
ACL-05

Second Workshop
on

Effective Tools and Methodologies
for

Teaching
Natural Language Processing

and Computational Linguistics

Proceedings

25 June 2005
University of Michigan

Ann Arbor, Michigan, USA



Production and Manufacturing by
Omnipress Inc.
Post Office Box 7214
Madison, WI 53707-7214

c©2005 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
75 Paterson Street, Suite 9
New Brunswick, NJ 08901
USA
Tel: +1-732-342-9100
Fax: +1-732-342-9339
acl@aclweb.org

ii



Introduction

This is the second workshop on effective tools and methodologies for teaching NLP and Computational
Linguistics. Recurring themes are the interdisciplinarity of the subject and the unexpected mismatches
between student background and what the instructor initially assumed. Some papers talk about
particular tools and assignments: are spelling checkers really as cool as we think? how much can
students be persuaded to like error analysis? is it fair to ask students to use research software when
they could be learning about more generally applicable tools? Others describe teaching approaches
conditioned by particular institutional and educational needs: what is it like teaching in a situation
where students typically can’t afford to buy even one textbook? can multiple universities co-ordinate a
continent-wide curriculum? There is a consistent and welcome effort to discuss not only successes but
also decisions that seem, at least in retrospect, to have been mistakes. We hope that all aspects of the
sharing of experience begun in the papers will continue during the workshop itself.

We are grateful to all the authors who submitted papers, and the following people, who served on the
program committee.

Steven Bird, University of Melbourne, Australia
Chris Brew, Ohio State University, USA
Ted Briscoe, University of Cambridge, UK
Walter Daelemans, University of Antwerp, Belgium
Robert Dale, Macquarie University, Australia
Jason Eisner, Johns Hopkins University, USA
Tomǎz Erjavec, Jǒzef Stefan Institute, Slovenia
Kathy McKeown, Columbia University, USA
Elizabeth Liddy, Syracuse University, USA
Chris Manning, Stanford University, USA
Jim Martin, University of Colorado, USA
Chris Mellish, University of Aberdeen, UK
Dragomir Radev, University of Michigan, USA
Ellen Riloff, University of Utah, USA
Anoop Sarkar, Simon Fraser University, Canada
Harold Somers, University of Manchester, UK
Richard Sproat, University of Illinois, USA
Matthew Stone, Rutgers University, USA
Josef van Genabith, Dublin City University, Ireland
Richard Wicentowski, Swarthmore College, USA

We are also grateful to our home institutions for encouragement and support in working on our own
teaching.

Chris Brew and Dragomir Radev

iii





Table of Contents

Teaching Applied Natural Language Processing: Triumphs and Tribulations
Marti Hearst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

Teaching Dialogue to Interdisciplinary Teams through Toolkits
Justine Cassell and Matthew Stone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

”Language and Computers”: Creating an Introduction for a General Undergraduate Audience
Chris Brew, Markus Dickinson and W. Detmar Meurers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

A Core-Tools Statistical NLP Course
Dan Klein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

Web-based Interfaces for Natural Language Processing Tools
Marc Light, Robert Arens and Xin Lu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28

Making Hidden Markov Models More Transparent
Nashira Lincoln and Marc Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32

Concrete Assignments for Teaching NLP in an M.S. Program
Reva Freedman. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37

Language Technology from a European Perspective
Hans Uszkoreit, Valia Kordoni, Vladislav Kubon, Michael Rosner
and Sabine Kirchmeier-Andersen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

Natural Language Processing at the School of Information Studies for Africa
Björn Gamb̈ack, Gunnar Eriksson and Athanassia Fourla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49

Teaching Language Technology at the North-West University
Suĺene Pilon, Gerhard B Van Huyssteen and Bertus Van Rooy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

Hands-On NLP for an Interdisciplinary Audience
Elizabeth Liddy and Nancy McCracken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62

v





Conference Program

Saturday, June 25, 2005

09:00–09:20 Opening session

Session 1: NLP/CL in the curriculum

09:20-09:40 Teaching Applied Natural Language Processing: Triumphs and Tribulations
Marti Hearst

09:40-10:00 Teaching Dialogue to Interdisciplinary Teams through Toolkits
Justine Cassell and Matthew Stone

10:00-10:20 ”Language and Computers”: Creating an Introduction for a General Undergradu-
ate Audience
Chris Brew, Markus Dickinson and W. Detmar Meurers

10:30–11:00 Break

Session 2: Assignments and tools

11:00–11:20 A Core-Tools Statistical NLP Course
Dan Klein

11:20–11:40 Web-based Interfaces for Natural Language Processing Tools
Marc Light, Robert Arens and Xin Lu

11:40–12:00 Making Hidden Markov Models More Transparent
Nashira Lincoln and Marc Light

12:00–12:20 Concrete Assignments for Teaching NLP in an M.S. Program
Reva Freedman

12:30–14:00 Lunch

vii



Saturday, June 25, 2005 (continued)

Panel: The NLP/CL curriculum

14:00–16:00 Panel on the NLP/CL curriculum

16:00–16:30 Break

Session 3: Teaching NLP/CL to diverse audiences

16:30–16:50 Language Technology from a European Perspective
Hans Uszkoreit, Valia Kordoni, Vladislav Kubon, Michael Rosner and Sabine Kirchmeier-
Andersen

16:50–17:10 Natural Language Processing at the School of Information Studies for Africa
Björn Gamb̈ack, Gunnar Eriksson and Athanassia Fourla

17:10–17:30 Teaching Language Technology at the North-West University
Suĺene Pilon, Gerhard B Van Huyssteen and Bertus Van Rooy

17:30–17:50 Hands-On NLP for an Interdisciplinary Audience
Elizabeth Liddy and Nancy McCracken

viii



Proceedings of the Second ACL Workshop on Effective Tools and Methodologies for Teaching NLP and CL, pages 1–8,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Teaching Applied Natural Language Processing: Triumphs and Tribulations

Marti Hearst
School of Information Management & Systems

University of California, Berkeley
Berkeley, CA 94720

hearst@sims.berkeley.edu

Abstract

In Fall 2004 I introduced a new course
called Applied Natural Language Process-
ing, in which students acquire an under-
standing of which text analysis techniques
are currently feasible for practical appli-
cations. The class was intended for in-
terdisciplinary students with a somewhat
technical background. This paper de-
scribes the topics covered and the pro-
gramming exercises, emphasizing which
aspects were successful and which prob-
lematic, and makes recommendations for
future versions of the course.

1 Introduction

In Fall 2005 I introduced a new graduate level course
called Applied Natural Language Processing.1 The
goal of this course was to acquaint students with the
state-of-the-art of the field of NLP with an empha-
sis on applications. The intention was for students
to leave the class with an understanding of what is
currently feasible (and just on the horizon) to ex-
pect from content analysis, and how to use and ex-
tend existing NLP tools and technology. The course
did not emphasize the theoretical underpinnings of
NLP, although we did cover the most important al-
gorithms. A companion graduate course on Statis-
tical NLP was taught by Dan Klein in the Com-
puter Science department. Dan’s course focused on

1Lecture notes, assignments, and other resources can be
found at http://www.sims.berkeley.edu/courses/is290-2/f04/ .

foundations and core NLP algorithms. Several com-
puter science students took both courses, and thus
learned both the theoretical and the applied sides of
NLP. Dan and I discussed the goals and content of
our respective courses in advance, but developed the
courses independently.

2 Course Role within the SIMS Program

The primary target audience of the Applied NLP
course were masters students, and to a lesser ex-
tent, PhD students, in the School of Information
Management and Systems. (Nevertheless, PhD stu-
dents in computer science and other fields also took
the course.) MIMS students (as the SIMS mas-
ters students are known) pursue a professional de-
gree studying information at the intersection of tech-
nology and social sciences. The students’ techni-
cal backgrounds vary widely; each year a signifi-
cant fraction have Computer Science undergraduate
degrees, and another significant fraction have so-
cial science or humanities backgrounds. All stu-
dents have an interest in technology and are re-
quired to take some challenging technical courses,
but most non-CS background students are uncom-
fortable with advanced mathematics and are not as
comfortable with coding as CS students are.

A key aspect of the program is the capstone fi-
nal project, completed in the last semester, that (ide-
ally) combines knowledge and skills obtained from
throughout the program. Most students form a team
of 3-4 students and build a system, usually to meet
the requirements of an outside client or customer
(although some students write policy papers and
others get involved in research with faculty mem-

1



bers). Often the execution of these projects makes
use of user-centered design, including a needs as-
sessment, and iterative design and testing of the arti-
fact. These projects often also have a backend de-
sign component using database design principles,
document engineering modeling, or information ar-
chitecture and organization principles, with sensitiv-
ity to legal considerations for privacy and intellec-
tual property. Students are required to present their
work to an audience of students, faculty, and pro-
fessionals, produce a written report, and produce a
website that describes and demonstrates their work.

In many cases these projects would benefit greatly
from content analysis. Past projects have included
a system to query on and monitor news topics as
they occur across time and sources, a system to ana-
lyze when and where company names are mentioned
in text and graph interconnections among them, a
system to allow customization of news channels by
topic, and systems to search and analyze blogs. Our
past course offerings in this space focused on infor-
mation retrieval with very little emphasis on content
analysis, so students were using only IR-type tech-
niques for these projects.

The state of the art in NLP had advanced suffi-
ciently that the available tools can be employed for a
number of projects like these. Furthermore, it is im-
portant for students attempting such projects to have
an understanding of what is currently feasible and
what is too ambitious. In fact, I find that this is a key
aspect of teaching an applied class: learning what
is possible with existing tools, what is feasible but
requires more expertise than can be engineered in a
semester with existing tools, and what is beyond the
scope of current techniques.

3 Choosing Tools and Readings

The main challenges for a hands-on course as I’d
envisioned surrounded finding usable interoperable
tools, and defining feasible assignments that make
use of programming without letting it interfere with
learning.

There is of course the inevitable decision of which
programming language(s) to work with. Scripting
tools such as python are fast and easy to prototype
with, but require the students to learn a new pro-
gramming language. Java is attractive because many

tools are written in it and the MIMS students were
familiar with java – they are required to use it for
two of their required courses but still tend to strug-
gle with it. I did not consider perl since python is a
more principled language and is growing in accep-
tance and in tool availability.

In the end I decided to require the students to learn
python because I wanted to use NLTK, the Natural
Language Toolkit (Loper and Bird, 2002). One goal
of NLTK is to remove the emphasis on programming
to enable students to achieve results quickly; and
this aligned with my primary goal. NLTK seemed
promising because it contained some well-written
tutorials on n-grams, POS tagging and chunking,
and contained text categorization modules. (I also
wanted support for entity extraction, which NLTK
does not supply.) NLTK is written in python, and
so I decided to try it and have the students learn a
new programming language. As will be described in
detail below, our use of NLTK was somewhat suc-
cessful, but we experienced numerous problems as
well.

I made a rather large mistake early on by not
spending time introducing python, since I wanted
the assignments to correspond to the lectures and did
not want to spend lecture time on the programming
language itself. I instructed students who had regis-
tered for the course to learn python during the sum-
mer, but (not surprisingly) many of did not and had
to struggle in the first few weeks. In retrospect, I re-
alize I should have allowed time for people to learn
python, perhaps via a lab session that met only dur-
ing the first few weeks of class.

Another sticking point was student exposure to
regular expressions. Regex’s were very important
and useful practical tools both for tokenization as-
signments and for shallow parsing. I assumed that
the MIMS students had gotten practice with regu-
lar expressions because they are required to take a
computer concepts foundations course which I de-
signed several years ago. Unfortunately, the lecturer
who took over the class from me had decided to
omit regex’s and related topics. I realized that I had
to do some remedial coverage of the topic, which
of course bored the CS students and which was not
complete enough for the MIMS students. Again this
suggests that perhaps some kind of lab is needed for
getting people caught up in topics, or that perhaps

2



the first few weeks of the class should be optional
for more advanced students.

I was also unable to find an appropriate textbook.
Neither Scḧutze & Manning nor Jurafsky & Mar-
tin focus on the right topics. The closest in terms
of topic isNatural Language Processing for Online
Applicationsby Peter Jackson & Isabelle Moulinier,
but much of this book focuses on Information Re-
trieval (which we teach in two other courses) and did
not go into depth on the topics I most cared about.
Instead of a text, students read a small selection of
research papers and the NLTK tutorials.

4 Topics

The course met twice weekly for 80 minute periods.
The topic coverage is shown below; topics followed
by (2) indicate two lecture periods were needed.

Course Introduction
Using Large Collections (intro to NLTK)
Tokenization, Morphological Analysis
Part-of-Speech Tagging
Conditional Probabilities
Shallow Parsing (2)
Text Classification: Introduction
Text Classification: Feature Selection
Text Classification: Algorithms
Text Classification: Using Weka
Information Extraction (2)
Email and Anti-Spam Analysis
Text Data Mining
Lexicons and Ontologies
FrameNet (guest lecture by Chuck Fillmore)
Enron email dataset (in-class work) (2)
Spelling Correction / Clustering
Summarization (guest lecture by Drago Radev)
Question Answering (2)
Machine Translation (slides by Kevin Knight)
Topic Segmentation / Discourse Processing
Class Presentations

Note the lack of coverage of full syntactic parsing,
which is covered extensively in Dan Klein’s course.
I touched on it briefly in the second shallow pars-
ing lecture and felt this level of coverage was ac-
ceptable because shallow parsing is often as useful
if not more so than full parsing for most applica-
tions. Note also the lack of coverage of word sense
disambiguation. This topic is rich in algorithms, but

was omitted primarily due to time constraints, but in
part because of the lack of well-known applications.

Based on the kinds of capstone projects the MIMS
students have done in the past, I knew that the most
important techniques for their needs surrounded
text categorization and information extraction/entity
recognition. There are terrific software resources for
text categorization and the field is fairly mature, so
I had my PhD students Preslav Nakov and Barbara
Rosario gave the lectures on this topic, in order to
provide them with teaching experience.

The functionality provided by named entity
recognition is very important for a wide range of
real-world applications. Unfortunately, none of the
free tools that we tried were particularly successful.
Those that are available are difficult to configure and
get running in a short amount of time, and have vir-
tually no documentation. Furthermore, the state-of-
the-art in algorithms is not present in the available
tools in the way that more mature technologies such
as POS tagging, parsing, and categorization are.

5 Using NLTK

5.1 Benefits

We used the latest version of NLTK, which at the
time was version 1.4.2 NLTK supplies some pre-
processed text collections, which are quite useful.
(Unfortunately, the different corpora have different
types of preprocessing applied to them, which of-
ten lead to confusion and extra work for the class.)
The NLTK tokenizer, POS taggers and the shallow
parser (chunker) have terrific functionality once they
are understood; some students were able to get quite
accurate results using these and the supplied train-
ing sets. The ability to combine different n-gram
taggers within the structure of a backoff tagger also
supported an excellent exercise. However, a some-
what minor problem with the taggers is that there is
no compact way to store the model resulting from
tagging for later use. A serialized object could be
created and stored, but the size of such object was
so large that it takes about as long to load it into
memory as it does to retrain the tagger.

2http://nltk.sourceforge.org

3



5.2 Drawbacks

There were four major problems with NLTK from
the perspective of this course. The first major prob-
lem was the inconsistency in the different releases
of code, both in terms of incompatibilities between
the data structures in the different versions, and
incompatibility of the documentation and tutorials
within the different versions. It was tricky to de-
termine which documentation was associated with
which code version. And much of the contributed
code did not work with the current version.

The second major problem was related to the first,
but threw a major wrench into our plans: some of the
advertised functionality simply was not available in
the current version of the software. Notably, NLTK
advertised a text categorization module; without this
I would not have adopted NLTK as the coding plat-
form for the class. Unfortunately, the most current
version did not in fact support categorization, and
we discovered this just days before we were to be-
gin covering this topic.

The third major problem was the incompleteness
of the documentation for much of the code. This
to some degree undermined the goal of reducing the
amount of work for students, since they (and I) had
to struggle to figure out what was going on in the
code and data structures.

One of these documentation problems centered
around the data structure for conditional probabil-
ities. NLTK creates a FreqDist class which is ex-
plained well in the documentation (it records a count
for each occurrence of some phenomenon, much
like a hash table) and provides methods for retriev-
ing the max, the count and frequency of each oc-
currence, and so on. It also provides a class called
a CondFreqDist, but does not document its meth-
ods nor explain its implementation. Users have to
scrutinize the examples given and try to reverse en-
gineer the data structure. Eventually I realized that
it is simply a list of objects of type FreqDist, but
this was difficult to determine at first, and caused
much wasting of time and confusion among the stu-
dents. There is also confusion surrounding the use
of the method namescountand frequencyfor Fre-
qDist. Count refers to number of occurrences and
frequency to a probability distribution across items,
but this distinction is never stated explicitly although

it can be inferred from a table of methods in the tu-
torial.

A less dramatic but still hampering problem was
with the design of the core data structures, which
make use of attribute tags rather than classes. This
leads to rather awkward code structures. For exam-
ple, after a sentence is tokenized, the results of tok-
enization are appended to the sentence data structure
and are accessed via use of a subtoken keyword such
as ‘TOKENS’. To then run a POS tagger over the
tokenized results, the ‘TOKENS’ keyword has to be
specified as the value for a SUBTOKENS attribute,
and another keyword must be supplied to act as the
name of the tagged results. In my opinion it would
be better to use the class system and define objects
of different types and operations on those objects.

6 Assignments

One of the major goals of the class was for the stu-
dents to obtain hands-on experience using and ex-
tending existing NLP tools. This was accomplished
through a series of homework assignments and a fi-
nal project. My pedagogical philosophy surround-
ing assignments is to supply as much as the function-
ality as necessary so that the coding that students do
leads directly to learning. Thus, I try to avoid mak-
ing students deal with details of formatting files and
so on. I also try to give students a starting point to
build up on.

The first assignment made use of some exercises
from the NLTK tutorials. Students completed to-
kenizing exercises which required the use of the
NLTK corpus tool accessors and the FreqDist and
CondFreqDist classes. They also did POS tagging
exercises which exposed them to the idea of n-
grams, backoff algorithms, and to the process of
training and testing. This assignment was challeng-
ing (especially because of some misleading text in
the tagging tutorial, which has since been fixed) but
the students learned a great deal. As mentioned
above, I should have begun with a preliminary as-
signment which got students familiar with python
basics before attempting this assignment.

For assignment 2, I provided a simple set of regu-
lar expression grammar rules for the shallow parser
class, and asked the students to improve on these.
After building the chunker, students were asked to

4



choose a verb and then analyze verb-argument struc-
ture (they were provided with two relevant papers
(Church and Hanks, 1990; Chklovski and Pantel,
2004)). As mentioned above, most of the MIMS stu-
dents were not familiar with regular expressions, so
I should have done a longer unit on this topic, at the
expense of boring the CS students.

