging schemes and of
exploiting a list of core temporal expres-
sions during training. The latter is con-
cerned with the use of this list for post-
processing the output of a system based on
conditional random fields.

We find that the incorporation of knowl-
edge sources both for training and post-
processing improves recall, while the use
of extended tagging schemes may help
to offset the (mildly) negative impact on
precision. Each of these approaches ad-
dresses a different aspect of the over-
all recognition performance. Taken sep-
arately, the impact on the overall perfor-
mance is low, but by combining the ap-
proaches we achieve both high precision
and high recall scores.

1 Introduction

Temporal expressions (timexes) are natural language
phrases that refer directly to time points or intervals.
They not only convey temporal information on their
own but also serve as anchors for locating events re-
ferred to in a text. Timex recognition is a named
entity recognition (NER) task to which a variety of
natural language processing and machine learning
techniques have been applied. As with other NER

tasks, timex recognition is naturally viewed as a se-
quence labeling task, easily lending itself to ma-
chine learning techniques such as conditional ran-
dom fields (CRFs) (Lafferty et al., 2001).

A preliminary experiment showed that, using
CRFs, a respectable recognition performance can
easily be achieved with a straightforward baseline
system that is based on a simple tagging scheme and
requires very little tuning, yielding F-scores around
0.78 (exact match) or even 0.90 (partial match).
Interestingly, these high scores are mainly due to
high or even very high precision scores, while recall
leaves much to be improved.

The main focus of this paper is on boosting re-
call while maintaining precision at an acceptable
(i.e., high) level. We report on two types of ex-
periments aimed at achieving this goal. One type
concerns feature engineering and the other concerns
post-processing the output of a machine learner.
While we do exploit the special nature of timexes,
for portability reasons we avoid using task-specific
and richer linguistic features (POS, chunks, etc.). In-
stead, we focus on features and techniques that can
readily be applied to other NER tasks.

Specifically, our feature engineering experiments
have two facets. The first concerns identification of
a set of simple features that results in high general-
ization ability (accuracy). Here, particular emphasis
will be placed on the use of a list of core timexes as
a feature. The assumption is that the performance of
data-driven approaches for timex recognition can be
improved by taking into account the peculiar prop-
erties of timexes. Timexes exhibit various patterns,
ranging from regular patterns that can easily be cap-
tured using simple regular expressions to complex
linguistic forms (phrases). While timexes are real-

9

ized in different phrase types, the core lexical items
of timexes are restricted. This suggests that a list
of core timexes can easily be compiled and used in
machine learning-based timex recognition. One ap-
proach of integrating such a list is using them to gen-
erate features, but the availability of such a list also
opens up other possibilities in feature design that we
present in later sections.

The second aspect concerns the tagging scheme.
As in most NER experiments, the task of recogniz-
ing timexes is reduced to tagging. Commonly used
tagging schemes are Inside-Outside (IO) and Begin-
Continue-End-Unique-Negative (BCEUN) (Borth-
wick et al., 1998). The IO tagging scheme, which we
use as a baseline, assigns the tag I to a token if it is
part of a timex and O otherwise. The richer BCEUN
scheme assigns the five tags B, C, E, U, and N to to-
kens depending on whether the token is single-token
timex (U), a non-timex (N), appears at the beginning
(B), at the end (E) or inside a timex boundary (C). In
this paper, we compare the IO, BCEUN and an ex-
tended form of the BCEUN tagging scheme. The
extended scheme adds two tags, PRE and POST, to
the BCEUN scheme, which correspond to tokens ap-
pearing to the left and to the right of a timex.

In contrast, our post-processing experiments in-
vestigate the application of the list of core timexes
for filtering the output of a machine learner. The in-
corporation into the recognition process of explicit
knowledge in the form of a list for post-processing
requires a carefully designed strategy to ensure that
the important properties of the trained model are
kept intact as much as possible while at the same-
time improving overall results. We present an ap-
proach for using a list for post-processing that ex-
ploits the knowledge embodied in the trained model.

The paper is organized as follows. In Section 2
we provide background material, both on the timex
extraction task (§2.1) and on the machine learning
techniques on which we build in this paper, condi-
tional random fields (§2.2). Our ideas on engineer-
ing feature sets and tagging schemes are presented
in Section 3, while we describe our method for ex-
ploiting the explicit knowledge contained in a list in
Section 4. In Section 5, we describe the experimen-
tal setup and present the results of our experiments.
Related work is briefly reviewed in Section 6, and
we conclude in Section 7.

2 Background

2.1 Task Description

In recent years, temporal aspects of information ac-
cess have received increasing amounts of attention,
especially as it relates to news documents. In addi-
tion to factual content, news documents have a tem-
poral context, reporting events that happened, are
happening, or will happen in relation to the publi-
cation date. Temporal documentretrieval concerns
the inclusion of both the document publication date
and the in-text temporal expressions in the retrieval
model (Kalczynski and Chou, 2005). The task in
which we are interested in this paper is identifying
the latter type of expressions, i.e.,extractionof tem-
poral expressions. TERN, the Temporal Expression
Recognition and Normalization Evaluation, is orga-
nized under the auspices of the Automatic Content
Extraction program (ACE,http://www.nist.
gov/speech/tests/ace/). The TERN evalu-
ation provides specific guidelines for the identifica-
tion and normalization of timexes, as well as tagged
corpora for training and testing and evaluation soft-
ware. These guidelines and resources were used for
the experiments described below.

The TERN evaluation consisted of two distinct
tasks: recognition and normalization. Timex recog-
nition involves correctly detecting and delimiting
timexes in text. Normalization involves assigning
recognized timexes a fully qualified temporal value.
Our focus in this paper is on the recognition task;
it is defined, for human annotators, in the TIDES
TIMEX2 annotation guidelines (Ferro et al., 2004).
The recognition task is performed with respect to
corpora of transcribed broadcast news speech and
news wire texts from ACE 2002, ACE 2003, and
ACE 2004, marked up in SGML format and, for
the training set, hand-annotated for TIMEX2s. An
official scorer that evaluates the recognition perfor-
mance is provided as part of the TERN evaluation. It
computes precision, recall, and F-measure both for
TIMEX2 tags (i.e., foroverlapwith a gold standard
TIMEX2 element) and forextentof TIMEX2 ele-
ments (i.e., exact match of entire timexes).

2.2 Conditional Random Fields

We view the recognition of timexes task as a se-
quence labeling task in which each token in the text

10

is classified as being either a timex or not. One ma-
chine learning technique that has recently been in-
troduced to tackle the problem of labeling and seg-
menting sequence data is conditional random fields
(CRFs, (Lafferty et al., 2001)). CRFs are conditional
probability distributions that take the form of ex-
ponential models. The special case of linear chain
CRFs, which takes the following form, has been
widely used for sequence labeling tasks:

P (y | x) =

1
Z (x)

exp

(∑
t=1

∑
k

λkfk (t, yt−1, yt, x)

)
,

where Z (x) is the normalization factor,X =
{x1, . . . , xn} is the observation sequence,Y =
{y1, . . . , yT } is the label sequences,fk andλk are
the feature functions and their weights respectively.
An important property of these models is that proba-
bilities are computed based on a set of feature func-
tions, i.e.,fk (usually binary valued), which are de-
fined on both the observationX and label sequences
Y . These feature functions describe different aspect
of the data and may overlap, providing a flexible way
of describing the task.

CRFs have been shown to perform well in a
number of natural language processing applications,
such as POS tagging (Lafferty et al., 2001), shallow
parsing or NP chunking (Sha and Pereira, 2003), and
named entity recognition (McCallum and Li, 2003).
In this paper, CRFs are applied to the recognition of
timexes; in our experiments we used the minorThird
implementation of CRFs (Cohen, 2004).

3 Feature Engineering

The success of applying CRFs depends on the qual-
ity of the set of features used and the tagging scheme
chosen. Below, we discuss these two aspects in
greater detail.

3.1 Feature sets

Our baseline feature set consists of simple lexical
and character features. These features are derived
from a context window of two words (left and right).
Specifically, the features are the lowercase form of
all the tokens in the span, with each token contribut-
ing a separate feature, and the tokens in the left and

right context window constitute another set of fea-
tures. These feature sets capture the lexical con-
tent and context of timexes. Additionally, charac-
ter type pattern features (such as capitalization, digit
sequence) of tokens in the timexes are used to cap-
ture the character patterns exhibited by some of the
tokens in temporal expressions. These features con-
stitute thebasic featureset.

Another important feature is the list of core
timexes. The list is obtained by first extracting the
phrases with -TMP function tags from the PennTree
bank, and taking the words in these phrases (Marcus
et al., 1993). The resulting list is filtered for stop-
words. Among others, the list of core timexes con-
sists of the names of days of the week and months,
temporal units ‘day,’ ‘month,’ ‘year,’ etc. This list
is used to generate binary features. In addition, the
list is used to guide the design of other complex fea-
tures that may involve one or more of token-tag pairs
in the context of the current token. One way of using
the list for this purpose is to generate a feature that
involves bi-grams tokens. In certain cases, informa-
tion extracted from bi-grams, e.g. +Xx 99 (May 20),
can be more informative than information generated
from individual tokens. We refer to these features as
the list feature set.

3.2 Tagging schemes

A second aspect of feature engineering that we
consider in this paper concerns different tagging
schemes. As mentioned previously, the task of rec-
ognizing timexes is reduced to a sequence-labeling
task. We compare three tagging schemes, IO
(our baseline), BCEUN, and BCEUN+PRE&POST.
While the first two are relatively standard, the last
one is an extension of the BCEUN scheme. The
intuition underlying this tagging scheme is that the
most relevant features for timex recognition are ex-
tracted from the immediate context of the timex,
e.g., the word ’During’ in (1) below.

(1) During <TIMEX2>the past week</TIMEX2> ,
the storm has pounded the city.
During-PRE the-B past-C week-E ,-POST the
storm has pounded the city.

Therefore, instead of treating these elements uni-
formly as outside (N), which ignores their relative
importance, we conjecture that it is worthwhile to

11

assign them a special category, like PRE and POST
corresponding to the tokens immediately preceding
and following a timex, and that this leads to im-
proved results.

4 Post-processing Using a List

In this section, we describe the proposed method
for incorporating a list of core lexical timexes for
post-processing the output of a machine learner. As
we will see below, although the baseline system
(with the IO tagging scheme and the basic feature
set) achieves a high accuracy, the recall scores leave
much to be desired. One important problem that we
have identified is that timexes headed by core lexical
items on the list may be missed. This is either due
to the fact that some of these lexical items are se-
mantically ambiguous and appear in a non-temporal
sense, or the training material does not cover the par-
ticular context. In such cases, a reliable list of core
timexes can be used to identify the missing timexes.
For the purposes of this paper, we have created a
list containing mainly headwords of timexes. These
words are calledtrigger wordssince they are good
indicators of the presence of temporal expressions.

How can we use trigger words? Before describ-
ing our method in some detail, we briefly describe
a more naive (and problematic) approach. Observe
that trigger words usually appear in a text along with
their complements or adjuncts. As a result, pick-
ing only these words will usually contribute to token
recall but span precision is likely to drop. Further-
more, there is no principled way of deciding which
one to pick (semantically ambiguous elements will
also be picked). Let’s make this more precise. The
aim is to take into account the knowledge acquired
by the trained model and to search for the next op-
timal sequence of tags, which assigns the missed
timex a non-negative tag. However, searching for
this sequence by taking the whole word sequence
is impractical since the number of possible tag se-
quences (number of all possible paths in a viterbi
search) is very large. But if one limits the search to
a window of sizen (n < 6), sequential search will
be feasible. The method, then, works on the output
of the system. We illustrate the method by using the
example given in (2) below.

(2) The chairman arrived in the city yesterday, and

will leave next week. The press conference will
be held tomorrow afternoon.

Now, assume that (2) is a test instance (a two-
sentence document), and that the system returns the
following best sequence (3). For readability, the tag
N is not shown on the words that are assigned nega-
tive tags in all the examples below.

(3) The chairman arrived in the city yesterday-U ,
and will leave next week . The press conference
will be held tomorrow-B afternoon-E .

According to (3), the system recognizes only ‘yes-
terday’ and ‘tomorrow afternoon’ but misses ‘next
week’. Assuming our list of timexes contains the
word ‘week’, it tells us that there is a missing tem-
poral expression, headed by ‘week.’ The naive
method is to go through the above output sequence
and change the token-tag pair ‘week-N’ to ‘week-
U’. This procedure recognizes the token ‘week’ as a
valid temporal expression, but this is not correct: the
valid temporal expression is ‘next week’.

We now describe a second approach to incorpo-
rating the knowledge contained in a list of core lexi-
cal timexes as a post-processing device. To illustrate
our ideas, take the complete sequence in (3) and ex-
tract the following segment, which is a window of 7
tokens centered at ‘week’.

(4) . . . [will leave next week . The press] . . .

We reclassifythe tokens in (4) assuming the history
contains the token ‘and’ (the token which appears to
the left of this segment in the original sequence) and
the associated parameters. Of course, the best se-
quence will still assign both ‘next’ and ‘week’ the N
tag since the underlying parameters (feature sets and
the associated weights) are the same as the ones in
the system. However, since the word sequence in (4)
is now short (contains only 7 words) we can main-
tain a list of all possible tag sequences for it and per-
form a sequential search for the next best sequence,
which assigns the ‘week’ token a non-negative tag.
Assume the new tag sequence looks as follows:

(5) . . . [will leave next-B week-E . The press] . . .

This tag sequence will then be placed back into the
original sequence resulting in (6):

12

(6) The chairman arrived in the city yesterday-U ,
and will leave next-B week-E . The press con-
ference will be held tomorrow-B afternoon-E .

In this case, all the temporal expressions will be ex-
tracted since the token sequence ‘next week’ is prop-
erly tagged. Of course, the above procedure can also
return other, invalid sequences as in (7):

(7) a. . . . will leave next-B week-C . The press . . .
b. . . . will leave next week-C . The press . . .
c. . . . will leave next week-C .-E The press . . .

The final extraction step will not return any timex
since none of the candidate sequences in (7) contains
a valid tag sequence. The assumption here is that of
all the tag sequences, which assign the token ‘week’
a non-negative tag, those tag sequences which con-
tain the segment ‘next-B week-E’ are likely to re-
ceive a higher weight since the underlying system
is trained to recognize temporal expressions and the
phrase ‘next week’ is a likely temporal expression.

This way, we hypothesize, it is possible to ex-
ploit the knowledge embodied in the trained model.
As pointed out previously, simply going through
the list and picking only head words like ‘week’
will not guarantee that the extracted tokens form a
valid temporal expression. On the other hand, the
above heuristics, which relies on the trained model,
is likely to pick the adjunct ‘next’.

The post-processing method we have just out-
lined boils down to reclassifying a small segment
of a complete sequence using the same parameters
(feature sets and associated weights) as the original
model, and keeping all possible candidate sequences
and searching through them to find a valid sequence.

5 Experimental Evaluation

In this section we provide an experimental assess-
ment of the feature engineering and post-processing
methods introduced in Sections 3 and 4. Specifi-
cally, we want to determine what their impact is on
the precision and recall scores of the baseline sys-
tem, and how they can be combined to boost recall
while keeping precision at an acceptable level.

5.1 Experimental data

The training data consists of 511 files, and the test
data consists of 192 files; these files were made

available in the 2004 Temporal Expression Recog-
nition and Normalization Evaluation. The tempo-
ral expressions in the training files are marked with
XML tags. The minorThird system takes care of
automatically converting from XML format to the
corresponding tagging schemes. A temporal expres-
sion enclosed by<TIMEX2> tags constitutes a span.
The features in the training instances are generated
by looking at the surface forms of the tokens in the
spans and their surrounding contexts.

5.2 Experimental results

Richer feature sets Table 1 lists the results of the
first part of our experiments. Specifically, for every
tagging scheme, there are two sets of features,basic
and list. The results are based on both exact-match
and partial match between the spans in the gold stan-
dard and the spans in the output of the systems, as
explained in Subsection 2.1. In both the exact and
partial match criteria, the addition of the list features
leads to an improvement in recall, and no change or
a decrease in precision.

In sum, the feature addition helps recall more than
it hurts precision, as the F score goes up nearly ev-
erywhere, except for the exact-match/baseline pair.

Tagging schemes In Table 1 we also list the ex-
traction scores for the tagging schemes we con-
sider, IO, BCEUN, and BCEUN+PRE&POST, as
described in Section 3.2.

Let us first look at the impact of the different tag-
ging schemes in combination with the basic feature
set (rows 3, 5, 7). As we go from the baseline
tagging scheme IO to the more complex BCEUN
and BCEUN+PRE&POS, precision increases on
the exact-match criterion but remains almost the
same on the partial match criterion. Recall, on
the other hand, does not show the same trend.
BCEUN has the highest recall values followed by
BCEUN+PRE&POST and finally IO. In general,
IO based tagging seems to perform worse whereas
BCEUN based tagging scores slightly above its ex-
tended tagging scheme BCEUN+PRE&POST.

Next, considering the combination of extend-
ing the feature set and moving to a richer tagging
scheme (rows 4, 6, 8), we have very much the same
pattern. In both the exact match and the partial
match setting, BCEUN tops (or almost tops) the two

13

Exact Match Partial Match
Tagging scheme Features Prec. Rec. F Prec. Rec. F
IO (baseline) basic 0.846 0.723 0.780 0.973 0.832 0.897

basic+ list 0.822 0.736 0.776 0.963 0.862 0.910
BCEUN basic 0.874 0.768 0.817 0.974 0.856 0.911

basic+ list 0.872 0.794 0.831 0.974 0.887 0.928
BCEUN+PRE&POS basic 0.882 0.749 0.810 0.979 0.831 0.899

basic+ list 0.869 0.785 0.825 0.975 0.881 0.925

Table 1: Timex: Results of training on basic and list features, and different tagging schemes. Highest scores
(Precision, Recall, F-measure) are in bold face.

other schemes in both precision and recall.
In sum, the richer tagging schemes function as

precision enhancing devices. The effect is clearly
visible for the exact-match setting, but less so for
partial matching. It is not the case that the learner
trained on the richest tagging scheme outperforms
all learners trained with poorer schemes.

Post-processing Table 2 shows the results of ap-
plying the post-processing method described in
Section 4. One general pattern we observe in
Table 2 is that the addition of the list features
improves precision for IO and BCEUN tagging
scheme and shows a minor reduction in precision
for BCEUN+PRE&POS tagging scheme in both
matching criteria. Similarly, in the presence of
post-processing, the use of a more complex tagging
scheme results in a better precision. On the other
hand, recall shows a different pattern. The addi-
tion of list features improves recall both for BCEUN
and BCEUN+PRE&POS, but hurts recall for the IO
scheme for both matching criteria.

Comparing the results in Table 1 and Table 2,
we see that post-processing is a recall enhancing
device since all the recall values in Table 2 are
higher than the recall values in Table 1. Pre-
cision values in Table 2, on the other hand, are
lower than those of Table 1. Importantly, the
use of a more complex tagging scheme such as
BCEUN+PRE&POS, allows us to minimize the
drop in precision. In general, the best result (on
partial match) in Table 1 is achieved through the
combination of BCEUN and basic&list features
whereas the best result in Table 2 is achieved by
the combination of BCEUN+PRE&POS and basic
&list features. Although both have the same over-

all scores on the exact match criteria, the latter per-
forms better on partial match criteria. This, in turn,
shows that the combination of post-processing, and
BCEUN+PRE&POS achieves better results.

Stepping back We have seen that the extended
tagging scheme and the post-processing methods
improve on different aspects of the overall per-
formance. As mentioned previously, the ex-
tended tagging scheme is both recall and precision-
oriented, while the post-processing method is pri-
marily recall-oriented. Combining these two meth-
ods results in a system which maintains both these
properties and achieves a better overall result. In or-
der to see how these two methods complement each
other it is sufficient to look at the highest scores
for both precision and recall. The extended tagging
scheme with basic features achieves the highest pre-
cision but has relatively low recall. On the other
hand, the simplest form, the IO tagging scheme
and basic features with post-processing, achieves
the highest recall and the lowest precision in par-
tial match. This shows that the IO tagging scheme
with basic features imposes a minimal amount of
constraints, which allows for most of the timexes in
the list to be extracted. Put differently, it does not
discriminate well between the valid vs invalid oc-
currences of timexes from the list in the text. At the
other extreme, the extended tagging scheme with 7
tags imposes strict criteria on the type of words that
constitute a timex, thereby restricting which occur-
rences of the timex in the list count as valid timexes.

In general, although the overall gain in score is
limited, our feature engineering and post-processing
efforts reveal some interesting facts. First, they show
one possible way of using a list for post-processing.

14

Exact Match Partial Match
Tagging scheme Features Prec. Rec. F Prec. Rec. F
IO basic (baseline) 0.846 0.723 0.7800.973 0.832 0.897

basic 0.756 0.780 0.768 0.9020.931 0.916
basic+ list 0.772 0.752 0.762 0.930 0.906 0.918

BCEUN basic 0.827 0.789 0.808 0.945 0.901 0.922
basic+ list 0.847 0.801 0.823 0.958 0.906 0.931

BCEUN+PRE&POS basic 0.863 0.765 0.8110.973 0.863 0.915
basic+ list 0.861 0.804 0.831 0.970 0.906 0.937

Table 2: Timex: Results of applying post-processing on the systems in Table 1. The baseline (from Table 1)
is repeated for ease of reference; it does not use post-processing. Highest scores (Precision, Recall, F-
measure) are in bold face.

This method is especially appropriate for situations
where better recall is important. It offers a means of
controlling the loss in precision (gain in recall) by
allowing a systematic process of recovering missing
expressions that exploits the knowledge already em-
bodied in a probabilistically trained model, thereby
reducing the extent to which we have to make ran-
dom decisions. The method is particularly sensitive
to the criterion (the quality of the list in the current
experiment) used for post-processing.

6 Related Work

A large number of publications deals with extraction
of temporal expressions; the task is often treated as
part of a more involved task combining recognition
and normalization of timexes. As a result, many
timex interpretation systems are a mixture of both
rule-based and machine learning approaches (Mani
and Wilson, 2000). This is partly due to the fact that
timex recognition is more amenable to data-driven
methods whereas normalization is best handled us-
ing primarily rule-based methods. We focused on
machine learning methods for the timex recognition
task only. See (Katz et al., 2005) for an overview of
methods used for addressing the TERN 2004 task.

In many machine learning-based named-entity
recognition tasks dictionaries are used for improving
results. They are commonly used to generate binary
features. Sarawagi and Cohen (2004) showed that
semi-CRFs models for NE recognition perform bet-
ter than conventional CRFs. One advantage of semi-
CRFs models is that the units that will be tagged are
segments which may contain one or more tokens,

rather than single tokens as is done in conventional
CRFs. This in turn allows one to incorporate seg-
ment based-features, e.g., segment length, and also
facilitates integration of external dictionaries since
segments are more likely to match the entries of an
external dictionary than tokens. In this paper, we
stuck to conventional CRFs, which are computation-
ally less expensive, and introduced post-processing
techniques, which takes into account knowledge em-
bodied in the trained model.

Kristjannson et al. (2004) introduced constrained
CRFs (CCRFs), a model which returns an optimal
label sequence that fulfills a set of constraints im-
posed by the user. The model is meant to be used in
an interactive information extraction environment,
in which the system extracts structured information
(fields) from a text and presents it to the user, and
the user makes the necessary correction and submits
it back to the system. These corrections constitute
an additional set of constraints for CCRFs. CCRFs
re-computes the optimal sequence by taking these
constraints into account. The method is shown to
reduce the number of user interactions required in
validating the extracted information. In a very lim-
ited sense our approach is similar to this work. The
list of core lexical timexes that we use represents
the set of constraints on the output of the underly-
ing system. However, our method differs in the way
in which the constraints are implemented. In our
case, we take a segment of the whole sequence that
contains a missing timex, and reclassify the words
in this segment while keeping all possible tag se-
quences sorted based on their weights. We then

15

search for the next optimal sequence that assigns the
missing timex a non-negative tag sequentially. On
the other hand, Kristjannson et al. (2004) take the
whole sequence and recompute an optimal sequence
that satisfies the given constraints. The constraints
are a set of states which the resulting optimal se-
quence should include.

7 Conclusion

In this paper we presented different feature engi-
neering and post-processing approaches for improv-
ing the results of timex recognition task. The first
approach explores the different set of features that
can be used for training a CRF-based timex recog-
nition system. The second investigates the effect of
the different tagging scheme for timex recognition
task. The final approach we considered applies a list
of core timexes for post-processing the output of a
CRF system. Each of these approaches addresses
different aspects of the overall performance. The
use of a list of timexes both during training and for
post-processing resulted in improved recall whereas
the use of a more complex tagging scheme results
in better precision. Their individual overall contri-
bution to the recognition performances is limited or
even negative whereas their combination resulted in
substantial improvements over the baseline.

While we exploited the special nature of timexes,
we did avoid using linguistic features (POS, chunks,
etc.), and we did so for portability reasons. We fo-
cused exclusively on features and techniques that
can readily be applied to other named entity recog-
nition tasks. For instance, the basic and list features
can also be used in NER tasks such as PERSON,
LOCATION, etc. Moreover, the way that we have
used a list of core expressions for post-processing is
also task-independent, and it can easily be applied
for other NER tasks.

Acknowledgments

Sisay Fissaha Adafre was supported by the Nether-
lands Organization for Scientific Research (NWO)
under project number 220-80-001. Maarten de
Rijke was supported by grants from NWO, under
project numbers 365-20-005, 612.069.006, 220-80-
001, 612.000.106, 612.000.207, 612.066.302, 264-
70-050, and 017.001.190.

References

[Borthwick et al.1998]A. Borthwick, J. Sterling,
E. Agichtein, and R. Grishman. 1998. Exploiting
diverse knowledge sources via maximum entropy in
named entity recognition. InWorkshop on Very Large
Corpora, ACL.

[Cohen2004]W. Cohen. 2004. Methods for identifying
names and ontological relations in text using heuris-
tics for inducing regularities from data.http://
minorthird.sourceforge.net .

[Ferro et al.2004]L. Ferro, L. Gerber, I. Mani, and
G. Wilson, 2004. TIDES 2003 Standard for the An-
notation of Temporal Expressions. MITRE, April.

[Kalczynski and Chou2005]P.J. Kalczynski and A. Chou.
2005. Temporal document retrieval model for business
news archives.Information Processing and Manage-
ment, 41:635–650.

[Katz et al.2005]G. Katz, J. Pustejovsky, and F. Schilder,
editors. 2005. Proceedings Dagstuhl Workshop on
Annotating, Extracting, and Reasoning about Time
and Events.

[Kristjannson et al.2004]T. Kristjannson, A. Culotta,
P. Viola, and A. McCallum. 2004. Interactive infor-
mation extraction with constrained conditional random
fields. InNineteenth National Conference on Artificial
Intelligence, AAAI.

[Lafferty et al.2001]J. Lafferty, F. Pereira, and A. McCal-
lum. 2001. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In
Proceedings of the International Conference on Ma-
chine Learning.

[Mani and Wilson2000]I. Mani and G. Wilson. 2000.
Robust temporal processing of news. InProceedings
of the 38th ACL.

[Marcus et al.1993]M.P. Marcus, B. Santorini, and M.A.
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn treebank.Computational
Linguistics, 19:313–330.

[McCallum and Li2003]A. McCallum and W. Li. 2003.
Early results for Named Entity Recognition with con-
ditional random fields, feature induction and web-
enhanced lexicons. InProceedings of the 7th CoNLL.

[Sarawagi and Cohen2004]S. Sarawagi and W.W. Cohen.
2004. Semi-markov conditional random fields for in-
formation extraction. InNIPs (to appear).

[Sha and Pereira2003]F. Sha and F. Pereira. 2003. Shal-
low parsing with conditional random fields. InPro-
ceedings of Human Language Technology-NAACL.