The students learned a great deal from working to
improve the grammar rules, but the verb-argument
analysis portion was not particularly successful, in
part because the corpus analyzed was too small to
yield many sentences for a given verb and because
we did not have code to automatically find regu-
larities about the semantics of the arguments of the
verbs. Other causes of difficulty were the students’
lack of linguistic background, and the fact that the
chunking part took longer than I expected, leaving
students little time for the analysis portion of the as-
signment.

Assignments 3 and 4 are described in the follow-
ing subsections.

6.1 Text Categorization Assignment

As mentioned above, text categorization is useful for
a wide range SIMS applications, and we made it a
centerpiece of the course. Unfortunately, we had to
make a mid-course correction when I suddenly real-
ized that text categorization was no longer available
in NLTK.

After looking at a number of tools, we decided
to use the Weka toolkit for categorization (Witten
and Frank, 2000). We did not want the students to
feel they had wasted their time learning python and
NLTK, so we decided to make it easy for the stu-
dents to reuse their python code by providing an in-
terface between it and Weka.

My PhD student Preslav Nakov provided great
help by writing code to translate the output of our
python code into the input format expected by Weka.
(Weka is written in java but has command line and
GUI interfaces, and can read in input files and store
models as output files.) As time went on we added
increasingly more functionality to this code, tying it
in with the NLTK modules so that the students could
use the NLTK corpora for training and testing.3

3Available at http://www.sims.berkeley.edu/courses/is290-
2/f04/assignments/assignment3.html

Both Preslav and I had used Weka in the past but
mainly with the command-line interface, and not
taking advantage of its rich functionality. As with
NLTK, the documentation for Weka was incomplete
and out of date, and it was difficult to determine how
to use the more advanced features. We performed
extended experimentation with the system and de-
veloped a detailed tutorial on how to use the system;
this tutorial should be of general use.4

For the categorization task, we used the “twenty
newsgroups” collection that was supplied with
NLTK. Unfortunately, it was not preprocessed into
sentences, so I also had to write some sentence split-
ting code (based on Palmer and Hearst (1997)) so
students could make use of their tokenizer and tag-
ger code.

We selected one pair of newsgroups which con-
tained very different content (rec.motorcycles
vs. sci.space). We called this the diverse
set. We then created two groups of news-
groups with more homogeneous content (a)
rec.autos, rec.motorcycles, rec.sport.baseball,
rec.sport.hockey, and (b)sci.crypt, sci.electronics,
sci.med.original, sci.space. The intention was to
show the students that it is easier to automatically
distinguish the heterogeneous groups than the
homogeneous ones.

We set up the code to allow students to adjust the
size of their training and development sets, and to
separate out a reserved test set that would be used
for comparing students’ solutions.

We challenged the students to get the best scores
possible on the held out test set, telling them not to
use this test set until they were completely finished
training and testing on the development set. (We re-
lied on the honor system for this.) We made it known
that we would announce which were the top-scoring
assignments. As a general rule I avoid competition
in my classes, but this was kept very low-key; only
the top-scoring results would be named. Further-
more, innovative approaches that perhaps did not do
as well as some others were also highlighted. Stu-
dents were required to try at least 2 different types
of features and 3 different classifiers.

This assignment was quite successful, as the stu-

4Available at http://www.sims.berkeley.edu/courses/is290-
2/f04/lectures/lecture11.ppt

5



dents were creative about building their features,
and it was possible to achieve very strong results
(much stronger than I expected) on both sets of
newsgroups. The best scoring approaches got 99%
accuracy on the 2-way diverse distinction and 97%
accuracy on the 4-way homogeneous distinction.

6.2 Enron Email Assignment

Many of the SIMS students are interested in social
networking and related topics. I decided as part of
the class that we would analyze a relatively new text
collection that had become available and that con-
tained the potential for interesting text mining and
analysis. I was also interested in having the class
help produce a resource that would be of use to other
classes and researchers. Thus we decided to take on
the Enron email corpus,5 on which limited analysis
had been done.

My PhD student Andrew Fiore wrote code to pre-
process this text, removing redundancies, normal-
izing email addresses, labeling quoted text, and so
on. He and I designed a database schema for repre-
senting much of the structure of the collection and
loaded in the parsed text. I created a Lucene6 in-
dex for doing free text queries while Andrew built a
highly functional web interface for searching fielded
components. Andrew’s system eventually allowed
for individual students to login and register annota-
tions on the email messages.

This collection consists of approximately 200,000
messages after the duplicates have been removed.
We wanted to identify a subset of emails that might
be interesting for analysis while at the same time
avoiding highly personal messages, messages con-
sisting mainly of jokes, and so on. After doing nu-
merous searches, we decided to try to focus primar-
ily on documents relating to the California energy
crisis, trading discrepancies, and messages occur-
ring near the end of the time range (just before the
company’s stock crashed).

After selecting about 1500 messages, I devised an
initial set of categories. In class we refined these.
One student had the interesting idea of trying to
identify change in emotional tone as the scandals
surrounding the company came to light, so we added
emotional tone as a category type. Each message

5http://www-2.cs.cmu.edu/ enron/
6http://lucene.apache.org

was then read and annotated by two students using
the pre-defined categories. Students were asked to
reconcile their differences when they had them.

Despite these safeguards, my impression is that
the resulting assignments are far from consistent and
the categories themselves are still rather ad hoc and
oftentimes overlapping. There were many difficult
curation issues, such as how to categorize a message
with forwarded content when that content differed
in kind from the new material. If we’d spent more
time on this we could have done a better job, but as
this was not an information organization course, I
felt we could not spend more time on perfecting the
labels. Thus, I do not recommend the category la-
bels be used for serious analysis. Nevertheless, a
number of researchers have asked for the cleaned
up database and categories, and we have made them
publicly available, along with the search interface.7

The students were then given two weeks to pro-
cess the collection in some manner. I made sev-
eral suggestions, including trying to automatically
assign the hand-assigned categories, extending some
automatic acronym recognition work that we’d done
in our research (Schwartz and Hearst, 2003), using
named entity recognition code to identify various ac-
tors, clustering the collection, or doing some kind of
social network analysis. Students were told that they
could extend this assignment into their final projects
if they chose.

For most students it was difficult to obtain a strong
result using this collection. The significant excep-
tion was for those students who worked on ex-
tending our acronym recognition algorithm; these
projects were quite successful. (In fact, one student
managed to improve on our results with a rather sim-
ple modification to our code.) Students often had
creative ideas that were stymied by the poor quality
of the available tools. Two groups used the MAL-
LET named entity recognizer toolkit8 in order to do
various kinds of social network analysis, but the re-
sults were poor. (Students managed to make up for
this deficiency in creative ways.)

I was a bit worried about students trying to use
clustering to analyze the results, given the general
difficulty of making sense of the results of cluster-

7http://bailando.sims.berkeley.edu/enronemail.html
8http://mallet.cs.umass.edu

6



ing, and this concern was justified. Clustering based
on Weka and other tools is of course memory- and
compute-intensive, but more problematically, the re-
sults are difficult to interpret. I would recommend
against allowing students to do a text clustering exer-
cise unless within a more constrained environment.

In summary, students were excited about build-
ing a resource based on relatively untapped and very
interesting data. The resulting analysis on this un-
tamed text was somewhat disappointing, but given
that only two weeks were spent on this part of the
assignment, I believe it was a good learning experi-
ence. Furthermore, the resulting resource seems to
be of interest to a number of researchers, as was our
intention.

6.3 Final Projects

I deliberately kept the time for the final projects
short (about 3 weeks) so students would not go over-
board or feel pressure to do something hugely time-
consuming. The goal was to allow students to tie
together some of the different ideas and skills they’d
acquired in the class (and elsewhere), and to learn
them in more depth by applying them to a topic of
personal interest.

Students were encouraged to work in pairs, and
I suggested a list of project ideas. Students who
adopted suggested projects tended to be more suc-
cessful than those who developed their own. Those
who tried other topics were often too ambitious and
had trouble getting meaningful results. However,
several of those students were trying ideas that they
planned to apply to their capstone projects, and so
it was highly valuable for them to get a preview of
what worked and what did not.

One suggestion I made was to create a back-of-
the-book indexer, specifically for a recipe book, and
one team did a good job with this project. Another
was to improve on or apply an automatic hierarchy
generation tool that we have developed in our re-
search (Stoica and Hearst, 2004). Students working
on a project to collect metadata for camera phone
images successfully applied this tool to this prob-
lem. Again, social networking analysis topics were
popular but not particularly successful; NLP tools
are not advanced enough yet to meet the needs of
this intriguing topic area. Not surprisingly, when
students started with a new (interesting) text collec-

tion, they were bogged down in the preprocessing
stage before they could get much interesting work
done.

6.4 Reflecting on Assignments

Although students were excited about the Enron col-
lection and we created a resource that is actively be-
ing used by other researchers, I think in future ver-
sions of the class I will omit this kind of assignment
and have the students start their final projects sooner.
This will allow them time to do any preprocessing
necessary to get the text into shape for doing the
interesting work. I will also exercise more control
over what they are allowed to attempt (which is not
my usual style) in order to ensure more successful
outcomes.

I am not sure if I will use NLTK again or not. If
the designers make significant improvements on the
code and documentation, then I probably will. The
style and intent of the tutorials are quite appropriate
for the goals of the class. Students with stronger
coding background tended to use java for their final
projects, whereas the others tended to build on the
python code we developed in the class assignments,
which suggests that this kind of toolkit approach is
useful for them.

7 Conclusions

Overall, I feel the main goals of the course were met.
Although I am emphasizing how the course could be
improved, most students were quite positive about
the class, giving it an overall score of 5.8 out of 7
with a mode of 6 in their anonymous course reviews.
(This is on the low side for my courses; most who
gave it low scores found the programming too diffi-
cult.)

Most students found the material highly stimulat-
ing and the work challenging but not overwhelming.
Several students mentioned that a lab session with
a dedicated TA would have been desirable. Sev-
eral suggested covering less material in more depth
and several commented that the Enron exercise was
a neat idea although not entirely successful in execu-
tion. Students remarked on liking reading research
papers rather than a textbook (they also liked the rel-
atively light reading load, which I feel was appropri-
ate given the heavy assignment load). Some students

7



wanted more emphasis on real-world applications; I
think it would be useful to have guest speakers from
industry talk about this if possible.

I would like to see more research tools devel-
oped to a point to which they can be applied more
successfully, especially in the area of information
extraction. I would also recommend to colleagues
that careful control be retained over assignments and
projects to ensure feasibility in the outcome. It is
more difficult to get good results on class projects in
NLP than in other areas I’ve taught. As we so often
see in text analysis work, it can often be difficult to
do better than simple word counts for many projects.

I am interested in hearing ideas about how to ac-
commodate both the somewhat technical and the
highly technical students, especially in the early
parts of the course. Perhaps the best solution is to
offer an optional laboratory section, at least for the
first few weeks, but perhaps for the entire term, but
this solution obviously requires more resources.

When designing this course I did a fairly extensive
web search looking for courses that offered what I
was interested in, but didn’t find much. I used the
proceedings of the ACL-02 workshop on teaching
NLP (where I learned about NLTK) as well as the
NLP Universe. I think it would be a good idea to
start an archive of teaching resources; ACM SIGCHI
is in the midst of creating such an educational digital
library and this example is worth studying.9

Acknowledgements

Thanks to Preslav Nakov, Andrew Fiore, and Bar-
bara Rosario for their help with the class, and for
all the students who took the class. Thanks also to
Steven Bird and Edward Loper for developing and
sharing NLTK, and for their generous time and help
with the system during the course of the class. This
work was supported in part by NSF DBI-0317510.

References

Timothy Chklovski and Patrick Pantel. 2004. Verbo-
cean: Mining the web for fine-grained semantic verb
relations. InProceedings of EMNLP, Barcelona.

Kenneth W. Church and Patrick Hanks. 1990. Word
association norms, mutual information, and lexicogra-

9http://hcc.cc.gatech.edu/

phy. American Journal of Computational Linguistics,
16(1):22–29.

Edward Loper and Steven Bird. 2002. Nltk: The natural
language toolkit. InProceedings of the ACL Work-
shop on Effective Tools and Methodologies for Teach-
ing Natural Language Processing and Computational
Linguistics, Philadelphia.

David Palmer and Marti A. Hearst. 1997. Adaptive mul-
tilingual sentence boundary disambiguation.Compu-
tational Lingiustics, 23(2).

Ariel Schwartz and Marti Hearst. 2003. A simple
algorithm for identifying abbreviation definitions in
biomedical text. InProceedings of the Pacific Sym-
posium on Biocomputing (PSB 2003), Kauai, Hawaii.

Emilia Stoica and Marti Hearst. 2004. Nearly-automated
metadata hierarchy creation. InProceedings of HLT-
NAACL Companion Volume, Boston.

Ian H. Witten and Eibe Frank. 2000.Data Mining:
Practical machine learning tools with Java implemen-
tations. Morgan Kaufmann, San Francisco.

8



Proceedings of the Second ACL Workshop on Effective Tools and Methodologies for Teaching NLP and CL, pages 9–14,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Teaching Dialogue to Interdisciplinary Teams through Toolkits

Justine Cassell
Technology and Social Behavior

Northwestern University
justine@northwestern.edu

Matthew Stone
Computer Science and Cognitive Science

Rutgers University
matthew.stone@rutgers.edu

Abstract

We present some lessons we have learned
from using software infrastructure to
support coursework in natural language
dialogue and embodied conversational
agents. We have a new appreciation
for the differences between coursework
and research infrastructure—supporting
teaching may be harder, because students
require a broader spectrum of implemen-
tation, a faster learning curve and the abil-
ity to explore mistaken ideas as well as
promising ones. We outline the collabo-
rative discussion and effort we think is re-
quired to create better teaching infrastruc-
ture in the future.

1 Introduction

Hands-on interaction with dialogue systems is a nec-
essary component of a course on computational lin-
guistics and natural language technology. And yet, it
is clearly impracticable to have students in a quarter-
long or semester-long course build a dialogue sys-
tem from scratch. For this reason, instructors of
these courses have experimented with various op-
tions to allow students to view the code of a work-
ing dialogue system, tweak code, or build their own
application using a dialogue system toolkit. Some
popular options include the NLTK (Loper and Bird,
2002), CSLU (Cole, 1999), Trindi (Larsson and
Traum, 2000) and Regulus (Rayner et al., 2003)
toolkits. However, each of these options has turned

out to have disadvantages. Some of the toolkits re-
quire too much knowledge of linguistics for the av-
erage computer science student, and vice-versa, oth-
ers require too much programming for the average
linguist. What is needed is an extensible dialogue
toolkit that allows easy application building for be-
ginning students, and more sophisticated access to,
and tweakability of, the models of discourse for ad-
vanced students.

In addition, as computational linguists become in-
creasingly interested in the role of non-verbal be-
havior in discourse and dialogue, more of us would
like to give our students exposure to models of the
interaction between language and nonverbal behav-
iors such as eye gaze, head nods and hand gestures.
However, the available dialogue system toolkits ei-
ther have no graphical body or if they do have (part
of) a body—as in the case of the CSLU toolkit—the
toolkit does not allow the implementation of alterna-
tive models of body–language interaction.

We feel, therefore, that there is a need for a
toolkit that allows the beginning graduate student—
who may have some computer science or some lin-
guistics background, but not both—to implement a
working embodied dialogue system, as a way to ex-
periment with models of discourse, dialogue, collab-
orative conversation and the interaction between ver-
bal and nonverbal behavior in conversation. We be-
lieve the community as a whole must be engaged in
the design, implementation and fielding of this kind
of educational software. In this paper, we survey
the experience that has led us to these conclusions
and frame the broader discussion we hope the TNLP
workshop will help to further.

9



2 Our Courses

Our perspective in this paper draws on more than
fifteen course offerings at the graduate level in dis-
course and dialogue over the years. Justine Cassell’s
courseTheories and Technologies of Human Com-
municationis documented on the web here:

http://www.soc.northwestern.edu/justine/discourse

Matthew Stone’s coursesNatural Language Pro-
cessingand Meaning Machines1 are documented
here:

http://www.cs.rutgers.edu/˜mdstone/class/533-spring-03/

http://www.cs.rutgers.edu/˜mdstone/class/672

These courses are similar in perspective. All ad-
dress an extremely diverse and interdisciplinary au-
dience of students from computer science, linguis-
tics, cognitive science, information science, commu-
nication, and education. The typical student is a first
or second-year PhD student with a serious interest in
doing a dissertation on human-computer communi-
cation or in enriching their dissertation research with
results from the theory or practice of discourse and
dialogue. All are project courses, but no program-
ming is required; projects may involve evaluation of
existing implementations or the prospective design
of new implementations based on ongoing empir-
ical research. Nevertheless, the courses retain the
dual goals that students should not only understand
discourse and the theory of pragmatics, but should
also understand how the theory is implemented, ei-
ther well enough to talk intelligently about the im-
plementation or, if they are computer scientists, to
actually carry it out.

As befits our dual goals, our courses all involve
a mix of instruction in human-human dialogue and
human-computer dialogue. For example, Cassell be-
gins her course with a homework where students
collect, transcribe and analyze their own recordings
of face-to-face conversation. Students are asked to
discuss what constitutes a sufficient record of dis-
course, and to speculate on what the most challeng-
ing processing issues would be to allow a computer
to replace one of the participants. Computer sci-
entists definitely have difficulty with this aspect of

1The catchy title is the inspiration of Deb Roy at MIT.

the course—only fair, since they are at the advan-
tage when it comes to implementation. But com-
puter scientists see the value in the exercise: even
if they do not believe that interfaces should be de-
signed to act like people, they still recognize that
well-designed interactive systems must be ready to
handle the kinds of behaviors people actually carry
out. And hands-on experience convinces them that
behavior in human conversation is both rich and sur-
prising. The computer scientists agree—after turn-
ing in impoverished and uninformed “analyses” of
their discourse for a brutal critique—that they will
never look at conversation the same way again.

Our experience suggests that we should be try-
ing to give students outside computer science the
same kind of eye-opening hands-on experience with
technology. For example, we have found that lin-
guists are just as challenged and excited by the dis-
cipline of technology as computer scientists are by
the discipline of empirical observations. Linguists
in our classes typically report that successful en-
gagement with technology “exposes a lot of de-
tails that were missing from my theoretical under-
standing that I never would have considered with-
out working through the code”. Nothing is better at
bringing out the assumptions you bring to an anal-
ysis of human-human conversation than the thought
experiment of replacing one of the participants by
something that has to struggle consciously to un-
derstand it—a space alien, perhaps, or, more real-
istically, an AI system. We are frustrated that no
succinct assignment, comparable to our transcrip-
tion homework, yet exists that can reliably deliver
this insight to students outside computer science.