16

Proceedings of the ACL Workshop on Feature Engineering for Machine Learning in NLP, pages 17–23,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Temporal Feature Modification for Retrospective Categorization

Robert Liebscher and Richard K. Belew
Department of Cognitive Science

University of California, San Diego
{rliebsch|rik}@cogsci.ucsd.edu

Abstract

We show that the intelligent use of one small
piece of contextual information–a document’s
publication date–can improve the performance
of classifiers trained on a text categorization
task. We focus on academic research docu-
ments, where the date of publication undoubt-
edly has an effect on an author’s choice of
words. To exploit this contextual feature, we
propose the technique of temporal feature mod-
ification, which takes various sources of lexi-
cal change into account, including changes in
term frequency, associative strength between
terms and categories, and dynamic categoriza-
tion systems. We present results of classifi-
cation experiments using both full text papers
and abstracts of conference proceedings, show-
ing improved classification accuracy across the
whole collection, with performance increases
of greater than 40% when temporal features
are exploited. The technique is fast, classifier-
independent, and works well even when mak-
ing only a few modifications.

1 Introduction

As they are normally conceived, many tasks relevant to
Computational Linguistics (CL), such as text categoriza-
tion, clustering, and information retrieval, ignore the con-
text in which a document was written, focusing instead on
the lexical content of the document. Numerous improve-
ments have been made in such tasks when context is con-
sidered, for example the hyperlink or citation structure of
a document collection (Cohn and Hofmann, 2001; Getoor
et al., 2001). In this paper, we aim to show that the intel-
ligent use of another dimension of context–a document’s
publication date–can improve the performance of classi-
fiers trained on a text categorization task.

Traditional publications, such as academic papers and
patents, have histories that span centuries. The World

Wide Web is no longer a new frontier; over a decade of its
contents have been archived (Kahle, 2005); Usenet and
other electronic discussion boards have been around for
several decades. These forums continue to increase their
publication rates and show no signs of slowing. A cur-
sory glance at any one of them at two different points in
time can reveal widely varying content.

For a concrete example, we can ask, “What is Compu-
tational Linguistics about?” Some topics, such as ma-
chine translation, lie at the heart of the discipline and
will always be of interest. Others are ephemeral or have
reached theoretical upper bounds on performance. It is
thus more appropriate to ask what CL is about at some
point in time. Consider Table 1, which lists the top five
unigrams that best distinguished the field at different six-
year periods, as derived from the odds ratio measure (see
Section 3.2) over the full text of the ACL proceedings.

1979-84 1985-90 1991-96 1997-02
system phrase discourse word
natural plan tree corpus
language structure algorithm training
knowledge logical unification model
database interpret plan data

Table 1: ACL’s most characteristic terms for four time
periods.

While these changes are interesting in their own right
for an historical linguist, we aim to show that they can
also be exploited for practical purposes. We focus on a
fairly homogeneous set of academic research documents,
where the time of publication undoubtedly has an effect
both on an author’s choice of words and on a field’s defi-
nition of underlying topical categories. A document must
say something novel while building upon what has al-
ready been said. This dynamic generates a landscape
of changing research language, where authors and dis-
ciplines constantly influence and alter the course of one
another.

17

1.1 Motivations

Text Categorization (TC) systems are typically used to
classify a stream of documents soon after they are pro-
duced, based upon a set of historical training data. It is
common for some TC applications, such as topic tracking
(see Section 5.2), to downweight older features, or the
feature vectors of entire documents, while placing more
emphasis on features that have recently shown increased
importance through changes in frequency and discrimi-
native ability.

Our task, which we call retrospective categorization,
uses historical data in both the training and test sets. It is
retrospective from the viewpoint of a current user brows-
ing through previous writings that are categorized with
respect to a “modern” interpretation. Our approach is mo-
tivated by three observations concerning lexical change
over time, and our task is to modify features so that a text
classifier can account for all three.

First, lexical changes can take place within a category.
The text collections used in our experiments are from var-
ious conference proceedings of the Association of Com-
puting Machinery, which uses a hierarchical classifica-
tion system consisting of over 500 labels (see Section
2). As was suggested by the example of Table 1, even if
classification labels remain constant over time, the terms
that best characterize them can change to reflect evolv-
ing “meanings”. We can expect that many of the terms
most closely associated with a category like Computa-
tional Linguistics cannot be captured properly without
explicitly addressing their temporal context.

Second, lexical changes can occur between categories.
A term that is significant to one category can suddenly
or gradually become of interest to another category. This
is especially applicable in news corpora (see examples
in Section 3), but also applies to academic research doc-
uments. Terminological “migrations” between topics in
computer science, and across all of science, are common.

Third, any coherent document collection on a par-
ticular topic is sufficiently dynamic that, over time, its
categorization system must be updated to reflect the
changes in the world on which its texts are based. Al-
though Computational Linguistics predates Artificial In-
telligence (Kay, 2003), many now consider the former a
subset of the latter. Within CL, technological and theo-
retical developments have continually altered the labels
ascribed to particular works.

In the ACM’s hierarchical Computing Classification
System (see Section 2.1), several types of transforma-
tions are seen in the updates it received in 1983, 1987,
1991, and 1998.1 In bifurcations, categories can be split
apart. With collapses, categories that were formerly more
fine-grained, but now do not receive much attention, can

1http://acm.org/class/

be combined. Finally, entirely new categories can be in-
serted into the hierarchy.

2 Data

To make our experiments tractable and easily repeatable
for different parameter combinations, we chose to train
and test on two subsets of the ACM corpus. One subset
consists of collections of abstracts from several different
ACM conferences. The other includes the full text col-
lection of documents from one conference.

2.1 The ACM hierarchy

All classifications were performed with respect to the
ACM’s Computing Classification System, 1998 version.
This, the most recent version of the ACM-CCS, is a hi-
erarchic classification scheme that potentially presents a
wide range of hierarchic classification issues. Because
the work reported here is focused on temporal aspects of
text classification, we have adopted a strategy that effec-
tively “flattens” the hierarchy. We interpret a document
which has a primary2 category at a narrow, low level in
the hierarchy (e.g., H.3.3.CLUSTERING) as also classi-
fied at all broader, higher-level categories leading to the
root (H, H.3, H.3.3). With this construction, the most
refined categories will have fewer example documents,
while broader categories will have more.

For each of the corpora considered, a threshold of 50
documents was set to guarantee a sufficient number of in-
stances to train a classifier. Narrower branches of the full
ACM-CCS tree were truncated if they contained insuf-
ficient numbers of examples, and these documents were
associated with their parent nodes. For example, if H.3.3
contained 20 documents and H.3.4 contained 30, these
would be “collapsed” into the H.3 category.

All of our corpora carry publication timestamp infor-
mation involving time scales on the order of one to three
decades. The field of computer science, not surprisingly,
has been especially fortunate in that most of its pub-
lications have been recorded electronically. While ob-
viously skewed relative to scientific and academic pub-
lishing more generally, we nevertheless find significant
“micro-cultural” variation among the different special in-
terest groups.

2.2 SIGIR full text

We have processed the annual proceedings of the Associ-
ation for Computing Machinery’s Special Interest Group
in Information Retrieval (SIGIR) conference from its in-
ception in 1978 to 2002. The collection contains over
1,000 documents, most of which are 6-10 page papers,
though some are keynote addresses and 2-3 page poster

2Many ACM documents also are classified with additional
“other” categories, but these were not used.

18

Corpus Vocab size No. docs No. cats
SIGIR 16104 520 17
SIGCHI 4524 1910 20
SIGPLAN 6744 3123 22
DAC 6311 2707 20

Table 2: Corpus features

Unlabeled Expected
Proceedings 18.97% 7.73%
Periodicals 19.08% 11.54%
No. docs 24,567 8,703

Table 3: Missing classification labels in ACM

summaries. Every document is tagged with its year of
publication. Unfortunately, only about half of the SIGIR
documents bear category labels. The majority of these
omissions fall within the 1978-1987 range, leaving us the
remaining 15 years to work with.

2.3 Conference abstracts

We collected nearly 8,000 abstracts from the Special In-
terest Group in Programming Languages (SIGPLAN),
the Special Interest Group in Computer-Human Interac-
tion (SIGCHI) and the Design Automation Conference
(DAC). Characteristics of these collections, and of the SI-
GIR texts, are shown in Table 2.

2.4 Missing labels in ACM

We derive the statistics below from the corpus of all doc-
uments published by the ACM between 1960 and 2003.
The arguments can be applied to any corpus which has
categorized documents, but for which there are classifi-
cation gaps in the record.

The first column of Table 3 shows that nearly one fifth
of all ACM documents, from both conference proceed-
ings and periodicals, do not possess category labels. We
define a document’s label as “expected” when more than
half of the other documents in its publication (one confer-
ence proceeding or one issue of a periodical) are labeled,
and if there are more than ten total. The second column
lists the percentage of documents where we expected a
label but did not find one.

3 Methods

Text categorization (TC) is the problem of assigning doc-
uments to one or more pre-defined categories. As Section
1 demonstrated, the terms which best characterize a cate-
gory can change through time, so it is not unreasonable to
assume that intelligent use of temporal context will prove
useful in TC.

Imagine the example of sorting several decades of
articles from the Los Angeles Times into the cate-
gories ENTERTAINMENT, BUSINESS, SPORTS, POL-
ITICS, and WEATHER. Suppose we come across the
term schwarzenegger in a training document. In the
1970s, during his career as a professional bodybuilder,
Arnold Schwarzenegger’s name would be a strong indica-
tor of a SPORTS document. During his film career in the
1980s-1990s, his name would be most likely to appear in
an ENTERTAINMENT document. After 2003, at the out-
set of his term as California’s governor, the POLITICS
and BUSINESS categories would be the most likely can-
didates. We refer to schwarzenegger as a temporally
perturbed term, because its distribution across categories
varies greatly with time.

Documents containing temporally perturbed terms
hold valuable information, but this is lost in a statistical
analysis based purely on the average distribution of terms
across categories, irrespective of temporal context. This
information can be recovered with a technique we call
temporal feature modification (TFM). We first outline a
formal model for its use.

3.1 A term generator framework

One obvious way to introduce temporal information into
the categorization task is to simply provide the year of
publication as a new lexical feature. Preliminary exper-
iments (not reported here) showed that this method had
virtually no effect on classification performance. When
the date features were “emphasized” with higher frequen-
cies, classification performance declined.

Instead, we proceed from the perspective of a simpli-
fied language generator model (e.g. (Blei et al., 2003)).
We imagine that the first step in the production of a doc-
ument involves an author choosing a category C. Each
term k (word, bigram, phrase, etc.) is accorded a unique
generator G

�
that determines the distribution of k across

categories, and therefore its likelihood to appear in cat-
egory C. The model assumes that all authors share the
same generator for each term, and that the generators do
not change over time. We are particularly interested in
identifying temporally perturbed lexical generators that
violate this assumption.

External events at time t can perturb the generator of k,
causing Pr(C|k �) to be different relative to the background
Pr(C|k) computed over the entire corpus. If the perturba-
tion is significant, we want to separate the instances of k
at time t from all other instances.

Returning to our earlier example, we would treat
a generic, atemporal occurrence of schwarzeneg-
ger and the pseudo-term “schwarzenegger+2003”
as though they were actually different terms, because they
were produced by two different generators. We hypoth-
esize that separating the analysis of the two can improve

19

our estimates of the true Pr(C|k), both in 2003 and in
other years.

3.2 TFM Procedure

The generator model motivates a procedure we outline
below for flagging certain lexemes with explicit temporal
information that distinguish them so as to contrast them
with those generated by the underlying atemporal alter-
natives. This procedure makes use of the (log) odds ratio
for feature selection:�������	��
���������������������	� ��!#"	$&%('*)�",+

) " $-%�'.! " +
�

where p is Pr(k|C), the probability that term k is
present, given category C, and q is Pr(k|!C).

The odds ratio between a term and a category is a mea-
sure of the associated strength of the two, for it measures
the likelihood that a term will occur frequently within a
category and (relatively) infrequently outside. Odds ratio
happens to perform very well in feature selection tests;
see (Mladenic, 1998) for details on its use and variations.
Ultimately, it is an arbitrary choice and could be replaced
by any method that measures term-category strength.

The following pseudocode describes the process of
temporal feature modification:

VOCABULARY ADDITIONS:
for each class C:
for each time (year) t:
PreModList(C,t,L) = OddsRatio(C,t,L)
ModifyList(t) =
DecisionRule(PreModList(C,t,L)
for each term k in ModifyList(t):
Add pseudo-term "k+t" to Vocab

DOCUMENT MODIFICATIONS:
for each document:
t = time (year) of doc
for each term k:
if "k+t" in Vocab:
Replace k with "k+t"

Classify modified document

PreModList(C,t,L) is a list of the top L terms that, by
the odds ratio measure, are highly associated with cate-
gory C at time t. (In our case, time is divided annually,
because this is the finest resolution we have for many
of the documents in our corpus.) We test the hypothe-
sis that these come from a perturbed generator at time t,
as opposed to the atemporal generator G

�
, by comparing

the odds ratios of term-category pairs in a PreModList at
time t with the same pairs across the entire corpus. Terms
which pass this test are added to the final ModifyList(t)
for time t. For the results that we report, DecisionRule is
a simple ratio test with threshold factor f. Suppose f is
2.0: if the odds ratio between C and k is twice as great at
time t as it is atemporally, the decision rule is “passed”.

0 2 4 6 8 10 12 14 16 18 20 22
−5

0

5

10

15

20

25

30

35

40

45

Percent terms modified

P
er

ce
nt

 a
cc

ur
ac

y
im

pr
ov

em
en

t

SIGPLAN

SIGCHI

DAC

Atemporal baseline

Figure 1: Improvement in categorization performance
with TFM, using the best parameter combinations for
each corpus.

The generator G
�

is then considered perturbed at time t
and k is added to ModifyList(t). In the training and test-
ing phases, the documents are modified so that a term k is
replaced with the pseudo-term "k+t" if it passed the ratio
test.

3.3 Text categorization details

The TC parameters held constant in our experiments
are: Stoplist, Porter stemming, and Laplacian smoothing.
Other parameters were varied: four different classifiers,
three unique minimum vocabulary frequencies, unigrams
and bigrams, and four threshold factors f. 10-fold cross
validation was used for parameter selection, and 10% of
the corpus was held out for testing purposes. Both of
these sets were distributed evenly across time.

4 Results

Table 4 shows the parameter combinations, chosen by
ten-fold cross-validation, that exhibited the greatest in-
crease in categorization performance for each corpus.

Using these parameters, Figure 1 shows the improve-
ment in accuracy for different percentages of terms mod-
ified on the test sets. The average accuracies (across
all parameter combinations) when no terms are modified
are less than stellar, ranging from 26.70% (SIGCHI) to
37.50% (SIGPLAN), due to the difficulty of the task (20-
22 similar categories; each document can only belong to
one). Our aim here, however, is simply to show improve-
ment. A baseline of 0.0 in the plot indicates accuracy
without any temporal modifications.

Figure 2 shows the accuracy on an absolute scale when
TFM is applied to the full text SIGIR corpus. Perfor-
mance increased from the atemporal baseline of 28.85%

20

Corpus Improvement Classifier n-gram size Vocab frequency min. Ratio threshold f
SIGIR 33.32% Naive Bayes Bigram 2 2.0
SIGCHI 40.82% TF.IDF Bigram 10 1.0
SIGPLAN 18.74% KNN Unigram 10 1.5
DAC 20.69% KNN Unigram 2 1.0

Table 4: Top parameter combinations for TFM by improvement in classification accuracy. Vocab frequency min. is
the minimum number of times a term must appear in the corpus in order to be included.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
28

30

32

34

36

38

40

Percent terms modified

P
er

ce
nt

 a
cc

ur
ac

y

Figure 2: Absolute categorization performance with
TFM for the SIGIR full text corpus.

correct to a maximum of 38.46% when only 1.11% of the
terms were modified. The ModifyLists for each category
and year averaged slightly fewer than two terms each.

In most cases, the technique performs best when mak-
ing relatively few modifications: the left sides of each
figure show a rapid performance increase, followed by
a gradual decline as more terms are modified. After re-
quiring the one-time computation of odds ratios in the
training set for each category/year, TFM is very fast and
requires negligible extra storage space. This is important
when computing time is at a premium and enormous cor-
pora such as the ACM full text collection are used. It is
also useful for quickly testing potential enhancements to
the process, some of which are discussed in Section 6.

The results indicate that L in PreModList(C,t,L) need
not exceed single digits, and that performance asymp-
totes as the number of terms modified increases. As this
happens, more infrequent terms are judged to have been
produced by perturbed generators, thus making their true
distributions difficult to compute (for the years in which
they are not modified) due to an insufficient number of
examples.

4.1 General description of results

A quantitative average of all results, using all parameter
combinations, is not very meaningful, so we provide a
qualitative description of the results not shown in Table 4
and Figures 1 and 2. Of the 96 different parameter combi-
nations tested on four different corpora, 83.33% resulted
in overall increases in performance. The greatest increase
peaked at 40.82% improvement over baseline (atempo-
ral) accuracy, while the greatest decrease dropped perfor-
mance by only 8.31%.

5 Related Work

The use of metadata and other complementary (non-
content) information to improve text categorization is an
interesting and well-known problem. The specific use of
temporal information, even if only implicitly, for tasks
closely related to TC has been explored through adaptive
information filtering (AIF) and topic detection and track-
ing (TDT).

5.1 Adaptive Information Filtering

There exists a large body of work on information filter-
ing, which “is concerned with the problem of delivering
useful information to a user while preventing an overload
of irrelevant information” (Lam et al., 1996). Of partic-
ular interest here is adaptive information filtering (AIF),
which handles the problems of concept drift (a gradual
change in the data set a classifier must learn from) and
concept shift (a more radical change).

Klinkenberg and Renz test eight different classifiers on
their abilities to adapt to changing user preferences for
news documents (Klinkenberg and Renz, 1998). They try
different “data management techniques” for the concept
drift scenario, selectively altering the size of the set of
examples (the adaptive window) that a classifier trains on
using a heuristic that accounts for the degree of dissimi-
larity between the current batch of examples and previous
batches. Klinkenberg and Joachims later abandon this ap-
proach because it relies on “complicated heuristics”, and
instead concentrate their analysis on support vector ma-
chines (Klinkenberg and Joachims, 2000).

Stanley uses an innovative approach that eschews the
need for an adaptive window of training examples, and

21

instead relies on a voting system for decision trees (Stan-
ley, 2001). The weight of each classifier’s vote (classifi-
cation) is proportional to its record in predicting classi-
fications for previous examples. He notes that this tech-
nique does not rely on decision trees; rather, any combi-
nation of classifiers can be inserted into the system.

The concept drift and shift scenarios used in the pub-
lished literature are often unrealistic and not based upon
actual user data. Topic Detection and Tracking, described
in the following section, must work not with the behavior
of one individual, but with texts that report on real exter-
nal events and are not subject to artificial manipulation.
This multifaceted, unsupervised character of TDT makes
it a more appropriate precursor with which to compare
our work.

5.2 Topic Detection and Tracking

Franz et al. note that Topic Detection and Tracking
(TDT) is fundamentally different from AIF in that the
“adaptive filtering task focuses on performance improve-
ments driven by feedback from real-time human rele-
vance assessments. TDT systems, on the other hand, are
designed to run autonomously without human feedback”
(Franz et al., 2001). Having roots in information retrieval,
text categorization, and information filtering, the initial
TDT studies used broadcast news transcripts and writ-
ten news corpora to accomplish tasks ranging from news
story clustering to boundary segmentation. Of most rel-
evance to the present work is the topic tracking task. In
this task, given a small number (1-4) of training stories
known to be about a particular event, the system must
make a binary decision about whether each story in an
incoming stream is about that event.

Many TDT systems make use of temporal information,
at least implicitly. Some employ a least recently used
(Chen and Ku, 2002) or decay (Allan et al., 2002) func-
tion to restrict the lexicon available to the system at any
given point in time to those terms most likely to be of use
in the topic tracking task.

There are many projects with a foundation in TDT that
go beyond the initial tasks and corpora. For example,
TDT-inspired language modeling techniques have been
used to train a system to make intelligent stock trades
based upon temporal analysis of financial texts (Lavrenko
et al., 2000). Retrospective timeline generation has also
become popular, as exhibited by Google’s Zeitgeist fea-
ture and browsers of TDT news corpora (Swan and Allan,
2000; Swan and Jensen, 2000).

The first five years of TDT research are nicely summa-
rized by Allan (Allan, 2002).

6 Summary and Future Work

In this paper, we have demonstrated a feature modifi-
cation technique that accounts for three kinds of lexi-

cal changes in a set of documents with category labels.
Within a category, the distribution of terms can change
to reflect the changing nature of the category. Terms can
also “migrate” between categories. Finally, the catego-
rization system itself can change, leading to necessary
lexical changes in the categories that do not find them-
selves with altered labels. Temporal feature modification
(TFM) accounts for these changes and improves perfor-
mance on the retrospective categorization task as it is ap-
plied to subsets of the Association for Computing Ma-
chinery’s document collection.

While the results presented in this paper indicate that
TFM can improve classification accuracy, we would like
to demonstrate that its mechanism truly incorporates
changes in the lexical content of categories, such as those
outlined in Section 1.1. A simple baseline comparison
would pit TFM against a procedure in which the corpus
is divided into slices temporally, and a classifier is trained
and tested on each slice individually. Due to changes in
community interest in certain topics, and in the structure
of the hierarchy, some categories are heavily represented
in certain (temporal) parts of the corpus and virtually ab-
sent elsewhere. Thus, the chance of finding every cat-
egory represented in a single year is very low. For our
corpora, this did not even occur once.

The “bare bones” version of TFM presented here is in-
tended as a proof-of-concept. Many of the parameters
and procedures can be set arbitrarily. For initial feature
selection, we used odds ratio because it exhibits good
performance in TC (Mladenic, 1998), but it could be re-
placed by another method such as information gain, mu-
tual information, or simple term/category probabilities.
The ratio test is not a very sophisticated way to choose
which terms should be modified, and presently only de-
tects the surges in the use of a term, while ignoring the
(admittedly rare) declines.

In experiments on a Usenet corpus (not reported here)
that was more balanced in terms of documents per cate-
gory and per year, we found that allowing different terms
to “compete” for modification was more effective than
the egalitarian practice of choosing L terms from each
category/year. There is no reason to believe that each
category/year is equally likely to contribute temporally
perturbed terms.

We would also like to exploit temporal contiguity. The
present implementation treats time slices as independent
entities, which precludes the possibility of discovering
temporal trends in the data. One way to incorporate
trends implicitly is to run a smoothing filter across the
temporally aligned frequencies. Also, we treat each slice
at annual resolution. Initial tests show that aggregat-
ing two or more years into one slice improves perfor-
mance for some corpora, particularly those with tempo-
rally sparse data such as DAC.

22

Acknowledgements

Many thanks to the anonymous reviewers for their helpful
comments and suggestions.

References

J. Allan, V. Lavrenko, and R. Swan. 2002. Explorations
within topic tracking and detection. In J. Allan, editor,
Topic Detection and Tracking: Event-based Informa-
tion Organization, pages 197–224. Kluwer Academic
Publishers.

J. Allan. 2002. Introduction to topic detection and track-
ing. In J. Allan, editor, Topic Detection and Track-
ing: Event-based Information Organization, pages 1–
16. Kluwer Academic Publishers.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent dirichlet allocation. The Journal of Ma-
chine Learning Research, 3:993–1002.

H. Chen and L. Ku. 2002. An nlp & ir approach to
topic detection. In J. Allan, editor, Topic Detection
and Tracking: Event-based information organization,
pages 243–264. Kluwer Academic Publishers.

D. Cohn and T. Hofmann. 2001. The missing link: a
probabilistic model of document content and hyperlink
connectivity. In Advances in Neural Information Pro-
cessing Systems, pages 430–436. MIT Press.

M. Franz, T. Ward, J.S. McCarley, and W. Zhu. 2001.
Unsupervised and supervised clustering for topic
tracking. In Proceedings of the Special Interest Group
in Information Retrieval, pages 310–317.

L. Getoor, E. Segal, B. Taskar, and D. Koller. 2001.
Probabilistic models of text and link structure for hy-
pertext classification (2001). In Proceedings of the
2001 IJCAI Workshop on Text Learning: Beyond Su-
pervision.

Brewster Kahle. 2005. The internet archive.
http://www.archive.org/.

Martin Kay. 2003. Introduction. In Ruslan Mitkov, ed-
itor, The Oxford Handbook of Computational Linguis-
tics, pages xvii–xx. Oxford University Press.

R. Klinkenberg and T. Joachims. 2000. Detecting con-
cept drift with support vector machines. In Proceed-
ings of the Seventeenth International Conference on
Machine Learning (ICML), page 11. Morgan Kauf-
mann.

R. Klinkenberg and I. Renz. 1998. Adaptive information
filtering: Learning in the presence of concept drifts. In
AAAI/ICML workshop on learning for text categoriza-
tion.

W. Lam, S. Mukhopadhyay, J. Mostafa, and M. Palakal.
1996. Detection of shifts in user interests for per-
sonalized information filtering. In Proceedings of the
Special Interest Group in Information Retrieval, pages
317–326.

V. Lavrenko, M. Schmill, D. Lawrie, P. Ogilvie,
D. Jensen, and J. Allan. 2000. Mining of concurrent
text and time series. In 6th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data
Mining, Text Mining Workshop, pages 37–44.

D. Mladenic. 1998. Machine Learning on non-
homogeneous, distributed text data. Ph.D. thesis, Uni-
versity of Ljubljana, Slovenia.

K.O. Stanley. 2001. Learning concept drift with a com-
mittee of decision trees. Computer Science Depart-
ment, University of Texas-Austin.

R. Swan and J. Allan. 2000. Automatic generation of
overview timelines. In Proceedings of the Special In-
terest Group in Information Retrieval, pages 47–55.

R. Swan and D. Jensen. 2000. Timemines: Construct-
ing timelines with statistical models of word usage.
In ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining.

23

Proceedings of the ACL Workshop on Feature Engineering for Machine Learning in NLP, pages 24–31,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Using Semantic and Syntactic Graphs for Call Classification

Dilek Hakkani-Tür Gokhan Tur
AT&T Labs – Research

Florham Park, NJ, 07932�
dtur,gtur � @research.att.com

Ananlada Chotimongkol
Carnegie Mellon University

Pittsburgh, PA 15213
ananlada@cs.cmu.edu

Abstract

In this paper, we introduce a new data
representation format for language pro-
cessing, the syntactic and semantic graphs
(SSGs), and show its use for call classifi-
cation in spoken dialog systems. For each
sentence or utterance, these graphs in-
clude lexical information (words), syntac-
tic information (such as the part of speech
tags of the words and the syntactic parse of
the utterance), and semantic information
(such as the named entities and seman-
tic role labels). In our experiments, we
used written language as the training data
while computing SSGs and tested on spo-
ken language. In spite of this mismatch,
we have shown that this is a very promis-
ing approach for classifying complex ex-
amples, and by using SSGs it is possible
to reduce the call classification error rate
by 4.74% relative.

1 Introduction

Goal-oriented spoken dialog systems aim to iden-
tify intents of humans, expressed in natural lan-
guage, and take actions accordingly to satisfy their
requests. The intent of each speaker is identified
using a natural language understanding component.
This step can be seen as a multi-label, multi-class
call classification problem for customer care appli-
cations (Gorin et al., 1997; Chu-Carroll and Carpen-
ter, 1999; Gupta et al., To appear, among others).

As an example, consider the utterance I would like
to know my account balance, from a financial do-
main customer care application. Assuming that the
utterance is recognized correctly by the automatic
speech recognizer (ASR), the corresponding intent
(call-type) would be Request(Balance) and the ac-
tion would be telling the balance to the user after
prompting for the account number or routing this
call to the billing department.

Typically these application specific call-types are
pre-designed and large amounts of utterances man-
ually labeled with call-types are used for training
call classification systems. For classification, gen-
erally word � -grams are used as features: In the
How May I Help You? ��� (HMIHY) call routing sys-
tem, selected word � -grams, namely salient phrases,
which are salient to certain call-types play an im-
portant role (Gorin et al., 1997). For instance, for
the above example, the salient phrase “account bal-
ance” is strongly associated with the call-type Re-
quest(Balance). Instead of using salient phrases, one
can leave the decision of determining useful features
(word � -grams) to a classification algorithm used as
described in (Di Fabbrizio et al., 2002) and (Gupta
et al., To appear). An alternative would be using
a vector space model for classification where call-
types and utterances are represented as vectors in-
cluding word � -grams (Chu-Carroll and Carpenter,
1999).

Call classification is similar to text categorization,
except the following:
� The utterances are much shorter than typical

documents used for text categorization (such as
broadcast news or newspaper articles).

24

0 1
<bos>

2
WORD:I

3
WORD:paid

4
WORD:six

5
WORD:dollars

6
<eos>

Figure 1: An example utterance represented as a single path FSM.

� Since it deals with spontaneous speech, the ut-
terances frequently include disfluencies or are
ungrammatical, and� ASR output is very noisy, typically one out of
every four words is misrecognized (Riccardi
and Hakkani-Tür, 2003).

Even though the shortness of the utterances may
imply the easiness of the call classification task, un-
fortunately this is not the case. The call classifi-
cation error rates typically range between 15% to
30% depending on the application (Gupta et al., To
appear). This is mainly due to the data sparseness
problem because of the nature of the input. Even for
simple call-types like Request(Balance), there are
many ways of uttering the same intent. For instance,
in one of the applications we used in our experi-
ments, as a response to the greeting prompt, there
are 2,697 unique utterances out of 3,547 utterances
for that call-type. Some examples include:

� I would like to know my account balance� How much do I owe you� How much is my bill� What is my current bill� account balance� You can help me by telling me what my phone
bill is� ...

Given this data sparseness, current classification ap-
proaches require an extensive amount of labeled data
in order to train a call classification system with a
reasonable performance. In this paper, we present
methods for extending the classifier’s feature set by
generalizing word sequences using syntactic and se-
mantic information represented in compact graphs,
called syntactic and semantic graphs (SSGs). For
each sentence or utterance, these graphs include
lexical information (words), syntactic information
(such as the part of speech tags of the words and the
syntactic parse of the utterance), and semantic in-
formation (such as the named entities and semantic
role labels). The generalization is expected to help

reduce the data sparseness problem by applying var-
ious groupings on word sequences. Furthermore, the
classifier is provided with additional syntactic and
semantic information which might be useful for the
call classification task.

In the following section, we describe the syntac-
tic and semantic graphs. In Section 3, we describe
our approach for call classification using SSGs. In
Section 4, we present the computation of syntactic
and semantic information for SSGs. In the last Sec-
tion, we present our experiments and results using
a spoken dialog system AT&T VoiceTone R

�
Spoken

Dialog System (Gupta et al., To appear).

2 Semantic and Syntactic Graphs

Consider the typical case, where only lexical infor-
mation, i.e. word � -grams are used for call classifi-
cation. This is equivalent to representing the words
in an utterance as a directed acyclic graph where
the words are the labels of the transitions and then
extracting the transition � -grams from it. Figure 1
shows the graph for the example sentence I paid six
dollars, where � bos 	 and � eos 	 denote the begin-
ning and end of the sentence, respectively.

Syntactic and semantic graphs are also directed
acyclic graphs, formed by adding transitions encod-
ing syntactic and semantic categories of words or
word sequences to the word graph. The first addi-
tional information is the part of speech tags of the
words. In the graph, as a parallel transition for each
word of the utterance, the part of speech category
of the word is added, as shown in Figure 2 for the
example sentence. Note that, the word is prefixed
by the token WORD: and the part-of-speech tag is
prefixed by the token POS:, in order to distinguish
between different types of transitions in the graph.

The other type of information that is encoded in
these graphs is the syntactic parse of each utterance,
namely the syntactic phrases with their head words.
For example in the sentence I paid six dollars, six
dollars is a noun phrase with the head word dollars.
In Figure 2, the labels of the transitions for syntactic
phrases are prefixed by the token PHRASE:. There-

25

0 1
<bos>

2

POS:PRP

WORD:I

SRL:pay.A0

PHRASE:NP_I

5

PHRASE:S_paid

PHRASE:VP_paid

3

POS:VBD

WORD:paid

SRL:pay.V
6

<eos>

NE:m

SRL:pay.A1

PHRASE:NP_dollars

4

POS:CD

WORD:six

POS:NNS

WORD:dollars

Figure 2: The SSG for the utterance I paid six dollars, where words (WORD:), part-of-speech tags (POS:),
syntactic parse (PHRASE:), named entities (NE:) and semantic roles (SRL:) are included.

Σ:Σ0 321

Σ:ε

ε:ε

Σ:ε
ε:ε
Σ:ΣΣ:Σ

Figure 3: The FST used to extract unigram, bigram and trigrams.
 represents the alphabet, � represents the
epsilon transition.

fore, six dollars is also represented by the transition
labeled PHRASE:NP dollars. As an alternative, one
may drop the head word of the phrase from the rep-
resentation, or insert an epsilon transition parallel to
the transitions of the modifiers of the head word to
eliminate them from some � -grams.

Generic named entity tags, such as person, lo-
cation and organization names and task-dependent
named entity tags, such as drug names in a medical
domain, are also incorporated into the graph, where
applicable. For instance, for the example sentence,
six dollars is a monetary amount, so the arc NE:m is
inserted parallel to that sequence.

As another source of semantic information, se-
mantic role labels of the utterance components are
incorporated to the SSGs. The semantic role labels
represent the predicate/argument structure of each
sentence: Given a predicate, the goal is to identify
all of its arguments and their semantic roles. For
example, in the example sentence the predicate is
pay, the agent of this predicate is I and the amount
is six dollars. In the graph, the labels of the tran-
sitions for semantic roles are prefixed by the token
SRL: and the corresponding predicate. For exam-
ple, the sequence six dollars is the amount of the
predicate pay, and this is shown by the transition

with label SRL:pay.A1 following the PropBank no-
tation (Kingsbury et al., 2002)1.

In this work, we were only able to incorporate
part-of-speech tags, syntactic parses, named entity
tags and semantic role labels in the syntactic and se-
mantic graphs. Insertion of further information such
as supertags (Bangalore and Joshi, 1999) or word
stems can also be beneficial for further processing.

3 Using SSGs for Call Classification

In this paper we propose extracting all � -grams from
the SSGs to use them for call classification. The � -
grams in an utterance SSG can be extracted by con-
verting it to a finite state transducer (FST), �� . Each
transition of �� has the labels of the arcs on the SSG
as input and output symbols2. Composing this FST
with another FST, ��� , representing all the possible
� -grams, forms the FST, ��� , which includes all � -
grams in the SSG:

������� �� � �
1A1 or Arg1 indicates the object of the predicate, in this case

the amount.
2Instead of the standard notation where “:” is used to sepa-

rate the input and output symbols in finite state transducers, we
use “:” to separate the type of the token and its value.

26

Then, extracting the � -grams in the SSG is equiva-
lent to enumerating all paths of � � . For ����� , ���
is shown in Figure 3. The alphabet
 contains all
the symbols in �� .

We expect the SSGs to help call classification be-
cause of the following reasons:

� First of all, the additional information is ex-
pected to provide some generalization, by al-
lowing new � -grams to be encoded in the utter-
ance graph since SSGs provide syntactic and
semantic groupings. For example, the words
a and the both have the part-of-speech tag
category DT (determiner), or all the numbers
are mapped to a cardinal number (CD), like
the six in the example sentence. So the bi-
grams WORD:six WORD:dollars and POS:CD
WORD:dollars will both be in the SSG. Simi-
larly the sentences I paid six dollars and I paid
seventy five dollars and sixty five cents will both
have the trigram WORD:I WORD:paid NE:m in
their SSGs.� The head words of the syntactic phrases and
predicate of the arguments are included in the
SSGs. This enables the classifier to handle long
distance dependencies better than using other
simpler methods, such as extracting all gappy
� -grams. For example, consider the following
two utterances: I need a copy of my bill and
I need a copy of a past due bill. As shown
in Figures 4 and 5, the � -gram WORD:copy
WORD:of PHRASE:NP bill appears for both
utterances, since both subsequences my bill and
a past due bill are nothing but noun phrases
with the head word bill.� Another motivation is that, when using simply
the word � -grams in an utterance, the classi-
fier is only given lexical information. Now the
classifier is provided with more and different
information using these extra syntactic and se-
mantic features. For example, a named entity
of type monetary amount may be strongly as-
sociated with some call-type.� Furthermore, there is a close relationship be-
tween the call-types and semantic roles. For
example, if the predicate is order this is most
probably the call-type Order(Item) in a retail
domain application. The simple � -gram ap-

proach would consider all the appearances of
the unigram order as equal. However consider
the utterance I’d like to check an order of a dif-
ferent call-type, where the order is not a pred-
icate but an object. Word � -gram features will
fail to capture this distinction.

Once the SSG of an utterance is formed, all the
� -grams are extracted as features, and the decision
of which one to select/use is left to the classifier.

4 Computation of the SSGs

In this section, the tools used to compute the in-
formation in SSGs are described and their perfor-
mances on manually transcribed spoken dialog ut-
terances are presented. All of these components may
be improved independently, for the specific applica-
tion domain.

4.1 Part-of-Speech Tagger
Part-of-speech tagging has been very well studied
in the literature for many languages, and the ap-
proaches vary from rule-based to HMM-based and
classifier-based (Church, 1988; Brill, 1995, among
others) tagging. In our framework, we employ a
simple HMM-based tagger, where the most prob-
able tag sequence, �� , given the words, � , is out-
put (Weischedel et al., 1993):

�� �� "!$#&%')(* +-, �/. �10��� "!2#&%')(* +-, � . � 0 +3, � 0

Since we do not have enough data which is manually
tagged with part-of-speech tags for our applications,
we used Penn Treebank (Marcus et al., 1994) as our
training set. Penn Treebank includes data from Wall
Street Journal, Brown, ATIS, and Switchboard cor-
pora. The final two sets are the most useful for our
domain, since they are also from spoken language
and include disfluencies. As a test set, we manu-
ally labeled 2,000 words of user utterances from an
AT&T VoiceTone spoken dialog system application,
and we achieved an accuracy of 94.95% on manu-
ally transcribed utterances. When we examined the
errors, we have seen that the frequent word please
is mis-labeled or frequently occurs as a verb in the
training data, even when it is not. Given that the lat-
est literature on POS tagging using Penn Treebank
reports an accuracy of around 97% with in-domain

27

0 1
<bos>

2

POS:PRP

WORD:I

SRL:need.A0

PHRASE:NP_I

8

PHRASE:S_need

PHRASE:VP_need

3

POS:VBP

WORD:need

SRL:need.V 9
<eos>

SRL:need.A1

PHRASE:NP-A_copy

4

POS:DT

WORD:a

5PHRASE:NP_copy

POS:NN

WORD:copy

PHRASE:PP_of

6

POS:IN

WORD:of

PHRASE:NP_bill

7

POS:PRP$

WORD:my

POS:NN

WORD:bill

Figure 4: An example SSG for the utterance I need a copy of my bill.

0 1
<bos>

2

POS:PRP

WORD:I

SRL:need.A0

PHRASE:NP_I

10

PHRASE:S_need

PHRASE:VP_need

3

POS:VBP

WORD:need

SRL:need.V 11
<eos>

SRL:need.A1

PHRASE:NP-A_copy

4

POS:DT

WORD:a

5PHRASE:NP_copy

POS:NN

WORD:copy

PHRASE:PP_of

6

POS:IN

WORD:of

PHRASE:NP_bill

7

POS:DT

WORD:a
8

POS:JJ

WORD:past
9POS:JJ

WORD:due

POS:NN

WORD:bill

Figure 5: An example SSG for the utterance I need a copy of a past due bill.

training data (van Halteren et al., 2001), we achieve
a very reasonable performance, considering these er-
rors.

4.2 Syntactic Parser

For syntactic parsing, we use the Collins’
parser (Collins, 1999), which is reported to
give over 88% labeled recall and precision on
Wall Street Journal portion of the Penn Treebank.
We use Buchholz’s chunklink script to extract
information from the parse trees3. Since we do not
have any data from our domain, we do not have a
performance figure for this task for our domain.

4.3 Named Entity Extractor

For named entity extraction, we tried using a sim-
ple HMM-based approach, a simplified version of
BBN’s name finder (Bikel et al., 1999), and a
classifier-based tagger using Boostexter (Schapire
and Singer, 2000). In the simple HMM-based ap-
proach, which is the same as the part-of-speech tag-
ging, the goal is to find the tag sequence, �� , which
maximizes +-, �/. �10 for the word sequence, � . The
tags in this case are named entity categories (such
as P and p for Person names, O and o for Orga-
nization names, etc. where upper-case indicates
the first word in the named entity) or NA if the
word is not a part of a named entity. In the sim-
plified version of BBN’s name finder, the states of

3http://ilk.kub.nl/ 4 sabine/chunklink/chunklink 2-2-
2000 for conll.pl

the model were word/tag combinations, where the
tag 56 for word 78 is the named entity category of
each word. Transition probabilities consisted of tri-
gram probabilities +-, 79;:<56 . 7=?>A@B:<5C?>A@EDF7=?>�GH:<5C?>�GH0
over these combined tokens. In the final version,
we extended this model with an unknown words
model (Hakkani-Tür et al., 1999). In the classifier-
based approach, we used simple features such as the
current word and surrounding 4 words, binary tags
indicating if the word considered contains any dig-
its or is formed from digits, and features checking
capitalization (Carreras et al., 2003).

To test these approaches, we have used data from
an AT&T VoiceTone spoken dialog system applica-
tion for a pharmaceutical domain, where some of
the named entity categories were person, organiza-
tion, drug name, prescription number, and date. The
training and test sets contained around 11,000 and
5,000 utterances, respectively. Table 1 summarizes
the overall F-measure results as well as F-measure
for the most frequent named entity categories. Over-
all, the classifier based approach resulted in the best
performance, so it is also used for the call classifica-
tion experiments.

4.4 Semantic Role Labeling

The goal of semantic role labeling is to extract all
the constituents which fill a semantic role of a tar-
get verb. Typical semantic arguments include Agent,
Patient, Instrument, etc. and also adjuncts such as
Locative, Temporal, Manner, Cause, etc. In this

28

Category Count HMM IF Boostexter
Org. 132 62.0 73.8 70.9
Person 150 45.0 62.4 54.4
Date 178 51.4 61.9 72.0
Drug 220 65.7 62.3 63.1
Overall 836 54.5 56.8 64.0

Table 1: F-Measure results for named entity extrac-
tion with various approaches. HMM is the sim-
ple HMM-based approach, IF is the simplified ver-
sion of BBN’s name finder with an unknown words
model.

work, we use the semantic roles and annotations
from the PropBank corpus (Kingsbury et al., 2002),
where the arguments are given mnemonic names,
such as Arg0, Arg1, Arg-LOC, etc. For example,
for the sentence I have bought myself a blue jacket
from your summer catalog for twenty five dollars last
week, the agent (buyer, or Arg0) is I, the predicate
is buy, the thing bought (Arg1) is a blue jacket, the
seller or source (Arg2) is from your summer catalog,
the price paid (Arg3) is twenty five dollars, the bene-
factive (Arg4) is myself, and the date (ArgM-TMP)
is last week4.

Semantic role labeling can be viewed as a multi-
class classification problem. Given a word (or
phrase) and its features, the goal is to output the
most probable semantic label. For semantic role la-
beling, we have used the exact same feature set that
Hacioglu et al. (2004) have used, since their sys-
tem performed the best among others in the CoNLL-
2004 shared task (Carreras and Màrquez, 2004).
We have used Boostexter (Schapire and Singer,
2000) as the classifier. The features include token-
level features (such as the current (head) word, its
part-of-speech tag, base phrase type and position,
etc.), predicate-level features (such as the predicate’s
lemma, frequency, part-of-speech tag, etc.) and
argument-level features which capture the relation-
ship between the token (head word/phrase) and the
predicate (such as the syntactic path between the to-
ken and the predicate, their distance, token position
relative to the predicate, etc.).

In order to evaluate the performance of semantic
role labeling, we have manually annotated 285 utter-
ances from an AT&T VoiceTone spoken dialog sys-

4See http://www.cis.upenn.edu/ 4 dgildea/Verbs for more
details

tem application for a retail domain. The utterances
include 645 predicates (2.3 predicates/utterance).
First we have computed recall and precision rates for
evaluating the predicate identification performance.
The precision is found to be 93.04% and recall is
91.16%. More than 90% of false alarms for pred-
icate extraction are due to the word please, which
is very frequent in customer care domain and erro-
neously tagged as explained above. Most of the false
rejections are due to disfluencies and ungrammatical
utterances. For example in the utterance I’d like to
order place an order, the predicate place is tagged
as a noun erroneously, probably because of the pre-
ceding verb order. Then we have evaluated the argu-
ment labeling performance. We have used a stricter
measure than the CoNLL-2004 shared task. The la-
beling is correct if both the boundary and the role of
all the arguments of a predicate are correct. In our
test set, we have found out that our SRL tool cor-
rectly tags all arguments of 57.4% of the predicates.

5 Call Classification Experiments and
Results

In order to evaluate our approach, we carried out call
classification experiments using human-machine di-
alogs collected by the spoken dialog system used
for customer care. We have only considered utter-
ances which are responses to the greeting prompt
How may I help you? in order not to deal with confir-
mation and clarification utterances. We first describe
this data, and then give the results obtained by the se-
mantic classifier. We have performed our tests using
the Boostexter tool, an implementation of the Boost-
ing algorithm, which iteratively selects the most dis-
criminative features for a given task (Schapire and
Singer, 2000).

5.1 Data
Table 2 summarizes the characteristics of our appli-
cation including the amount of training and test data,
total number of call-types, average utterance length,
and call-type perplexity. Perplexity is computed us-
ing the prior distribution over all the call-types in the
training data.

5.2 Results
For call classification, we have generated SSGs for
the training and test set utterances using the tools

29

Training Data Size 3,725 utterances
Test Data Size 1,954 utterances

Number of Call-Types 79
Call-Type Perplexity 28.86

Average Utterance Length 12.08 words

Table 2: Characteristics of the data used in the ex-
periments.

Baseline Using SSG Increase
Unigram 2,303 6,875 2.99 times
Bigram 15,621 112,653 7.21 times
Trigram 34,185 705,673 20.64 times

Total 52,109 825,201 15.84 times

Table 3: A comparison of number of features.

described above. When � -grams are extracted from
these SSGs, instead of the word graphs (Baseline),
there is a huge increase in the number of features
given to the classifier, as seen in Table 3. The clas-
sifier has now 15 times more features to work with.
Although one can apply a feature selection approach
before classification as frequently done in the ma-
chine learning community, we left the burden of an-
alyzing 825,201 features to the classifier.

Table 4 presents the percentage of the features se-
lected by Boostexter using SSGs for each informa-
tion category. As expected the lexical information is
the most frequently used, and 54.06% of the selected
features have at least one word in its � -gram. The to-
tal is more than 100%, since some features contain
more than one category, as in the bigram feature ex-
ample: POS:DT WORD:bill. This shows the use of
other information sources as well as words.

Table 5 presents our results for call classification.
As the evaluation metric, we use the top class error
rate (TCER), which is the ratio of utterances, where
the top scoring call-type is not one of the true call-
types assigned to each utterance by the human la-
belers. The baseline TCER on the test set using only
word � -grams is 23.80%. When we extract features
from the SSGs, we see a 2.14% relative decrease in
the error rate down to 23.29%. When we analyze
these results, we have seen that:

� For “easy to classify” utterances, the classifier
already assigns a high score to the true call-type

Category Frequency
Lexical Words 54.06%

Syntactic Part-of-Speech 49.98%
Syntactic Parse 27.10%

Semantic Named Entity 1.70%
Semantic Role Label 11.74%

Table 4: The percentage of the features selected by
the classifier for each information category

Baseline SSGs Decrease
All utterances 23.80% 23.29% 2.14%

Low confidence
utterances 68.77% 62.16% 9.61%

All utterances
(Cascaded) 23.80% 22.67% 4.74%

Table 5: Call classification error rates using words
and SSGs.

using just word � -grams.
� The syntactic and semantic features extracted

from the SSGs are not 100% accurate, as pre-
sented earlier. So, although many of these fea-
tures have been useful, there is certain amount
of noise introduced in the call classification
training data.

� The particular classifier we use, namely Boost-
ing, is known to handle large feature spaces
poorer than some others, such as SVMs. This
is especially important with 15 times more fea-
tures.

Due to this analysis, we have focused on a sub-
set of utterances, namely utterances with low confi-
dence scores, i.e. cases where the score given to the
top scoring call-type by the baseline model is be-
low a certain threshold. In this subset we had 333
utterances, which is about 17% of the test set. As
expected the error rates are much higher than the
overall and we get much larger improvement in per-
formance when we use SSGs. The baseline for this
set is 68.77%, and using extra features, this reduces
to 62.16% which is a 9.61% relative reduction in the
error rate.

This final experiment suggests a cascaded ap-
proach for exploiting SSGs for call classification.

30

That is, first the baseline word � -gram based clas-
sifier is used to classify all the utterances, then if
this model fails to commit on a call-type, we per-
form extra feature extraction using SSGs, and use
the classification model trained with SSGs. This cas-
caded approach reduced the overall error rate of all
utterances from 23.80% to 22.67%, which is 4.74%
relative reduction in error rate.

6 Conclusions

In this paper, we have introduced syntactic and se-
mantic graphs (SSGs) for speech and language pro-
cessing. We have described their use for the task of
call classification. We have presented results show-
ing 4.74% improvement, using utterances collected
from AT&T VoiceTone spoken dialog system. SSGs
can also be useful for text classification and other
similar language processing applications. Our fu-
ture work includes feature selection prior to classifi-
cation and developing methods that are more robust
to ASR errors while computing the SSGs. We also
plan to improve the syntactic and semantic process-
ing components by adapting the models with some
amount of labeled in-domain spoken dialog data.

References

Srinivas Bangalore and Aravind K. Joshi. 1999. Su-
pertagging: An approach to almost parsing. Compu-
tational Linguistics, 25(2), June.

Daniel M. Bikel, Richard Schwartz, and Ralph M.
Weischedel. 1999. An algorithm that learns what’s
in a name. Machine Learning Journal Special Issue
on Natural Language Learning, 34(1-3):211–231.

Eric Brill. 1995. Transformation-based error-driven
learning and natural language processing: A case
study in part of speech tagging. Computational Lin-
guistics, 21(4):543–565, December.

Xavier Carreras and Lluı́s Màrquez. 2004. Introduction
to the CoNLL-2004 shared task: Semantic role label-
ing. In Proceedings of the Conference on Computa-
tional Natural Language Learning (CoNLL), Boston,
MA, May.

Xavier Carreras, Lluı́s Màrquez, and Lluı́s Padró. 2003.
A simple named entity extractor using AdaBoost.
In Proceedings of the Conference on Computational
Natural Language Learning (CoNLL), Edmonton,
Canada.

Jennifer Chu-Carroll and Bob Carpenter. 1999. Vector-
based natural language call routing. Computational
Linguistics, 25(3):361–388.

Kenneth W. Church. 1988. A stochastic parts program
and noun phrase parser for unrestricted text. In Second
Conference on Applied Natural Language Processing
(ANLP), pages 136–143, Austin, Texas.

Michael Collins. 1999. Head-Driven Statistical Models
for Natural Language Parsing. Ph.D. thesis, Univer-
sity of Pennsylvania, Computer and Information Sci-
ence, Philadelphia, PA.

Giuseppe Di Fabbrizio , Dawn Dutton, Narendra Gupta,
Barbara Hollister, Mazin Rahim, Giuseppe Riccardi,
Robert Schapire, and Juergen Schroeter. 2002. AT&T
help desk. In Proceedings of the International Confer-
ence on Spoken Language Processing (ICSLP), Den-
ver, CO, September.

Allen L. Gorin, Giuseppe Riccardi, and Jerry H. Wright.
1997. How May I Help You? . Speech Communica-
tion, 23:113–127.

Narendra Gupta, Gokhan Tur, Dilek Hakkani-Tür, Srini-
vas Bangalore, Giuseppe Riccardi, and Mazin Rahim.
To appear. The AT&T spoken language understand-
ing system. IEEE Transactions on Speech and Audio
Processing.

Kadri Hacioglu, Sameer Pradhan, Wayne Ward, James H.
Martin, and Dan Jurafsky. 2004. Semantic role label-
ing by tagging syntactic chunks. In Proceedings of
the Conference on Computational Natural Language
Learning (CoNLL), Boston, MA, May.

Dilek Hakkani-Tür, Gokhan Tur, Andreas Stolcke, and
Elizabeth Shriberg. 1999. Combining words and
prosody for information extraction from speech. In
Proceedings of the EUROSPEECH’99, I)JLK European
Conference on Speech Communication and Technol-
ogy, Budapest, Hungary, September.

Paul Kingsbury, Mitch Marcus, and Martha Palmer.
2002. Adding semantic annotation to the Penn Tree-
Bank. In Proceedings of the Human Language Tech-
nology Conference (HLT), San Diego, CA, March.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1994. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Giuseppe Riccardi and Dilek Hakkani-Tür. 2003. Ac-
tive and unsupervised learning for automatic speech
recognition. In Proceedings of the European Confer-
ence on Speech Communication and Technology (EU-
ROSPEECH), Geneva, Switzerland, September.

Robert E. Schapire and Yoram Singer. 2000. Boostex-
ter: A boosting-based system for text categorization.
Machine Learning, 39(2-3):135–168.

Hans van Halteren, Jakub Zavrel, and Walter Daele-
mans. 2001. Improving accuracy in word class tag-
ging through combination of machine learning sys-
tems. Computational Linguistics, 27(2):199–230.

Ralph Weischedel, Richard Schwartz, Jeff Palmucci,
Marie Meteer, and Lance Ramshaw. 1993. Coping
with ambiguity and unknown words through proba-
bilistic models. Computational Linguistics, Special Is-
sue on Using Large Corpora, 19(2):361–382, June.

31

Proceedings of the ACL Workshop on Feature Engineering for Machine Learning in NLP, pages 32–39,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Feature-Based Segmentation of Narrative Documents

David Kauchak
Palo Alto Research Center and

University of California, San Diego
San Diego, CA 92093

dkauchak@cs.ucsd.edu

Francine Chen
Palo Alto Research Center

3333 Coyote Hill Rd.
Palo Alto, CA 94304
fchen@parc.com

Abstract

In this paper we examine topic segmen-
tation of narrative documents, which are
characterized by long passages of text
with few headings. We first present results
suggesting that previous topic segmenta-
tion approaches are not appropriate for
narrative text. We then present a feature-
based method that combines features from
diverse sources as well as learned features.
Applied to narrative books and encyclope-
dia articles, our method shows results that
are significantly better than previous seg-
mentation approaches. An analysis of in-
dividual features is also provided and the
benefit of generalization using outside re-
sources is shown.

1 Introduction

Many long text documents, such as magazine arti-
cles, narrative books and news articles contain few
section headings. The number of books in narrative
style that are available in digital form is rapidly in-
creasing through projects such as Project Gutenberg
and the Million Book Project at Carnegie Mellon
University. Access to these collections is becom-
ing easier with directories such as the Online Books
Page at the University of Pennsylvania.

As text analysis and retrieval moves from retrieval
of documents to retrieval of document passages, the
ability to segment documents into smaller, coherent
regions enables more precise retrieval of meaningful
portions of text (Hearst, 1994) and improved ques-
tion answering. Segmentation also has applications

in other areas of information access, including docu-
ment navigation (Choi, 2000), anaphora and ellipsis
resolution, and text summarization (Kozima, 1993).

Research projects on text segmentation have fo-
cused on broadcast news stories (Beeferman et al.,
1999), expository texts (Hearst, 1994) and synthetic
texts (Li and Yamanishi, 2000; Brants et al., 2002).
Broadcast news stories contain cues that are indica-
tive of a new story, such as “coming up”, or phrases
that introduce a reporter, which are not applicable to
written text. In expository texts and synthetic texts,
there is repetition of terms within a topical segment,
so that the similarity of “blocks” of text is a useful
indicator of topic change. Synthetic texts are created
by concatenating stories, and exhibit stronger topic
changes than the subtopic changes within a docu-
ment; consequently, algorithms based on the simi-
larity of text blocks work well on these texts.