3 Framing the Problem

Our courses are not typical NLP classes. Our treat-
ment of parsing is marginal, and for the most part
we ignore the mainstays of statistical language pro-
cessing courses: the low-level technology such as
finite-state methods; the specific language process-
ing challenges for machine learning methods; and
“applied” subproblems like named entity extraction,
or phrase chunking. Our focus is almost exclu-
sively on high-level and interactional issues, such
as the structure of discourse and dialogue, informa-
tion structure, intentions, turn-taking, collaboration,

10



reference and clarification. Context is central, and
under that umbrella we explicitly discuss both the
perceptual environment in which conversation takes
place and the non-verbal actions that contribute to
the management of conversation and participants’
real-world collaborations.

Our unusual focus means that we can not readily
take advantage of software toolkits such as NLTK
(Loper and Bird, 2002) or Regulus (Rayner et al.,
2003). These toolkits are great at helping students
implement and visualize the fundamentals of natu-
ral language processing—lexicon, morphology, syn-
tax. They make it easy to experiment with machine
learning or with specific models for a small scale,
short course assignment in a specific NLP module.
You can think of this as a “horizontal” approach, al-
lowing students to systematically develop a compre-
hensive approach to a single processing task. But
what we need is a “vertical” approach, which allows
students to follow a specific choice about the rep-
resentation of communicative behaviors or commu-
nicative functions all the way through an end-to-end
dialogue system. We have not succeeded in concep-
tualizing how a carefully modularized toolkit would
support this kind of student experience.

Still, we have not met with success with alterna-
tive approaches, either. As we describe in Section
3.1, our own research systems may allow the kinds
of experiments we want students to carry out. But
they demand too much expertise of students for a
one-semester course. In fact, as we describe in Sec-
tion 3.2, even broad research systems that come with
specific support for students to carry out a range of
tasks may not enable the specific directions that re-
ally turn students on to the challenge of discourse
and dialogue. However, our experience with im-
plementing dedicated modules for teaching, as de-
scribed in Section 3.3, is that the lack of synergy
with ongoing research can result in impoverished
tools that fail to engage students. We don’t have the
tools we want—but our experience argues that we
think the tools we really want will be developed only
through a collaborative effort shared across multiple
sites and broadly engaged with a range of research
issues as well as with pedagogical challenges.

3.1 Difficulties with REA and BEAT

Cassell has experimented with the use of her re-
search platforms REA (Cassell et al., 1999) and
BEAT (Cassell et al., 2001) for course projects in
discourse and dialogue. REA is an embodied con-
versational agent that interacts with a user in a real
estate agent domain. It includes an end-to-end dia-
logue architecture; it supports speech input, stereo
vision input, conversational process including pres-
ence and turn-taking, content planning, the context-
sensitive generation of communicative action and
the animated realization of multimodal communica-
tive actions. BEAT (the behavior expression anima-
tion toolkit), on the other hand, is a module that fits
into animation systems. It marks up text to describe
appropriate synchronized nonverbal behaviors and
speech to realize on a humanoid talking character.

In teaching dialogue at MIT, Cassell invited stu-
dents to adapt her existing REA and BEAT system
to explore aspects of the theory and practice of dis-
course and dialogue. This led to a range of interest-
ing projects. For example, students were able to ex-
plore hypothetical differences among characters—
from virtual “Italians” with profuse gesture, to vir-
tual children whose marked use of a large gesture
space contrasted with typical adults, to characters
who showed new and interesting behavior such as
the repeated foot-tap of frustrated condescension.
However, we think we can serve students much bet-
ter. Many of these projects were accomplished only
with substantial help from the instructor and TAs,
who were already extremely familiar with the over-
all system. Students did not have time to learn how
to make these changes entirely on their own.

The foot-tapping agent is a good example of this.
To add foot-tapping is a paradigmatic “vertical”
modification. It requires adding suitable context to
the discourse state to represent uncooperative user
behavior; it requires extending the process for gener-
ating communicative actions to detect this new state
and schedule an appropriate behavioral response;
and then it requires extending the animation plat-
form to be able to show this behavior. BEAT makes
the second step easy—as it should be—even for lin-
guistics students. To handle the first and third steps,
you would hope that an interdisciplinary team con-
taining a communication student and a computer sci-

11



ence student would be able to bring the expertise to
design the new dialogue state and the new animated
behavior. But that wasn’t exactly true. In order to
add the behavior to REA, students needed not only
background in the relevant technology—like what a
computer scientist would learn in a general human
animation class. To add the behavior, students also
needed to know how this technology was realized
in our particular research platform. This proved too
much for one semester.

We think this is a general problem with new re-
search systems. For example, we think many of the
same issues would arise in asking students to build a
dialogue system on top of the Trindi toolkit in a one
semester course.

3.2 Difficulties with the CSLU toolkit

In Fall 2004, Cassell experimented with using the
CSLU dialogue toolkit (Cole, 1999) as a resource
for class projects. This is a broad toolkit to support
research and teaching in spoken language technol-
ogy. A particular strength of the toolkit is its sup-
port for the design of finite-state dialogue models.
Even students outside computer science appreciated
the toolkit’s drag-and-drop interface for scripting di-
alogue flow. For example, with this interface, you
can add a repair sequence to a dialogue flow in one
easy step. However, the indirection the toolkit places
between students and the actual constructs of dia-
logue theory can by quite challenging. For example,
the finite-state architecture of the CSLU toolkit al-
lows students to look at floor management and at di-
alogue initiative only indirectly: specific transition
networks encode specific strategies for taking turns
or managing problem solving by scheduling specific
communicative functions and behaviors.

The way we see it, the CSLU toolkit is more heav-
ily geared towards the rapid construction of particu-
lar kinds of research prototypes than we would like
in a teaching toolkit. Its dialogue models provide an
instructive perspective on actions in discourse, one
that nicely complements the perspective of DAMSL
(Core and Allen, 1997) in seeing utterances as the
combined realization of a specific, constrained range
of communicative functions. But we would like to
be able to explore a range of other metaphors for
organizing the information in dialogue. We would
like students to be able to realize models of face-to-

face dialogue (Cassell et al., 2000), the information-
state approach to domain-independent practical di-
alogue (Larsson and Traum, 2000), or approaches
that emphasize the grounding of conversation in the
specifics of a particular ongoing collaboration (Rich
et al., 2001). The integration of a talking head into
the CSLU toolkit epitomizes these limitations with
the platform. The toolkit allows for the automatic
realization of text with an animated spoken deliv-
ery, but does not expose the model to programmers,
making it impossible for programmers adapt or con-
trol the behavior of the face and head.

We think this is a general problem with platforms
that are primarily designed to streamline a particular
research methodology. For example, we think many
of the same issues would arise in asking students to
build a multimodal behavior realization system on
top of a general-purpose speech synthesis platform
like Festival (Black and Taylor, 1997).

3.3 Difficulties with TAGLET

At this point, the right solution might seem to be
to devise resources explicitly for teaching. In fact,
Stone advocated more or less this at the 2002 TNLP
workshop (2002). There, Stone motivated the poten-
tial role for a simple lexicalized formalism for nat-
ural language syntax, semantics and pragmatics in
a broad NLP class whose emphasis is to introduce
topics of current research.

The system, TAGLET, is a context-free tree-
rewriting formalism, defined by the usual comple-
mentation operation and the simplest imaginable
modification operation. This formalism may in fact
be a good way to present computational linguistics
to technically-minded cognitive science students—
those rare students who come with interest and ex-
perience in the science of language as well as a solid
ability to program. By implementing a strong com-
petence TAGLET parser and generator students si-
multaneously get experience with central computer
science ideas—data structures, unification, recur-
sion and abstraction—and develop an effective start-
ing point for their own subsequent projects.

However, in retrospect, TAGLET does not serve
to introduce students outside computer science to the
distinctive insights that come from a computational
approach to language use. For one thing, to reach
a broad audience, it is a mistake to focus on repre-

12



sentations that programmers can easily build at the
expense of representations that other students can
easily understand. These other students need visu-
alization; they need to be able to see what the sys-
tem computes and how it computes it. Moreover,
these other students can tolerate substantial com-
plexity in the underlying algorithms if the system
can be understood clearly and mechanistically in ab-
stract terms. You wouldn’t ask a computer scientist
to implement a parser for full tree-adjoining gram-
mar but that doesn’t change the fact that it’s still a
perfectly natural, and comprehensible, algorithmic
abstraction for characterizing linguistic structure.

Another set of representations and algorithms
might avoid some of these problems. But a new
approach could not avoid another problem that we
think applies generally to platforms that are de-
signed exclusively for teaching: there is no synergy
with ongoing research efforts. Rich resources are so
crucial to any computational treatment of dialogue:
annotated corpora, wide-coverage grammars, plan-
recognizers, context models, and the rest. We can’t
afford to start from scratch. We have found this con-
cretely in our work. What got linguists involved in
the computational exploration of dialogue semantics
at Rutgers was not the special teaching resources
Stone created. It was hooking students up with the
systems that were being actively developed in ongo-
ing research (DeVault et al., 2005). These research
efforts made it practical to provide students with the
visualizations, task and context models, and interac-
tive architecture they needed to explore substantive
issues in dialogue semantics. Whatever we do will
have to closely connect teaching and our ongoing re-
search.

4 Looking ahead

Our experience teaching dialogue to interdisci-
plinary teams through toolkits has been humbling.
We have a new appreciation for the differences
between coursework and research infrastructure—
supporting teaching may be harder, because stu-
dents require a broader spectrum of implementa-
tion, a faster learning curve and the ability to ex-
plore mistaken ideas as well as promising ones.
But we increasingly think the community can and
should come together to foster more broadly useful

resources for teaching.

We have reframed our ongoing activities so that
we can find new synergies between research and
teaching. For example, we are currently working
to expand the repertoire of animated action in our
freely-available talking head RUTH (DeCarlo et al.,
2004). In our next release, we expect to make dif-
ferent kinds of resources available than in the initial
release. Originally, we distributed only the model
we created. The next version will again provide that
model, along with a broader and more useful inven-
tory of facial expressions for it, but we also want
the new RUTH to be more easily extensible than the
last one. To do that, we have ported our model to a
general-purpose animation environment (Alias Re-
search’s Maya) and created software tools that can
output edited models into the collection of files that
RUTH needs to run. This helps achieve our ob-
jective of quickly-learned extensibility. We expect
that students with a background in human anima-
tion will bring experience with Maya to a dialogue
course. (Anyway, learning Maya is much more gen-
eral than learning RUTH!) Computer science stu-
dents will thus find it easier to assist a team of com-
munication and linguistics students in adding new
expressions to an animated character.

Creating such resources to span a general system
for face-to-face dialogue would be an enormous un-
dertaking. It could happen only with broad input
from those who teach discourse and dialogue, as we
do, through a mix of theory and practice. We hope
the TNLP workshop will spark this kind of process.
We close with the questions we’d like to consider
further. What kinds of classes on dialogue and dis-
course pragmatics are currently being offered? What
kinds of audiences do others reach, what goals do
they bring, and what do they teach them? What are
the scientific and technological principles that oth-
ers would use toolkits to teach and illustrate? In
short, what would your dialogue toolkit make possi-
ble? And how can we work together to realize both
our visions?

5 Acknowledgments

Thanks to Doug DeCarlo, NSF HLC 0308121.

13



References

Alan Black and Paul Taylor. 1997. Festi-
val speech synthesis system. Technical Report
HCRC/TR-83, Human Communication Research Cen-
ter. http://www.cstr.ed.ac.uk/projects/festival/.

J. Cassell, T. Bickmore, M. Billinghurst, L. Campbell,
K. Chang, H. Vilhj́almsson, and H. Yan. 1999. Em-
bodiment in conversational characters: Rea. InCHI
99, pages 520–527.

Justine Cassell, Tim Bickmore, Lee Campbell, Hannes
Vilhjalmsson, and Hao Yan. 2000. Human conver-
sation as a system framework. In J. Cassell, J. Sul-
livan, S. Prevost, and E. Churchill, editors,Embod-
ied Conversational Agents, pages 29–63. MIT Press,
Cambridge, MA.

Justine Cassell, Hannes Vilhjálmsson, and Tim Bick-
more. 2001. BEAT: the behavioral expression ani-
mation toolkit. InSIGGRAPH, pages 477–486.

Ron Cole. 1999. Tools for research and ed-
ucation in speech science. InProceedings of
the International Conference of Phonetic Sciences.
http://cslu.cse.ogi.edu/toolkit/.

Mark G. Core and James F. Allen. 1997. Cod-
ing dialogs with the DAMSL annotation scheme.
In Working Notes of AAAI Fall Symposium on
Communicative Action in Humans and Machines.
http://www.cs.rochester.edu/research/cisd/resources/damsl/.

Douglas DeCarlo, Corey Revilla, Matthew Stone, and
Jennifer Venditti. 2004. Specifying and animating fa-
cial signals for discourse in embodied conversational
agents. Journal of Visualization and Computer Ani-
mation. http://www.cs.rutgers.edu/˜village/ruth/.

David DeVault, Anubha Kothari, Natalia Kariaeva,
Iris Oved, and Matthew Stone. 2005. An
information-state approach to collaborative ref-
erence. In ACL Proceedings Companion Vol-
ume (interactive poster and demonstration track).
http://www.cs.rutgers.edu/˜mdstone/pointers/collabref.html.

Staffan Larsson and David Traum. 2000. In-
formation state and dialogue management in
the TRINDI dialogue move engine toolkit.
Natural Language Engineering, 6:323–340.
http://www.ling.gu.se/projekt/trindi/.

Edward Loper and Steven Bird. 2002. NLTK: the natu-
ral language toolkit. InProceedings of the ACL Work-
shop on Effective Tools and Methodologies for Teach-
ing Natural Language Processing and Computational
Linguistics. http://nltk.sourceforge.net.

Manny Rayner, Beth Ann Hockey, and John Dowd-
ing. 2003. An open source environment for com-
piling typed unification grammars into speech recog-
nisers. InProceedings of the 10th Conference of the
European Chapter of the Association for Computa-
tion Linguistics (interactive poster and demo track).
http://sourceforge.net/projects/regulus.

C. Rich, C. L. Sidner, and N. Lesh. 2001. COL-
LAGEN: applying collaborative discourse theory to
human-computer interaction.AI Magazine, 22:15–25.

Matthew Stone. 2002. Lexicalized grammar 101.
In ACL Workshop on Effective Tools and Method-
ologies for Teaching NLP and CL, pages 76–83.
http://www.cs.rutgers.edu/˜mdstone/class/taglet/.

14



Proceedings of the Second ACL Workshop on Effective Tools and Methodologies for Teaching NLP and CL, pages 15–22,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

“Language and Computers”
Creating an Introduction for a General Undergraduate Audience

Chris Brew
Department of Linguistics
The Ohio State University

cbrew@ling.osu.edu

Markus Dickinson
Department of Linguistics
The Ohio State University
dickinso@ling.osu.edu

W. Detmar Meurers
Department of Linguistics
The Ohio State University

dm@ling.osu.edu

Abstract

This paper describes the creation
of Language and Computers, a new
course at the Ohio State University de-
signed to be a broad overview of topics
in computational linguistics, focusing
on applications which have the most
immediate relevance to students. This
course satisfies the mathematical and
logical analysis requirement at Ohio
State by using natural language sys-
tems to motivate students to exercise
and develop a range of basic skills in
formal and computational analysis. In
this paper we discuss the design of the
course, focusing on the success we have
had in offering it, as well as some of the
difficulties we have faced.

1 Introduction

In the autumn of 2003, we created Language
and Computers (Linguistics 384), a new course
at the Ohio State University that is designed to
be a broad overview of topics in computational
linguistics, focusing on applications which have
the most immediate relevance to students. Lan-
guage and Computers is a general enrollment
course designed to meet the Mathematical and
Logical Analysis requirement that is mandated
for all undergraduates at the Ohio State Uni-
versity (OSU), one of the largest universities in
the US. We are committed to serving the av-
erage undergraduate student at OSU, including
those for whom this is the first and last Lin-
guistics course. Some of the students take the

course because it is an alternative to calculus,
others because of curiosity about the subject
matter. The course was first taught in Win-
ter 2004, drawing a wide range of majors, and
has since expanded to three sections of up to 35
students each. In this paper we will discuss the
design of the course, focusing on the success we
have had in offering it, as well as some of the
difficulties we have faced.

2 General Context

The Linguistics Department at OSU is the home
of a leading graduate program in which 17 grad-
uate students are currently specializing in com-
putational linguistics. From the perspective of
the graduate program, the goal of the new course
development was to create more appropriate
teaching opportunities for the graduate students
specializing in computational linguistics. Much
of the undergraduate teaching load in Linguis-
tics at OSU is borne by graduate teaching assis-
tants (GTAs) who receive stipends directly from
the department. After a training course in the
first year, most such GTAs act as instructors on
the Department’s “Introduction to Language,”
which is taught in multiple small sections. In-
structors are given considerable responsibility
for all aspects of course design, preparation, de-
livery, and grading. This works very well and
produces many superb instructors, but by 2003
it was apparent that increasing competition was
reducing the pool of undergraduates who want
to take this general overview course.

The Ohio State University has a distribution
requirement, the General Education Curricu-

15



lum (GEC), that is designed to ensure adequate
breadth in undergraduate education. The twin
demands of the student’s major and the distri-
bution requirement are sufficient to take up the
vast majority of the credit hours required for
graduation. In practice this means that students
tend to make course selections motivated pri-
marily by the goal of completing the necessary
requirements as quickly and efficiently as they
can, possibly at the expense of curiosity-driven
exploration. Linguistics, as an interdisciplnary
subject, can create courses that satisfy both cu-
riosity and GEC requirements.

To fill this interdisciplinary niche, the OSU
Department of Linguistics has created a range
of new courses such as Language and Gender,
Language and the Mind, Language and the Law,
and the Language and Computers course dis-
cussed in this paper. In addition to filling a dis-
tribution requirement niche for undergraduates,
the courses also allow the linguistics GTAs to
teach courses on topics that are related to their
area of specialization, which can be beneficial
both to the instructors and to those instructed.
Prior to creation of the new Language and Com-
puters course, there were virtually no opportu-
nities for student members of the computational
linguistics group to teach material close to their
focus.