In contrast to these earlier works, we present a
method for segmenting narrative documents. In this
domain there is little repetition of words and the seg-
mentation cues are weaker than in broadcast news
stories, resulting in poor performance from previous
methods.

We present a feature-based approach, where the
features are more strongly engineered using linguis-
tic knowledge than in earlier approaches. The key to
most feature-based approaches, particularly in NLP
tasks where there is a broad range of possible feature
sources, is identifying appropriate features. Select-
ing features in this domain presents a number of in-
teresting challenges. First, features used in previous
methods are not sufficient for solving this problem.
We explore a number of different sources of infor-
mation for extracting features, many previously un-
used. Second, the sparse nature of text and the high

32

cost of obtaining training data requires generaliza-
tion using outside resources. Finally, we incorporate
features from non-traditional resources such as lexi-
cal chains where features must be extracted from the
underlying knowledge representation.

2 Previous Approaches

Previous topic segmentation methods fall into three
groups: similarity based, lexical chain based, and
feature based. In this section we give a brief
overview of each of these groups.

2.1 Similarity-based

One popular method is to generate similarities be-
tween blocks of text (such as blocks of words,
sentences or paragraphs) and then identify section
boundaries where dips in the similarities occur.

The cosine similarity measure between term vec-
tors is used by Hearst (1994) to define the simi-
larity between blocks. She notes that the largest
dips in similarity correspond to defined boundaries.
Brants et al. (2002) learn a PLSA model using EM
to smooth the term vectors. The model is parame-
terized by introducing a latent variable, representing
the possible “topics”. They show good performance
on a number of different synthetic data sets.

Kozima and Furugori (1994) use another similar-
ity metric they call “lexical cohesion”. The “cohe-
siveness” of a pair of words is calculated by spread-
ing activation on a semantic network as well as word
frequency. They showed that dips in lexical cohe-
sion plots had some correlation with human subject
boundary decisions on one short story.

2.2 Lexical Chains

Semantic networks define relationships be-
tween words such as synonymy, specializa-
tion/generalization and part/whole. Stokes et al.
(2002) use these relationships to construct lexical
chains. A lexical chain is a sequence of lexicograph-
ically related word occurrences where every word
occurs within a set distance from the previous word.
A boundary is identified where a large numbers of
lexical chains begin and end. They showed that
lexical chains were useful for determining the text
structure on a set of magazine articles, though they
did not provide empirical results.

2.3 Feature-based

Beeferman et al. (1999) use an exponential model
and generate features using a maximum entropy se-
lection criterion. Most features learned are cue-
based features that identify a boundary based on the
occurrence of words or phrases. They also include a
feature that measures the difference in performance
of a “long range” vs. “short range” model. When
the short range model outperforms the long range
model, this indicates a boundary. Their method per-
formed well on a number of broadcast news data
sets, including the CNN data set from TDT 1997.

Reynar (1999) describes a maximum entropy
model that combines hand selected features, includ-
ing: broadcast news domain cues, number of content
word bigrams, number of named entities, number of
content words that are WordNet synonyms in the left
and right regions, percentage of content words in the
right segment that are first uses, whether pronouns
occur in the first five words, and whether a word
frequency based algorithm predicts a boundary. He
found that for the HUB-4 corpus, which is composed
of transcribed broadcasts, that the combined feature
model performed better than TextTiling.

Mochizuki et al. (1998) use a combination of lin-
guistic cues to segment Japanese text. Although a
number of cues do not apply to English (e.g., top-
ical markers), they also use anaphoric expressions
and lexical chains as cues. Their study was small,
but did indicate that lexical chains are a useful cue
in some domains.

These studies indicate that a combination of fea-
tures can be useful for segmentation. However,
Mochizuki et al. (1998) analyzed Japanese texts, and
Reynar (1999) and Beeferman et al. (1999) evalu-
ated on broadcast news stories, which have many
cues that narrative texts do not. Beeferman et al.
(1999) also evaluated on concatenated Wall Street
Journal articles, which have stronger topic changes
than within a document. In our work, we examine
the use of linguistic features for segmentation of nar-
rative text in English.

3 Properties of Narrative Text

Characterizing data set properties is the first step
towards deriving useful features. The approaches
in the previous section performed well on broad-

33

Table 1: Previous approaches evaluated on narrative
data from Biohazard

Word Sent. Window
Model Error Error Diff
random 0.486 0.490 0.541
TextTiling 0.481 0.497 0.526
PLSA 0.480 0.521 0.559

cast news, expository and synthetic data sets. Many
properties of these documents are not shared by nar-
rative documents. These properties include: 1) cue
phrases, such as “welcome back” and “joining us”
that feature-based methods used in broadcast news,
2) strong topic shifts, as in synthetic documents cre-
ated by concatenating newswire articles, and 3) large
data sets such that the training data and testing data
appeared to come from similar distributions.

In this paper we examine two narrative-style
books: Biohazard by Ken Alibek and The Demon
in the Freezer by Richard Preston. These books are
segmented by the author into sections. We manu-
ally examined these author identified boundaries and
they are reasonable. We take these sections as true
locations of segment boundaries. We split Biohaz-
ard into three parts, two for experimentation (exp1
and exp2) and the third as a holdout for testing. De-
mon in the Freezer was reserved for testing. Biohaz-
ard contains 213 true and 5858 possible boundaries.
Demon has 119 true and 4466 possible boundaries.
Locations between sentences are considered possi-
ble boundaries and were determined automatically.

We present an analysis of properties of the book
Biohazard by Ken Alibek as an exemplar of nar-
rative documents (for this section, test=exp1 and
train=exp2). These properties are different from pre-
vious expository data sets and will result in poor per-
formance for the algorithms mentioned in Section 2.
These properties help guide us in deriving features
that may be useful for segmenting narrative text.

Vocabulary The book contains a single topic with a
number of sub-topics. These changing topics, com-
bined with the varied use of words for narrative doc-
uments, results in many unseen terms in the test set.
25% of the content words in the test set do not oc-
cur in the training set and a third of the words in the
test set occur two times or less in the training set.
This causes problems for those methods that learn

a model of the training data such as Brants et al.
(2002) and Beeferman et al. (1999) because, with-
out outside resources, the information in the training
data is not sufficient to generalize to the test set.

Boundary words Many feature-based methods rely
on cues at the boundaries (Beeferman et al., 1999;
Reynar, 1999). 474 content terms occur in the first
sentence of boundaries in the training set. Of these
terms, 103 occur at the boundaries of the test set.
However, of those terms that occur significantly at
a training set boundary (where significant is de-
termined by a likelihood-ratio test with a signifi-
cance level of 0.1), only 9 occur at test boundaries.
No words occur significantly at a training boundary
AND also significantly at a test boundary.

Segment similarity Table 1 shows that two
similarity-based methods that perform well on syn-
thetic and expository text perform poorly (i.e., on
par with random) on Biohazard. The poor perfor-
mance occurs because block similarities provide lit-
tle information about the actual segment boundaries
on this data set. We examined the average similarity
for two adjacent regions within a segment versus the
average similarity for two adjacent regions that cross
a segment boundary. If the similarity scores were
useful, the within segment scores would be higher
than across segment scores. Similarities were gener-
ated using the PLSA model, averaging over multiple
models with between 8 and 20 latent classes. The
average similarity score within a segment was 0.903
with a standard deviation of 0.074 and the average
score across a segment boundary was 0.914 with a
standard deviation of 0.041. In this case, the across
boundary similarity is actually higher. Similar val-
ues were observed for the cosine similarities used by
the TextTiling algorithm, as well as with other num-
bers of latent topics for the PLSA model. For all
cases examined, there was little difference between
inter-segment similarity and across-boundary simi-
larity, and there was always a large standard devia-
tion.

Lexical chains Lexical chains were identified as
synonyms (and exact matches) occurring within
a distance of one-twentieth the average segment
length and with a maximum chain length equal to
the average segment length (other values were ex-

34

amined with similar results). Stokes et al. (2002)
suggest that high concentrations of lexical chain be-
ginnings and endings are indicative of a boundary
location. On the narrative data, of the 219 over-
all chains, only 2 begin at a boundary and only 1
ends at a boundary. A more general heuristic iden-
tifies boundaries where there is an increase in the
number of chains beginning and ending near a possi-
ble boundary while also minimizing chains that span
boundaries. Even this heuristic does not appear in-
dicative on this data set. Over 20% of the chains
actually cross segment boundaries. We also mea-
sured the average distance from a boundary and the
nearest beginning and ending of a chain if a chain
begins/ends within that segment. If the chains are a
good feature, then these should be relatively small.
The average segment length is 185 words, but the
average distance to the closest beginning chain is 39
words away and closest ending chain is 36 words
away. Given an average of 4 chains per segment,
the beginning and ending of chains were not concen-
trated near boundary locations in our narrative data,
and therefore not indicative of boundaries.

4 Feature-Based Segmentation

We pose the problem of segmentation as a classifi-
cation problem. Sentences are automatically iden-
tified and each boundary between sentences is a
possible segmentation point. In the classification
framework, each segmentation point becomes an ex-
ample. We examine both support vector machines
(SVMlight (Joachims, 1999)) and boosted decision
stumps (Weka (Witten and Frank, 2000)) for our
learning algorithm. SVMs have shown good per-
formance on a variety of problems, including nat-
ural language tasks (Cristianini and Shawe-Taylor,
2000), but require careful feature selection. Classifi-
cation using boosted decisions stumps can be a help-
ful tool for analyzing the usefulness of individual
features. Examining multiple classification meth-
ods helps avoid focusing on the biases of a particular
learning method.

4.1 Example Reweighting

One problem with formulating the segmentation
problem as a classification problem is that there are
many more negative than positive examples. To dis-

courage the learning algorithm from classifying all
results as negative and to instead focus on the posi-
tive examples, the training data must be reweighted.

We set the weight of positive vs. negative exam-
ples so that the number of boundaries after testing
agrees with the expected number of segments based
on the training data. This is done by iteratively ad-
justing the weighting factor while re-training and re-
testing until the predicted number of segments on the
test set is approximately the expected number. The
expected number of segments is the number of sen-
tences in the test set divided by the number of sen-
tences per segment in the training data. This value
can also be weighted based on prior knowledge.

4.2 Preprocessing

A number of preprocessing steps are applied to the
books to help increase the informativeness of the
texts. The book texts were obtained using OCR
methods with human correction. The text is pre-
processed by tokenizing, removing stop words, and
stemming using the Inxight LinguistiX morpholog-
ical analyzer. Paragraphs are identified using for-
matting information. Sentences are identified using
the TnT tokenizer and parts of speech with the TnT
part of speech tagger (Brants, 2000) with the stan-
dard English Wall Street Journal n-grams. Named
entities are identified using finite state technology
(Beesley and Karttunen, 2003) to identify various
entities including: person, location, disease and or-
ganization. Many of these preprocessing steps help
provide salient features for use during segmentation.

4.3 Engineered Features

Segmenting narrative documents raises a number of
interesting challenges. First, labeling data is ex-
tremely time consuming. Therefore, outside re-
sources are required to better generalize from the
training data. WordNet is used to identify words that
are similar and tend to occur at boundaries for the
“word group” feature. Second, some sources of in-
formation, in particular entity chains, do not fit into
the standard feature based paradigm. This requires
extracting features from the underlying information
source. Extracting these features represents a trade-
off between information content and generalizabil-
ity. In the case of entity chains, we extract features
that characterize the occurrence distribution of the

35

entity chains. Finally, the “word groups” and “entity
groups” feature groups generate candidate features
and a selection process is required to select useful
features. We found that a likelihood ratio test for sig-
nificance worked well for identifying those features
that would be useful for classification. Throughout
this section, when we use the term “significant” we
are referring to significant with respect to the likeli-
hood ratio test (with a significance level of 0.1).

We selected features both a priori and dynami-
cally during training (i.e., word groups and entity
groups are selected dynamically). Feature selection
has been used by previous segmentation methods
(Beeferman et al., 1999) as a way of adapting bet-
ter to the data. In our approach, knowledge about
the task is used more strongly in defining the fea-
ture types, and the selection of features is performed
prior to the classification step. We also used mutual
information, statistical tests of significance and clas-
sification performance on a development data set to
identify useful features.

Word groups In Section 3 we showed that there are
not consistent cue phrases at boundaries. To general-
ize better, we identify word groups that occur signif-
icantly at boundaries. A word group is all words that
have the same parent in the WordNet hierarchy. A
binary feature is used for each learned group based
on the occurrence of at least one of the words in the
group. Groups found include months, days, tempo-
ral phrases, military rankings and country names.

Entity groups For each entity group (i.e. named
entities such as person, city, or disease tagged by the
named entity extractor) that occurs significantly at
a boundary, a feature indicating whether or not an
entity of that group occurs in the sentence is used.

Full name The named entity extraction system
tags persons named in the document. A rough
co-reference resolution was performed by group-
ing together references that share at least one to-
ken (e.g., “General Yury Tikhonovich Kalinin” and
“Kalinin”). The full name of a person is the longest
reference of a group referring to the same person.
This feature indicates whether or not the sentence
contains a full name.

Entity chains Word relationships work well when
the documents have disjoint topics; however, when
topics are similar, words tend to relate too easily. We

propose a more stringent chaining method called en-
tity chains. Entity chains are constructed in the same
fashion as lexical chains, except we consider named
entities. Two entities are considered related (i.e. in
the same chain) if they refer to the same entity. We
construct entity chains and extract features that char-
acterize these chains: How many chains start/end at
this sentence? How many chains cross over this sen-
tence/previous sentence/next sentence? Distance to
the nearest dip/peak in the number of chains? Size
of that dip/peak?

Pronoun Does the sentence contain a pronoun?
Does the sentence contain a pronoun within 5 words
of the beginning of the sentence?
Numbers During training, the patterns of numbers
that occur significantly at boundaries are selected.
Patterns considered are any number and any number
with a specified length. The feature then checks if
that pattern appears in the sentence. A commonly
found pattern is the number pattern of length 4,
which often refers to a year.
Conversation Is this sentence part of a conversa-
tion, i.e. does this sentence contain “direct speech”?
This is determined by tracking beginning and end-
ing quotes. Quoted regions and single sentences be-
tween two quoted regions are considered part of a
conversation.
Paragraph Is this the beginning of a paragraph?

5 Experiments

In this section, we examine a number of narra-
tive segmentation tasks with different segmentation
methods. The only data used during development
was the first two thirds from Biohazard (exp1 and
exp2). All other data sets were only examined after
the algorithm was developed and were used for test-
ing purposes. Unless stated otherwise, results for the
feature based method are using the SVM classifier.1

5.1 Evaluation Measures
We use three segmentation evaluation metrics that
have been recently developed to account for “close
but not exact” placement of hypothesized bound-
aries: word error probability, sentence error prob-
ability, and WindowDiff. Word error probability

1SVM and boosted decision stump performance is similar.
For brevity, only SVM results are shown for most results.

36

Table 2: Experiments with Biohazard
Word Sent. Window Sent err
Error Error Diff improv

Biohazard
random (sent.) 0.488 0.485 0.539 ——-
random (para.) 0.481 0.477 0.531 (base)

Biohazard
exp1→ holdout 0.367 0.357 0.427 25%
exp2→ holdout 0.344 0.325 0.395 32%
3x cross validtn. 0.355 0.332 0.404 24%

Train Biohazard
Test Demon 0.387 0.364 0.473 25%

(Beeferman et al., 1999) estimates the probability
that a randomly chosen pair of words k words apart
is incorrectly classified, i.e. a false positive or false
negative of being in the same segment. In contrast to
the standard classification measures of precision and
recall, which would consider a “close” hypothesized
boundary (e.g., off by one sentence) to be incorrect,
word error probability gently penalizes “close” hy-
pothesized boundaries. We also compute the sen-
tence error probability, which estimates the proba-
bility that a randomly chosen pair of sentences s sen-
tences apart is incorrectly classified. k and s are cho-
sen to be half the average length of a section in the
test data. WindowDiff (Pevzner and Hearst, 2002)
uses a sliding window over the data and measures
the difference between the number of hypothesized
boundaries and the actual boundaries within the win-
dow. This metric handles several criticisms of the
word error probability metric.

5.2 Segmenting Narrative Books

Table 2 shows the results of the SVM-segmenter on
Biohazard and Demon in the Freezer. A baseline
performance for segmentation algorithms is whether
the algorithm performs better than naive segment-
ing algorithms: choose no boundaries, choose all
boundaries and choose randomly. Choosing all
boundaries results in word and sentence error proba-
bilities of approximately 55%. Choosing no bound-
aries is about 45%. Table 2 also shows the results
for random placement of the correct number of seg-
ments. Both random boundaries at sentence loca-
tions and random boundaries at paragraph locations
are shown (values shown are the averages of 500
random runs). Similar results were obtained for ran-
dom segmentation of the Demon data.

Table 3: Performance on Groliers articles
Word Sent. Window
Error Error Diff

random 0.482 0.483 0.532
TextTile 0.407 0.412 0.479
PLSA 0.420 0.435 0.507
features (stumps) 0.387 0.400 0.495
features (SVM) 0.385 0.398 0.503

For Biohazard the holdout set was not used dur-
ing development. When trained on either of the de-
velopment thirds of the text (i.e., exp1 or exp2) and
tested on the test set, a substantial improvement is
seen over random. 3-fold cross validation was done
by training on two-thirds of the data and testing on
the other third. Recalling from Table 1 that both
PLSA and TextTiling result in performance simi-
lar to random even when given the correct number
of segments, we note that all of the single train/test
splits performed better than any of the naive algo-
rithms and previous methods examined.

To examine the ability of our algorithm to perform
on unseen data, we trained on the entire Biohaz-
ard book and tested on Demon in the Freezer. Per-
formance on Demon in the Freezer is only slightly
worse than the Biohazard results and is still much
better than the baseline algorithms as well as previ-
ous methods. This is encouraging since Demon was
not used during development, is written by a differ-
ent author and has a segment length distribution that
is different than Biohazard (average segment length
of 30 vs. 18 in Biohazard).

5.3 Segmenting Articles

Unfortunately, obtaining a large number of narrative
books with meaningful labeled segmentation is dif-
ficult. To evaluate our algorithm on a larger data set
as well as a wider variety of styles similar to narra-
tive documents, we also examine 1000 articles from
Groliers Encyclopedia that contain subsections de-
noted by major and minor headings, which we con-
sider to be the true segment boundaries. The articles
contained 8,922 true and 102,116 possible bound-
aries. We randomly split the articles in half, and
perform two-fold cross-validation as recommended
by Dietterich (1998). Using 500 articles from one
half of the pair for testing, 50 articles are randomly
selected from the other half for training. We used

37

Table 4: Ave. human performance (Hearst, 1994)
Word Sent. Window

Error (%) Error (%) Diff (%)
Sequoia 0.275 0.272 0.351
Earth 0.219 0.221 0.268
Quantum 0.179 0167 0.316
Magellan 0.147 0.147 0.157

a subset of only 50 articles due to the high cost of
labeling data. Each split yields two test sets of 500
articles and two training sets. This procedure of two-
fold cross-validation is performed five times, for a
total of 10 training and 10 corresponding test sets.
Significance is then evaluated using the t-test.

The results for segmenting Groliers Encyclope-
dia articles are given in Table 3. We compare
the performance of different segmentation models:
two feature-based models (SVMs, boosted deci-
sion stumps), two similarity-based models (PLSA-
based segmentation, TextTiling), and randomly se-
lecting segmentation points. All segmentation sys-
tems are given the estimated number of segmenta-
tion points based based on the training data. The
feature based approaches are significantly2 better
than either PLSA, TextTiling or random segmenta-
tion. For our selected features, boosted stump per-
formance is similar to using an SVM, which rein-
forces our intuition that the selected features (and
not just classification method) are appropriate for
this problem.

Table 1 indicates that the previous TextTiling and
PLSA-based approaches perform close to random
on narrative text. Our experiments show a perfor-
mance improvement of >24% by our feature-based
system, and significant improvement over other
methods on the Groliers data. Hearst (1994) ex-
amined the task of identifying the paragraph bound-
aries in expository text. We provide analysis of this
data set here to emphasize that identifying segments
in natural text is a difficult problem and since cur-
rent evaluation methods were not used when this
data was initially presented. Human performance
on this task is in the 15%-35% error rate. Hearst
asked seven human judges to label the paragraph

2For both SVM and stumps at a level of 0.005 us-
ing a t-test except SVM TextTile-WindowDiff (at 0.05)
and stumps TextTile-WindowDiff and SVM/stumps PLSA-
WindowDiff (not significantly different)

Table 5: Feature occurrences at boundary and non-
boundary locations

boundary non-boundary
Paragraph 74 621
Entity groups 44 407
Word groups 39 505
Numbers 16 59
Full name 2 109
Conversation 0 510
Pronoun 8 742
Pronoun ≤ 5 1 330

boundaries of four different texts. Since no ground
truth was available, true boundaries were identified
by those boundaries that had a majority vote as a
boundary. Table 4 shows the average human perfor-
mance for each text. We show these results not for
direct comparison with our methods, but to highlight
that even human segmentation on a related task does
not achieve particularly low error rates.

5.4 Analysis of Features

The top section of Table 5 shows features that are
intuitively hypothesized to be positively correlated
with boundaries and the bottom section shows nega-
tively correlated. For this analysis, exp1 from Alibek
was used for training and the holdout set for testing.
There are 74 actual boundaries and 2086 possibly
locations. Two features have perfect recall: para-
graph and conversation. Every true section bound-
ary is at a paragraph and no section boundaries are
within conversation regions. Both the word group
and entity group features have good correlation with
boundary locations and also generalized well to the
training data by occurring in over half of the positive
test examples.

The benefit of generalization using outside re-
sources can be seen by comparing the boundary
words found using word groups versus those found
only in the training set as in Section 3. Using word
groups triples the number of significant words found
in the training set that occur in the test set. Also, the
number of shared words that occur significantly in
both the training and test set goes from none to 9.
More importantly, significant words occur in 37 of
the test segments instead of none without the groups.

38

6 Discussion and Summary

Based on properties of narrative text, we proposed
and investigated a set of features for segmenting nar-
rative text. We posed the problem of segmentation
as a feature-based classification problem, which pre-
sented a number of challenges: many different fea-
ture sources, generalization from outside resources
for sparse data, and feature extraction from non-
traditional information sources.

Feature selection and analyzing feature interac-
tion is crucial for this type of application. The para-
graph feature has perfect recall in that all boundaries
occur at paragraph boundaries. Surprisingly, for cer-
tain train/test splits of the data, the performance of
the algorithm was actually better without the para-
graph feature than with it. We hypothesize that the
noisiness of the data is causing the classifier to learn
incorrect correlations.

In addition to feature selection issues, posing the
problem as a classification problem loses the se-
quential nature of the data. This can produce very
unlikely segment lengths, such as a single sentence.
We alleviated this by selecting features that capture
properties of the sequence. For example, the entity
chains features represent some of this type of infor-
mation. However, models for complex sequential
data should be examined as possible better methods.

We evaluated our algorithm on two books and
encyclopedia articles, observing significantly bet-
ter performance than randomly selecting the correct
number of segmentation points, as well as two pop-
ular, previous approaches, PLSA and TextTiling.

Acknowledgments

We thank Marti Hearst for the human subject perfor-
mance data and the anonymous reviewers for their
very helpful comments. Funded in part by the Ad-
vanced Research and Development Activity NIMD
program (MDA904-03-C-0404).

References
Doug Beeferman, Adam Berger, and John Lafferty.

1999. Statistical models for text segmentation. Ma-
chine Learning, 34:177–210.

Kenneth R. Beesley and Lauri Karttunen. 2003. Finite
State Morphology. CSLI Publications, Palo Alto, CA.

Thorsten Brants, Francine Chen, and Ioannis Tsochan-
taridis. 2002. Topic-based document segmentation
with probabilistic latent semantic analysis. In Pro-
ceedings of CIKM, pg. 211–218.

Thorsten Brants. 2000. TnT – a statistical part-of-speech
tagger. In Proceedings of the Applied NLP Confer-
ence.

Freddy Choi. 2000. Improving the efficiency of speech
interfaces for text navigation. In Proceedings of IEEE
Colloquium: Speech and Language Processing for
Disabled and Elderly People.

Nello Cristianini and John Shawe-Taylor. 2000. An In-
troduction to Support Vector Machines. Cambridge
University Press.

Thomas Dietterich. 1998. Approximate statistical tests
for comparing supervised classification learning algo-
rithms. Neural Computation, 10:1895–1923.

Marti A. Hearst. 1994. Multi-paragraph segmentation of
expository text. In Meeting of ACL, pg. 9–16.

Thorsten Joachims, 1999. Advances in Kernel Methods -
Support Vector Learning, chapter Making large-Scale
SVM Learning Practical. MIT-Press.

Hideki Kozima and Teiji Furugori. 1994. Segmenting
narrative text into coherent scenes. In Literary and
Linguistic Computing, volume 9, pg. 13–19.

Hideki Kozima. 1993. Text segmentation based on sim-
ilarity between words. In Meeting of ACL, pg. 286–
288.

Hang Li and Kenji Yamanishi. 2000. Topic analysis us-
ing a finite mixture model. In Proceedings of Joint
SIGDAT Conference of EMNLP and Very Large Cor-
pora, pg. 35–44.

Hajime Mochizuki, Takeo Honda, and Manabu Okumura.
1998. Text segmentation with multiple surface lin-
guistic cues. In COLING-ACL, pg. 881–885.

Lev Pevzner and Marti Hearst. 2002. A critique and
improvement of an evaluation metric for text segmen-
tation. Computational Linguistics, pg. 19–36.

Jeffrey Reynar. 1999. Statistical models for topic seg-
mentation. In Proceedings of ACL, pg. 357–364.

Nicola Stokes, Joe Carthy, and Alex Smeaton. 2002.
Segmenting broadcast news streams using lexical
chains. In Proceedings of Starting AI Researchers
Symposium, (STAIRS 2002), pg. 145–154.

Ian H. Witten and Eibe Frank. 2000. Data Mining:
Practical machine learning tools with Java implemen-
tations. Morgan Kaufmann.

39

Proceedings of the ACL Workshop on Feature Engineering for Machine Learning in NLP, pages 40–47,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Identifying non-referential it: a machine learning approach incorporating
linguistically motivated patterns

Adriane Boyd
Department of Linguistics
The Ohio State University

1712 Neil Ave.
Columbus, OH 43210

adriane@ling.osu.edu

Whitney Gegg-Harrison & Donna Byron
Department of Computer Science and Engineering

The Ohio State University
2015 Neil Ave.

Columbus, OH 43210
{geggharr,dbyron }@cse.osu.edu

Abstract

In this paper, we present a machine learn-
ing system for identifying non-referential
it. Types of non-referentialit are ex-
amined to determine relevant linguistic
patterns. The patterns are incorporated
as features in a machine learning system
which performs a binary classification of
it as referential or non-referential in a
POS-tagged corpus. The selection of rel-
evant, generalized patterns leads to a sig-
nificant improvement in performance.

1 Introduction

The automatic classification ofit as either referen-
tial or non-referential is a topic that has been rel-
atively ignored in the computational linguistics lit-
erature, with only a handful of papers mentioning
approaches to the problem. With the term “non-
referentialit”, we mean to refer to those instances
of it which do not introduce a new referent. In the
previous literature these have been called “pleonas-
tic”, “expletive”, and “non-anaphoric”. It is impor-
tant to be able to identify instances of non-referential
it to generate the correct semantic interpretation of
an utterance. For example, one step of this task is to
associate pronouns with their referents. In an auto-
mated pronoun resolution system, it is useful to be
able to skip over these instances ofit rather than at-
tempt an unnecessary search for a referent for them,

The authors would like to thank the GE Foundation Faculty
for the Future grant for their support of this project. We would
also like to thank Detmar Meurers and Erhard Hinrichs for their
helpful advice and feedback.

only to end up with inaccurate results. The task of
identifying non-referentialit could be incorporated
into a part-of-speech tagger or parser, or viewed as
an initial step in semantic interpretation.

We develop a linguistically-motivated classifi-
cation for non-referentialit which includes four
types of non-referentialit: extrapositional, cleft,
weather/condition/time/place, and idiomatic, each
of which will be discussed in more detail in Section
2. A subset of the BNC Sampler Corpus (Burnard,
1995) was chosen for our task because of its ex-
tended tagset and high tagging accuracy. Non-
referentialit makes up a significant proportion of the
occurrences ofit in our corpus, which contains a se-
lection of written texts of various genres, approxi-
mately one-third prose fiction, one-third newspaper
text, and one-third other non-fiction. In our corpus,
there are 2337 instances ofit, 646 of which are non-
referential (28%).It appears in over 10% of the sen-
tences in our corpus. The corpus is described in fur-
ther detail in Section 3.

Previous research on this topic is fairly lim-
ited. Paice and Husk (1987) introduces a rule-based
method for identifying non-referentialit and Lappin
and Leass (1994) and Denber (1998) describe rule-
based components of their pronoun resolution sys-
tems which identify non-referentialit. Evans (2001)
describes a machine learning system which classi-
fies it into seven types based on the type of referent.
Their approaches are described in detail in Section
4. In Section 5 we describe our system which com-
bines and extends elements of the systems developed
by Paice and Husk (1987) and Evans (2001), and the
results are presented in Section 6.

40

2 Classification

The first step is to create a classification system for
all instances ofit. Though the goal is the binary clas-
sification of it as referential or non-referential, an
annotation scheme is used which gives more detail
about each instance of non-referentialit, since they
occur in a number of constructions. The main types
of non-referentialit are taken from theCambridge
Grammar of the English Languagein the section
on “Special uses ofit”, Section 2.5, Huddleston and
Pullum (2002). Five main uses are outlined: extra-
positional, cleft, weather/condition/time/place, id-
iomatic, and predicative. As noted in theCambridge
Grammar, predicativeit seems to be more referen-
tial that the other types of non-referentialit. Pred-
icativeit can typically be replaced with a demonstra-
tive pronoun. Consider the example:It is a dreary
day. It can be replaced withThiswith no change in
grammaticality and no significant change in mean-
ing: This is a dreary day.In contrast, replacing the
other types ofit with this results in nonsense, e.g.,
*This seems that the king is displeased.

For our purposes, if a particularit can be re-
placed with a demonstrative pronoun and the result-
ing sentence is still grammatical and has no signif-
icant change in meaning, thisit is referential and
therefore annotated as referential. The demonstra-
tive pronoun replacement test is not quite perfect
(e.g., *This is a dreary day in Paris), but no such
instances of predicativeit were found in the corpus
so predicativeit is always classified as referential.
This leaves four types ofit, each of which are de-
scribed in detail below. The main examples for each
type are taken from the corpus. See Section 3 for
details about the corpus.

2.1 Extrapositional

When an element of a sentence is extraposed,it is
often inserted as a placeholder in the original posi-
tion of the now extraposed element. Most often,it
appears in the subject position, but it can also ap-
pear as an object. Example (1) lists a few instances
of extrapositionalit from our corpus.

(1) a. It has been confirmed this week that politi-
cal parties will no longer get financial sub-
sidies.

b. She also madeit clear that Conductive Ed-
ucation is not the only method.

c. You lead life,it seems to me, like some rit-
ual that demands unerring performance.

The extraposed element is typically a subordinate
clause, and the type of clause depends on lexical
properties of verbs and adjectives in the sentence,
see (2).

(2) * It was difficult that X.
It was difficult to X.

* It was clear to X.
It was clear that X.

As (1c) shows, extrapositionalit can also appear
as part of a truncated extrapositional phrase as a kind
of parenthetical comment embedded in a sentence.

2.2 Cleft

It appears as the subject ofit-cleft sentences. When
an it-cleft sentence is formed, the foregrounded
phrase becomes the complement of the verbbeand
the rest of sentence is backgrounded in a relative
clause. The foregrounded phrase in a cleft sentence
can be a noun phrase, prepositional phrase, adjective
phrase, adverb phrase, non-finite clause, or content
clause.

(3) a. It wasthe military district commander
who stepped in to avoid bloodshed. (noun
phrase)

b. It is on this point that the views of the
SACP and some Soviet policymakers di-
vide. (prepositional phrase)

c. ’Tis glad I am to ’ear it, me lord. (adjective
phrase)

Additionally, the foregrounded phrase can some-
times be fronted:

(4) He it was who ushered in the new head of state.

More context than the immediate sentence is
needed to accurately identifyit-cleft sentences.
First, clefts with a foregrounded noun phrase are am-
biguous between cleft sentences (5a) and sentences
where the noun phrase and relative clause form a
constituent (5b).

41

(5) a. A: I heard that the general stepped in to
avoid bloodshed.
B: No, it was the military district comman-
der who stepped in.

b. A: Was that the general being interviewed
on the news?
B: No, it was the military district comman-
der who stepped in to avoid bloodshed.

Due to this ambiguity, we expect that it may be
difficult to classify clefts. In addition, there are dif-
ficulties because the relative clause does not always
appear in full. In various situations the relative pro-
noun can be omitted, the relative clause can be re-
duced, or the relative clause can be omitted entirely.

2.3 Weather/Condition/Time/Place

It appears as the subject of weather and other
related predicates involving condition, time, and
place/distance:

(6) a. It was snowing steadily outside.

b. It was about midnight.

c. It was no distance to Mutton House.

d. It was definitely not dark.

2.4 Idiomatic

In idioms, it can appear as the subject, object, or
object of a preposition.

(7) a. After three weeks it was my turn to go to
the delivery ward at Fulmer.

b. Cool it!

c. They have not had an easy time of it.

2.5 General Notes

Non-referentialit is most often the subject of a sen-
tence, but in extrapositional and idiomatic cases, it
can also be the object. Idioms are the only cases
where non-referentialit is found as the object of a
preposition.

3 Corpus

The BNC Sampler Corpus (Burnard, 1995) was cho-
sen for its extended tagset and high tagging accu-
racy. The C7 tagset used for this corpus has a unique

Prose fiction 32%
Newspaper text 38%
Other non-fiction 30%

Table 1: Text types in our corpus

of Instances % of Inst.
Extrapositional 477 20.4%
Cleft 119 5.1%
Weather 69 2.9%
Idiomatic 46 2.0%
Referential 1626 69.6%
Total 2337 100%

Table 2: Instances ofit in our corpus

tag for it, which made the task of identifying all oc-
currences ofit very simple. We chose a subset con-
sisting of 350,000 tokens from written texts in vari-
ety of genres. The breakdown by text type can be
seen in Table 1.

The two lead authors independently annotated
each occurence with one of the labels shown in Ta-
ble 2 and then came to a joint decision on the fi-
nal annotation. The breakdown of the instances ofit
in our corpus is shown in Table 2. There are 2337
occurrences ofit, 646 of which are non-referential
(28%). Ten percent of the corpus, taken from all
sections, was set aside as test data. The remaining
section, which contains 2100 instances ofit, became
our training data.

4 Previous Research

Paice and Husk (1987) reports a simple rule-based
system that was used to identify non-referentialit in
the technical section of the Lancaster-Oslo/Bergen
Corpus. Because of the type of text, the distribution
of types of non-referentialit is somewhat limited, so
they only found it necessary to write rules to match
extrapositional and cleftit (although they do men-
tion two idioms found in the corpus). The corpus
was plain text, so their rules match words and punc-
tuation directly.

Their patterns findit as a left bracket and search
for a right bracket related to the extrapositional and
cleft grammatical patterns (to, that, etc.). For the
extrapositional instances, there are lists of words
which are matched in betweenit and the right

42

Accuracy 92%
Precision 93%
Recall 97%

Table 3: Paice and Husk (1987): Results

Accuracy 79%
Precision 80%
Recall 31%

Table 4: Replicating Paice and Husk (1987)

bracket. The word lists are task-status words (STA-
TUS), state-of-knowledge words (STATE), and a list
of prepositions and related words (PREP), which is
used to rule out right brackets that could potentially
be objects of prepositions. Patterns such as “it STA-
TUS to” and “it !PREP that” were created. The
left bracket can be at most 27 words from the right
bracket and there can be either zero or two or more
commas or dashes between the left and right brack-
ets. Additionally, their system had a rule to match
parentheticalit: there is a match whenit appears im-
mediately following a comma and another comma
follows within four words. Their results, shown in
Table 3, are impressive.

We replicated their system and ran it on our test-
ing data, see Table 4. Given the differences in text
types, it is not surprising that their system did not
perform as well on our corpus. The low recall seems
to show the limitations of fixed word lists, while the
reasonably high precision shows that the simple pat-
terns tend to be accurate in the cases where they ap-
ply.

Lappin and Leass (1994) and Denber (1998) men-
tion integrating small sets of rules to match non-
referentialit into their larger pronoun resolution sys-
tems. Lappin and Leass use two words lists and
a short set of rules. One word list is modal adjec-
tives (necessary, possible, likely, etc.) and the other
is cognitive verbs (recommend, think, believe, etc.).
Their rules are as follows:

It is Modaladj that S
It is Modaladj (for NP) to VP
It is Cogv-ed that S
It seems/appears/means/follows (that) S
NP makes/finds it Modaladj (for NP) to VP

Accuracy 71%
Precision 73%
Recall 69%

Table 5: Evans (2001): Results, Binary Classifica-
tion

It is time to VP
It is thanks to NP that S

Their rules are mainly concerned with extraposi-
tional it and they give no mention of cleftit. They
give no direct results for this component of their
system, so it is not possible to give a comparison.
Denber (1998) includes a slightly revised and ex-
tended version of Lappin and Leass’s system and
adds in detection of weather/timeit. He suggests
using WordNet to extend word lists.

Evans (2001) begins by noting that a significant
percentage of instances ofit do not have simple
nominal referents and describes a system which uses
a memory-based learning (MBL) algorithm to per-
form a 7-way classification ofit by type of refer-
ent. We consider two of his categories,pleonas-
tic andstereotypic/idiomatic, to be non-referential.
Evans created a corpus with texts from the BNC
and SUSANNE corpora and chose to use a memory-
based learning algorithm. A memory-based learn-
ing algorithm classifies new instances on the basis of
their similarity to instances seen in the training data.
Evans chose the k-nearest neighbor algorithm from
the Tilburg Memory-Based Learner (TiMBL) pack-
age (Daelemans et al., 2003) with approximately 35
features relevant to the 7-way classification. Al-
though his system was created for the 7-way classi-
fication task, he recognizes the importance of the bi-
nary referential/non-referential distinction and gives
the results for the binary classification of pleonastic
it, see Table 5. His results for the classification of
idiomatic it (33% precision and 0.7% recall) show
the limitations of a machine learning system given
sparse data.

We replicated Evans’s system with a simplified set
of features to perform the referential/non-referential
classification ofit. We did not include features that
would require chunking or features that seemed rel-
evant only for distinguishing kinds of referentialit.
The following thirteen features are used:

43

Accuracy 76%
Precision 57%
Recall 60%

Table 6: Replicating Evans (2001)

1-8. four preceding and following POS tags
9-10. lemmas of the preceding and following verbs
11. lemma of the following adjective
12. presence ofthat following
13. presence of an immediately preceding preposi-

tion

Using our training and testing data with the same
algorithm from TiMBL, we obtained results similar
to Evans’s, shown in Table 6. The slightly higher
accuracy is likely due to corpus differences or the
reduced feature set which ignores features largely
relevant to other types ofit.

Current state-of-the-art reference resolution sys-
tems typically include filters for non-referential
noun phrases. An example of such a system is Ng
and Cardie (2002), which shows the improvement
in reference resolution when non-referential noun
phrases are identified. Results are not given for the
specific task of identifying non-referentialit, so a di-
rect comparison is not possible.

5 Method

As seen in the previous section, both rule-based
and machine learning methods have been shown to
be fairly effective at identifying non-referentialit.
Rule-based methods look for the grammatical pat-
terns known to be associated with non-referentialit
but are limited by fixed word lists; machine learning
methods can handle open classes of words, but are
less able to generalize about the grammatical pat-
terns associated with non-referentialit from a small
training set.

Evans’s memory-based learning system showed a
slight integration of rules into the machine learning
system by using features such as the presence of fol-
lowing that. Given the descriptions of types of non-
referentialit from Section 2, it is possible to create
more specific rules which detect the fixed grammat-
ical patterns associated with non-referentialit such
as it VERB thator it VERB ADJ to. Many of these

patterns are similar to Paice and Husk’s, but hav-
ing part-of-speech tags allows us to create more gen-
eral rules without reference to specific lexical items.
If the results of these rule matches are integrated
as features in the training data for a memory-based
learning system along with relevant verb and ad-
jective lemmas, it becomes possible to incorporate
knowledge about grammatical patterns without cre-
ating fixed word lists. The following sections exam-
ine each type of non-referentialit and describe the
patterns and features that can be used to help auto-
matically identify each type.

5.1 Extrapositional it

Extrapositionalit appears in a number of fairly fixed
patterns, nine of which are shown below. Interven-
ing tokens are allowed between the words in the pat-
terns. F4-6 are more general versions ofF1-3 but
are not as indicative of non-referentialit, so it useful
to keep them separate even though ones that match
F1-3will also matchF4-6. F7 applies whenit is the
object of a verb. To simplify patterns likeF8, all
verbs in the sentence are lemmatized withmorpha
(Minnen et al., 2001) before the pattern matching
begins.

F1 it VERB ADJ that
F2 it VERB ADJ

what/which/where/whether/why/how
F3 it VERB ADJ to
F4 it VERB that
F5 it VERB what/which/where/whether/why/how
F6 it VERB to
F7 it ADJ that/to
F8 it be/seem as if
F9 it VERB COMMA

For each item above, the feature consists of the
distance (number of tokens) betweenit and the end
of the match (the right bracket suchthat or to).
By using the distance as the feature, it is possible
to avoid specifying a cutoff point for the end of a
match. The memory-based learning algorithm can
adapt to the training data. As discussed in Sec-
tion 2.1, extraposition is often lexically triggered,
so the specific verbs and adjectives in the sentence
are important for its classification. For this reason,
it is necessary to include information about the sur-
rounding verbs and adjectives. The nearby full verbs

44

(as opposed to auxiliary and modal verbs) are likely
to give the most information, so we add features for
the immediately preceding full verb (forF7), the
following full verb (for F1-F6), and the following
adjective (forF1-3,7). The verbs were lemmatized
with morphaand added as features along with the
following adjective.

F10 lemma of immediately preceding full verb

F11 lemma of following full verb within current
sentence

F12 following adjective within current sentence

5.2 Cleft it

Two patterns are used for cleftit:

F13 it be who/which/that

F14 it who/which/that

As mentioned in the previous section, all verbs in
the sentence are lemmatized before matching. Like-
wise, these features are the distance betweenit and
the right bracket. FeatureF14 is used to match a
cleft it in a phrase with inverted word order.

5.3 Weather/Condition/Time/Placeit

Ideally, the possible weather predicates could be
learned automatically from the following verbs, ad-
jectives, and nouns, but the list is so open that it
is better in practice to specify a fixed list. The
weather/time/place/condition predicates were taken
from the training set and put into a fixed list. Some
generalizations were made (e.g., adding the names
of all months, weekdays, and seasons), but the list
contains mainly the words found in the training set.
There are 46 words in the list. As Denber men-
tioned, WordNet could be used to extend this list.
A feature is added for the distance to the nearest
weather token.

The following verb lemma feature (F10) added
for extrapositionalit is the lemma of the follow-
ing full verb, but in many cases the verb following
weatherit is the verbbe, so we also added a binary
feature for whether the following verb isbe.

F15 distance to nearest weather token

F16 whether the following verb isbe

5.4 Idiomatic it

Idioms can be identified by fixed patterns. All verbs
in the sentence are lemmatized and the following
patterns, all found as idioms in our training data, are
used:

if/when it come to pull it off
as it happen fall to it
call it a NOUN ask for it
on the face of it be it not for
have it not been for like it or not

Short idiom patterns such as “cool it” and “watch
it” were found to overgeneralize, so only idioms in-
cluding at least three words were used. A binary
feature was added for whether an idiom pattern was
matched for the given instance ofit (F17). In addi-
tion, two common fixed patterns were included as a
separate feature:

it be ... time
it be ... my/X’s turn

F17 whether an idiom pattern was matched
F18 whether an additional fixed pattern was

matched

5.5 Additional Restrictions

There are a few additional restrictions on the pattern
matches involving length and punctuation. The first
restriction is on the distance between the instance
of it and the right bracket (that, to, who, etc.). On
the basis of their corpus, Paice and Husk decided
that the right bracket could be at most 27 words
away fromit. Instead of choosing a fixed distance,
features based on pattern matches are the distance
(number of tokens) betweenit and the right bracket.

The system looks for a pattern match betweenit
and the end of the sentence. The end of a sentence
is considered to be punctuation matching any of the
following: . ; : ? !)] . (Right parenthesis or
bracket is only included if a matching left parenthe-
sis or bracket has not been found before it.) If there
is anything in paired parentheses in the remainder of
the sentence, it is omitted. Quotes are not consistent
indicators of a break in a sentence, so they are ig-
nored. If the end of a sentence is not located within
50 tokens, the sentence is truncated at that point and
the system looks for the patterns within those tokens.

45

As Paice and Husk noted, the presence of a sin-
gle comma or dash betweenit and the right bracket
is a good sign that the right bracket is not rele-
vant to whether the instance ofit is non-referential.
When there are either zero or two or more commas
or dashes it is difficult to come to any conclusion
without more information. Therefore, when the to-
tal comma count or total dash count betweenit and
the right bracket is one, the pattern match is ignored.

Additionally, unlessit occurs in an idiom, it is
also never the object of a preposition, so there is
an additional feature for whetherit is preceded by
a preposition.

F19 whether the previous word is a preposition

Finally, the single preceding and five following
simplified part-of-speech tags were also included.
The part-of-speech tags were simplified to their first
character in the C7 tagset, adverb (R) and nega-
tive (X) words were ignored, and only the first in-
stance in a sequence of tokens of the same simplified
type (e.g., the first of two consecutive verbs) was in-
cluded in the set of following tags.

F20-25surrounding POS tags, simplified

6 Results

Training and testing data were generated from our
corpus using the the 25 features described in the
previous section. Given Evans’s success and the
limited amount of training data, we chose to also
use TiMBL’s k-nearest neighbor algorithm (IB1).
In TiMBL, the distance metric can be calculated
in a number of ways for each feature. The nu-
meric features use the numeric metric and the re-
maining features (lemmas, POS tags) use the de-
fault overlap metric. Best performance is achieved
with gain ratio weighting and the consideration of
2 nearest distances (neighbors). Because of overlap
in the features for various types of non-referential
it and sparse data for cleft, weather, and idiomatic
it, all types of non-referentialit were considered at
the same time and the output was a binary classifi-
cation of each instance ofit as referential or non-
referential. The results for our TiMBL classifier
(MBL) are shown in Table 7 alongside our results
using a decision tree algorithm (DT, described be-
low) and the results from our replication of Evans

Our MBL
Classifier

Our DT
Classifier

Repl. of
Evans

Accuracy 88% 81% 76%
Precision 82% 82% 57%
Recall 71% 42% 60%

Table 7: Results

Extrapositional 81%
Cleft 45%
Weather 57%
Idiomatic 60%
Referential 94%

Table 8: Recall by Type for MBL Classifier

(2001). All three systems were trained and evalu-
ated with the same data.

All three systems perform a binary classifica-
tion of each instance ofit as referential or non-
referential, but each instance of non-referentialit
was additionally tagged for type, so the recall for
each type can be calculated. The recall by type can
been seen in Table 8 for our MBL system. Given that
the memory-based learning algorithm is using previ-
ously seen instances to classify new ones, it makes
sense that the most frequent types have the highest
recall. As mentioned in Section 2.2, clefts can be
difficult to identify.

Decision tree algorithms seem suited to this kind
of task and have been used previously, but C4.5
(Quinlan, 1993) decision tree algorithm did not per-
form as well as TiMBL on our data, compare the
TiMBL results (MBL) with the C4.5 results (DT) in
Table 7. This may be because the verb and adjective
lemma features (F10-F12) had hundreds of possible
values and were not as useful in a decision tree as in
the memory-based learning algorithm.

With the addition of more relevant, generalized
grammatical patterns, the precision and accuracy
have increased significantly, but the same cannot be
said for recall. Because many of the patterns are
designed to match specific function words as the
right bracket, cases where the right bracket is omit-
ted (e.g., extraposed clauses with no overt comple-
mentizers, truncated clefts, clefts with reduced rela-
tive clauses) are difficult to match. Other problem-
atic cases include sentences with a lot of intervening

46

material betweenit and the right bracket or simple
idioms which cannot be easily differentiated. The
results for cleft, weather, and idiomaticit may also
be due in part to sparse data. When only 2% of the
instances ofit are of a certain type, there are fewer
than one hundred training instances, and it can be
difficult for the memory-based learning method to
be very successful.

7 Conclusion

The accurate classification ofit as referential or non-
referential is important for natural language tasks
such as reference resolution (Ng and Cardie, 2002).
Through an examination of the types of construc-
tions containing non-referentialit, we are able to de-
velop a set of detailed grammatical patterns associ-
ated with non-referentialit. In previous rule-based
systems, word lists were created for the verbs and
adjectives which often occur in these patterns. Such
a system can be limited because it is unable to adapt
to new texts, but the basic grammatical patterns
are still reasonably consistent indicators of non-
referentialit. Given a POS-tagged corpus, the rele-
vant linguistic patterns can be generalized over part-
of-speech tags, reducing the dependence on brittle
word lists. A machine learning algorithm is able
to adapt to new texts and new words, but it is less
able to generalize about the linguistic patterns from
a small training set. To be able to use our knowl-
edge of relevant linguistic patterns without having to
specify lists of words as indicators of certain types
of it, we developed a machine learning system which
incorporates the relevant patterns as features along-
side part-of-speech and lexical information. Two
short lists are still used to help identify weatherit
and a few idioms. The k-nearest neighbors algo-
rithm from the Tilburg Memory Based Learner is
used with 25 features and achieved 88% accuracy,
82% precision, and 71% recall for the binary classi-
fication of it as referential or non-referential.

Our classifier outperforms previous systems in
both accuracy and precision, but recall is still a prob-
lem. Many instances of non-referentialit are diffi-
cult to identify because typical clues such as com-
plementizers and relative pronouns can be omitted.
Because of this, subordinate and relative clauses
cannot be consistently identified given only a POS-

tagged corpus. Improvements could be made in the
future by integrating chunking or parsing into the
pattern-matching features used in the system. This
would help in identifying extrapositional and cleftit.
Knowledge about context beyond the sentence level
will be needed to accurately identify certain types of
cleft, weather, and idiomatic constructions.

References

L. Burnard, 1995.Users reference guide for the British
National Corpus. Oxford.

Walter Daelemans, Jakub Zavrel, Ko van der Sloot, and
Antal van den Bosch. 2003. TiMBL: Tilburg Mem-
ory Based Learner, version 5.0, Reference Guide. ILK
Technical Report 03-10. Technical report.

Michel Denber. 1998. Automatic resolution of anaphora
in English. Technical report, Imaging Science Divi-
son, Eastman Kodak Co.

Richard Evans. 2001. Applying machine learning to-
ward an automatic classification of It.Literary and
Linguistic Computing, 16(1):45 – 57.

Rodney D. Huddleston and Geoffrey K. Pullum. 2002.
The Cambridge Grammar of the English Language.
Cambridge University Press, Cambridge.

Shalom Lappin and Herbert J. Leass. 1994. An Algo-
rithm for Pronominal Anaphora Resolution.Compu-
tational Linguistics, 20(4):535–561.

Guido Minnen, John Caroll, and Darren Pearce. 2001.
Applied morphological processing of English.Natu-
ral Language Engineering, 7(3):207–223.

Vincent Ng and Claire Cardie. 2002. Identifying
anaphoric and non-anaphoric noun phrases to improve
coreference resolution.Proceedings of the 19th In-
ternational Conference on Computational Linguistics
(COLING-2002).

C. D. Paice and G. D. Husk. 1987. Towards an automatic
recognition of anaphoric features in English text; the
impersonal pronoun ‘it’.Computer Speech and Lan-
guage, 2:109 – 132.

J. Ross Quinlan. 1993.C4.5: Programs for Machine
Learning. Morgan Kaufmann.

47

Proceedings of the ACL Workshop on Feature Engineering for Machine Learning in NLP, pages 48–56,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Engineering of Syntactic Features for Shallow Semantic Parsing

Alessandro Moschitti¦

¦ DISP - University of Rome “Tor Vergata”, Rome, Italy
{moschitti, pighin, basili }@info.uniroma2.it

† ITC-Irst, ‡ DIT - University of Trento, Povo-Trento, Italy
coppolab@itc.it

Bonaventura Coppola†‡ Daniele Pighin¦ Roberto Basili¦

Abstract

Recent natural language learning research
has shown that structural kernels can be
effectively used to induce accurate models
of linguistic phenomena.

In this paper, we show that the above prop-
erties hold on a novel task related to predi-
cate argument classification. A tree kernel
for selecting the subtrees which encodes
argument structures is applied. Experi-
ments with Support Vector Machines on
large data sets (i.e. the PropBank collec-
tion) show that such kernel improves the
recognition of argument boundaries.

1 Introduction

The design of features for natural language process-
ing tasks is, in general, a critical problem. The inher-
ent complexity of linguistic phenomena, often char-
acterized by structured data, makes difficult to find
effective linear feature representations for the target
learning models.

In many cases, the traditional feature selection
techniques (Kohavi and Sommerfield, 1995) are not
so useful since the critical problem relates to feature
generation rather than selection. For example, the
design of features for a natural language syntactic
parse-tree re-ranking problem (Collins, 2000) can-
not be carried out without a deep knowledge about
automatic syntactic parsing. The modeling of syn-
tactic/semantic based features should take into ac-
count linguistic aspects to detect the interesting con-

text, e.g. the ancestor nodes or the semantic depen-
dencies (Toutanova et al., 2004).

A viable alternative has been proposed in (Collins
and Duffy, 2002), where convolution kernels were
used to implicitly define a tree substructure space.
The selection of the relevant structural features was
left to the voted perceptron learning algorithm. An-
other interesting model for parsing re-ranking based
on tree kernel is presented in (Taskar et al., 2004).
The good results show that tree kernels are very
promising for automatic feature engineering, espe-
cially when the available knowledge about the phe-
nomenon is limited.

Along the same line, automatic learning tasks that
rely on syntactic information may take advantage of
a tree kernel approach. One of such tasks is the au-
tomatic boundary detection of predicate arguments
of the kind defined in PropBank (Kingsbury and
Palmer, 2002). For this purpose, given a predicatep
in a sentences, we can define the notion ofpredicate
argument spanning trees(PASTs) as those syntac-
tic subtrees ofs which exactly coverall and only
thep’s arguments (see Section 4.1). The set of non-
spanning trees can be then associated with all the
remaining subtrees ofs.

An automatic classifier which recognizes the
spanning trees can potentially be used to detect the
predicate argument boundaries. Unfortunately, the
application of such classifier to all possible sen-
tence subtrees would require an exponential execu-
tion time. As a consequence, we can use it only to
decide for a reduced set of subtrees associated with
a corresponding set of candidate boundaries. Notice
how these can be detected by previous approaches

48

(e.g. (Pradhan et al., 2004)) in which a traditional
boundary classifier (tbc) labels the parse-tree nodes
as potential arguments (PA). Such classifiers, gen-
erally, are not sensitive to the overall argument struc-
ture. On the contrary, aPAST classifier (pastc) can
consider the overall argument structure encoded in
the associated subtree. This is induced by thePA
subsets.

The feature design for thePAST representation
is not simple. Tree kernels are a viable alternative
that allows the learning algorithm to measure the
similarity between twoPASTs in term of all pos-
sible tree substructures.

In this paper, we designed and experimented a
boundary classifier for predicate argument labeling
based on two phases: (1) a first annotation of po-
tential arguments by using a high recalltbc and
(2) aPAST classification step aiming to select the
correct substructures associated with potential argu-
ments. Both classifiers are based on Support Vector
Machines learning. Thepastc uses the tree kernel
function defined in (Collins and Duffy, 2002). The
results show that thePAST classification can be
learned with high accuracy (the f-measure is about
89%) and the impact on the overall boundary detec-
tion accuracy is good.