3 Course overview

The mission statement for our course reads:

In the past decade, the widening use
of computers has had a profound influ-
ence on the way ordinary people com-
municate, search and store informa-
tion. For the overwhelming majority
of people and situations, the natural
vehicle for such information is natu-
ral language. Text and to a lesser ex-
tent speech are crucial encoding for-
mats for the information revolution.
This course will give students insight
into the fundamentals of how comput-
ers are used to represent, process and
organize textual and spoken informa-
tion, as well as providing tips on how

to effectively integrate this knowledge
into their working practice. The course
will cover the theory and practice of
human language technology.

The course was designed to meet the Math-
ematical and Logical Analysis (MLA) require-
ment for students at the Ohio State University,
which is characterized in the following way:

A student in a B.A. program must take
one course that focuses on argument in
a context that emphasizes natural lan-
guage, mathematics, computer science
or quantitative applications not pri-
marily involving data. Courses which
emphasize the nature of correct argu-
mentation either in natural languages
or in symbolic form would satisfy this
requirement, as would many mathe-
matics or computer science courses.
. . . The courses themselves should em-
phasize the logical processes involved
in mathematics, inductive or deductive
reasoning, or computing and the the-
ory of algorithms.

Linguistics 384 responds to this specification
by using natural language systems to motivate
students to exercise and develop a range of ba-
sic skills in formal and computational analysis.
The course combines lectures with group work
and in-class discussions, resulting in a seminar-
like environment. We enrol no more than 35
students per section, often significantly fewer at
unpopular times of day.

The course philosophy is to ground abstract
concepts in real world examples. We intro-
duce strings, regular expressions, finite-state
and context-free grammars, as well as algo-
rithms defined over these structures and tech-
niques for probing and evaluating systems that
rely on these algorithms. This meets the MLA
objective to emphasize the nature of correct ar-
gumentation in symbolic form as well as the logi-
cal processes involved in computing and the the-
ory of algorithms. These abstract ideas are em-
bedded in practical applications: web searching,

16



spelling correction, machine translation and di-
alogue systems. By covering the technologies
behind these applications, the course addresses
the requirement to sharpen a student’s ability
to reason critically, construct valid arguments,
think creatively, analyze objectively, assess ev-
idence, perceive tacit assumptions, and weigh
evidence.

Students have impressions about the quality
of such systems, but the course goes beyond
merely subjective evaluation of systems and em-
phasizes the use of formal reasoning to draw and
argue for valid conclusions about the design, ca-
pabilities and behavior of natural language sys-
tems.

In ten weeks, we cover eight topics, using a
data projector in class, with copies of the slides
being handed out to the student before each
class. There is no textbook, and there are rel-
atively few assigned readings, as we have been
unable to locate materials appropriate for an av-
erage student without required background who
may never take another (computational) linguis-
tics class. The topics covered are the following,
in this order:

• Text and speech encoding

• (Web-)Searching

• Spam filtering (and other classification
tasks, such as language identification)

• Writers’ aids (Spelling and grammar correc-
tion)

• Machine translation (2 weeks)

• Dialogue systems (2 weeks)

• Computer-aided language learning

• Social context of language technology use

In contrast to the courses of which we are
aware that offer computational linguistics to un-
dergraduates, our Language and Computers is
supposed to be accessible without prerequisites
to students from every major (a requirement for
GEC courses). For example, we cannot assume
any linguistic background or language aware-
ness. Like Lillian Lee’s Cornell course (Lee,
2002), the course cannot presume programming

ability. But the GEC regulations additionally
prohibit us from requiring anything beyond high
school level abilities in algebraic manipulation.
We initially hoped that this meant that we
would be able to rely on the kind of math knowl-
edge that we ourselves acquired in secondary
school, but soon found that this was not real-
istic. The sample questions from Lee’s course
seem to us to be designed for students who ac-
tively enjoy math. Our goal is different: we
want to exercise and extend the math skills of
the general student population, ensuring that
the course is as accessible to the well-motivated
dance major as it is to the geekier people with
whom we are somewhat more familiar. This is
hard, but worthwhile.

The primary emphasis is on discrete math-
ematics, especially with regard to strings and
grammars. In addition, the text classification
and spam-filtering component exercise the abil-
ity to reason clearly using probabilities. All of
this can be achieved for students with no colle-
giate background in mathematics.

Specifically, Linguistics 384 uses non-trivial
mathematics at a level at or just beyond algebra
1 in the following contexts:

• Reasoning about finite-state automata and
regular expressions (in the contexts of web
searching and of information management).
Students reason about relationships be-
tween specific and general search terms.

• Reasoning about more elaborate syntactic
representations (such as context-free gram-
mars) and semantic representations (such
as predicate calculus), in order to better
understand grammar checking and machine
translation errors.

• Reasoning about the interaction between
components of natural language systems (in
the contexts of machine translation and of
dialog systems).

• Understanding the basics of dynamic pro-
gramming via spelling correction (edit dis-
tance) and applying algebraic thinking to
algorithm design.

17



• Simple probabilistic reasoning (in the con-
text of text classification).

There is also an Honors version of the course,
which is draws on a somewhat different pool
of students. In 2004 the participants in Hon-
ors 384 were equally split between Linguistics
majors looking for a challenging course, people
with a computer background and some interest
in language and people for whom the course was
a good way of meeting the math requirement at
Honors level. Most were seniors, so there was lit-
tle feed-through to further Linguistics courses.

The Honors course, which used to be
called Language Processing Technology, pre-
dates Language and Computers, and includes
more hands-on material. Originally the first half
of this course was an introduction to phonetics
and speech acoustics through Praat, while the
second was a Prolog-based introduction to sym-
bolic NLP. We took the opportunity to redesign
this course when we created the non-honors ver-
sion. In the current regime, the hands-on aspect
is less important than the opportunities offered
by the extra motivation and ability of these stu-
dents. Two reading assignments in the honors
version were Malcolm Gladwell’s book review on
the Social Life of Paper (Gladwell, 2001) and
Turing’s famous paper on the Imitation Game
(Turing, 1950). We wondered whether the ec-
centricity and dated language of the latter would
be a problem, but it was not.

Practical assignments in the laboratory are
possible in the honors course, because the class
size can be limited. One such assignment was
a straightforward run-through of the clock tu-
torial from the Festival speech synthesis system
and another a little machine translation system
between digits and number expressions. Having
established that they can make a system that
turns 24 into ’twenty four’, and so on, the stu-
dents are challenged to adapt it to speak “Fairy
Tale English”: that is, to make it translate 24
into ’four and twenty’, and vice-versa.

1

1For a complete overview of the course materials,
there are several course webpages to check out. The web-
page for the first section of the course (Winter 2004)

4 General themes of the course

Across the eight different topics that are taught,
we try to maintain a cohesive feel by emphasiz-
ing and repeating different themes in computa-
tional linguistics. Each theme allows the stu-
dents to see that certain abstract ideas are quite
powerful and can inform different concrete tasks.
The themes which have been emphasized to this
point are as follows:

• There are both statistical and rule-based
methods for approaching a problem in nat-
ural language processing. We show this
most clearly in the spam filtering unit and
the machine translation unit with different
types of systems.

• There is a tension between developing tech-
nology in linguistically-informed ways and
developing technology so that a product is
effective. In the context of dialogue sys-
tems, for example, the lack of any linguistic
knowledge in ELIZA makes it fail quickly,
but an ELIZA with a larger database and
still no true linguistic knowledge could have
more success.

• Certain general techniques, such as n-gram
analysis, can be applied to different compu-
tational linguistic applications.

• Effective technology does not have to solve
every problem; focusing on a limited do-
main is typically more practical for the ap-
plications we look at. In machine transla-
tion, this means that a machine translation
system translating the weather (e.g., the
METEO system) will perform better than
a general-purpose system.

• Intelligent things are being done to improve
natural language technology, but the task is
a very difficult one, due to the complexities
of language. Part of each unit is devoted to

is at http://ling.osu.edu/~dickinso/384/wi04/. A
more recent section (Winter 2005) can be found at http:
//ling.osu.edu/~dm/05/winter/384/. For the honors
course, the most recent version is located at http:
//ling.osu.edu/~cbrew/2005/spring/H384/. A list of
weblinks to demos, software, and on-line tutorials cur-
rently used in connection with the course can be found
at http://ling.osu.edu/~xflu/384/384links.html

18



showing that the problem the technology is
addressing is a complex one.

5 Aspects of the course that work

The course has been a positive experience, and
students overall seemed pleased with it. This
is based on the official student evaluation of
instruction, anonymous, class specific question-
naires we handed out at the end of the class,
personal feedback, and new students enrolling
based on recommendations from students who
took the course. We attribute the positive re-
sponse to several different aspects of the course.

5.1 Topics they could relate to

Students seem to most enjoy those topics which
were most relevant to their everyday life. On the
technological end, this means that the units on
spam filtering, web searching, and spell check-
ing are generally the most well-received. The
more practical the focus, the more they seem
to appreciate it; for web searching, for instance,
they tend to express interest in becoming better
users of the web. On the linguistic end, discus-
sions of how dialogue works and how language
learning takes place, as part of the units on di-
alogue systems and CALL, respectively, tend to
resonate with many students. These topics are
only sketched out insofar as they were relevant
to the NLP technology in question, but this has
the advantage of not being too repetitive for the
few students who have had an introductory lin-
guistics class before.

5.2 Math they can understand

Students also seem to take pride in being able
to solve what originally appear to be difficult
mathematical concepts. To many, the concept
and look of a binary number is alien, but they
consistently find this to be fairly simple. The
basics of finite-state automata and boolean ex-
pressions (even quite complicated expressions)
provide opportunities for students to understand
that they are capable of learning concepts of log-
ical thinking. Students with more interest and
more of an enjoyment for math are encouraged
to go beyond the material and, e.g., figure out

the nature of more complicated finite-state au-
tomata. In this way, more advanced students are
able to stay interested without losing the other
students.

More difficult topics, such as calculating the
minimum edit distance between a word and its
misspelling via dynamic programming, can be
frustrating, but they just as often are a source
of a greater feeling of success for students. After
some in-class exercises, when it becomes appar-
ent that the material is learnable and that there
is a clear, well-motivated point to it, students
generally seem pleased in conquering somewhat
more difficult mathematical concepts.

5.3 Interactive demos

In-class demos of particular software are also
usually well-received, in particular when they
present applications that students themselves
can use. These demos often focus on the end
result of a product, such as simply listening to
the output of several text-to-speech synthesiz-
ers, but they can also be used for understanding
how the applications works. For example, some
sections attempt to figure out as a class where
a spelling checker fails and why. Likewise, an
in-class discussion with ELIZA has been fairly
popular, and students are able to deduce many
of the internal properties of ELIZA.

5.4 Fun materials

In many ways, we have tried to keep the tone
of the course fairly light. Even though we
are teaching mathematical and logical concepts,
these concepts are still connected to the real
world, and as such, there is much opportunity
to present the material in a fun and engaging
manner.

Group work One such way to make the learn-
ing process more enjoyable was to use group
work. In the past few quarters, we have been
refining these exercises. Because of the nature
of the topics, some topics are easier to derive
group exercises for than others. The more math-
ematical topics, such as regular expressions, suit
themselves well for straightforward group work
on problem sets in class; others can be more

19



creative. The group exercises usually serve as a
way for students to think about issues they al-
ready know something about, often as a way to
introduce the topic.

For example, on the first day, they are given
a sheet and asked to evaluate sets of opposing
claims, giving arguments for both sides, such as
the following:

1. A person will have better-quality papers if
they use a spell checker.

A person will have worse-quality papers if
they use a spell checker.

2. An English-German dictionary is the main
component needed to automatically trans-
late from English to German.

An English-German dictionary is not the
main component needed to automatically
translate from English to German.

3. Computers can make you sound like a na-
tive speaker of another language.

Computers cannot make you sound like a
native speaker of another language.

To take another example, to get students
thinking about the social aspects of the use of
language technology, they are asked in groups to
consider some of the implications of a particu-
lar technology. The following is an excerpt from
one such handout.

You work for a large software company
and are in charge of a team of com-
putational linguists. One day, you are
told: “We’d like you and your team to
develop a spell checker for us. Do you
have any questions?” What questions
do you have for your boss?

...

Somehow or another, the details of
your spell checker have been leaked to
the public. This wouldn’t be too bad,
except that it’s really ticked some lin-
guists off. “It’s just a big dictionary!”
they yell. “It’s like you didn’t know
anything about morphology or syntax

or any of that good stuff.” There’s
a rumor that they might sue you for
defamation of linguistics. What do you
do?

Although the premise is somewhat ridiculous,
with such group work, students are able to con-
sider important topics in a relaxed setting. In
this case, they have to first consider the speci-
fications needed for a technology to work (who
will be using it, what the expectations are, etc.)
and, secondly, what the relationship is between
the study of language and designing a product
which is functional.

Fun homework questions In the home-
works, students are often instructed to use a
technology on the internet, or in some way to
take the material presented in class a step far-
ther. Additionally, most homework assignments
had at least one lighter question which allowed
students to be more creative in their responses
while at the same time reinforcing the material.

For example, instructors have asked students
to send them spam, and the most spam-worthy
message won a prize. Other homework ques-
tions have included sketching out what it would
take to convert an ELIZA system into a hostage
negotiator—and what the potential dangers are
in such a use. Although some students put down
minimal answers, many students offer pages of
detailed suggestions to answer such a question.
This gives students a taste of the creativity in-
volved in designing new technology without hav-
ing to deal with the technicalities.

6 Challenges for the course

Despite the positive response, there are several
aspects to the course which have needed im-
provement and continue to do so. Teaching
to a diverse audience of interests and capabili-
ties presents obstacles which are not easily over-
come. To that end, here we will review aspects
of the course which students did not generally
enjoy and which we are in the process of adapt-
ing to better suit our purposes and our students’
needs.

20



6.1 Topics they do not relate to

For such a range of students, there is the diffi-
culty of presenting abstract concepts. Although
we try to relate everything to something which
students actually use or could readily use, we
sometimes include topics from computational
linguistics that make one better able to think
logically in general and which we feel will be
of future use for our students. One such topic
is that of regular expressions, in the context of
searching for text in a document or corpus. As
most students only experience searching as part
of what they do on the web, and no web search
engine (to the best of our knowledge) currently
supports regular expression searching, students
often wonder what the point of the topic is. In
making most topics applicable to everyday life,
we had raised expect. In this particular case,
students seemed to accept regular expressions
more once it they saw that Microsoft Word has
something roughly analogous.

Another difficulty that presented itself for a
subset of the students was that of using for-
eign language text to assist in teaching ma-
chine translation and computer-aided language
learning. Every example was provided with an
English word-by-word gloss, as well as a para-
phrase, yet the examples can still be difficult to
understand without a basic appreciation for the
relevant languages. If the students know Span-
ish, the example is in Spanish and the instruc-
tor has a decent Spanish accent, things can go
well. But students tend to blame difficulties in
the machine translation homework on not know-
ing the languages used in the examples. Under-
standing the distinction between different kinds
of machine translation systems requires some
ability to grasp how languages can differ, so we
certainly must (unless we use proxies like fairy-
tale English) present some foreign material, but
we are in dire need of means to do this as gently
as possible

6.2 Math they do not understand

While some of the more difficult mathemati-
cal concepts were eventually understood, oth-
ers continued to frustrate students. The al-

ready mentioned regular expressions, for exam-
ple, caused trouble. Firstly, even if you do
understand them, they are not necessarily life-
enhancing, unless you are geeky enough to write
your papers in a text editor that properly sup-
ports them. Secondly, and more importantly,
many students saw them as unnecessarily ab-
stract and complex. For instance, some stu-
dents were simply unable to understand the no-
tion that the Kleene star is to be interpreted as
an operator rather than as a special character
occurring in place of any string.

Even though we thought we had calibrated
our expectations to respect the fact that our
students knew no math beyond high school, the
amount that they had retained from high school
was often less than we expected. For exam-
ple, many students behaved exactly as if they
had never seen Venn diagrams before, so time
had to be taken away from the main material
in order to explain them. Likewise, figuring
out how to calculate probabilities for a bag of
words model of statistical machine translation
required a step-by-step explanation of where
each number comes from. A midterm ques-
tion on Bayesian spam filtering needed the same
treatment, revealing that even good students
may have significant difficulties in deploying the
high school math knowledge they almost cer-
tainly possess.

6.3 Technology which did not work

Most assignments required students to use the
internet or the phone in some capacity, usu-
ally to try out a demo. With such tasks, there
is always the danger that the technology will
not work. For example, during the first quar-
ter the course was taught, students were asked
to call the CMU Communicator system and in-
teract with it, to get a feel for what it is like
to interact with a computer. As it turns out,
halfway through the week the assignment was
due, the system was down, and thus some stu-
dents could not finish the exercise. Follow-
ing this episode, homework questions now come
with alternate questions. In this case, if the sys-
tem is down, the first alternate is to listen to a
pre-recorded conversation to see how the Com-

21



municator works. Since some students are un-
able to listen to sounds in the campus computer
labs, the second alternate is to read a transcript.

Likewise, students were instructed to view the
page source code for ELIZA. However, some
campus computer labs at OSU do not allow stu-
dents to view the source of a webpage. In re-
sponse to this, current versions of the assign-
ment have a separate webpage with the source
code written out as plain text, so all students
can view it.

One final note is that students have often com-
plained of weblinks failing to work, but this “fail-
ure” is most often due to students mistyping
the link provided in the homework. Providing
links directly on the course webpage or including
them in the web- or pdf-versions of the home-
work sheets is the simplest solution for this prob-
lem.

7 Summary and Outlook

We have described the course Language and
Computers (Linguistics 384), a general introduc-
tion to computational linguistics currently being
taught at OSU. While there are clear lessons
to be learned for developing similar courses at
other universities, there are also more general
points to be made. In courses which assume
some CS background, for instance, it is still
likely the case that students will want to see
some practical use of what they are doing and
learning.

There are several ways in which this course
can continue to be improved. The most pressing
priority is to develop a course packet and pos-
sibly a textbook. Right now, students rely only
on the instructor’s handouts, and we would like
to provide a more in-depth and cohesive source
of material. Along with this, we want to de-
velop a wider range of readings for students (e.g.
Dickinson, to appear) to provide students with
a wider variety of perspectives and explanations
for difficult concepts.

To address the wide range of interests and ca-
pabilities of the students taking this course as a
general education requirement, it would be good
to tailor some of the sections to audiences with

specific backgrounds—but given the lack of a
dedicated free time slot for all students of a par-
ticular major, etc., it is unclear whether this is
feasible in practice.