In the remainder of this paper, Section 2 intro-
duces the Semantic Role Labeling problem along
with the boundary detection subtask. Section 3 de-
fines the SVMs using the linear kernel and the parse
tree kernel for boundary detection. Section 4 de-
scribes our boundary detection algorithm. Section 5
shows the preliminary comparative results between
the traditional and the two-step boundary detection.
Finally, Section 7 summarizes the conclusions.

2 Automated Semantic Role Labeling

One of the largest resources of manually annotated
predicate argument structures has been developed in
the PropBank (PB) project. The PB corpus contains
300,000 words annotated with predicative informa-
tion on top of the Penn Treebank 2 Wall Street Jour-
nal texts. For any given predicate, the expected ar-
guments are labeled sequentially fromArg0 to Arg9,
ArgA and ArgM. Figure 1 shows an example of
the PB predicate annotation of the sentence:John

rented a room in Boston.

Predicates in PB are only embodied by verbs
whereas most of the timesArg0 is thesubject, Arg1
is thedirect objectandArgM indicateslocations, as
in our example.

Predicate

Arg. 0

Arg. M

S

N

NP

D N

VP

V John

in

 rented

a room

PP

IN N

Boston

Arg. 1

Figure 1:A predicate argument structure in a parse-tree rep-

resentation.

Several machine learning approaches for auto-
matic predicate argument extraction have been de-
veloped, e.g. (Gildea and Jurasfky, 2002; Gildea and
Palmer, 2002; Gildea and Hockenmaier, 2003; Prad-
han et al., 2004). Their common characteristic is
the adoption of feature spaces that model predicate-
argument structures in a flat feature representation.
In the next section, we present the common parse
tree-based approach to this problem.

2.1 Predicate Argument Extraction

Given a sentence in natural language, all the predi-
cates associated with the verbs have to be identified
along with their arguments. This problem is usually
divided in two subtasks: (a) the detection of the tar-
get argument boundaries, i.e. the span of its words
in the sentence, and (b) the classification of the argu-
ment type, e.g.Arg0or ArgM in PropBank orAgent
andGoal in FrameNet.

The standard approach to learn both the detection
and the classification of predicate arguments is sum-
marized by the following steps:

1. Given a sentence from thetraining-set, gener-
ate a full syntactic parse-tree;

2. let P andA be the set of predicates and the
set of parse-tree nodes (i.e. the potential argu-
ments), respectively;

3. for each pair< p, a >∈ P ×A:

• extract the feature representation set,Fp,a;

49

• if the subtree rooted ina covers exactly
the words of one argument ofp, put Fp,a

in T+ (positive examples), otherwise put
it in T− (negative examples).

For instance, in Figure 1, for each combination of
the predicaterent with the nodesN, S, VP, V, NP,
PP, D or IN the instancesFrent,a are generated. In
case the nodea exactly covers ”John”, ”a room” or
”in Boston”, it will be a positive instance otherwise
it will be a negative one, e.g.Frent,IN .

TheT+ andT− sets are used to train the bound-
ary classifier. To train the multi-class classifierT+

can be reorganized as positiveT+
argi

and negative
T−argi

examples for each argumenti. In this way,
an individual ONE-vs-ALL classifier for each argu-
menti can be trained. We adopted this solution, ac-
cording to (Pradhan et al., 2004), since it is simple
and effective. In the classification phase, given an
unseen sentence, all itsFp,a are generated and clas-
sified by each individual classifierCi. The argument
associated with the maximum among the scores pro-
vided by the individual classifiers is eventually se-
lected.

2.2 Standard feature space

The discovery of relevant features is, as usual, a
complex task. However, there is a common con-
sensus on the set of basic features. These stan-
dard features, firstly proposed in (Gildea and Juras-
fky, 2002), refer to unstructured information de-
rived from parse trees, i.e.Phrase Type, Predicate
Word, Head Word, Governing Category, Position
andVoice. For example, thePhrase Typeindicates
the syntactic type of the phrase labeled as a predicate
argument, e.g. NP forArg1 in Figure 1. TheParse
Tree Pathcontains the path in the parse tree between
the predicate and the argument phrase, expressed as
a sequence of nonterminal labels linked by direction
(up or down) symbols, e.g.V ↑ VP↓ NPfor Arg1 in
Figure 1. ThePredicate Wordis the surface form of
the verbal predicate, e.g.rent for all arguments.

In the next section we describe the SVM approach
and the basic kernel theory for the predicate argu-
ment classification.

3 Learning predicate structures via
Support Vector Machines

Given a vector space in<n and a set of positive and
negative points, SVMs classify vectors according to
a separating hyperplane,H(~x) = ~w × ~x + b = 0,
where ~w ∈ <n andb ∈ < are learned by applying
theStructural Risk Minimization principle(Vapnik,
1995).

To apply the SVM algorithm to Predicate Argu-
ment Classification, we need a functionφ : F → <n

to map our features spaceF = {f1, .., f|F|} and our
predicate/argument pair representation,Fp,a = Fz,
into<n, such that:

Fz → φ(Fz) = (φ1(Fz), .., φn(Fz))

From the kernel theory we have that:

H(~x) =
(∑

i=1..l

αi~xi

)
· ~x + b =

∑

i=1..l

αi~xi · ~x + b =
∑

i=1..l

αiφ(Fi) · φ(Fz) + b.

where,Fi ∀i ∈ {1, .., l} are the training instances
and the productK(Fi, Fz) =<φ(Fi) ·φ(Fz)> is the
kernel function associated with the mappingφ.

The simplest mapping that we can apply is
φ(Fz) = ~z = (z1, ..., zn) wherezi = 1 if fi ∈ Fz

andzi = 0 otherwise, i.e. the characteristic vector
of the setFz with respect toF . If we choose the
scalar product as a kernel function we obtain the lin-
ear kernelKL(Fx, Fz) = ~x · ~z.

An interesting property is that we do not need to
evaluate theφ function to compute the above vector.
Only theK(~x, ~z) values are in fact required. This al-
lows us to derive efficient classifiers in a huge (pos-
sible infinite) feature space, provided that the ker-
nel is processed in an efficient way. This property
is also exploited to design convolution kernel like
those based on tree structures.

3.1 The tree kernel function

The main idea of the tree kernels is the modeling of
a KT (T1, T2) function which computes the number
of common substructures between two treesT1 and
T2.

Given the set of substructures (fragments)
{f1, f2, ..} = F extracted from all the trees of the
training set, we define the indicator functionIi(n)

50

S

NP VP

VP VP CC

VB NP

took DT NN

the book

and VB NP

read PRP$ NN

its title

PRP

John

S

NP VP

VP

VB NP

read

Sentence Parse-Tree

S

NP VP

VP

VB NP

 took

took{ARG0, ARG1}

PRP

John

PRP

John

DT NN

the book

PRP$ NN

its title

read{ARG0, ARG1}

Figure 2:A sentence parse tree with two predicative tree structures (PASTs)

which is equal 1 if the targetfi is rooted at noden
and 0 otherwise. It follows that:

KT (T1, T2) =
∑

n1∈NT1

∑

n2∈NT2

∆(n1, n2) (1)

where NT1 and NT2 are the sets of theT1’s
and T2’s nodes, respectively and∆(n1, n2) =∑|F|

i=1 Ii(n1)Ii(n2). This latter is equal to the num-
ber of common fragments rooted at then1 andn2

nodes. We can compute∆ as follows:

1. if the productions atn1 and n2 are different
then∆(n1, n2) = 0;

2. if the productions atn1 andn2 are the same,
andn1 andn2 have only leaf children (i.e. they
are pre-terminals symbols) then∆(n1, n2) =
1;

3. if the productions atn1 andn2 are the same,
andn1 andn2 are not pre-terminals then

∆(n1, n2) =
nc(n1)∏

j=1

(1 + ∆(cj
n1

, cj
n2

)) (2)

wherenc(n1) is the number of the children ofn1

andcj
n is thej-th child of the noden. Note that, as

the productions are the same,nc(n1) = nc(n2).
The above kernel has the drawback of assigning

higher weights to larger structures1. In order to over-
come this problem we scale the relative importance
of the tree fragments imposing a parameterλ in con-
ditions 2 and 3 as follows:∆(nx, nz) = λ and

∆(nx, nz) = λ
∏nc(nx)

j=1 (1 + ∆(cj
n1

, cj
n2

)).
1In order to approach this problem and to map similarity

scores in the [0,1] range, a normalization in the kernel space,
i.e. K′

T (T1, T2) = KT (T1,T2)√
KT (T1,T1)×KT (T2,T2)

. is always applied

4 Boundary detection via argument
spanning

Section 2 has shown that traditional argument
boundary classifiers rely only on features extracted
from the current potential argument node. In or-
der to take into account a complete argument struc-
ture information, the classifier should select a set of
parse-tree nodes and consider them as potential ar-
guments of the target predicate. The number of all
possible subsets is exponential in the number of the
parse-tree nodes of the sentence, thus, we need to
cut the search space. For such purpose, a traditional
boundary classifier can be applied to select the set
of potential argumentsPA. The reduced number of
PA subsets can be associated with sentence subtrees
which in turn can be classified by using tree kernel
functions. These measure if a subtree iscompatible
or not with the subtree of a correct predicate argu-
ment structure.

4.1 The Predicate Argument Spanning Trees
(PASTs)

We consider the predicate argument structures an-
notated in PropBank along with the corresponding
TreeBank data as our object space. Given the target
predicatep in a sentence parse treeT and a subset
s = {n1, .., nk} of the T’s nodes,NT , we define as
the spanning tree rootr the lowest common ancestor
of n1, .., nk. The node spanning tree (NST), ps is
the subtree rooted inr, from which the nodes that
are neither ancestors nor descendants of anyni are
removed.

Since predicate arguments are associated with
tree nodes, we can define thepredicate argu-

51

S

NP VP

VB NP

read

John

DT NN

the title

NP PP

DT NN

the book

NP IN

of

Arg. 1

Arg. 0

S

NP VP

VB NP

read

John

DT NN

the title

NP PP

DT NN

the book

NP IN

of

S

NP VP

VB NP

read

John

DT NN

the title

NP PP

DT NN

the book

NP IN

of

S

NP-0 VP

John

PP

DT NN

the book

NP IN

of

S

NP-0 VP

VB NP

read

John

DT NN

the title

NP-1 PP-2

DT NN

the book

IN

of

NP

(a) (b) (c)

Correct PAST

Incorrect PAST

Correct PAST

Incorrect PAST

DT NN

the title

NP

NP-1 VB

read

Figure 3:Two-step boundary classifier.

ment spanning tree(PAST) of a predicate ar-
gument set,{a1, .., an}, as theNST over such
nodes, i.e. p{a1,..,an}. A PAST corresponds
to the minimal subparse tree whose leaves are
all and only the word sequence compounding
the arguments. For example, Figure 2 shows
the parse tree of the sentence"John took the

book and read its title" . took{ARG0,ARG1}
and read{ARG0,ARG1} are two PAST structures
associated with the two predicatestook and read,
respectively. All the otherNSTs are not valid
PASTs.

Notice that, labelingps, ∀s ⊆ NT with a PAST
classifier (pastc) corresponds to solve the boundary
problem. The critical points for the application of
this strategy are: (1) how to design suitable features
for thePAST characterization. This new problem
requires a careful linguistic investigation about the
significant properties of the argument spanning trees
and (2) how to deal with the exponential number of
NSTs.

For the first problem, the use of tree kernels over
thePASTs can be an alternative to the manual fea-
tures design as the learning machine, (e.g. SVMs)
can select the most relevant features from a high di-
mensional feature space. In other words, we can use
Eq. 1 to estimate the similarity between twoPASTs
avoiding to define explicit features. The same idea
has been successfully applied to the parse-tree re-
ranking task (Taskar et al., 2004; Collins and Duffy,
2002) and predicate argument classification (Mos-
chitti, 2004).

For the second problem, i.e. the high computa-
tional complexity, we can cut the search space by us-

ing a traditional boundary classifier (tbc), e.g. (Prad-
han et al., 2004), which provides a small set of po-
tential argument nodes. LetPA be the set of nodes
located bytbc as arguments. We may consider the
setP of the NSTs associated with any subset of
PA, i.e. P = {ps : s ⊆ PA}. However, also
the classification ofP may be computationally prob-
lematic since theoretically there are|P| = 2|PA|

members.

In order to have a very efficient procedure, we
appliedpastc to only thePA sets associated with
incorrect PASTs. A way to detect such incor-
rect NSTs is to look for a node pair<n1, n2>∈
PA × PA of overlapping nodes, i.e. n1 is ances-
tor of n2 or viceversa. After we have detected such
nodes, we create two node setsPA1 = PA− {n1}
andPA2 = PA − {n2} and classify them with the
pastc to select the correct set of argument bound-
aries. This procedure can be generalized to a set of
overlapping nodesO greater than 2 as reported in
Appendix 1.

Note that the algorithm selects a maximal set of
non-overlapping nodes, i.e. the first that is gener-
ated. Additionally, the worst case is rather rare thus
the algorithm is very fast on average.

The Figure 3 shows a working example of the
multi-stage classifier. In Frame (a),tbc labels as
potential arguments (gray color) three overlapping
nodes (in Arg.1). The overlap resolution algorithm
proposes two solutions (Frame (b)) of which only
one is correct. In fact, according to the second so-
lution the propositional phrase ”of the book” would
incorrectly be attached to the verbal predicate, i.e.
in contrast with the parse tree. Thepastc, applied

52

to the twoNSTs, should detect this inconsistency
and provide the correct output. Note that, during the
learning, we generate the non-overlapping structures
in the same way to derive the positive and negative
examples.

4.2 Engineering Tree Fragment Features

In the Frame (b) of Figure 3, we show one of the
possible cases whichpastc should deal with. The
critical problem is that the twoNSTs are perfectly
identical, thus, it is not possible to discern between
them using only their parse-tree fragments.

The solution to engineer novel features is to sim-
ply add the boundary information provided by the
tbc to theNSTs. We mark with a progressive num-
ber the phrase type corresponding to an argument
node, starting from the leftmost argument. For ex-
ample, in the firstNST of Frame (c), we mark
as NP-0 and NP-1 the first and second argument
nodes whereas in the secondNST we have an hy-
pothesis of three arguments on theNP, NP andPP
nodes. We trasform them inNP-0 , NP-1 and
PP-2 .

This simple modification enables the tree ker-
nel to generate features useful to distinguish be-
tween two identical parse trees associated with dif-
ferent argument structures. For example, for the first
NST the fragments[NP-1 [NP][PP]] , [NP
[DT][NN]] and [PP [IN][NP]] are gener-
ated. They do not match anymore with the[NP-0
[NP][PP]] , [NP-1 [DT][NN]] and [PP-2
[IN][NP]] fragments of the secondNST .

In order to verify the relevance of our model, the
next section provides empirical evidence about the
effectiveness of our approach.

5 The Experiments

The experiments were carried out with
the SVM-light-TK software available at
http://ai-nlp.info.uniroma2.it/moschitti/

which encodes the tree kernels in the SVM-light
software (Joachims, 1999). Fortbc, we used the
linear kernel with a regularization parameter (option
-c) equal to 1 and a cost-factor (option-j) of 10 to
have a higher Recall. For thepastc we usedλ = 0.4
(see (Moschitti, 2004)).

As referring dataset, we used the PropBank cor-

pora available at www.cis.upenn.edu/ ∼ace ,
along with the Penn TreeBank 2
(www.cis.upenn.edu/ ∼treebank) (Marcus et
al., 1993). This corpus contains about 53,700
sentences and a fixed split between training and
testing which has been used in other researches, e.g.
(Pradhan et al., 2004; Gildea and Palmer, 2002).
We did not include continuation and co-referring
arguments in our experiments.

We used sections from 02 to 07 (54,443 argu-
ment nodes and 1,343,046 non-argument nodes) to
train the traditional boundary classifier (tbc). Then,
we applied it to classify the sections from 08 to
21 (125,443 argument nodes vs. 3,010,673 non-
argument nodes). As results we obtained 2,988
NSTs containing at least an overlapping node pair
out of the total 65,212 predicate structures (accord-
ing to the tbc decisions). From the 2,988 over-
lapping structures we extracted 3,624 positive and
4,461 negativeNSTs, that we used to train the
pastc.

The performance was evaluated with theF1 mea-
sure2 over the section 23. This contains 10,406 ar-
gument nodes out of 249,879 parse tree nodes. By
applying thetbc classifier we derived 235 overlap-
ping NSTs, from which we extracted 204PASTs
and 385 incorrect predicate argument structures. On
such test data, the performance ofpastc was very
high, i.e. 87.08% in Precision and 89.22% in Recall.

Using thepastc we removed from thetbc thePA
that cause overlaps. To measure the impact on the
boundary identification performance, we compared
it with three different boundary classification base-
lines:

• tbc: overlaps are ignored and no decision is
taken. This provides an upper bound for the
recall as no potential argument is rejected for
later labeling. Notice that, in presence of over-
lapping nodes, the sentence cannot be anno-
tated correctly.

• RND: one among the non-overlapping struc-
tures with maximal number of arguments is
randomly selected.

2F1 assigns equal importance to PrecisionP and RecallR,
i.e. F1 = 2P×R

P+R
.

53

tbc tbc+RND tbc+Heu tbc+pastc

P R F P R F P R F P R F
All Struct. 92.21 98.76 95.37 93.55 97.31 95.39 92.96 97.32 95.10 94.40 98.42 96.36

Overl. Struct. 98.29 65.8 78.83 74.00 72.27 73.13 68.12 75.23 71.50 89.61 92.68 91.11

Table 1: Two-steps boundary classification performance using the traditional boundary classifiertbc, the random selection of

non-overlapping structures (RND), the heuristic to select the most suitable non-overlapping node set (Heu) and the predicate

argument spanning tree classifier (pastc).

• Heu (heuristic): one of theNSTs which con-
tain the nodes with the lowest overlapping
score is chosen. This score counts the number
of overlapping node pairs in theNST . For ex-
ample, in Figure 3.(a) we have aNP that over-
laps with two nodesNP andPP, thus it is as-
signed a score of 2.

The third row of Table 1 shows the results oftbc,
tbc + RND, tbc + Heu and tbc + pastc in the
columns 2,3,4 and 5, respectively. We note that:

• Thetbc F1 is slightly higher than the result ob-
tained in (Pradhan et al., 2004), i.e. 95.37%
vs. 93.8% on same training/testing conditions,
i.e. (same PropBank version, same training and
testing split and same machine learning algo-
rithm). This is explained by the fact that we
did not include the continuations and the co-
referring arguments that are more difficult to
detect.

• BothRND andHeu do not improve thetbc re-
sult. This can be explained by observing that in
the 50% of the cases a correct node is removed.

• When, to select the correct node, thepastc is
used, theF1 increases of 1.49%, i.e. (96.86 vs.
95.37). This is a very good result considering
that to increase the very high baseline oftbc is
hard.

In order to give a fairer evaluation of our approach
we tested the above classifiers on the overlapping
structures only, i.e. we measured thepastc improve-
ment on all and only the structures that required its
application. Such reduced test set contains 642 ar-
gument nodes and 15,408 non-argument nodes. The
fourth row of Table 1 reports the classifier perfor-
mance on such task. We note that thepastc im-
proves the other heuristics of about 20%.

6 Related Work

Recently, many kernels for natural language applica-
tions have been designed. In what follows, we high-
light their difference and properties.

The tree kernel used in this article was proposed
in (Collins and Duffy, 2002) for syntactic parsing re-
ranking. It was experimented with the Voted Percep-
tron and was shown to improve the syntactic parsing.
A refinement of such technique was presented in
(Taskar et al., 2004). The substructures produced by
the proposed tree kernel were bound to local prop-
erties of the target parse tree and more lexical infor-
mation was added to the overall kernel function.

In (Zelenko et al., 2003), two kernels over syn-
tactic shallow parser structures were devised for
the extraction of linguistic relations, e.g.person-
affiliation. To measure the similarity between two
nodes, thecontiguous string kerneland thesparse
string kernel(Lodhi et al., 2000) were used. The
former can be reduced to the contiguous substring
kernel whereas the latter can be transformed in the
non-contiguous string kernel. The high running time
complexity, caused by the general form of the frag-
ments, limited the experiments on data-set of just
200 news items.

In (Cumby and Roth, 2003), it is proposed a de-
scription language that models feature descriptors
to generate different feature type. The descriptors,
which are quantified logical prepositions, are instan-
tiated by means of aconcept graphwhich encodes
the structural data. In the case of relation extraction
theconcept graphis associated with a syntactic shal-
low parse and the extracted propositional features
express fragments of a such syntactic structure. The
experiments over the named entity class categoriza-
tion show that when the description language selects
an adequate set of tree fragments the Voted Percep-
tron algorithm increases its classification accuracy.

In (Culotta and Sorensen, 2004) a dependency

54

tree kernel is used to detect the Named Entity classes
in natural language texts. The major novelty was
the combination of the contiguous and sparse ker-
nels with the word kernel. The results show that
the contiguous outperforms the sparse kernel and the
bag-of-words.

7 Conclusions

The feature design for new natural language learn-
ing tasks is difficult. We can take advantage from
the kernel methods to model our intuitive knowledge
about the target linguistic phenomenon. In this pa-
per we have shown that we can exploit the properties
of tree kernels to engineer syntactic features for the
predicate argument boundary detection task.

Preliminary results on gold standard trees suggest
that (1) the information related to the whole predi-
cate argument structure is important and (2) tree ker-
nel can be used to generate syntactic features.

In the future, we would like to use an approach
similar to thePAST classifier on parses provided
by different parsing models to detect boundary and
to classify semantic role more accurately .

Acknowledgements
We wish to thank Ana-Maria Giuglea for her help in
the design and implementation of the basic Seman-
tic Role Labeling system that we used in the experi-
ments.

References

Michael Collins and Nigel Duffy. 2002. New ranking
algorithms for parsing and tagging: Kernels over dis-
crete structures, and the voted perceptron. InACL02.

Michael Collins. 2000. Discriminative reranking for nat-
ural language parsing. InProceedings of ICML 2000.

Aron Culotta and Jeffrey Sorensen. 2004. Dependency
tree kernels for relation extraction. InProceedings of
the 42nd Meeting of the Association for Computational
Linguistics (ACL’04), Main Volume, pages 423–429,
Barcelona, Spain, July.

Chad Cumby and Dan Roth. 2003. Kernel methods for
relational learning. InProceedings of the Twentieth
International Conference (ICML 2003), Washington,
DC, USA.

Daniel Gildea and Julia Hockenmaier. 2003. Identifying
semantic roles using combinatory categorial grammar.

In Proceedings of the 2003 Conference on Empirical
Methods in Natural Language Processing, Sapporo,
Japan.

Daniel Gildea and Daniel Jurasfky. 2002. Automatic la-
beling of semantic roles.Computational Linguistic,
28(3):496–530.

Daniel Gildea and Martha Palmer. 2002. The neces-
sity of parsing for predicate argument recognition. In
Proceedings of the 40th Annual Conference of the
Association for Computational Linguistics (ACL-02),
Philadelphia, PA, USA.

T. Joachims. 1999. Making large-scale SVM learning
practical. In B. Scḧolkopf, C. Burges, and A. Smola,
editors,Advances in Kernel Methods - Support Vector
Learning.

Paul Kingsbury and Martha Palmer. 2002. From Tree-
bank to PropBank. InProceedings of the 3rd Interna-
tional Conference on Language Resources and Evalu-
ation (LREC-2002), Las Palmas, Spain.

Ron Kohavi and Dan Sommerfield. 1995. Feature sub-
set selection using the wrapper model: Overfitting and
dynamic search space topology. InThe First Interna-
tional Conference on Knowledge Discovery and Data
Mining, pages 192–197. AAAI Press, Menlo Park,
California, August. Journal version in AIJ.

Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello
Cristianini, and Christopher Watkins. 2000. Text clas-
sification using string kernels. InNIPS, pages 563–
569.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz.
1993. Building a large annotated corpus of en-
glish: The Penn Treebank.Computational Linguistics,
19:313–330.

Alessandro Moschitti. 2004. A study on convolution ker-
nels for shallow semantic parsing. Inproceedings of
the 42th Conference on Association for Computational
Linguistic (ACL-2004), Barcelona, Spain.

Sameer Pradhan, Kadri Hacioglu, Valeri Krugler, Wayne
Ward, James H. Martin, and Daniel Jurafsky. 2005.
Support vector learning for semantic argument classi-
fication. to appear in Machine Learning Journal.

Ben Taskar, Dan Klein, Mike Collins, Daphne Koller, and
Christopher Manning. 2004. Max-margin parsing. In
Dekang Lin and Dekai Wu, editors,Proceedings of
EMNLP 2004, pages 1–8, Barcelona, Spain, July. As-
sociation for Computational Linguistics.

Kristina Toutanova, Penka Markova, and Christopher D.
Manning. 2004. The leaf projection path view of
parse trees: Exploring string kernels for hpsg parse se-
lection. InProceedings of EMNLP 2004.

55

V. Vapnik. 1995.The Nature of Statistical Learning The-
ory. Springer.

D. Zelenko, C. Aone, and A. Richardella. 2003. Kernel
methods for relation extraction.Journal of Machine
Learning Research.

Appendix 1: Generalized Boundary
Selection Algorithm

Let O be the set of overlapping nodes ofPA, and
NO the set of non overlapping nodes ofPA.
Let subs(−1)(A) = {B|B ∈ 2A, |B| = |A| − 1}.
Let Ô = subs(−1)(O).

while(true)
begin

1. H = ∅
2. ∀o ∈ Ô:

(a) If o does not include any overlapping node
pair
thenH = H ∪ {o}

3. If H 6= ∅ then:
(a) Let ŝ =argmaxo∈H pastc(pNO∪o),

where pNO∪o represents the node span-
ning tree compatible witho, and the
pastc(pNO∪o) is the score provided by the
PAST SVM categorizer on it

(b) If pastc(ŝ) > 0 then RETURN(ŝ)

4. If Ô = {∅} then RETURN(NO)

5. Else:
(a) Ô = Ô −H
(b) Ô =

⋃
o∈Ô subs(−1)(o)

end

56

Proceedings of the ACL Workshop on Feature Engineering for Machine Learning in NLP, pages 57–64,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Automatic identification of sentiment vocabulary: exploiting low associa-
tion with known sentiment terms

Michael Gamon Anthony Aue
Natural Language Processing Group Natural Language Processing Group

Microsoft Research Microsoft Research
mgamon@microsoft.com anthaue@microsoft.com

Abstract

We describe an extension to the technique
for the automatic identification and label-
ing of sentiment terms described in Tur-
ney (2002) and Turney and Littman
(2002). Their basic assumption is that
sentiment terms of similar orientation
tend to co-occur at the document level.
We add a second assumption, namely that
sentiment terms of opposite orientation
tend not to co-occur at the sentence level.
This additional assumption allows us to
identify sentiment-bearing terms very re-
liably. We then use these newly identified
terms in various scenarios for the senti-
ment classification of sentences. We show
that our approach outperforms Turney’s
original approach. Combining our ap-
proach with a Naive Bayes bootstrapping
method yields a further small improve-
ment of classifier performance. We finally
compare our results to precision and recall
figures that can be obtained on the same
data set with labeled data.

1 Introduction

The field of sentiment classification has received
considerable attention from researchers in recent
years (Pang and Lee 2002, Pang et al. 2004, Tur-
ney 2002, Turney and Littman 2002, Wiebe et al.
2001, Bai et al. 2004, Yu and Hatzivassiloglou
2003 and many others). The identification and
classification of sentiment constitutes a problem

that is orthogonal to the usual task of text classifi-
cation. Whereas in traditional text classification the
focus is on topic identification, in sentiment classi-
fication the focus is on the assessment of the
writer’s sentiment toward the topic.