We are doing reasonably well in integrating
mathematical thinking into the course, but we
would like to give students more experience of
thinking about algorithms. Introducing a ba-
sic form of pseudocode might go some way to-
wards achieving this, provided we can find a mo-
tivating linguistic example that is both simple
enough to grasp and complex enough to justify
the overhead of introducing a new topic. Fur-
ther developments might assist us in developing
a course between Linguistics 384 and Linguistics
684, our graduate-level computational linguis-
tics course, as we currently have few options for
advanced undergraduates.

Acknowledgements We would like to thank
the instructors of Language and Computers for
their discussions and insights into making it a
better course: Stacey Bailey, Anna Feldman, Xi-
aofei Lu, Crystal Nakatsu, and Jihyun Park. We
are also grateful to the two ACL-TNLP review-
ers for their detailed and helpful comments.

References

Markus Dickinson, to appear. Writers’ Aids. In
Keith Brown (ed.), Encyclopedia of Language
and Linguistics. Second Edition, Elsevier, Ox-
ford.

Malcolm Gladwell, 2001. The Social Life
of Paper. New Yorker . available from
http://www.gladwell.com/archive.html.

Lillian Lee, 2002. A non-programming introduc-
tion to computer science via NLP, IR, and
AI. In ACL Workshop on Effective Tools
and Methodologies for Teaching Natural Lan-
guage Processing and Computational Linguis-
tics. pp. 32–37.

A.M. Turing, 1950. Computing Machinery and
Intelligence. Mind , 59(236):433–460.

22



Proceedings of the Second ACL Workshop on Effective Tools and Methodologies for Teaching NLP and CL, pages 23–27,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

A Core-Tools Statistical NLP Course

Dan Klein

Computer Science Division

University of California, Berkeley

Berkeley, CA 94720

klein@cs.berkeley.edu

Abstract

In the fall term of 2004, I taught a
new statistical NLP course focusing
on core tools and machine-learning al-
gorithms. The course work was or-
ganized around four substantial pro-
gramming assignments in which the
students implemented the important
parts of several core tools, including
language models (for speech rerank-
ing), a maximum entropy classifier, a
part-of-speech tagger, a PCFG parser,
and a word-alignment system. Using
provided scaffolding, students built re-
alistic tools with nearly state-of-the-
art performance in most cases. This
paper briefly outlines the coverage of
the course, the scope of the assign-
ments, and some of the lessons learned
in teaching the course in this way.

1 Introduction

In the fall term of 2004, I taught a new sta-
tistical NLP course at UC Berkeley which cov-
ered the central tools and machine-learning ap-
proaches of NLP. My goal in formulating this
course was to create a syllabus and assignment
set to teach in a relatively short time the impor-
tant aspects, both practical and theoretical, of
what took me years of building research tools to
internalize. The result was a rather hard course
with a high workload. Although the course eval-
uations were very positive, and several of the
students who completed the course were able to

jump right into research projects in my group,
there’s no question that the broad accessibility
of the course, especially for non-CS students,
was limited.

As with any NLP course, there were several
fundamental choice points. First, it’s not possi-
ble to cover both core tools and end-to-end ap-
plications in detail in a single term. Since Marti
Hearst was teaching an applied NLP course dur-
ing the same term, I chose to cover tools and
algorithms almost exclusively (see figure 1 for a
syllabus). The second choice point was whether
to organize the course primarily around linguis-
tic topics or primarily around statistical meth-
ods. I chose to follow linguistic topics because
that order seemed much easier to motivate to the
students (comments on this choice in section 3).
The final fundamental choice I made in decid-
ing how to target this class was to require both
substantial coding and substantial math. This
choice narrowed the audience of the class, but
allowed the students to build realistic systems
which were not just toy implementations.

I feel that the most successful aspect of
this course was the set of assignments, so the
largest section below will be devoted to de-
scribing them. If other researchers are inter-
ested in using any of my materials, they are en-
couraged to contact me or visit my web page
(http://www.cs.berkeley.edu/~klein).

2 Audience

The audience of the class began as a mix of CS
PhD students (mostly AI but some systems stu-
dents), some linguistics graduate students, and

23



a few advanced CS undergrads. What became
apparent after the first homework assignment
(see section 4.2) was that while the CS students
could at least muddle through the course with
weak (or absent) linguistics backgrounds, the
linguistics students were unable to acquire the
math and programming skills quickly enough to
keep up. I have no good ideas about how to ad-
dress this issue. Moreover, even among the CS
students, some of the systems students had trou-
ble with the math and some of the AI/theory
students had issues with coding scalable solu-
tions. The course was certainly not optimized
for broad accessibility, but the approximately
80% of students who stuck it out did what I con-
sidered to be extremely impressive work. For
example, one student built a language model
which took the mass reserved for new words
and distributed it according to a character n-
gram model. Another student invented a non-
iterative word alignment heuristic which out-
performed IBM model 4 on small and medium
training corpora. A third student built a maxent
part-of-speech tagger with a per-word accuracy
of 96.7%, certainly in the state-of-the-art range.

3 Topics

The topics covered in the course are shown in
figure 1. The first week of the course was es-
sentially a history lesson about symbolic ap-
proaches NLP, both to show their strengths (a
full, unified pipeline including predicate logic se-
mantic interpretations, while we still don’t have
a good notion of probabilistic interpretation)
and their weaknesses (many interpretations arise
from just a few rules, ambiguity poorly han-
dled). From there, I discussed statistical ap-
proaches to problems of increasing complexity,
spending a large amount of time on tree and se-
quence models.

As mentioned above, I organized the lectures
around linguistic topics rather than mathemat-
ical methods. However, given the degree to
which the course focused on such foundational
methods, this order was perhaps a mistake. For
example, it meant that simple word alignment
models like IBM models 1 and 2 (Brown et

al., 1990) and the HMM model (Vogel et al.,
1996) came many weeks after HMMs were intro-
duced in the context of part-of-speech tagging.
I also separated unsupervised learning into its
own sub-sequence, where I now wish I had pre-
sented the unsupervised approaches to each task
along with the supervised ones.

I assigned readings from Jurafsky and Mar-
tin (2000) and Manning and Schütze (1999) for
the first half of the course, but the second half
was almost entirely based on papers from the re-
search literature. This reflected both increasing
sophistication on the part of the students and
insufficient coverage of the latter topics in the
textbooks.

4 Assignments

The key component which characterized this
course was the assignments. Each assignment
is described below. They are available for
use by other instructors. While licensing
issues with the data make it impossible to put
the entirety of the assignment materials on
the web, some materials will be linked from
http://www.cs.berkeley.edu/~klein, and
the rest can be obtained by emailing me.

4.1 Assignment Principles

The assignments were all in Java. In all cases,
I supplied a large amount of scaffolding code
which read in the appropriate data files, con-
structed a placeholder baseline system, and
tested that baseline. The students therefore al-
ways began with a running end-to-end pipeline,
using standard corpora, evaluated in standard
ways. They then swapped out the baseline
placeholder for increasingly sophisticated imple-
mentations. When possible, assignments also
had a toy “miniTest” mode where rather than
reading in real corpora, a small toy corpus was
loaded to facilitate debugging. Assignments
were graded entirely on the basis of write-ups.

4.2 Assignment 1: Language Modeling

In the first assignment, students built n-gram
language models using WSJ data. Their lan-
guage models were evaluated in three ways by

24



Topics Techniques Lectures

Classical NLP Chart Parsing, Semantic Interpretation 2
Speech and Language Modeling Smoothing 2
Text Categorization Naive-Bayes Models 1
Word-Sense Disambiguation Maximum Entropy Models 1
Part-of-Speech Tagging HMMs and MEMMs 1
Part-of-Speech Tagging CRFs 1
Statistical Parsing PCFGs 1
Statistical Parsing Inference for PCFGs 1
Statistical Parsing Grammar Representations 1
Statistical Parsing Lexicalized Dependency Models 1
Statistical Parsing Other Parsing Models 1
Semantic Representation 2
Information Extraction 1
Coreference 1
Machine Translation Word-to-Word Alignment Models 1
Machine Translation Decoding Word-to-Word Models 1
Machine Translation Syntactic Translation Models 1
Unsupervised Learning Document Clustering 1
Unsupervised Learning Word-Level Clustering 1
Unsupervised Learning Grammar Induction 2
Question Answering 1
Document Summarization 1

Figure 1: Topics Covered. Each lecture was 80 minutes.

the support harness. First, perplexity on held-
out WSJ text was calculated. In this evaluation,
reserving the correct mass for unknown words
was important. Second, their language models
were used to rescore n-best speech lists (supplied
by Brian Roark, see Roark (2001)). Finally, ran-
dom sentences were generatively sampled from
their models, giving students concrete feedback
on how their models did (or did not) capture in-
formation about English. The support code in-
tially provided an unsmoothed unigram model
to get students started. They were then asked
to build several more complex language mod-
els, including at least one higher-order interpo-
lated model, and at least one model using Good-
Turing or held-out smoothing. Beyond these re-
quirements, students were encouraged to acheive
the best possible word error rate and perplexity
figures by whatever means they chose.1 They
were also asked to identify ways in which their
language models missed important trends of En-

1After each assignment, I presented in class an hon-
ors list, consisting of the students who won on any mea-
sure or who had simply built something clever. I initially
worried about how these honors announcements would
be received, but students really seemed to enjoy hearing
what their peers were doing, and most students made the
honors list at some point in the term.

glish and to suggest solutions.

As a second part to assignment 1, students
trained class-conditional n-gram models (at the
character level) to do the proper name identi-
fication task from Smarr and Manning (2002)
(whose data we used). In this task, proper name
strings are to be mapped to one of {drug, com-

pany, movie, person, location}. This turns
out to be a fairly easy task since the different
categories have markedly different character dis-
tributions.2 In the future, I will move this part
of assignment 1 and the matching part of assign-
ment 2 into a new, joint assignment.

4.3 Assignment 2: Maximum Entropy /
POS Tagging

In assignment 2, students first built a general
maximum entropy model for multiclass classi-
fication. The support code provided a crippled
maxent classifier which always returned the uni-
form distribution over labels (by ignoring the
features of the input datum). Students replaced
the crippled bits and got a correct classifier run-

2This assignment could equally well have been done
as a language identification task, but the proper name
data was convenient and led to fun error analysis, since
in good systems the errors are mostly places named after
people, movies with place names as titles, and so on.

25



ning, first on a small toy problem and then on
the proper-name identification problem from as-
signment 1. The support code provided opti-
mization code (an L-BFGS optimizer) and fea-
ture indexing machinery, so students only wrote
code to calculate the maxent objective function
and its derivatives.

The original intention of assignment 2 was
that students then use this maxent classifier as a
building block of a maxent part-of-speech tagger
like that of Ratnaparkhi (1996). The support
code supplied a most-frequent-tag baseline tag-
ger and a greedy lattice decoder. The students
first improved the local scoring function (keep-
ing the greedy decoder) using either an HMM
or maxent model for each timeslice. Once this
was complete, they upgraded the greedy decoder
to a Viterbi decoder. Since students were, in
practice, generally only willing to wait about 20
minutes for an experiment to run, most chose to
discard their maxent classifiers and build gener-
ative HMM taggers. About half of the students’
final taggers exceeded 96% per-word tagging ac-
curacy, which I found very impressive. Students
were only required to build a trigram tagger
of some kind. However, many chose to have
smoothed HMMs with complex emission mod-
els like Brants (2000), while others built maxent
taggers.

Because of the slowness of maxent taggers’
training, I will just ask students to build HMM
taggers next time. Moreover, with the relation
between the two parts of this assignment gone, I
will separate out the proper-name classification
part into its own assignment.

4.4 Assignment 3: Parsing

In assignment 3, students wrote a probabilis-
tic chart parser. The support code read in
and normalized Penn Treebank trees using the
standard data splits, handled binarization of n-
ary rules, and calculated ParsEval numbers over
the development or test sets. A baseline left-
branching parser was provided. Students wrote
an agenda-based uniform-cost parser essentially
from scratch. Once the parser parsed cor-
rectly with the supplied treebank grammar, stu-
dents experimented with horizontal and vertical

markovization (see Klein and Manning (2003))
to improve parsing accuracy. Students were
then free to experiment with speed-ups to the
parser, more complex annotation schemes, and
so on. Most students’ parsers ran at reasonable
speeds (around a minute for 40 word sentences)
and got final F1 measures over 82%, which is
substantially higher than an unannotated tree-
bank grammar will produce. While this assign-
ment would appear to be more work than the
others, it actually got the least overload-related
complaints of all the assignments.

In the future, I may instead have students im-
plement an array-based CKY parser (Kasami,
1965), since a better understanding of CKY
would have been more useful than knowing
about agenda-based methods for later parts of
the course. Moreover, several students wanted
to experiment with induction methods which
required summing parsers instead of Viterbi
parsers.

4.5 Assignment 4: Word Alignment

In assignment 4, students built word alignment
systems using the Canadian Hansards training
data and evaluation alignments from the 2003
(and now 2005) shared task in the NAACL
workshop on parallel texts. The support code
provided a monotone baseline aligner and eval-
uation/display code which graphically printed
gold alignments superimposed over guessed
alignments. Students first built a heuristic
aligner (Dice, mutual information-based, or
whatever they could invent) and then built IBM
model 1 and 2 aligners. They then had a choice
of either scaling up the system to learn from
larger training sets or implementing the HMM
alignment model.

4.6 Assignment Observations

For all the assignments, I stressed that the stu-
dents should spend a substantial amount of time
doing error analysis. However, most didn’t, ex-
cept for in assignment 2, where the support code
printed out every error their taggers made, by
default. For this assignment, students actually
provided very good error analysis. In the fu-
ture, I will increase the amount of verbose er-

26



ror output to encourage better error analysis for
the other assignments – it seemed like students
were reluctant to write code to display errors,
but were happy to look at errors as they scrolled
by.3

A very important question raised by an
anonymous reviewer was how effectively imple-
menting tried-and-true methods feeds into new
research. For students who will not be do-
ing NLP research but want to know how the
basic methods work (realistically, this is most
of the audience), the experience of having im-
plemented several “classic” approaches to core
tools is certainly appropriate. However, even
for students who intend to do NLP research,
this hands-on tour of established methods has
already shown itself to be very valuable. These
students can pick up any paper on any of these
tasks, and they have a very concrete idea about
what the data sets look like, why people do
things they way they do, and what kinds of er-
ror types and rates one can expect from a given
tool. That’s experience that can take a long time
to acquire otherwise – it certainly took me a
while. Moreover, I’ve had several students from
the class start research projects with me, and,
in each case, those projects have been in some
way bridged by the course assignments. This
methodology also means that all of the students
working with me have a shared implementation
background, which has facilitated ad hoc collab-
orations on research projects.

5 Conclusions

There are certainly changes I will make when I
teach this course again this fall. I will likely
shuffle the topics around so that word align-
ment comes earlier (closer to HMMs for tagging)
and I will likely teach dynamic programming so-
lutions to parsing and tagging in more depth
than graph-search based methods. Some stu-
dents needed remedial linguistics sections and
other students needed remedial math sections,
and I would hold more such sessions, and ear-

3There was also verbose error reporting for assign-
ment 4, which displayed each sentence’s guessed and gold
alignments in a grid, but since most students didn’t speak
French, this didn’t have the same effect.

lier in the term. However, I will certainly keep
the substantial implementation component of
the course, partially in response to very positive
student feedback on the assignments, partially
from my own reaction to the high quality of stu-
dent work on those assignments, and partially
from how easily students with so much hands-
on experience seem to be able to jump into NLP
research.

References

Thorsten Brants. 2000. TnT – a statistical part-of-
speech tagger. In ANLP 6, pages 224–231.

Peter F. Brown, John Cocke, Stephen A. Della
Pietra, Vincent J. Della Pietra, Fredrick Jelinek,
John D. Lafferty, Robert L. Mercer, and Paul S.
Roossin. 1990. A statistical approach to machine
translation. Computational Linguistics, 16(2):79–
85.

Dan Jurafsky and James H. Martin. 2000. Speech
and Language Processing: An Introduction to Nat-
ural Language Processing, Computational Linguis-
tics and Speech Recognition. Prentice Hall, Engle-
wood Cliffs, NJ.

T. Kasami. 1965. An efficient recognition and syn-
tax analysis algorithm for context-free languages.
Technical Report AFCRL-65-758, Air Force Cam-
bridge Research Laboratory, Bedford, MA.

Dan Klein and Christopher D. Manning. 2003. Ac-
curate unlexicalized parsing. In ACL 41, pages
423–430.

Christopher D. Manning and Hinrich Schütze. 1999.
Foundations of Statistical Natural Language Pro-
cessing. The MIT Press, Cambridge, Mas-
sachusetts.

Adwait Ratnaparkhi. 1996. A maximum entropy
model for part-of-speech tagging. In EMNLP 1,
pages 133–142.

Brian Roark. 2001. Probabilistic top-down parsing
and language modeling. Computational Linguis-
tics, 27:249–276.

Joseph Smarr and Christopher D. Manning. 2002.
Classifying unknown proper noun phrases without
context. Technical report, Stanford University.

Stephan Vogel, Hermann Ney, and Christoph Till-
mann. 1996. HMM-based word alignment in sta-
tistical translation. In COLING 16, pages 836–
841.

27



Proceedings of the Second ACL Workshop on Effective Tools and Methodologies for Teaching NLP and CL, pages 28–31,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Web-based Interfaces for Natural Language Processing Tools

Marc Light † and Robert Arens∗ and Xin Lu ∗

†Linguistics Department
†School of Library and Information Science

∗†Computer Science Department
University of Iowa
Iowa, USA 52242

{marc-light,robert-arens,xin-lu }@uiowa.edu

Abstract

We have built web interfaces to a number
of Natural Language Processing technolo-
gies. These interfaces allow students to
experiment with different inputs and view
corresponding output and inner workings
of the systems. When possible, the in-
terfaces also enable the student to mod-
ify the knowledge bases of the systems
and view the resulting change in behav-
ior. Such interfaces are important because
they allow studentswithout computer sci-
ence background to learn by doing. Web
interfaces also sidestep issues of platform
dependency in software packages, avail-
able computer lab times, etc. We discuss
our basic approach and lessons learned.

1 Introduction

The Problem: Natural language processing (NLP)
technology is relevant to non-computer scientists:
our classes are populated by students from neuro-
science, speech pathology, linguistics, teaching of
foreign languages, health informatics, etc. To effec-
tively use NLP technology, it is helpful understand,
at some level, how it works. Hands-on experimen-
tation is an effective method for gaining such under-
standing.Unfortunately , to be able to experiment,
non-computer scientists often need to acquire some
programming skills and knowledge of the Unix op-
erating system. This can be time consuming and
tedious and can distract students from their central

goal of understanding how a technology works and
how best to employ it for their interests.

In addition, getting a technology to run on a set
lab machines can be problematic: the programs may
be developed for a different platform, e.g., a pro-
gram was developed for Linux but the lab machines
run MSWindows. Another hurdle is that machine
administrators are often loath to install applications
that they perceive as non-standard. Finally, lab times
can be restrictive and thus it is preferable to enable
students to use computers to which they have easy
access.

Our Solution: We built web interfaces to many
core NLP modules. These interfaces not only al-
low students to use a technology but also allow stu-
dents to modify and extend the technology. This en-
ables experimentation. We used server-side script-
ing languages to build such web interfaces. These
programs take input from a web browser, feed it to
the technology in question, gather the output from
the technology and send it back to the browser for
display to the student. Access to web browsers is
nearly ubiquitous and thus the issue of lab access is
side-stepped. Finally, the core technology need only
run on the web server platform. Many instructors
have access to web servers running on different plat-
forms and, in general, administering a web server is
easier than maintaining lab machines.

An Example: Finite state transduction is a core
NLP technology and one that students need to un-
derstand. The Cass partial parsing system (Abney,
1997) makes use of a cascade of FSTs. To use this
system, a student creates a grammar. This grammar
is compiled and then applied to sentences provided

28



Figure 1: Web interface to Cass

Figure 2: Cass Output

29



by the student. Prior to our work, the only interface
to Cass involved the Unix command line shell. Fig-
ure 3 shows an example session with the command
line interface. It exemplifies the sort of interface that
users must master in order to work with current hu-
man language technology.

1 emacs input.txt &
2 emacs grammar.txt &
3 source /usr/local/bin/setupEnv
3 reg gram.txt
4 Montytagger.py inTagged input.txt
5 cat inTagged |
6 wordSlashTagInput.pl |
7 cass -v -g gram.txt.fsc > cassOut
8 less cassOut

Figure 3: Cass Command Line Interface

A web-based interface hides many of the details, see
Figure 1 and Figure 2. For example, the use of an
ASCII-based text editor such asemacs become un-
necessary. In addition, the student does not need
to remembering flags such as-v -g and does not
need to know how to use Unix pipes,|, and out-
put redirection,>. None of this knowledge is ter-
ribly difficult but the amount accumulates quickly
and such information doesnot help the student un-
derstand how Cass works.

2 What we have built

To date, we have built web interfaces to nine NLP-
related technologies:

• the Cass parser (Abney, 1997),

• the MontyTagger Brill-style part-of-speech tag-
ger (Liu, 2004),

• the NLTK statistical part-of-speech tagger,

• a NLTK context-free grammar parser (Loper
and Bird, 2002),

• the Gsearch context-free grammar parser (Cor-
ley et al., 2001),

• the SenseRelate word sense disambiguation
system (Pedersen et al., 2005),

• a Perl Regular expression evaluator,

• a linguistic feature annotator,

• and a decision tree classifier (Witten and Frank,
1999).

These interfaces have been used in an introduction
to computational linguistics course and an introduc-
tion to creating and using corpora course. Prior to
the interface construction, no hands-on lab assign-
ments were given; instead all assignments were pen-
cil and paper. The NLP technologies listed above
were chosen because they fit into the material of the
course and because of their availability.

2.1 Allowing the student to process input

The simplest type of interface allows students to pro-
vide input and displays corresponding output. All
the interfaces above provide this ability. They all
start with HTML forms to collect input. In the sim-
plest case, PHP scripts process the forms, placing
input into files and then system calls are made to
run the NLP technology. Finally, output files are
wrapped in HTML and displayed to the user. The
basic PHP program remains largely unchanged from
one NLP technology to the next. In most cases, it
suffices to use the server file system to pass data
back and forth to the NLP program — PHP pro-
vides primitives for creating and removing unique
temporary files. In only one case was it necessary to
use a semaphore on a hard-coded filename. We also
experimented with Java server pages and Perl CGI
scripts instead of PHP.

2.2 Allowing the student to modify knowledge
resources

The web interfaces to the Cass parser, Gsearch, and
MontyTagger allow the student to provide their cor-
responding knowledge base. For Cass and Gsearch,
an additional text box is provided for the grammars
they require. The rule sequence and lexicon that the
MontyTagger uses can be large and thus unwieldy
for a textarea form input element. We solved
the problem by preloading thetextarea s with a
“standard” rule sequence and lexicon which the stu-
dent can then modify. We also provided the ability to
upload the rule sequences and lexicon as files. One
problem with the file upload method is that it assume
that the students can generate ASCII-only files with

30



the appropriate line break character. This assump-
tion is often false.

An additional problem with allowing students
to modify knowledge resources is providing use-
ful feedback when these student-provided resources
contain syntax or other types of errors. At this point
we simply capture thestderr output of the pro-
gram and display it.

Finally, with some systems such as Spew
(Schwartz, 1999), and The Dada Engine (Bulhak,
1996), allowing web-based specification of knowl-
edge bases amounts to allowing the student to exe-
cute arbitrary code on the server machine, an obvi-
ous security problem.

2.3 Allowing the student to examine internal
system processing

Displaying system output with a web interface is rel-
atively easy; however, showing the internal work-
ings of a system is more challenging with a web
interface. At this point, we have only displayed
traces of steps of an algorithm. For example, the
NLTK context-free grammar parser interface pro-
vides a trace of the steps of the parsing algorithm.
One possible solution would be to generate Flash
code to animate a system’s processing.

2.4 Availability

The web pages are currently available at que.info-
science.uiowa.edu/˜light/classes/compLing/ How-
ever, it is not our intent to provide server cycles for
the community but rather to provide the PHP scripts
open source so that others can run the interfaces
on their own servers. An instructor at another
university has already made use of our code.

3 Lessons learned

• PHP is easier to work with than Java Server
Pages and CGI scripts;

• requiring users to paste input into text boxes is
superior to allowing user to upload files (for se-
curity reasons and because it is easier to control
the character encoding used);

• getting debugging information back to the stu-
dent is very important;

• security is an issue since one is allowing users
to initiate computationally intensive processes;

• it is still possible for students to claim the inter-
face does not work for them (even though we
used no client-side scripting).

• Peer learning is less likely than in a lab set-
ting; however, we provided a web forum and
this seems to alleviated the problem somewhat.

4 Summary

At the University of Iowa, many students, who want
to learn about natural language processing, do not
have the requisite Unix and programming skills to
do labs using command line interfaces. In addition,
our lab machines run MSWindows, the instructors
do not administer the machines, and there are restric-
tive lab hours. Thus, until recently assignments con-
sisted of pencil-and-paper problems. We have built
web-based interfaces to a number of NLP modules
that allow students to use, modify, and learn.

References
Steven Abney. 1997. Partial parsing via finite-state cas-

cades.Natural Language Engineering, 2(4).

Andrew Bulhak. 1996. The dada engine.
http://dev.null.org/dadaengine/.

S. Corley, M. Corley, F. Keller, M. Crocker, and
S. Trewin. 2001. Finding Syntactic Structure in Un-
parsed Corpora: The Gsearch Corpus Query System.
Computers and the Humanities, 35:81–94.

Hugo Liu. 2004. Montylingua: An end-to-end natural
language processor with common sense. homepage.

Edward Loper and Steven Bird. 2002. Nltk: The natural
language toolkit. InProc. of the ACL-02 Workshop
on Effective Tools and Methods for Teaching Natural
Language Processing and Computational Linguistics.

Ted Pedersen, Satanjeev Banerjee, and Siddharth Pat-
wardhan. 2005. Maximizing Semantic Relatedness to
Perform Word Sense Disambiguation. Supercomput-
ing institute research report umsi 2005/25, University
of Minnesota.

Randal Schwartz. 1999. Random sentence generator.
Linux Magazine, September.

Ian H. Witten and Eibe Frank. 1999.Data Mining: Prac-
tical Machine Learning Tools and Techniques with
Java Implementations. Morgan Kaufmann.

31



Proceedings of the Second ACL Workshop on Effective Tools and Methodologies for Teaching NLP and CL, pages 32–36,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Making Hidden Markov Models More Transparent

Nashira Richard Lincoln ∗ and Marc Light †

∗†Linguistics Department
†School of Library and Information Science

†Computer Science Department
University of Iowa
Iowa, USA 52242

{nashira-lincoln, marc-light }@uiowa.edu

Abstract

Understanding the decoding algorithm for
hidden Markov models is a difficult task
for many students. A comprehensive un-
derstanding is difficult to gain from static
state transition diagrams and tables of ob-
servation production probabilities. We
have built a number of visualizations de-
picting a hidden Markov model for part-
of-speech tagging and the operation of the
Viterbi algorithm. The visualizations are
designed to help students grasp the oper-
ation of the HMM. In addition, we have
found that the displays are useful as de-
bugging tools for experienced researchers.

1 Introduction

Hidden Markov Models (HMMs) are an important
part of the natural language processing toolkit and
are often one of the first stochastic generation mod-
els that students1 encounter. The corresponding
Viterbi algorithm is also often the first example
of dynamic programming that students encounter.
Thus, HMMs provide an opportunity to start stu-
dents on the correct path of understanding stochas-
tic models,not simply treating them as black boxes.
Unfortunately, static state transition diagrams, ta-
bles of probability values, and lattice diagrams are
not enough for many students. They have a general
idea of how a HMM works but often have common

1The Introduction to Computational Linguistics course at
the University of Iowa has no prerequisites, and over half the
students are not CS majors.

misconceptions. For example, we have found that
students often believe that as the Viterbi algorithm
calculates joint state sequence observation sequence
probabilities, the best state sequence so far is always
a prefix of global best path. This is of course false.
Working a long example to show this is very tedious
and thus text books seldom provide such examples.

Even for practitioners, HMMs are often opaque
in that the cause of a mis-tagging error is often left
uncharacterized. A display would be helpful to pin-
point why an HMM chose an incorrect state se-
quence instead of the correct one.

Below we describe two displays that attempt to
remedy the above mentioned problems and we dis-
cuss a Java implementation of these displays in the
context of a part-of-speech tagging HMM (Kupiec,
1992). The system is freely available and has an
XML model specification that allows models calcu-
lated by other methods to be viewed. (A standard
maximum likelihood estimation was implemented
and can be used to create models from tagged data.
A model is also provided.)

2 Displays

Figure 1 shows a snapshot of our first display. It
contains three kinds of information: most likely
path for input, transition probabilities, and history of
most likely prefixes for each observation index in the
Viterbi lattice. The user can input text at the bottom
of the display, e.g.,Pelham pointed out that Geor-
gia voters rejected the bill. The system then runs
Viterbi and animates the search through all possible
state sequences and displays the best state sequence
prefix as it works its way through the observation

32



Figure 1: The system’s main display.Top pane: shows the state space and animates the derivation of the
most likely path for “Pelman pointed out that Georgia voters ...”;Middle pane: a mouse-over-triggered bar
graph of out transition probabilities for a state;Bottom pane: a history of most likely prefixes for each
observation index in the Viterbi lattice. Below the panes is the input text field.

33



Figure 2: Contrast display: The user enters a sequence on the top text field and presses enter, the sequence
is tagged and displayed in both the top and bottom text fields. Finally, the user changes any incorrect tags in
the top text field and presses enter and the probability ratio bars are then displayed.

34



sequence from left to right (these are lines connect-
ing the states in Figure 1). At any point, the stu-
dent can mouse-over a state to see probabilities for
transitions out of that state (this is the bar graph in
Figure 1). Finally, the history of most likely pre-
fixes is displayed (this history appears below the bar
graph in Figure 1). We mentioned that students often
falsely believe that the most likely prefix is extended
monotonically. By seeing the path through the states
reconfigure itself in the middle of the observation se-
quence and by looking at the prefix history, a student
has a good chance of dispelling the false belief of
monotonicity.

The second display allows the user to contrast two
state sequences for the same observation sequence.
See Figure 2. For each contrasting state pairs, it
shows the ratio of the corresponding transition to
each state and it shows the ratio of the generation of
the observation conditioned on each state. For exam-
ple, in Figure 2 the transition DT→JJ is less likely
than DT→NNP. The real culprit is generation proba-
bility P(Equal|JJ) which is almost 7 times larger than
P(Equal|NNP). Later in the sequence we see a simi-
lar problem with generatingopportunityfrom a NNP
state. These generation probabilities seem to drown
out any gains made by the likelihood of NNP runs.

To use this display, the user types in a sentence
in the box above the graph and presses enter. The
HMM is used to tag the input. The user then modi-
fies (e.g., corrects) the tag sequence and presses en-
ter and the ratio bars then appear.

Let us consider another example: in Figure 2, the
mis-tagging ofraisesas a verb instead of a noun at
the end of the sentence. The display shows us that
although NN→NNS is more likely than NN→VBZ,
the generation probability forraises as a verb is
over twice as high as a noun. (If this pattern of
mis-taggings caused by high generation probabil-
ity ratios was found repeatedly, we might consider
smoothing these distributions more aggressively.)

3 Implementation

The HMM part-of-speech tagging model and
corresponding Viterbi algorithm were implemented
based on their description in the updated version,
http://www.cs.colorado.edu/˜martin/
SLP/updated.html , of chapter 8 of (Jurafsky

and Martin, 2000). A model was trained using
Maximum Likelihood from the UPenn Treebank
(Marcus et al., 1993). The input model file is
encoded using XML and thus models built by other
systems can be read in and displayed.

The system is implemented in Java and requires
1.4 or higher to run. It has been tested on Linux and
Apple operating systems. We will release it under a
standard open source license.

4 Summary and future work

Students (and researchers) need to understand
HMMs. We have built a display that allow users
to probe different aspects of an HMM and watch
Viterbi in action. In addition, our system provides
a display that allows users to contrast state sequence
probabilities. To drive these displays, we have built
a standard HMM system including parameter esti-
mating and decoding and provide a part-of-speech
model trained on UPenn Treebank data. The system
can also read in models constructed by other sys-
tems.

This system was built during this year’s offering
of Introduction to Computational Linguisticsat the
University of Iowa. In the Spring of 2006 it will be
deployed in the classroom for the first time. We plan
on giving a demonstration of the system during a
lecture on HMMs and part-of-speech tagging. A re-
lated problem set using the system will be assigned.
The students will be given several mis-tagged sen-
tences and asked to analyze the errors and report
on precisely why they occurred. A survey will be
administered at the end and improvements will be
made to the system based on the feedback provided.

In the future we plan to implement Good-Turing
smoothing and a method for dealing with unknown
words. We also plan to provide an additional display
that shows the traditional Viterbi lattice figure, i.e.,
observations listed left-to-right, possible states listed
from top-to-bottom, and lines from left-to-right con-
necting states at observation indexi with the previ-
ous states,i-1, that are part of the most likely state
sequence toi. Finally, we would like to incorpo-
rate an additional display that will provide a visual-
ization of EM HMM training. We will use (Eisner,
2002) as a starting point.

35



References

Jason Eisner. 2002. An interactive spreadsheet for teach-
ing the forward-backward algorithm. InProc. of the
ACL 2002 Workshop on effective tools and method-
ologies for teaching natural language processing and
computational linguistics.

Daniel Jurafsky and James H. Martin. 2000.Speech and
Language Processing: an introduction to natural lan-
guage processing, and computational linguistics, and
speech recognition. Prentice-Hall.

J. Kupiec. 1992. Robust part-of-speech tagging using
a hidden markov model.Computer Speech and Lan-
guage, 6:225–242.

M. Marcus, B. Santorini, and M. A. Marcinkiewicz.
1993. Building a large annotated corpus of En-
glish: The Penn Treebank.Computational Linguistics,
19(2):313–330, June.

36



Proceedings of the Second ACL Workshop on Effective Tools and Methodologies for Teaching NLP and CL, pages 37–42,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

     

 
 
 
 
 
 

Concrete Assignments for Teaching NLP in an M.S. Program 
 

Reva Freedman 
Department of Computer Science 

Northern Illinois University 
DeKalb, IL 60115 

freedman@cs.niu.edu 
 
 
 
 

 
Abstract 

 

The professionally oriented computer 
science M.S. students at Northern Illinois 
University are intelligent, interested in 
new ideas, and have good programming 
skills and a good math background. 
However, they have no linguistics 
background, find traditional academic 
prose difficult and uninteresting, and have 
had no exposure to research. Given this 
population, the assignments I have found 
most successful in teaching Introduction to 
NLP involve concrete projects where 
students could see for themselves the 
phenomena discussed in class. This paper 
describes three of my most successful 
assignments: duplicating Kernighan et 
al.’s Bayesian approach to spelling 
correction, a study of Greenberg’s 
universals in the student’s native language, 
and a dialogue generation project. For 
each assignment I discuss what the 
students learned and why the assignment 
was successful. 

 
 

 
1 Introduction 
 
Northern Illinois University is a large public 
university (25,000 students) located in the farm-
oriented exurbs of Chicago, about 60 miles west of 
the city. Most of the undergraduate computer 
science majors and about a third of the  M.S. 

students come from the hi-tech corridor west of 
Chicago or small towns near the university. The 
remaining M.S. students are international students, 
currently mostly from India. 

This paper discusses my experiences in two 
semesters of teaching Introduction to NLP and 
three semesters of teaching an NLP unit in an 
Introduction to Artificial Intelligence course. 
Because the students have no background in 
linguistics and are not used to reading the type of 
academic prose found in the textbook (Jurafsky 
and Martin, 2000), the most successful units I have 
taught involved concrete assignments where 
students could see for themselves the phenomena 
discussed in class. Successful assignments also did 
not assume any background in linguistics, even 
such basic notions as part of speech. 

To provide an overview of the field, each year 
the NLP course contains three segments: one on a 
statistical approach to NLP, one on syntax, and 
one on a logic-based approach. The three segments 
are also chosen to include topics from phonology 
and morphology, syntax, and pragmatics. The 
specific content changes from year to year in an 
effort to find topics that both represent current 
issues in the field and capture the students’ 
imagination. 

This paper describes three of the most 
successful assignments. For each one, I describe 
the assignment, the topics the students learned, and 
why it was successful. The three assignments are: 
duplicating Kernighan et al.’s Bayesian approach 

37



 

     

to spelling correction, a study of Greenberg’s 
universals in a language other than English 
(usually the student’s native language), and a 
dialogue generation project using my research 
software. 

2 Background 

2.1 Student demographics 

Most of the students taking Introduction to NLP 
are graduate students, although undergraduates are 
eligible if they have had three semesters of C++ 
programming. Graduate students in cognitive 
science-related fields, such as psychology or 
linguistics, are eligible if they have taken one 
semester of programming and are willing to teach 
themselves about trees. I actively recruit non-
computer science students because it makes the 
course more interesting. In addition to providing a 
broader spectrum of interests, they tend to be more 
outgoing. They tend to be more willing to answer 
questions in class, and also to ask questions in 
class, which many of the computer science 
students will not do. 