Movie and product reviews have been the main
focus of many of the recent studies in this area
(Pang and Lee 2002, Pang et al. 2004, Turney
2002, Turney and Littman 2002). Typically, these
reviews are classified at the document level, and
the class labels are “positive” and “negative”. In
this work, in contrast, we narrow the scope of in-
vestigation to the sentence level and expand the set
of labels, making a threefold distinction between
“positive”, “neutral”, and “negative”. The narrow-
ing of scope is motivated by the fact that for realis-
tic text mining on customer feedback, the
document level is too coarse, as described in Ga-
mon et al. (2005). The expansion of the label set is
also motivated by real-world concerns; while it is a
given that review text expresses positive or nega-
tive sentiment, in many cases it is necessary to also
identify the cases that don’t carry strong expres-
sions of sentiment at all.

Traditional approaches to text classification re-
quire large amounts of labeled training data. Ac-
quisition of such data can be costly and time-
consuming. Due to the highly domain-specific na-
ture of the sentiment classification task, moving
from one domain to another typically requires the
acquisition of a new set of training data. For this
reason, unsupervised or very weakly supervised
methods for sentiment classification are especially

57

desirable.1 Our focus, therefore, is on methods that
require very little data annotation.

We describe a method to automatically identify
the sentiment vocabulary in a domain. This method
rests on three special properties of the sentiment
domain:

1. the presence of certain words can serve as
a proxy for the class label

2. sentiment terms of similar orientation tend
to co-occur

3. sentiment terms of opposite orientation
tend to not co-occur at the sentence level.

Turney (2002) and Turney and Littman (2002)
exploit the first two generalizations for unsuper-
vised sentiment classification of movie reviews.
They use the two terms excellent and poor as seed
terms to determine the semantic orientation of
other terms. These seed terms can be viewed as
proxies for the class labels “positive” and “nega-
tive”, allowing for the exploitation of otherwise
unlabeled data: Terms that tend to co-occur with
excellent in documents tend to be of positive orien-
tation, and vice versa for poor. Turney (2002)
starts from a small (2 word) set of terms with
known orientation (excellent and poor). Given a set
of terms with unknown sentiment orientation, Tur-
ney (2002) then uses the PMI-IR algorithm (Tur-
ney 2001) to issue queries to the web and
determine, for each of these terms, its pointwise
mutual information (PMI) with the two seed words
across a large set of documents. Term candidates
are constrained to be adjectives, which tend to be
the strongest bearers of sentiment. The sentiment
orientation (SO) of a term is then determined by
the difference between its association (PMI) with
the positive seed term excellent and its association
with the negative seed term poor. The resulting list
of terms and associated sentiment orientations can
then be used to implement a classifier: semantic
orientation of the terms in a document of unknown
sentiment is added up, and if the overall score is
positive, the document is classified as being of
positive sentiment, otherwise it is classified as
negative.

Yu and Hatzivassiloglou (2003) extend this ap-
proach by (1) applying it at the sentence level (in-
stead of the document-level), (2) taking into
account non-adjectival parts-of-speech, and (3)

1 For domain-specificity of sentiment classification see Eng-
ström (2004) and Aue and Gamon (2005).

using larger sets of seed words. Their classification
goal also differs from Turney’s: it is to distinguish
opinion sentences from factual statements.

Turney et al.’s approach is based on the assump-
tion that sentiment terms of similar orientation tend
to co-occur in documents. Our approach takes ad-
vantage of a second assumption: At the sentence
level, sentiment terms of opposite orientation tend
not to co-occur. This is, of course, an assumption
that will only hold in general, with exceptions. Ba-
sically, the assumption is that sentences of the fol-
lowing form:

I dislike X.
I really like X.

are more frequent than “mixed sentiment” sen-
tences such as

I dislike X but I really like Y.
It has been our experience that this generaliza-

tion does hold often enough to be useful.
We propose to utilize this assumption to identify

a set of sentiment terms in a domain. We select the
terms that have the lowest PMI scores on the sen-
tence level with respect to a set of manually se-
lected seed words. If our assumption about low
association at the sentence level is correct, this set
of low-scoring terms will be particularly rich in
sentiment terms. We can then use this newly iden-
tified set to:

(1) use Turney’s method to find the orienta-
tion for the terms and employ the terms
and their scores in a classifier, and

(2) use Turney’s method to find the orienta-
tion for the terms and add the new terms
as additional seed terms for a second it-
eration

As opposed to Turney (2002), we do not use the
web as a resource to find associations, rather we
apply the method directly to in-domain data. This
has the disadvantage of not being able to apply the
classification to any arbitrary domain. It is worth
noting, however, that even in Turney (2002) the
choice of seed words is explicitly motivated by
domain properties of movie reviews.

In the remainder of the paper we will describe
results from various experiments based on this as-
sumption. We also show how we can combine this
method with a Naive Bayes bootstrapping ap-
proach that takes further advantage of the unla-
beled data (Nigam et al. 2000).

58

2 Data

For our experiments we used a set of car reviews
from the MSN Autos web site. The data consist of
406,818 customer car reviews written over a four-
year period. Aside from filtering out examples con-
taining profanity, the data was not edited. The re-
views range in length from a single sentence (56%
of all cases) to 50 sentences (a single review). Less
than 1% of reviews contain ten or more sentences.
There are almost 900,000 sentences in total. When
customers submitted reviews to the website, they
were asked for a recommendation on a scale of 1
(negative) to 10 (positive). The average score was
very high, at 8.3, yielding a strong skew in favor of
positive class labels. We annotated a randomly-
selected sample of 3,000 sentences for sentiment.
Each sentence was viewed in isolation and classi-
fied as positive, negative or neutral. The neutral
category was applied to sentences with no dis-
cernible sentiment, as well as to sentences that ex-
pressed both positive and negative sentiment.
Three annotators had pair-wise agreement scores
(Cohen’s Kappa score, Cohen 1960) of 70.10%,
71.78% and 79.93%, suggesting that the task of
sentiment classification on the sentence level is
feasible but difficult even for people. This set of
data was split into a development test set of 400
sentences and a blind test set of 2600 sentences.

Sentences are represented as vectors of binary
unigram features. The total number of observed
unigram features is 72988. In order to restrict the
number of features to a manageable size, we disre-
gard features that occur less than 10 times in the
corpus. With this restriction we obtain a reduced
feature set of 13317 features.

3 Experimental Setup

Our experiments were performed as follows: We
started with a small set of manually-selected and
annotated seed terms. We used 4 positive and 6
negative seed terms. We decided to use a few more
negative seed words because of the inherent posi-
tive skew in the data that makes the identification
of negative sentences particularly hard. The terms
we used are:

 positive: negative:
 good bad
 excellent lousy
 love terrible
 happy hate
 suck
 unreliable

There was no tuning of the set of initial seed
terms; the 10 words were originally chosen intui-
tively, as words that we observed frequently when
manually inspecting the data.

We then used these seed terms in two basic
ways: (1) We used them as seeds for a Turney-
style determination of the semantic orientation of
words in the corpus (semantic orientation, or SO
method). As mentioned above, this process is
based on the assumption that terms of similar ori-
entation tend to co-occur. (2) We used them to
mine sentiment vocabulary from the unlabeled data
using the additional assumption that sentiment
terms of opposite orientation tend not to co-occur
at the sentence level (sentiment mining, or SM
method). This method yields a set of sentiment
terms, but no orientation for that set of terms. We
continue by using the SO method to find the se-
mantic orientation for this set of sentiment terms,
effectively using SM as a feature selection method
for sentiment terminology.

Pseudo-code for the SO and SM approaches is
provided in Figure 1 and Figure 2. As a first step
for both SO and SM methods (not shown in the
pseudocode), PMI needs to be calculated for each
pair (f, s) of feature f and seed word s over the col-
lection of feature vectors.

Figure 1: SO method for determining semantic orienta-
tion

59

Figure 2: SM method for mining sentiment terms

In the first scenario (using straightforward SO),
features F range over all observed features in the
data (modulo the aforementioned count cutoff of
10). In the second scenario (SM + SO), features F
range over the n% of features with the lowest PMI
scores with respect to any of the seed words that
were identified using the sentiment mining tech-
nique in Figure 2.

The result of both SO and SM+SO is a list of
unigram features which have an associated seman-
tic orientation score, indicating their sentiment ori-
entation: the higher the score, the more “positive”
a term, and vice versa.

This list of features and associated scores can be
used to construct a simple classifier: for each sen-
tence with unknown sentiment, we take the sum of
the semantic orientation scores for all of the uni-
grams in that sentence. This overall score deter-
mines the classification of the sentence as
“positive”, “neutral” or “negative” as shown in
Figure 3.

Scoring and classifying sentence vectors:

(1) assigning a sentence score:
FOREACH feature f in sentence vector v:

Score(v) = Score(v) + SO(f)

(2) assigning a class label based on the sentence score:
IF Score(v) > threshold1:

Class(v) = “positive”
ELSE IF Score(v) < threshold1 AND Score(v) > threshold2:

Class(v) = “neutral”
ELSE

Class(v) = “negative”

Figure 3: Using SO scores for sentence scoring and
classification

The two thresholds used in classification need to
be determined empirically by taking the distribu-
tion of class values in the corpus into account. For
our experiments we simply took the distribution of
class labels in the 400 sentence development test
set as an approximation of the overall class label

distribution: we determined that distribution to be
15.5% for negative sentences, 21.5% for neutral
sentences, and 63.0% for positive sentences.
Scores for all sentence vectors in the corpus are
then collected using the scoring part of the algo-
rithm in Figure 3. The scores are sorted and the
thresholds are determined as the cutoffs for the top
63% and bottom 15.5% of scores respectively.

4 Results

4.1. Comparing SO and SM+SO

In our first set of experiments we manipulated the
following parameters:

1. the choice of SO or SM+SO method
2. the choice of n when selecting the n% se-

mantic terms with lowest PMI score in the
SM method

The tables below show the results of classifying
sentence vectors using the unigram features and
associated scores produced by SO and SO+SM.
We used the 2,600-sentence manually-annotated
test set described previously to establish these
numbers. Since the data exhibit a strong skew in
favor of the positive class label, we measure per-
formance not in terms of accuracy but in terms of
average precision and recall across the three class
labels, as suggested in (Manning and Schütze
2002).

 Avg precision Avg recall
SO 0.4481 0.4511

Table 1: Using the SO approach.

Table 1 shows results of using the SO method
on the data. Table 2 presents the results of combin-
ing the SM and SO methods for different values of
n. The best results are shown in boldface.

As a comparison between Table 1 and Table 2
shows, the highest average precision and recall
scores were obtained by combining the SM and SO
methods. Using SM as a feature selection mecha-
nism also reduces the number of features signifi-
cantly. While the SO method employed on
sentence-level vectors uses 13,000 features, the
best-performing SM+SO combination uses only
20% of this feature set, indicating that SM is in-
deed effective in selecting the most important sen-
timent-bearing terms.

60

We also determined that the positive impact of
SM is not just a matter of reducing the number of
features. If SO - without the SM feature selection
step - is reduced to a comparable number of fea-

tures by taking the top features according to abso-
lute score, average precision is at 0.4445 and
average recall at 0.4464.

N=10 N=20 N=30 N=40 N=50
Avg
prec

Avg
rec

Avg
prec

Avg
rec

Avg
prec

Avg
rec

Avg
prec

Avg
rec

Avg
prec

Avg
rec

SM+SO
SO from
docu-
ment
level

0.4351 0.4377 0.4568 0.4605 0.4528 0.4557 0.4457 0.4478 0.4451 0.4475

Table 2: combining SM and SO.

Sentiment terms in top 100 SM terms Sentiment terms in top 100 SO terms

excellent, terrible, broke, junk, alright, bargain,
grin, highest, exceptional, exceeded, horrible,
loved, waste, ok, death, leaking, outstanding,
cracked, rebate, warped, hooked, sorry, refuses,
excellant, satisfying, died, biggest, competitive,
delight, avoid, awful, garbage, loud, okay, com-
petent, upscale, dated, mistake, sucks, superior,
high, kill, neither

excellent, happy, stylish, sporty, smooth, love,
quiet, overall, pleased, plenty, dependable, solid,
roomy, safe, good, easy, smaller, luxury, comfort-
able, style, loaded, space, classy, handling, joy,
small, comfort, size, perfect, performance, room,
choice, recommended, package, compliments,
awesome, unique, fun, holds, comfortably, ex-
tremely, value, free, satisfied, little, recommend,
limited, great, pleasure

Non sentiment terms in top 100 SM terms Non sentiment terms in top 100 SO terms
alternative, wont, below, surprisingly, main-
tained, choosing, comparing, legal, vibration,
seemed, claim, demands, assistance, knew, engi-
neering, accelleration, ended, salesperson, per-
formed, started, midsize, site, gonna, lets, plugs,
industry, alternator, month, told, vette, 180,
powertrain, write, mos, walk, causing, lift, es,
segment, $250, 300m, wanna, february, mod,
$50, nhtsa, suburbans, manufactured, tiburon,
$10, f150, 5000, posted, tt, him, saw, jan,

condition, very, handles, milage, definitely, defi-
nately, far, drives, shape, color, price, provides,
options, driving, rides, sports, heated, ride, sport,
forward, expected, fairly, anyone, test, fits, stor-
age, range, family, sedan, trunk, young, weve,
black, college, suv, midsize, coupe, 30, shopping,
kids, player, saturn, bose, truck, town, am, leather,
stereo, car, husband

Table 3: the top 100 terms identified by SM and SO

Table 3 shows the top 100 terms that were identi-
fied by each SM and SO methods. The terms are
categorized into sentiment-bearing and non-
sentiment bearing terms by human judgment. The
two sets seem to differ in both strength and orien-
tation of the identified terms. The SM-identified
words have a higher density of negative terms (22
out of 43 versus 2 out of 49 for the SO-identified
terms). The SM-identified terms also express sen-
timent more strongly, but this conclusion is more
tentative since it may be a consequence of the
higher density of negative terms.

4.2. Multiple iterations: increasing the
number of seed features by SM+SO

In a second set of experiments, we assessed the
question of whether it is possible to use multiple
iterations of the SM+SO method to gradually build
the list of seed words. We do this by adding the top
n% of features selected by SM, along with their
orientation as determined by SO, to the initial set
of seed words. The procedure for this round of ex-
periments is as follows:

• take the top n% of features identified by
SM (we used n=1 for the reported re-

61

sults, since preliminary experiments
with other values for n did not improve
results)

• perform SO for these features to deter-
mine their orientation

• take the top 15.5% negative and top
63% positive (according to class label
distribution in the development test set)
of the features and add them as nega-
tive/positive seed features respectively

This iteration increases the number of seed fea-
tures from the original 10 manually-selected fea-
tures to a total of 111 seed features.

With this enhanced set of seed features we then
re-ran a subset of the experiments in Table 2. Re-
sults are shown in Table 4. Increasing the number
of seed features through the SM feature selection
method increases precision and recall by several
percentage points. In particular, precision and re-
call for negative sentences are boosted.

Avg
precision

Avg
recall

SM + SO, n=10,
SO from document vectors

0.4826 0.48.76

SM + SO, n=30,
SO from document vectors 0.4957 0.4995

SM + SO, n=50,
SO from document vectors

0.4914 0.4952

Table 4: Using 2 iterations to increase the seed feature
set

We also confirmed that these results are truly at-
tributable to the use of the SM method for the first
iteration. If we take an equivalent number of fea-
tures with strongest semantic orientation according
to the SO method and add them to the list of seed
features, our results degrade significantly (the re-
sulting classifier performance is significantly dif-
ferent at the 99.9% level as established by the
McNemar test). This is further evidence that SM is
indeed an effective method for selecting sentiment
terms.

4.3. Using the SO classifier to bootstrap a
Naive Bayes classifier

In a third set of experiments, we tried to improve
on the results of the SO classifier by combining it
with the bootstrapping approach described in (Ni-
gam et al. 2000). The basic idea here is to use the
SO classifier to label a subset of the data DL. This

labeled subset of the data is then used to bootstrap
a Naive Bayes (NB) classifier on the remaining
unlabeled data DU using the Expectation Maximi-
zation (EM) algorithm:

(1) An initial naive Bayes classifier with
parameters θ is trained on the docu-
ments in DL.

(2) This initial classifier is used to estimate
a probability distribution over all classes
for each of the documents in DU. (E-
Step)

(3) The labeled and unlabeled data are then
used to estimate parameters for a new
classifier. (M-Step)

Steps 2 and 3 are repeated until convergence is
achieved when the difference in the joint probabil-
ity of the data and the parameters falls below the
configurable threshold ε between iterations. An-
other free parameter, λ, can be used to control how
much weight is given to the unlabeled data.

For our experiments we used classifiers from the
best SM+SO combination (2 iterations at n=30)
from Table 4 above to label 30% of the total data.
Table 5 shows the average precision and recall
numbers for the converged NB classifier.2 In addi-
tion to improving average precision and recall, the
resulting classifier also has the advantage of pro-
ducing class probabilities instead of simple scores.3

 Avg
precision

Avg
recall

Bootstrapped NB
classifier

0.5167 0.52

Table 5: Results obtained by bootstrapping a NB classi-
fier

4.4. Results from supervised learning:
using small sets of labeled data

Given infinite resources, we can always annotate
enough data to train a classifier using a supervised
algorithm that will outperform unsupervised or
weakly-supervised methods. Which approach to
take depends entirely on how much time and
money are available and on the accuracy require-
ments for the task at hand.

2 In this experiment, λ was set to 0.1 and ε was set to 0.05.
3 We also experimented with labeling the whole data set with the best of our SO
score classifiers, and then training a linear Support Vector Machine classifier on
the data. The results were considerably worse than any of the reported numbers,
so they are not included in this paper.

62

To help situate the precision and recall numbers
presented in the tables above, we trained Support
Vector Machines (SVMs) using small amounts of
labeled data. SVMs were trained with 500, 1000,
2000, and 2500 labeled sentences. Annotating
2500 sentences represents approximately eight per-
son-hours of work. The results can be found in Ta-
ble 5. We were pleasantly surprised at how well
the unsupervised classifiers described above per-
form in comparison to state-of-the-art supervised
methods (albeit trained on small amounts of data).

Labeled ex-
amples

Avg. Preci-
sion

Avg. Recall

500 .4878 .4967
1000 .5161 .5105
2000 .5297 .5256
2500 .5017 .5083

Table 6: Average precision and recall for SVMs for
small numbers of labeled examples

4.5. Results on the movie domain

We also performed a small set of experiments on
the movie domain using Pang and Lee’s 2004 data
set. This set consists of 2000 reviews, 1000 each of
very positive and very negative reviews. Since this
data set is balanced and the task is only a two-way
classification between positive and negative re-
views, we only report accuracy numbers here.
 accuracy Training data
Turney
(2002)

66% unsupervised

Pang & Lee
(2004)

87.15% supervised

Aue & Ga-
mon (2005)

91.4% supervised

SO 73.95% unsupervised
SM+SO to
increase seed
words, then
SO

74.85%
weakly super-
vised

Table 7: Classification accuracy on the movie review
domain

Turney (2002) achieves 66% accuracy on the
movie review domain using the PMI-IR algorithm
to gather association scores from the web. Pang
and Lee (2004) report 87.15% accuracy using a
unigram-based SVM classifier combined with sub-
jectivity detection. Aue and Gamon (2005) use a
simple linear SVM classifier based on unigrams,

combined with LLR-based feature reduction, to
achieve 91.4% accuracy. Using the Turney SO
method on in-domain data instead of web data
achieves 73.95% accuracy (using the same two
seed words that Turney does). Using one iteration
of SM+SO to increase the number of seed words,
followed by finding SO scores for all words with
respect to the enhanced seed word set, yields a
slightly higher accuracy of 74.85%. With addi-
tional parameter tuning, this number can be pushed
to 76.4%, at which point we achieve statistical sig-
nificance at the 0.95 level according to the McNe-
mar test, indicating that there is more room here
for improvement. Any reduction of the number of
overall features in this domain leads to decreased
accuracy, contrary to what we observed in the car
review domain. We attribute this observation to the
smaller data set.

5 Discussion

5.1 A note on statistical significance

We used the McNemar test to assess whether two
classifiers are performing significantly differently.
This test establishes whether the accuracy of two
classifiers differs significantly - it does not guaran-
tee significance for precision and recall differ-
ences. For the latter, other tests have been
proposed (e.g. Chinchor 1995), but time con-
straints prohibited us from implementing any of
those more computationally costly tests.

For the results presented in the previous sections
the McNemar test established statistical signifi-
cance at the 0.99 level over baseline (i.e. the SO
results in Table 1) for the multiple iterations results
(Table 4) and the bootstrapping approach (Table
5), but not for the SM+SO approach (Table 2).

5.2 Future work

This exploratory set of experiments indicates a
number of interesting directions for future work. A
shortcoming of the present work is the manual tun-
ing of cutoff parameters. This problem could be
alleviated in at least two possible ways:

First, using a general combination of the ranking
of terms according to SM and SO. In other words,
calculate the semantic weight of a term as a com-
bination of SO and its rank in the SM scores.

63

Secondly, following a suggestion by an anony-
mous reviewer, the Naive Bayes bootstrapping ap-
proach could be used in a feedback loop to inform
the SO score estimation in the absence of a manu-
ally annotated parameter tuning set.

5.3 Summary

Our results demonstrate that the SM method can
serve as a valid tool to mine sentiment-rich vo-
cabulary in a domain. SM will yield a list of terms
that are likely to have a strong sentiment orienta-
tion. SO can then be used to find the polarity for
the selected features by association with the senti-
ment terms of known polarity in the seed word list.
Performing this process iteratively by first enhanc-
ing the set of seed words through SM+SO yields
the best results. While this approach does not com-
pare to the results that can be achieved by super-
vised learning with large amounts of labeled data,
it does improve on results obtained by using SO
alone.

We believe that this result is relevant in two re-
spects. First, by improving average precision and
recall on the classification task, we move closer to
the goal of unsupervised sentiment classification.
This is a very important goal in itself given the
need for “out of the box” sentiment techniques in
business intelligence and the notorious difficulty of
rapidly adapting to a new domain (Engström 2004,
Aue and Gamon 2005). Second, the exploratory
results reported here may indicate a general source
of information for feature selection in natural lan-
guage tasks: features that have a tendency to be in
complementary distribution (especially in smaller
linguistic units such as sentences) may often form
a class that shares certain properties. In other
words, it is not only the strong association scores
that should be exploited but also the particularly
weak (negative) associations.

References

Anthony Aue and Michael Gamon (2005): “Customiz-
ing Sentiment Classifiers to a New Domain: A Case
Study. Under review.

Xue Bai, Rema Padman, and Edoardo Airoldi. (2004).
Sentiment Extraction from Unstructured Text Using
Tabu Search-Enhanced Markov Blanket. In: Proceed-
ings of the International Workshop on Mining for
and from the Semantic Web (MSW 2004), pp 24-35.

Nancy A. Chinchor (1995): Statistical significance of
MUC-6 results. Proceedings of the Sixth Message
Understanding Conference, pp. 39-44.

J. Cohen (1960): “A coefficient of agreement for nomi-
nal scales.” In: Educational and Psychological meas-
urements 20, pp. 37–46

Charlotta Engström. 2004. Topic dependence in Senti-
ment Classification. MPhil thesis, University of
Cambridge.

Michael Gamon, Anthony Aue, Simon Corston-Oliver,
and Eric Ringger. (2005): “Pulse: Mining Customer
Opinions from Free Text”. Under review.

Christopher D. Manning and Hinrich Schütze (2002):
Foundations of Statistical Natural Language Process-
ing. MIT Press, Cambridge, London.

Kamal Nigam, Andrew McCallum, Sebastian Thrun and
Tom Mitchell (2000): Text Classification from La-
beled and Unlabeled Documents using EM. In: Ma-
chine Learning 39 (2/3), pp. 103-134.

Bo Pang, Lillian Lee and Shivakumar Vaithyanathan
(2002): “Thumbs up? Sentiment Classification using
Machine Learning Techniques”. Proceedings of
EMNLP 2002, pp. 79-86.

Bo Pang and Lillian Lee. (2004). A Sentimental Educa-
tion: Sentiment Analysis Using Subjectivity Summa-
rization Based on Minimum Cuts. Proceedings of
ACL 2004, pp.217-278.

Peter D. Turney (2001): “Mining the Web for Syno-
nyms: PMI-IR versus LSA on TOEFL.” In Proceed-
ings of the Twelfth European Conference on
Machine Learning, pp. 491-502.

Peter D. Turney (2002): “Thumbs up or thumbs down?
Semantic orientation applied to unsupervised classi-
fication of reviews”. In: Proceedings of ACL 2002,
pp. 417-424.

Peter D. Turney and M. L. Littman (2002): “Unsuper-
vised Learning of Semantic Orientation from a Hun-
dred-Billion-Word Corpus.” Technical report ERC-
1094 (NRC 44929), National Research Council of
Canada.

Janyce Wiebe, Theresa Wilson and Matthew Bell
(2001): “Identifying Collocations for Recognizing
Opinions”. In: Proceedings of the ACL/EACL Work-
shop on Collocation.

Hong Yu and Vasileios Hatzivassiloglou (2003): “To-
wards Answering opinion Questions: Separating
Facts from Opinions and Identifying the Polarity of
Opinion Sentences”. In: Proceedings of EMNLP
2003.

64

Proceedings of the ACL Workshop on Feature Engineering for Machine Learning in NLP, pages 65–72,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Studying Feature Generation from Various Data Representations for
Answer Extraction

Dan Shen†‡ Geert-Jan M. Kruijff† Dietrich Klakow‡

† Department of Computational Linguistics
Saarland University

Building 17,Postfach 15 11 50
66041 Saarbruecken, Germany

‡ Lehrstuhl Sprach Signal Verarbeitung
Saarland University

Building 17, Postfach 15 11 50
66041 Saarbruecken, Germany

{dshen,gj}@coli.uni-sb.de
{dietrich.klakow}@lsv.uni-saarland.de

Abstract

In this paper, we study how to generate
features from various data representations,
such as surface texts and parse trees, for
answer extraction. Besides the features
generated from the surface texts, we
mainly discuss the feature generation in
the parse trees. We propose and compare
three methods, including feature vector,
string kernel and tree kernel, to represent
the syntactic features in Support Vector
Machines. The experiment on the TREC
question answering task shows that the
features generated from the more struc-
tured data representations significantly
improve the performance based on the
features generated from the surface texts.
Furthermore, the contribution of the indi-
vidual feature will be discussed in detail.

1 Introduction

Open domain question answering (QA), as defined
by the TREC competitions (Voorhees, 2003),
represents an advanced application of natural lan-
guage processing (NLP). It aims to find exact an-
swers to open-domain natural language questions
in a large document collection. For example:
Q2131: Who is the mayor of San Francisco?
Answer: Willie Brown

A typical QA system usually consists of three
basic modules: 1. Question Processing (QP) Mod-
ule, which finds some useful information from the

questions, such as expected answer type and key
words. 2. Information Retrieval (IR) Module,
which searches a document collection to retrieve a
set of relevant sentences using the question key
words. 3. Answer Extraction (AE) Module, which
analyzes the relevant sentences using the informa-
tion provided by the QP module and identify the
answer phrase.

In recent years, QA systems trend to be more
and more complex, since many other NLP tech-
niques, such as named entity recognition, parsing,
semantic analysis, reasoning, and external re-
sources, such as WordNet, web, databases, are in-
corporated. The various techniques and resources
may provide the indicative evidences to find the
correct answers. These evidences are further com-
bined by using a pipeline structure, a scoring func-
tion or a machine learning method.

In the machine learning framework, it is critical
but not trivial to generate the features from the
various resources which may be represented as
surface texts, syntactic structures and logic forms,
etc. The complexity of feature generation strongly
depends on the complexity of data representation.
Many previous QA systems (Echihabi et al., 2003;
Ravichandran, et al., 2003; Ittycheriah and Roukos,
2002; Ittycheriah, 2001; Xu et al., 2002) have well
studied the features in the surface texts. In this
paper, we will use the answer extraction module of
QA as a case study to further explore how to gen-
erate the features for the more complex sentence
representations, such as parse tree. Since parsing
gives the deeper understanding of the sentence, the
features generated from the parse tree are expected
to improve the performance based on the features
generated from the surface text. The answer ex-

65

traction module is built using Support Vector Ma-
chines (SVM). We propose three methods to rep-
resent the features in the parse tree: 1. features are
designed by domain experts, extracted from the
parse tree and represented as a feature vector; 2.
the parse tree is transformed to a node sequence
and a string kernel is employed; 3. the parse tree is
retained as the original representation and a tree
kernel is employed.