The preferred career path among the students is 
to obtain a programming job in local industry, 
preferably in a hi-tech area. However, among both 
undergraduates and graduate students, a few 
continue their education. One minority student 
with no previous experience in research became 
interested and is now planning to apply to a PhD 
program. In general, students take the course out 
of a desire to do something different from the 
normal operating systems, networking and 
database courses. An occasional student also takes 
the course because it fits in their schedule or 
because it doesn’t have onerous prerequisites. 

In general, the international students have good 
to near-native competence in spoken English, 
although a few cannot not follow my lectures, and 
some do not have sufficient writing skills for an 
essay exam. All could read my lecture notes 
without difficulty. Both among the international 
students and local students, many do not have 
sufficient experience with formal academic prose 
to understand the textbook (Jurafsky and Martin, 
2000). Students’ first languages have included 
Telugu, Hindi/Urdu, Nepali, Chinese (Mandarin), 
and Bulgarian. 

2.2 Student background 

Koedinger (2001), in his research on tutoring 
systems for high school mathematics, gives the 
following as his fundamental principle: “the 
student is not like me.” In particular, student 
background frequently did not include the 
following items: 

1) Parts of speech 
2) Basic English grammar 
3) Relationships between languages and language 

families 
4) Practical issues, such as the importance of 

transliteration and glossing 
5) Philosophical issues, such as the fact that there 

is no single authoritative grammar of a natural 
language or that one language is not more 
difficult than another in an absolute sense 

However, students were talented at and enjoyed 
programming. Most students also had a good math 
background. Finally, they were enthusiastic about 
learning new things, as long as it involved concrete 
examples that they could work out and a sample 
problem with a solution that they could use as a 
model. 

3 Spelling correction 

3.1 Background 

The goal of the first section of the course was to 
show the students the power of statistical methods 
in NLP. In this section, students were asked to 
duplicate the calculations used in Kernighan et 
al.’s (1990) Bayesian approach to spelling 
correction, as explained in Section 5.5 of the 
textbook. 

Kernighan et al. choose as the preferred 
correction the one that maximizes P(t|c)P(c), 
where t is the typo and c is a candidate correction. 
Candidate corrections are generated by assuming 
that errors involve only one letter or the 
transposition of two adjacent letters. To reproduce 
this calculation, students need the confusion 
matrices provided in the original paper, a source of 
unigram and bigram data, and a source for word 
frequencies. 

38



 

     

3.2 Assignment 

Students are given some misspelled words and 
possible corrections, such as the following 
examples from Kernighan et al: 

    misspelled word possible corrections 
    ambitios  ambitious 
       ambitions 
       ambition 
 
For each of these misspelled words, students are 
asked to do the following:  

a)  Use the method described by Kernighan et al., 
or equivalently in section 5.5 of the text, to find 
the probability of each possible correction. 

b)  Use their preferred spell checker (Microsoft 
Word, Unix ispell, etc.) to generate possible 
corrections for the same misspelled words. 

The following questions are asked for each 
misspelled word: 

•  Is the most probable correction according to 
Kernighan’s algorithm the same as the one 
suggested by your program? 

•  Which additional possible corrections (i.e., non-
single-error corrections or non-single word 
corrections) does your program generate? 

•  Which of Kernighan’s possible corrections does 
your program omit? 

Since Kernighan’s original paper omits the 
unigram and bigram count matrices, I provide a 
file with this information. Students are encouraged 
to find a source for word frequencies on the Web. 
As one option, I suggest they use any search 
engine (e.g., Google), after class discussion about 
the approximations involved in this approach. 

Students are also given two summary questions 
to answer: 

•  A former student, Mr. I. M. Kluless, says: I 
don’t see the point of using the frequency of 
potential corrections in the corpus (i.e., the prior 
probability) as part of Kernighan’s algorithm. I 
would just use the likelihood of a given error. How 
would you answer Mr. Kluless? (One way to think 
about this question is: what would happen if you 

left it out?) 
•  Another former student, Ms. U. R. Useless, says: 
I don’t see the point of using the likelihood of a 
given error as part of Kernighan’s algorithm. I 
would just use the prior probability. How would 
you answer Ms. Useless? 

3.3 Results 

Students enjoyed this assignment because it was 
straightforward and used mathematics they were 
familiar with. They were uniformly surprised to 
discover that spelling correction is generally done 
today using Bayesian concepts rather than by 
dictionary lookup alone. They were also surprised 
to learn that learn that results were largely 
independent of the corpus chosen. Students who 
already knew Bayes’ theorem learned about an 
application completely different from the ones 
they had used in other courses. 

The majority of students used my suggestion to 
approximate word frequencies in a corpus by page 
counts in Google. They were surprised to learn 
that in spite of the number of ways in which the 
web differs from an ideal corpus, the volume of 
data available ensures that accurate results are still 
obtained. The better students searched the web for 
corpora they preferred, including the works of 
Shakespeare and an online interface to the British 
National Corpus 
(http://sara.natcorp.ox.ac.uk/lookup.html). 

4 Syntax and language universals 

4.1 Background 

The second section of the course had as its goal to 
teach the students some basic aspects of syntax. I 
started with parts of speech and basic concepts of 
context-free grammars. I then introduced 
unification grammars as a way of obtaining more 
power with fewer rules. 

As a way of showing the syntactic variation 
among languages, I also introduced some of 
Greenberg’s word order universals (Greenberg, 
1966), following the exposition in Baker (2001). 
Although identifying the most probable underlying 
word order (SVO, etc.) of an unknown language 
can involve significant linguistic intuition, I did 
not expect students to achieve that goal. Rather, I 
used Greenberg’s ideas to make students think 

39



 

     

about the rules they were generating instead of 
generating S --> NP VP by rote. Additionally, the 
use of multiple languages contributed to the 
university’s goal of introducing ideas of 
internationalization and diversity in classes where 
feasible. 

4.2 Assignment 

The students were asked to prepare a 15-minute 
class presentation showing two or three interesting 
phenomena of one of the languages of the world. 
Most students used their native language. 

They were asked to include the following 
information: 

 • Where the language fits in Greenberg’s 
classification (SVO, etc.) 

 • One or more syntactic phenomena that make 
the language interesting 

 • A grammar fragment (a set of CFG rules, 
possibly with unification-based features) 
illustrating one of the chosen phenomena 

They could show several interesting phenomena 
with a short implementation of one, a complex 
phenomenon and a longer fragment of grammar, or 
one interesting phenomenon and multiple ways to 
implement it. 

For each example they used, they were required 
to show the original transliterated into the Roman 
alphabet, a morpheme-level analysis, and a 
translation into English. 

As a template, I gave a presentation using a 
language none of them had been exposed to,  
modern Hebrew. The four sample phenomena I 
presented were: a) there is no indefinite article, 
b) nouns and adjectives must agree in gender and 
number, c) adjectives follow the noun, and d) the 
definite article is attached to every adjective in an 
NP as well as to the noun. 

In addition to providing an example of the scope 
required, the presentation also introduced the 
students to conventions of linguistic presentation, 
including interlinear display of transliteration, 
morpheme analysis, and translation. One slide 
from my presentation is shown below: 

 he- khatul   ha- gadol 
 DET cat-M-S  DET big-M-S 
 “the big cat” 

 he- khatulim   ha- g’dolim 
 DET cat-M-PL   DET big-M-PL 
 “the big cats” 

4.3 Results 

This assignment was useful for ensuring that 
students had a basic grasp of many elements of 
syntax covered in Section II of the textbook, 
including parts of speech, context-free grammars, 
and unification grammars. Second, the class 
presentations provided students concrete examples 
of some major syntactic concepts that all 
languages share, as well as some of the 
differences. Finally, this assignment enabled 
students to learn about and present some of the 
core linguistic features of their native language. 

5 Dialogue generation 

5.1 Background 

The third segment of the course had as its goal to 
show how a logic-based approach is useful in 
NLP. Since some of my previous work involves 
implementing dialogue software using a logic-
based approach, dialogue systems was a natural 
choice for this segment. 

Phenomena discussed in lecture included the 
concepts of speech act and discourse intention, the 
relationship between syntactic form and intention, 
direct and indirect speech acts, and a short 
introduction to dialogue act classification. 

As a counterbalance to the more theoretical 
material from Greenberg, this section included 
some information about current commercial uses 
of NLP. Students were asked to read an article 
from the popular press (Mount, 2005) describing 
experiences with currently available commercial 
systems. 

I used my own software, APE (Freedman, 
2000), a domain-independent dialogue plan 
interpreter based on reactive planning concepts. 
APE uses a rule-based macro language 
implemented in Common Lisp. It is a hierarchical 
task network (HTN) style planner, achieving each 
goal via a series of subgoals. APE’s high-level 
planning loop alternates between waiting for user 
input and planning responses. It executes plan 
operators until a primitive, non-decomposable one 

40



 

     

is obtained. In addition to elicit and inform, plans 
can also include primitives to query and update 
APE’s internal knowledge base, thus giving the 
system a “mind.” Primitives are added to a buffer 
until a primitive requiring a response from the user 
is received. At that point the operators in the 
buffer are used to build the output text. Goals are 
represented using first-order logic without 
quantifiers, with full unification used for 
matching. 

APE provides two ways to change a plan in 
progress. The author can instruct the system either 
to switch from one method of satisfying a goal to 
another or to add new goals at the top of the 
agenda, possibly replacing existing goals. The 
latter facility is particularly useful in dialogue 
generation, since it allows the system to prompt 
the user after an error. This feature makes APE 
more powerful than the pushdown automaton one 
might use to implement a context-free grammar.  
In addition, APE is obviously more powerful than 
the finite-state machines often used in dialogue 
generation. 

Use of APE allows students to generate realistic 
hierarchically structured conversations with a 
reasonable number of rules. 

5.2 Assignment 

Sample code presented in class involved looking 
up data in a database of presidents’ names. The 
sample system prompted the user for input, then 
provided answers, error messages, and re-prompts 
as appropriate. As an illustration of the power of 
the approach, I also demonstrated some of my 
research software, which showed conversations 
embedded in a variety of front-end GUIs. 

For the assignment, students were asked to 
choose their own topic. They were asked to choose 
a problem, then provide a database layout and 
draw a graph showing the possible conversations 
their system could generate. Finally, they were 
asked to implement the code. At the end of the 
semester, students made a five-minute presentation 
to the class showing their application. 

5.3 Results 

Students greatly enjoyed this assignment because 
it involved the activity they enjoyed most, namely 
programming. Even though it was qualitatively 

different from other algorithms they had learned, 
they had no trouble learning the unification 
algorithm, both iterative and recursive versions, 
because they were experienced in learning 
algorithms. For most students in our program, this 
project will be their only experience with a non-
imperative programming language. 

Students were not bothered by the fact that the 
sample software provided included some features 
not discussed in class. In fact, some of the better 
students studied these features and used them in 
their own programs. 

Every student mastered the basics of logic 
programming, including how to choose between 
alternatives, establish a default, implement multi-
step and hierarchical procedures, interact with the 
user, and access an external database. They also 
learned how to use unification along with multiple 
first-order relations to access and update a 
database. The weaker students simply used the 
sample software as a guide, while the stronger 
ones mastered the underlying concepts and wrote 
more creative code. 

Student projects ranged the gamut, including a 
system for running a car dealership, a game 
identifying movie directors, and an interactive 
system providing health information. 

6 Conclusions 
 
Teaching NLP to students for whom this will be 
the only exposure to the topic, and possibly the 
only exposure to a research-oriented topic, can be 
a successful and enjoyable experience for both 
students and teacher. With good organization, 
students can do useful projects even in one 
semester. 

One factor that has increased student 
satisfaction as well as their mastery of the material 
is the use of concrete assignments where students 
can see for themselves concepts described in class. 
Three such assignments I have successfully used 
involve duplicating Kernighan et al.’s Bayesian 
approach to spelling correction, a study of 
Greenberg’s universals in the student’s native 
language, and a dialogue generation project using 
my research software. Each of these assignments is 
used in one of the three segments of the course: 
statistical approaches to language, introduction to 
syntax, and logic-based approaches to NLP. 

41



 

     

Acknowledgments 
 
Michael Glass of Valparaiso University graciously 
supplied the unigram and bigram counts needed to 
implement Kernighan et al.’s (1990) spelling 
correction algorithm. 

References 
 
Baker, M. (2001). Atoms of Language: The Mind’s 

Hidden Rules of Grammar. New York: Basic Books. 
Freedman, R. (2000). Using a Reactive Planner as the 

Basis for a Dialogue Agent. In Proceedings of the 
Thirteenth Florida Artificial Intelligence Research 
Symposium (FLAIRS 2000), Orlando. 

Greenberg, J. (1966). Some universals of grammar with 
particular reference to the order of meaningful 
elements. In Universals of language, ed. 
J. Greenberg, pp. 73–113. Cambridge, MA: MIT 
Press. 2nd ed. 

Kernighan, M., Church, K., and Gale, W. (1990). A 
spelling correction program based on a noisy channel 
model. In COLING ’90 (Helsinki), v. 2, pp. 205–211. 
Available online from the ACL archive at 
http://acl.ldc.upenn.edu/C/C90/C90-2036.pdf. 

Koedinger, K. (2001). The Student is Not Like Me. In 
Tenth International Conference on Artificial 
Intelligence in Education (AI-ED 2001). San Antonio, 
TX. Keynote address. Slides available online at 
http://www.itsconference.org/content/seminars.htm. 

Mount, I. (2005). Cranky Consumer: Testing Online 
Service Reps. Wall Street Journal, Feb. 1, 2005. 

 
 
 

42



Proceedings of the Second ACL Workshop on Effective Tools and Methodologies for Teaching NLP and CL, pages 43–48,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Language Technology from a European Perspective 
 
 

Hans Uszkoreit, 
Valia Kordoni 

Vladislav Kubon Michael Rosner Sabine Kirchmeyer-
Andersen 

Dept. of Computational 
Linguistics 

UFAL MFF UK Dept. of Computer Sci-
ence and A.I. 

Dept. of Computational 
Linguistics 

Saarland University Charles University University of Malta Copenhagen Business 
School 

D-66041, Saarbruecken, 
Germany 

Prague, Czech Republic Msida, Malta Copenhagen, Denmark 

{uszkoreit, 
kordoni}@coli.uni-

sb.de 

vk@ufal.mff.cuni.cz mike.rosner 
@um.edu.mt 

ska.id@cbs.dk 

 
 

 

 

Abstract 

This paper describes the cooperation of 
four European Universities aiming at at-
tracting more students to European master 
studies in Language and Communication 
Technologies. The cooperation has been 
formally approved within the framework 
of the new European program “Erasmus 
Mundus” as a Specific Support Action in 
2004. The consortium also aims at creat-
ing a sound basis for a joint master pro-
gram in the field of language technology 
and computer science. 

1 European higher education: Erasmus 
Mundus 

The Erasmus Mundus programme [1] is a co-
operation and mobility program in the field of 
higher education. It aims to enhance quality in 
European higher education and to promote inter-
cultural understanding through co-operation with 
non-EU countries. 

The program is intended to strengthen European 
co-operation and international links in higher edu-
cation by supporting high-quality European Mas-
ters Courses, by enabling students and visiting 
scholars from around the world to engage in post-
graduate study at European universities, as well as 

by encouraging the outgoing mobility of European 
students and scholars towards non-EU countries. 

The Erasmus Mundus program comprises four 
concrete actions: 
 
ACTION 1 - Erasmus Mundus Masters Courses: 
high-quality integrated courses at masters level 
offered by a consortium of at least three universi-
ties in at least three different European countries.  
 
ACTION 2 - Erasmus Mundus scholarships: a 
scholarship scheme for non-EU-country graduate 
students and scholars from the whole world. 
 
ACTION 3 - Partnerships: Erasmus Mundus Mas-
ters Courses selected under Action 1 also have the 
possibility of establishing partnerships with non-
EU-country higher education institutions.  
 
ACTION 4 - Enhancing attractiveness: projects 
aimed at enhancing the attractiveness of the Euro-
pean higher education.  

2 LATER 

One of the projects approved for funding (and the 
only one in the field of language technology) in the 
2004 call is called LATER – Language Technol-
ogy Erasmus Mundus [2]. 

LATER falls under action 4 of the program and 
hence addresses the need to enhance the attractive-
ness of European higher education in Language 

43



Technology and Communication (LCT). This need 
will be met through dissemination of the combined 
LCT-related expertise in of a consortium of Uni-
versities whose members are as follows 
 
Saarland University in Saarbruecken (CoLi) 

The Department of Computational Linguistics 
and Phonetics (CoLi) of Saarland University (co-
ordinator) has an excellent international reputation 
for graduate training in Language Technologies, 
and for leading-edge basic research in this area. 
CoLi offers a new M.Sc. program in Language 
Science and Technology [3]. This is an active pro-
gram of basic, applied and cognitive research, 
which combines with state-of-the-art facilities to 
provide students with a rich and stimulating envi-
ronment for their research. Moreover, CoLi offers 
a European Ph.D. program in Language Technol-
ogy and Cognitive Systems. In the past 15 years, 
CoLi has provided postgraduate research training 
to 100 early-stage researchers [4]. 
 
Charles University, Prague (ÚFAL) 

The Institute of Formal and Applied Linguistics 
(ÚFAL) at the Faculty of Mathematics and Physics 
of the Charles University in Prague offers a five-
year master program in Computer Science with 
several specialized branches. One of the branches 
of this program is the masters in Computational 
and Formal Linguistics [7]. It focuses mainly on 
the following four topics: formal description of 
natural language, grammars and automata in lin-
guistics, methods of artificial intelligence in lin-
guistics, as well as methods of automatic natural 
language processing.  

 
University of Malta (UoM) 

The Department of Computer Science and Arti-
ficial Intelligence at the University of Malta, estab-
lished in 1993, teaches both Bachelors and Masters 
degree programs. The 4-year BSc. (Hons) scheme 
include several streams relevant to Language 
Technology including NLP and Computational 
Linguistics itself, Information Retrieval, Semantic 
Web, Internet and Agent technologies. The De-
partment also runs a, one-year research oriented 
M.Sc. program [10]. The areas of specialization 
include the development of computational tools, 
techniques and resources for Maltese, the only se-
mitic language to enjoy official EU status.  
 