Although many textual features have been used
in the others’ AE modules, it is not clear that how
much contribution the individual feature makes. In
this paper, we will discuss the effectiveness of
each individual textual feature in detail. We fur-
ther evaluate the effectiveness of the syntactic fea-
tures we proposed. Our experiments using TREC
questions show that the syntactic features improve
the performance by 7.57 MRR based on the textual
features. It indicates that the new features based
on a deeper language understanding are necessary
to push further the machine learning-based QA
technology. Furthermore, the three representations
of the syntactic features are compared. We find
that keeping the original data representation by
using the data-specific kernel function in SVM
may capture the more comprehensive evidences
than the predefined features. Although the features
we generated are specific to the answer extraction
task, the comparison between the different feature
representations may be helpful to explore the syn-
tactic features for the other NLP applications.

2 Related Work

In the machine learning framework, it is crucial to
capture the useful evidences for the task and inte-
grate them effectively in the model. Many re-
searchers have explored the rich textual features
for the answer extraction.

IBM (Ittycheriah and Roukos, 2002; Ittycheriah,
2001) used a Maximum Entropy model to integrate
the rich features, including query expansion fea-
tures, focus matching features, answer candidate
co-occurrence features, certain word frequency
features, named entity features, dependency rela-
tion features, linguistic motivated features and sur-
face patterns. ISI’s (Echihabi et al. 2003; Echihabi
and Marcu, 2003) statistical-based AE module im-
plemented a noisy-channel model to explain how a
given sentence tagged with an answer can be re-
written into a question through a sequence of sto-

chastic operations. (Ravichandran et al., 2003)
compared two maximum entropy-based QA sys-
tems, which view the AE as a classification prob-
lem and a re-ranking problem respectively, based
on the word frequency features, expected answer
class features, question word absent features and
word match features. BBN (Xu et al. 2002) used a
HMM-based IR system to score the answer candi-
dates based on the answer contexts. They further
re-ranked the scored answer candidates using the
constraint features, such as whether a numerical
answer quantifies the correct noun, whether the
answer is of the correct location sub-type and
whether the answer satisfies the verb arguments of
the questions. (Suzuki et al. 2002) explored the
answer extraction using SVM.

However, in the previous statistical-based AE
modules, most of the features were extracted from
the surface texts which are mainly based on the
key words/phrases matching and the key word fre-
quency statistics. These features only capture the
surface-based information for the proper answers
and may not provide the deeper understanding of
the sentences. In addition, the contribution of the
individual feature has not been evaluated by them.
As for the features extracted from the structured
texts, such as parse trees, only a few works ex-
plored some predefined syntactic relation features
by partial matching. In this paper, we will explore
the syntactic features in the parse trees and com-
pare the different feature representations in SVM.
Moreover, the contributions of the different fea-
tures will be discussed in detail.

3 Answer Extraction

Given a question Q and a set of relevant sentences
SentSet which is returned by the IR module, we
consider all of the base noun phrases and the words
in the base noun phrases as answer candidates aci.
For example, for the question “Q1956: What coun-
try is the largest in square miles?”, we extract the
answer candidates { Russia, largest country, larg-
est, country, world, Canada, No.2.} in the sentence
“I recently read that Russia is the largest country
in the world, with Canada No. 2.” The goal of the
AE module is to choose the most probable answer
from a set of answer candidates 1 2{ , ,... }mac ac ac
for the question Q.

We regard the answer extraction as a classifica-
tion problem, which classify each question and

66

answer candidate pair <Q, aci> into the positive
class (the correct answer) and the negative class
(the incorrect answer), based on some features.
The predication for each <Q, aci> is made inde-
pendently by the classifier, then, the ac with the
most confident positive prediction is chosen as the
answer for Q. SVM have shown the excellent per-
formance for the binary classification, therefore,
we employ it to classify the answer candidates.

Answer extraction is not a trivial task, since it
involves several components each of which is
fairly sophisticated, including named entity recog-
nition, syntactic / semantic parsing, question analy-
sis, etc. These components may provide some
indicative evidences for the proper answers. Be-
fore generating the features, we process the sen-
tences as follows:
1. tag the answer sentences with named entities.
2. parse the question and the answer sentences us-
ing the Collins’ parser (Collin, 1996).
3. extract the key words from the questions, such
as the target words, query words and verbs.

In the following sections, we will briefly intro-
duce the machine learning algorithm. Then, we
will discuss the features in detail, including the
motivations and representations of the features.

4 Support Vector Machines

Support Vector Machines (SVM) (Vapnik, 1995)
have strong theoretical motivation in statistical
learning theory and achieve excellent generaliza-
tion performance in many language processing
applications, such as text classification (Joachims,
1998).

SVM constructs a binary classifier that predict
whether an instance x (n∈w R) is positive
(() 1f =x) or negative (() 1f = −x), where, an
instance may be represented as a feature vector or
a structure like sequence of characters or tree. In
the simplest case (linearly separable instances), the
decision f() sgn(b)⋅ +x = w x is made based
on a separating hyperplane 0b⋅ + =w x (n∈w R ,
b∈R). All instances lying on one side of the hy-
perplane are classified to a positive class, while
others are classified to a negative class.

Given a set of labeled training instances
() () (){ }1 1 2 2, , , ,..., ,m mD y y y= x x x , where n

i ∈x R

and { }1, 1iy = − , SVM is to find the optimal hy-

perplane that separates the positive and negative
training instances with a maximal margin. The
margin is defined as the distance from the separat-
ing hyperplane to the closest positive (negative)
training instances. SVM is trained by solving a
dual quadratic programming problem.

Practically, the instances are non-linearly sepa-
rable. For this case, we need project the instances
in the original space Rn to a higher dimensional
space RN based on the kernel function

1 2 1 2(,) (), ()K =<Φ Φ >x x x x ,where, (): n NΦ →x R R is
a project function of the instance. By this means, a
linear separation will be made in the new space.
Corresponding to the original space Rn, a non-
linear separating surface is found. The kernel
function has to be defined based on the Mercer’s
condition. Generally, the following kernel func-
tions are widely used.
Polynomial kernel: (,) (1) p

i j i jk = ⋅ +x x x x

Gaussian RBF kernel:
2 22(,) i j-

i jk e σ−= x xx x

5 Textual Features

Since the features extracted from the surface texts
have been well explored by many QA systems
(Echihabi et al., 2003; Ravichandran, et al., 2003;
Ittycheriah and Roukos, 2002; Ittycheriah, 2001;
Xu et al., 2002), we will not focus on the textual
feature generation in this paper. Only four types of
the basic features are used:
1. Syntactic Tag Features: the features capture

the syntactic/POS information of the words in
the answer candidates. For the certain ques-
tion, such as “Q1903: How many time zones
are there in the world?”, if the answer candi-
date consists of the words with the syntactic
tags “CD NN”, it is more likely to be the
proper answer.

2. Orthographic Features: the features capture
the surface format of the answer candidates,
such as capitalization, digits and lengths, etc.
These features are motivated by the observa-
tions, such as, the length of the answers are
often less than 3 words for the factoid ques-
tions; the answers may not be the subse-
quences of the questions; the answers often
contain digits for the certain questions.

3. Named Entity Features: the features capture
the named entity information of the answer

67

candidates. They are very effective for the
who, when and where questions, such as, For
“Q1950: Who created the literary character
Phineas Fogg?“, the answer “Jules Verne” is
tagged as a PERSON name in the sentences
“Jules Verne 's Phileas Fogg made literary
history when he traveled around the world in
80 days in 1873.”. For the certain question tar-
get, if the answer candidate is tagged as the
certain type of named entity, one feature fires.

4. Triggers: some trigger words are collected for
the certain questions. For examples, for
“Q2156: How fast does Randy Johnson
throw?”, the trigger word “mph” for the ques-
tion words “how fast” may help to identify the
answer “98-mph” in “Johnson throws a 98-
mph fastball”.

6 Syntactic Features

In this section, we will discuss the feature genera-
tion in the parse trees. Since parsing outputs the
highly structured data representation of the sen-
tence, the features generated from the parse trees
may provide the more linguistic-motivated expla-
nation for the proper answers. However, it is not
trivial to find the informative evidences from a
parse tree.

The motivation of the syntactic features in our
task is that the proper answers often have the cer-
tain syntactic relations with the question key words.
Table 1 shows some examples of the typical syn-
tactic relations between the proper answers (a) and
the question target words (qtarget). Furthermore,
the syntactic relations between the answers and the
different types of question key words vary a lot.
Therefore, we capture the relation features for the
different types of question words respectively. The
question words are divided into four types:

 Target word, which indicates the expected an-
swer type, such as “city” in “Q: What city is
Disneyland in?”.

 Head word, which is extracted from how ques-
tions and indicates the expected answer head,
such as “dog” in “Q210: How many dogs
pull …?”

 Subject words, which are the base noun phrases
of the question except the target word and the
head word.

 Verb, which is the main verb of the question.
To our knowledge, the syntactic relation fea-

tures between the answers and the question key
words haven’t been explored in the previous ma-
chine learning-based QA systems. Next, we will
propose three methods to represent the syntactic
relation features in SVM.

6.1 Feature Vector

It is the commonly used feature representation in
most of the machine learning algorithms. We pre-
define a set of syntactic relation features, which is
an enumeration of some useful evidences of the
answer candidates (ac) and the question key words
in the parse trees. 20 syntactic features are manu-
ally designed in the task. Some examples of the
features are listed as follows,

 if the ac node is the same of the qtarget node,
one feature fires.

 if the ac node is the sibling of the qtarget node,
one feature fires.

 if the ac node the child of the qsubject node,
one feature fires.

The limitation of the manually designed features is
that they only capture the evidences in the local
context of the answer candidates and the question
key words. However, some question words, such
as subject words, often have the long range syntac-

1. a node is the same as the qtarget node and qtarget is the hypernym of a.
Q: What city is Disneyland in?
S: Not bad for a struggling actor who was working at Tokyo Disneyland a few years ago.
2. a node is the parent of qtarget node.
Q: What is the name of the airport in Dallas Ft. Worth?
S: Wednesday morning, the low temperature at the Dallas-Fort Worth International Airport was 81 degrees.
3. a node is the sibling of the qtarget node.
Q: What book did Rachel Carson write in 1962?
S: In her 1962 book Silent Spring, Rachel Carson, a marine biologist, chronicled DDT 's poisonous effects, ….
Table 1: Examples of the typical relations between answer and question target word. In Q, the italic word is
question target word. In S, the italic word is the question target word which is mapped in the answer sentence;
the underlined word is the proper answer for the question Q.

68

Figure 1: An example of the path from the answer
candidate node to the question subject word node

tic relations with the answers. To overcome the
limitation, we will propose some special kernels
which may keep the original data representation
instead of explicitly enumerate the features, to ex-
plore a much larger feature space.

6.2 String Kernel

The second method represents the syntactic rela-
tion as a linked node sequence and incorporates a
string kernel in SVM to handle the sequence.

We extract a path from the node of the answer
candidate to the node of the question key word in
the parse tree. The path is represented as a node
sequence linked by symbols indicating upward or
downward movement through the tree. For exam-
ple, in Figure 1, the path from the answer candi-
date node “211,456 miles” to the question subject
word node “the moon” is
“ NPB ADVP VP S NPB↑ ↑ ↑ ↓ ”, where “ ↑ ” and
“ ↓ ” indicate upward movement and downward
movement in the parse tree. By this means, we
represent the object from the original parse tree to
the node sequence. Each character of the sequence
is a syntactic/POS tag of the node. Next, a string
kernel will be adapted to our task to calculate the
similarity between two node sequences.

(Haussler, 1999) first described a convolution

kernel over the strings. (Lodhi et al., 2000) applied
the string kernel to the text classification. (Leslie
et al., 2002) further proposed a spectrum kernel,
which is simpler and more efficient than the previ-
ous string kernels, for protein classification prob-

lem. In their tasks, the string kernels achieved the
better performance compared with the human-
defined features.

The string kernel is to calculate the similarity
between two strings. It is based on the observation
that the more common substrings the strings have,
the more similar they are. The string kernel we
used is similar to (Leslie et al., 2002). It is defined
as the sum of the weighted common substrings.
The substring is weighted by an exponentially de-
caying factor λ (set 0.5 in the experiment) of its
length k. For efficiency, we only consider the sub-
strings which length are less than 3. Different
from (Leslie et al., 2002), the characters (syntac-
tic/POS tag) of the string are linked with each
other. Therefore, the matching between two sub-
strings will consider the linking information. Two
identical substrings will not only have the same
syntactic tag sequences but also have the same
linking symbols. For example, for the node se-
quences NP VP VP S NP↑ ↑ ↑ ↓ and NP NP VP NP↑ ↑ ↓ ,
there is a matched substring (k = 2): NP VP↑ .

6.3 Tree Kernel

The third method keeps the original representation
of the syntactic relation in the parse tree and incor-
porates a tree kernel in SVM.

Tree kernels are the structure-driven kernels to
calculate the similarity between two trees. They
have been successfully accepted in the NLP appli-
cations. (Collins and Duffy, 2002) defined a ker-
nel on parse tree and used it to improve parsing.
(Collins, 2002) extended the approach to POS tag-
ging and named entity recognition. (Zelenko et al.,
2003; Culotta and Sorensen, 2004) further ex-
plored tree kernels for relation extraction.

We define an object (a relation tree) as the
smallest tree which covers one answer candidate
node and one question key word node. Suppose
that a relation tree T has nodes 0 1{ , , ..., }nt t t and
each node it is attached with a set of attrib-
utes 0 1{ , , ..., }ma a a , which represents the local char-
acteristics of ti . In our task, the set of the
attributes includes Type attributes, Orthographic
attributes and Relation Role attributes, as shown in
Table 2. The core idea of the tree kernel (,)1 2K T T
is that the similarity between two trees T1 and T2 is

PUNC

. away 221,456 miles

S

PP NPB VP

VBZ ADVP

NPB RB
the moon

is

Q1980: How far is the moon from Earth in miles?
S: At its perigee, the closest approach to Earth , the
moon is 221,456 miles away.

……

69

T1_ac#target

T2_ac#target

Q1897: What is the name of the airport in Dallas Ft. Worth?
S: Wednesday morning, the low temperature at the Dallas-Fort
Worth International Airport was 81 degrees.

t4t3 t2

T: BNP
O: null
R1: true
R2: false

t1

Dallas-Fort
T: NNP
O: CAPALL
R1: false
R2: false

International
T: JJ
O: CAPALL
R1: false
R2: false

Airport
T: NNP
O: CAPALL
R1: false
R2: true

Q35: What is the name of the highest mountain in Africa?
S: Mount Kilimanjaro, at 19,342 feet, is Africa's highest moun-
tain, and is 5,000 feet higher than ….

Mount
T: NNP
O: CAPALL
R1: false
R2: true

Kilimanjaro
T: NNP
O: CAPALL
R1: false
R2: false

T: BNP
O: null
R1: true
R2: false

t0

w0

w1 w2

Worth
T: NNP
O: CAPALL
R1: false
R2: false

the sum of the similarity between their subtrees. It
is calculated by dynamic programming and cap-
tures the long-range syntactic relations between
two nodes. The kernel we use is similar to (Ze-
lenko et al., 2003) except that we define a task-
specific matching function and similarity function,
which are two primitive functions to calculate the
similarity between two nodes in terms of their at-
tributes.

Matching function
1 if . . and . .

(,)
0 otherwise

i j i j

i j

t type t type t role t role
m t t

= =
=

Similarity function

0{ ,..., }
(,) (. , .)i j i j

ma a a
s t t f t a t a

∈
= ∑

where, (. , .)i jf t a t a is a compatibility function be-
tween two feature values

. .
(. , .)

1 if

0 otherwise
i j

i j

t a t a
f t a t a =

=

Figure 2 shows two examples of the relation tree
T1_ac#targetword and T2_ac#targetword. The
kernel we used matches the following pairs of the
nodes <t0, w0>, <t1, w2>, <t2, w2> and <t4, w1>.

Attributes Examples
POS tag CD, NNP, NN…Type
syntactic tag NP, VP, …
Is Digit? DIG, DIGALL
Is Capitalized? CAP, CAPALL

Ortho-
graphic

length of phrase LNG1, LNG2#3,
LNGgt3

Role1 Is answer candidate? true, false
Role2 Is question key words? true, false
Table 2: Attributes of the nodes

7 Experiments

We apply the AE module to the TREC QA task.
To evaluate the features in the AE module inde-
pendently, we suppose that the IR module has got
100% precision and only passes those sentences
containing the proper answers to the AE module.
The AE module is to identify the proper answers
from the given sentence collection.

We use the questions of TREC8, 9, 2001 and
2002 for training and the questions of TREC2003
for testing. The following steps are used to gener-
ate the data:

1. Retrieve the relevant documents for each ques-
tion based on the TREC judgments.
2. Extract the sentences, which match both the
proper answer and at least one question key word,
from these documents.
3. Tag the proper answer in the sentences based on
the TREC answer patterns

Figure 2: Two objects representing the relations be-
tween answer candidates and target words.

In TREC 2003, there are 413 factoid questions

in which 51 questions (NIL questions) are not re-
turned with the proper answers by TREC. Accord-
ing to our data generation process, we cannot
provide data for those NIL questions because we
cannot get the sentence collections. Therefore, the
AE module will fail on all of the NIL questions
and the number of the valid questions should be
362 (413 – 51). In the experiment, we still test the
module on the whole question set (413 questions)
to keep consistent with the other’s work. The
training set contains 1252 questions. The perform-
ance of our system is evaluated using the mean
reciprocal rank (MRR). Furthermore, we also list
the percentages of the correct answers respectively

70

in terms of the top 5 answers and the top 1 answer
returned. We employ the SVMLight (Joachims,
1999) to incorporate the features and classify the
answer candidates. No post-processes are used to
adjust the answers in the experiments.

Firstly, we evaluate the effectiveness of the tex-
tual features, described in Section 5. We incorpo-
rate them into SVM using the three kernel
functions: linear kernel, polynomial kernel and
RBF kernel, which are introduced in Section 4.
Table 3 shows the performance for the different
kernels. The RBF kernel (46.24 MRR) signifi-
cantly outperforms the linear kernel (33.72 MRR)
and the polynomial kernel (40.45 MRR). There-
fore, we will use the RBF kernel in the rest ex-
periments.

 Top1 Top5 MRR
linear 31.28 37.91 33.72
polynomial 37.91 44.55 40.45
RBF 42.67 51.58 46.24
Table 3: Performance for kernels

In order to evaluate the contribution of the indi-

vidual feature, we test out module using different
feature combinations, as shown in Table 4. Sev-
eral findings are concluded:
1. With only the syntactic tag features Fsyn., the
module achieves a basic level MRR of 31.38. The
questions “Q1903: How many time zones are there
in the world?“ is correctly answered from the sen-
tence “The world is divided into 24 time zones.”.
2. The orthographic features Forth. show the posi-
tive effect with 7.12 MRR improvement based on
Fsyn.. They help to find the proper answer “Grover
Cleveland” for the question “Q2049: What presi-
dent served 2 nonconsecutive terms?” from the
sentence “Grover Cleveland is the forgotten two-
term American president.”, while Fsyn. wrongly
identify “president” as the answer.
3. The named entity features Fne are also benefi-
cial as they make the 4.46 MRR increase based on
Fsyn.+Forth. For the question “Q2076: What com-
pany owns the soft drink brand "Gatorade"?”, Fne
find the proper answer “Quaker Oats” in the sen-
tence “Marineau , 53 , had distinguished himself
by turning the sports drink Gatorade into a mass
consumer brand while an executive at Quaker Oats
During his 18-month…”, while Fsyn.+Forth. return
the wrong answer “Marineau”.
4. The trigger features Ftrg lead to an improve-
ment of 3.28 MRR based on Fsyn.+Forth+Fne. They

correctly answer more questions. For the question
“Q1937: How fast can a nuclear submarine
travel?”, Ftrg return the proper answer “25 knots”
from the sentence “The submarine , 360 feet
(109.8 meters) long , has 129 crew members and
travels at 25 knots.”, but the previous features fail
on it.

Fsyn Forth. Fne Ftrg Top1 Top5 MRR
√ 26.50 38.92 31.38
√ √ 34.69 43.61 38.50
√ √ √ 39.85 47.82 42.96
√ √ √ √ 42.67 51.58 46.24

Table 4: Performance for feature combinations

Next, we will evaluate the effectiveness of the syn-
tactic features, described in Section 6. Table 5
compares the three feature representation methods,
FeatureVector, StringKernel and TreeKernel.

 FeatureVector (Section 6.1). We predefine
some features in the syntactic tree and present
them as a feature vector. The syntactic fea-
tures are added with the textual features and
the RBF kernel is used to cope with them.

 StringKernel (Section 6.2). No features are
predefined. We transform the syntactic rela-
tions between answer candidates and question
key words to node sequences and a string ker-
nel is proposed to cope with the sequences.
Then we add the string kernel for the syntactic
relations and the RBF kernel for the textual
features.

 TreeKernel (Section 6.3). No features are
predefined. We keep the original representa-
tions of the syntactic relations and propose a
tree kernel to cope with the relation trees.
Then we add the tree kernel and the RBF ker-
nel.

 Top1 Top2 MRR
Fsyn.+Forth.+Fne+Ftrg 42.67 51.58 46.24
FeatureVector 46.19 53.69 49.28
StringKernel 48.99 55.83 52.29
TreeKernel 50.41 57.46 53.81
Table 5: Performance for syntactic feature repre-
sentations

Table 5 shows the performances of FeatureVec-

tor, StringKernel and TreeKernel. All of them im-
prove the performance based on the textual
features (Fsyn.+Forth.+Fne+Ftrg) by 3.04 MRR, 6.05
MRR and 7.57 MRR respectively. The probable
reason may be that the features generated from the
structured data representation may capture the

71

more linguistic-motivated evidences for the proper
answers. For example, the syntactic features help
to find the answer “nitrogen” for the question
“Q2139: What gas is 78 percent of the earth 's at-
mosphere?” in the sentence “One thing they have-
n't found in the moon's atmosphere so far is
nitrogen, the gas that makes up more than three-
quarters of the Earth's atmosphere.”, while the
textual features fail on it. Furthermore, the String-
Kernel (+3.01MRR) and TreeKernel (+4.53MRR)
achieve the higher performance than FeatureVec-
tor, which may be explained that keeping the
original data representations by incorporating the
data-specific kernels in SVM may capture the
more comprehensive evidences than the predefined
features. Moreover, TreeKernel slightly outper-
forms StringKernel by 1.52 MRR. The reason may
be that when we transform the representation of the
syntactic relation from the tree to the node se-
quence, some information may be lost, such as the
sibling node of the answer candidates. Sometimes
the information is useful to find the proper answers.

8 Conclusion

In this paper, we study the feature generation based
on the various data representations, such as surface
text and parse tree, for the answer extraction. We
generate the syntactic tag features, orthographic
features, named entity features and trigger features
from the surface texts. We further explore the fea-
ture generation from the parse trees which provide
the more linguistic-motivated evidences for the
task. We propose three methods, including feature
vector, string kernel and tree kernel, to represent
the syntactic features in Support Vector Machines.
The experiment on the TREC question answering
task shows that the syntactic features significantly
improve the performance by 7.57MRR based on
the textual features. Furthermore, keeping the
original data representation using a data-specific
kernel achieves the better performance than the
explicitly enumerated features in SVM.

References
M. Collins. 1996. A New Statistical Parser Based on

Bigram Lexical Dependencies. In Proceedings of
ACL-96, pages 184-191.

M. Collins. 2002. New Ranking Algorithms for Parsing
and Tagging: Kernel over Discrete Structures, and
the Voted Perceptron. In Proceedings of ACL-2002.

M. Collins and N. Duffy. 2002. Convolution Kernels
for Natural Language. Advances in Neural Informa-
tion Processing Systems 14, Cambridge, MA. MIT
Press.

A. Culotta and J. Sorensen. 2004. Dependency Tree
Kernels for Relation Extraction. In Proceedings of
ACL-2004.

A. Echihabi, U. Hermjakob, E. Hovy, D. Marcu, E.
Melz, D. Ravichandran. 2003. Multiple-Engine
Question Answering in TextMap. In Proceedings of
the TREC-2003 Conference, NIST.

A. Echihabi, D. Marcu. 2003. A Noisy-Channel Ap-
proach to Question Answering. In Proceedings of the
ACL-2003.

D. Haussler. 1999. Convolution Kernels on Discrete
Structures. Technical Report UCS-CRL-99-10, Uni-
versity of California, Santa Cruz.

A. Ittycheriah and S. Roukos. 2002. IBM’s Statistical
Question Answering System – TREC 11. In Pro-
ceedings of the TREC-2002 Conference, NIST.

A. Ittycheriah. 2001. Trainable Question Answering
System. Ph.D. Dissertation, Rutgers, The State Uni-
versity of New Jersey, New Brunswick, NJ.

T. Joachims. 1999. Making large-Scale SVM Learn-
ing Practical. Advances in Kernel Methods - Sup-
port Vector Learning, MIT-Press, 1999.

T. Joachims. 1998. Text Categorization with Support
Vector Machines: Learning with Many Relevant Fea-
tures. In Proceedings of the European Conference on
Machine Learning, Springer.

C. Leslie, E. Eskin and W. S. Noble. 2002. The spec-
trum kernel: A string kernel for SVM protein classi-
fication. Proceedings of the Pacific Biocomputing
Symposium.

H. Lodhi, J. S. Taylor, N. Cristianini and C. J. C. H.
Watkins. 2000. Text Classification using String
Kernels. In NIPS, pages 563-569.

D. Ravichandran, E. Hovy and F. J. Och. 2003. Statis-
tical QA – Classifier vs. Re-ranker: What’s the dif-
ference? In Proceedings of Workshop on Mulingual
Summarization and Question Answering, ACL 2003.

J. Suzuki, Y. Sasaki, and E. Maeda. 2002. SVM Answer
Selection for Open-domain Question Answering. In
Proc. of COLING 2002, pages 974–980.

V. N. Vapnik. 1998. Statistical Learning Theory.
Springer.

E.M. Voorhees. 2003. Overview of the TREC 2003
Question Answering Track. In Proceedings of the
TREC-2003 Conference, NIST.

J. Xu, A. Licuanan, J. May, S. Miller and R. Weischedel.
2002. TREC 2002 QA at BBN: Answer Selection
and Confidence Estimation. In Proceedings of the
TREC-2002 Conference, NIST.

D. Zelenko, C. Aone and A. Richardella. 2003. Kernel
Methods for Relation Extraction. Journal of Ma-
chine Learning Research, pages 1083-1106.

72

Author Index

Aue, Anthony,57

Basili, Roberto,48
Belew, Richard K.,17
Boyd, Adriane,40
Byron, Donna,40

Chen, Francine,32
Chotimongkol, Ananlada,24
Coppola, Bonaventura,48

de Rijke, Maarten,9

Fissaha Adafre, Sisay,9

Gamon, Michael,57
Gegg-Harrison, Whitney,40

Hakkani-T̈ur, Dilek,24

Kauchak, David,32
Klakow, Dietrich,65
Kruijff, Geert-Jan M.,65

Liebscher, Robert,17

Moschitti, Alessandro,48

Pighin, Daniele,48

Shen, Dan,65

Tur, Gokhan,24

Uszkoreit, Hans,1

Yao, Tianfang,1

73

	Program
	A Novel Machine Learning Approach for the Identification of Named Entity Relations
	Feature Engineering and Post-Processing for Temporal Expression Recognition Using Conditional Random Fields
	Temporal Feature Modification for Retrospective Categorization
	Using Semantic and Syntactic Graphs for Call Classification
	Feature-Based Segmentation of Narrative Documents
	Identifying non-referential it: a machine learning approach incorporating linguistically motivated patterns
	Engineering of Syntactic Features for Shallow Semantic Parsing
	Automatic identification of sentiment vocabulary: exploiting low association with known sentiment terms
	Studying Feature Generation from Various Data Representations for Answer Extraction