Copenhagen Business School (CBS) 
The Department of Computational Linguistics 

is part of the Faculty of Modern Languages at the 
Copenhagen Business School. The Department is 
actively involved in research in the following four 
core fields: formal descriptions of the Danish lan-
guage, modeling of knowledge relevant for LSP, 
LSP databases, and Machine Translation. Embed-
ded in this context is the Master of Language Ad-
ministration (MLA) [9] that the Department of 
Computational Linguistics of the Copenhagen 
Business School offers in co-operation with the 
University of Southern Denmark in Roskilde  

3 Overall aims of the project 

The overall aim of the project is to export the 
common educational experience currently embod-
ied within existing Masters programs of the con-
sortium to scholars and students of non-EU 
countries. 

This aim will be realized by several different 
classes of activity under the rubrics of (i) work-
shops (ii) distance learning tools and (iii) coordina-
tion of a common Master program. We discuss 
these in the following sections. 

3.1 Workshops 

One of the most important types of activities of 
the project is organizing workshops and courses 
both for students from non-EU countries and for 
their teachers. The effect of these events is at least 
twofold – the students from countries or regions 
which do not have an access to any higher degree 
education in LCT get a chance to broaden their 
perspective by listening to lectures of prominent 
scientists and lecturers. The courses will also help 
the consortium to establish better contacts with 
non-EU Universities, teachers, and students which 
will turn out to be invaluable when disseminating 
the common European Master program in Lan-
guage Technology discussed further below. 

Both ÚFAL and CoLi have a long tradition in 
respect of offering such courses to students from 
the broadest possible range of countries. 

ÚFAL has devoted a huge effort in the past to 
raise funding for the organization, once or twice a 
year, of a series of lectures by prominent scientists 
and lecturers from all over the world. This series of 
lectures, the Vilem Mathesius courses [6], have 
become well-known, especially among the Central 

44



and East European students of computational and 
general linguistics.  

This year’s course, held in March under the aus-
pices of LATER, was able to support  the atten-
dance of 50 students from Russia, Ukraine, 
Albania, Bosnia, Serbia, Croatia and Georgia to 
lectures by prominent individuals including two 
ACL award winners. 

At CoLi, the Computational Linguistics Collo-
quium is also a traditional event attracting the at-
tention of both well-known lecturers and a number 
of master and postgraduate students from various 
countries. A second series of lectures in the frame 
of our project was held at the University of Saar-
landes in Saarbruecken in January. 

A third event, organized by the CBS, will take 
place in June. The first day consists of information 
seminar on content management and language 
technology to promote CBS’ newly-launched In-
ternational Master of Language Administration, 
whilst the second will be devoted to diffusion of a 
various issues connected to the Erasmus Mundus 
course.  

Finally, a fourth event, in the form of a work-
shop with invited guest lecturers, is being organ-
ized at the University of Malta that will take place 
in September 2005. The theme of the workshop 
will be Machine Translation which is currently 
very topical given the newly-achieved official 
European status that the local language now enjoys.  

3.2 Coordination of Masters Programs 

A second important aim of the LATER project 
is the definition, coordination and implementation 
of an integrated European Masters Programme in 
LCT by creating a common basis that will appeal 
to both European and non-EU students. 

The rationale behind the creation of such a pro-
gramme is the assumption that LCT now occupies 
a central position in research and education in 
Europe, being a key enabling technology for nu-
merous applications related to the information so-
ciety, although the shortage of qualified 
researchers and developers is slowing down the 
speed of innovation in Europe. 

The proposed programme addresses this short-
age by creating a directed education and training 
opportunity for the next generation of LCT innova-
tors in that will in turn bring educational, social 
and economic benefits. Some specific aims of 

Erasmus Mundus are also addressed: European 
education in LCT will be promoted worldwide and 
its competitiveness increased, increasing at the 
same time the competitiveness of European IT in-
dustries, creating a multilingual information soci-
ety that is accessible for all, and turning the 
``information overload'' into a wealth of accessible 
and useful knowledge. 

3.3 Distance learning tools 

A third aim of LATER is the development of 
effective methods of hosting and integrating non-
EU students, for example by developing distance 
learning tools and joint distance education modules, 
in order to facilitate outreach by online dissemina-
tion of courses. An example of such modules, as 
well as for computer-based tools, is being devel-
oped on the basis of the virtual courses CoLi has 
developed in the last 3 years in the framework of 
the MiLCA project (Medienintensive Lehrmodule 
in der Computerlinguistik-Ausbildung1). 

We also plan to explore the use of collaboration 
technologies based on Sitescape [16], that have 
been developed at CBS for academic collaboration, 
for the management of certain aspects of the pro-
posed Masters programme.

The fruits of various initiatives already under 
way at UoM will be exploited and extended during 
the life of the proposed course. These include in-
teractive web based course delivery [13], just-in-
time support based on P2P architectures [14], 
XML-based frameworks for online courses [15], 
the latter being developed within as a part of the 
Mediterranean Virtual University (MVU) 
EUMEDIS project [17]. 
 

4 Integrated European LCT Masters 
Programme 

Whilst many agree with the above assessment of 
the importance of LCT, they disagree on the defi-
nition of “integrated course”. Fortunately, we can 
turn to the comprehensive definition supplied by 
the EU call, the central element of which is “a 
jointly developed curriculum or full recognition by 
the consortium of modules which are developed 

                                                           
1 for more see http://milca.sfs.uni-
tuebingen.de/index.html. 

45



and delivered separately, but make up a common 
standard Masters course.” 

Again, some turn away in horror at the notion of 
a standard curriculum in this area, the claim being 
that there is already enough standardization in the 
world, so why add to it? The point is, any pro-
gramme dealing with LCT has to address the fact 
that it is highly interdisciplinary, including, at the 
core, computer science, computational and theo-
retical linguistics, and mathematics, and at the pe-
riphery, a wide variety of other subjects including 
electrical engineering, psychology, cognitive sci-
ence artificial intelligence etc.  

With such a large number of disciplines in-
volved, it is practically impossible for a single 
University to excel in all of them. However if more 
than one University is involved, various kinds of 
curriculum sharing can be envisaged and so a 
much higher level of coverage becomes entirely 
achievable.  

Put another way, curriculum sharing, together 
with common admission and assessment proce-
dures envisaged, allows delivery of a complex 
course to be handled by what is effectively a “su-
peruniversity”. 

4.1 Integration in practice 

To put this idea into practice we are proposing 
that students will get the chance to attend a two 
years’ master program at two universities chosen 
from a larger consortium, which is currently being 
put together. It includes the four original partners 
of the LATER project and the following new part-
ners: University of Amsterdam (UvA) in the Neth-
erlands, Free University of Bolzano-Bozen (FUB) 
in Italy, the Universities of Nancy 1 and Nancy 2 
in France, Roskilde University in Denmark and 
Utrecht University in the Netherlands. 

Studying in multi-national groups at two uni-
versities in Europe, with English as instruction 
language, accompanied by language classes in an-
other European language, will contribute to the 
students' preparation for the increasing globaliza-
tion of science, commerce and industry. The 
course also will also prepare students for follow-up 
Ph.D. studies provided by the participating partners 
and others. 

The proposed programme follows the Bologna 
model for higher education in Europe and com-

prises 120 ECTS2 credits, 30 of which make up the 
Masters dissertation, and 90 of which are course-
work credits structured as follows: 
• Compulsory modules in Computer Science (28 

ECTS) 
• Compulsory modules in Language Technology 

(28 ECTS) 
• Advanced modules in Language Technology, 

Computational Linguistics and Computer Sci-
ence (34 ECTS) 
Coursework is distributed over three semesters, 

while the dissertation is supposed to be completed 
in the fourth semester  

It is important to underline that this structure 
permits a considerable degree of variation. First, a 
module might be “implemented” by different set of 
courses at different Universities. Secondly, the ad-
vanced modules are electives, based on the specific 
strengths in research and teaching of individual 
partner institutions. There is no requirement that 
the advanced modules offered by different Univer-
sities should coincide. 

Let us now introduce individual modules in 
more detail. Parentheses indicate ECTS credits. 

Computer Science Modules 

The Computer Science Modules are as follows:  
 
• Logic, Computability and Complexity (≥ 9) 

Topics: Logic & inference; Computability the-
ory; Complexity theory; Discrete mathematics 

• Formal Languages and Algorithms (≥ 9) 
Topics: Formal grammars and languages hier-
archy; Parsing and compiler design; Search 
techniques and constraint resolution; Auto-
mated Learning 

• Data Structures, Data Organization and 
Processing (≥ 6) 
Topics: Algebraic data types; Relational data-
bases; Semi-structured data and XML; Informa-
tion retrieval; Digital libraries 

• Advanced Modules and Applications(≥ 6) 
Topics: Artificial Intelligence, Knowledge 
Ŕepresentation, Automated Reasoning, 
Semantic Web, Neural Networks, Machine 
Learning etc. Students are expected to obtain at 
least 9 ECTS credits from each of the first two 

                                                           
2 European Credit Transfer System: a standard measure that is 
used in Europe for comparing the size of courses. 

46



modules and 6 ECTS credits from each of the 
remaining two modules.  

Language Technology Modules 

The Language Technology Modules are these: 
• Foundations of Language Technology (≥ 6) 

Topics: Statistical methods; Symbolic methods; 
Cognition; Corpus Linguistics; Text and 
speech; Foundations of Linguistics 

• Computational Syntax and Morphology (≥ 9) 
Topics: Finite state methods; Probabilistic ap-
proaches; Formal grammars; Tagging; Chunk-
ing; Parsing 

• Computational Semantics, Pragmatics and 
Discourse (≥ 6) 
Topics: Syntax-semantics interface; Semantic 
construction; Dialogue; Formal semantics 

• Advanced Modules and Applications 
(≥ 6) Topics: Machine Translation, Informa-
tion Retrieval, Speech Recognition, Question 
Answering, Psycholinguistics etc.. 

4.2 Main issues to be addressed  

Although it was not explicitly mentioned in the 
previous text, the integration of existing master 
programmes is done exclusively pair-wise. The 
students can’t study at three universities (although 
the rules of the Erasmus Mundus programme allow 
such triangular cooperation). The restrictions 
within our consortia go even further – the students 
do not have a free choice of a combination of any 
two universities from within the consortium, they 
must choose one of the pairs offered by the consor-
tium. 

The reason for such a restriction is pretty simple 
- it turned out that although all members of the 
consortia in principle provide education both in 
Computer Science and in Computational Linguis-
tics, they differ in the balance between these two 
fields. Within the consortium, there are universities 
with a strong stress on a Computer Science courses, 
aiming at a complex education including the sound 
theoretical background in the field, while other 
universities offer a more practically oriented edu-
cational scheme, stressing the concepts attracting a 
wider audience, e.g. various types of web tech-
nologies, databases, data mining etc.  

As a result of this, each university participates in 
an average of four bilateral partnerships. We think 

that the fact that the consortium consists of univer-
sities which are not identical greatly increases the 
variety of options available. They have a chance to 
choose those universities which are best suited to 
their preferences whether these are in terms of sub-
ject area emphasis or geographical region.  

The preparation of the integrated Master pro-
gramme doesn’t stop at matching the universities 
and lectures offered. Erasmus Mundus is not just a 
cooperation, it is really a completely new scheme 
which must also address practical issues as grades, 
examination procedures, admission procedure, tui-
tion fees, defense of the thesis, local specialties 
existing at some partner universities etc.

The proposed Masters programme is something 
new. It is the first attempt to create a comprehen-
sive Masters degree in this subject area that con-
forms to all the legalistic requirements of each 
participating University. Students completing the 
course will possess a Masters degree delivered by 
two of the participant Universities. This is in con-
trast to the existing European Master in Language 
and Speech [11], which is implemented through a 
certification procedure that does not replace any 
legal degree that a student may obtain from a Uni-
versity.
 

5 Conclusion 

Although the process of establishing a new Euro-
pean Master programme in Language Technology 
was really very complicated, time consuming and 
painful, there are definitely already at this stage 
very positive results. 

In order to submit a proposal, our consortium 
has managed to overcome all formal and structural 
differences among all partners, it has found a rea-
sonable model of cooperation, it has developed a 
high-quality master programme open both to Euro-
pean and non-EU students. 

The wide variety of modules and topics offered 
combined with a relatively high degree of freedom 
of choice for students allows for individual pairs of 
partner universities to promote those courses and 
fields in which they excel. The students are of 
course offered individual guidance from consor-
tium members in order to allow them to identify 
that pair of universities which best suits their indi-
vidual needs and preferences 

47



The strategy we have chosen – the initial coop-
eration of a smaller consortium in the LATER pro-
ject, promoting LTC education among the students 
from outside the EU and testing our ability both to 
offer a coordinated high-quality education and to 
attract a reasonable amount of interested students, 
has turned to be a sound one. It also helped to 
solve some issues in the larger consortium based 
on the experience from the smaller one. 

References  

[1] http://europa.eu.int/comm/education
/programmes/mundus/index_en.html 
(Erasmus Mundus web page) 

[2] http://europa.eu.int/comm/education
/programmes/mundus/projects/2004/47
.pdf (The description of the LATER pro-
ject) 

[3] http://www.coli.uni-
saarland.de/msc/ (the MSc website at 
the University of Saarlandes in Saar-
bruecken) 

[4] http://www.coli.uni-
saarland.de/kvv/ (courses at the Dept. 
of Computational Linguistics at the Uni-
versity of Saarlandes in Saarbruecken) 

[5] http://www.coli.uni-
saarland.de/courses/late2/ (the web 
page of the Language Technology II 
course in Saarbruecken) 

[6] http://ufal.mff.cuni.cz/vmc/vmc_ls2
0.html (the web page of the Vilem 
Mathesius Lecture Series) 

[7] http://www.mff.cuni.cz/toUTF8.en/st
udium/bcmgr/ok/i1b53.htm (the master 
programme in Mathematical Linguistics at 
the Charles University in Prague) 

[8] http://web.cbs.dk/stud_pro/clmdatau
k.shtml (the master program at the Co-
penhagen Business School) 

[9] http://uk.cbs.dk/mla (Master of Lan-
guage Administration at the Copenhagen 
Business School) 

[10] http://www.cs.um.edu.mt/rese
arch/pgEnquiries.html (the master 
program at the University of Malta) 

[11] http://www.cstr.ed.ac.uk/e
uromasters (European Masters in 
Language and Speech) 

[12] A.Burchardt, S. Walter and M. 
Pinkal. 2004. "MiLCA -- Distance Educa-
tion in Computational Linguistics". In 
Szucs, Andras and Bo, Ingeborg 
(eds.),  New Challenges and Partnerships 
in an Enlarged European Union – Proc. 
2004 EDEN Conference, Budapest, pp. 
351-356. 

[13] Ellul, C., 2002, “Just-in-Time Lec-
ture Delivery, Management and Student 
Support System”, BSc. Project report, 
Dept. CSAI, University of Malta. 

[14] Bezzina, R., 2002, “Peer-to-Peer 
Just-in-Time Support for Curriculum based 
Learning”, BSc. Project report, Dept. 
CSAI, University of Malta. 

[15] Cachia, E., and Micallef, M., forth-
coming, “A Universal XML/XSLT 
Framework for Online Courses”, Proc. In-
ternational Conference  on IT-Based 
Higher Education And Training (ITHET)”, 
Dominican Republic. 

[16] www.sitescape.com : SiteScape 
corporate website. 

[17] http://www.eumedis.net/en/project/
22: Mediterranean Virtual University 
(MVU) description. 

48



Proceedings of the Second ACL Workshop on Effective Tools and Methodologies for Teaching NLP and CL, pages 49–56,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Natural Language Processing at the School of Information Studies for Africa

Bj örn Gambäck
Userware Laboratory

Swedish Institute of Computer Science
Box 1263, SE–164 29 Kista, Sweden

gamback@sics.se

Gunnar Eriksson
Department of Linguistics

Stockholm University
SE–106 91 Stockholm, Sweden

gunnar@ling.su.se

Athanassia Fourla
Swedish Program for ICT in Developing Regions

Royal Institute of Technology/KTH
Forum 100, SE–164 40 Kista, Sweden

afourla@dsv.su.se

Abstract

The lack of persons trained in computa-
tional linguistic methods is a severe obsta-
cle to making the Internet and computers
accessible to people all over the world in
their own languages. The paper discusses
the experiences of designing and teach-
ing an introductory course in Natural Lan-
guage Processing to graduate computer
science students at Addis Ababa Univer-
sity, Ethiopia, in order to initiate the ed-
ucation of computational linguists in the
Horn of Africa region.

1 Introduction

The development of tools and methods for language
processing has so far concentrated on a fairly small
number of languages and mainly on the ones used
in the industrial part of the world. However, there
is a potentially even larger need for investigating the
application of computational linguistic methods to
the languages of the developing countries: the num-
ber of computer and Internet users of these coun-
tries is growing, while most people do not speak the
European and East-Asian languages that the com-
putational linguistic community has so far mainly
concentrated on. Thus there is an obvious need to
develop a wide range of applications in vernacular
languages, such as translation systems, spelling and
grammar checkers, speech synthesis and recogni-
tion, information retrieval and filtering, and so forth.

But who will develop those systems? A prerequisite
to the creation of NLP applications is the education
and training of computer professionals skilled in lo-
calisation and development of language processing
resources. To this end, the authors were invited to
conduct a course in Natural Language Processing at
the School of Information Studies for Africa, Addis
Ababa University, Ethiopia. As far as we know, this
was the first computational linguistics course given
in Ethiopia and in the entire Horn of Africa region.

There are several obstacles to progress in lan-
guage processing for new languages. Firstly, the par-
ticulars of a language itself might force new strate-
gies to be developed. Secondly, the lack of already
available language processing resources and tools
creates a vicious circle: having resources makes pro-
ducing resources easier, but not having resources
makes the creation and testing of new ones more dif-
ficult and time-consuming.

Thirdly, there is often a disturbing lack of interest
(and understanding) of the needs of people to be able
to use their own language in computer applications
— a lack of interest in the surrounding world, but
also sometimes even in the countries where a lan-
guage is used (“Aren’t those languages going to be
extinct in 50–100 years anyhow?” and “Our com-
pany language is English” are common comments).

And finally, we have the problem that the course
described in this paper mainly tries to address, the
lack of skilled professionals and researchers with
knowledge both of language processing techniques
and of the domestic language(s) in question.

49



The rest of the paper is laid out as follows: The next
section discusses the language situation in Ethiopia
and some of the challenges facing those trying to in-
troduce NLP methods in the country. Section 3 gives
the background of the students and the university,
before Section 4 goes into the effects these factors
had on the way the course was designed.

The sections thereafter describe the actual course
content, with Section 5 being devoted to the lectures
of the first half of the course, on general linguistics
and word level processing; Section 6 is on the sec-
ond set of lectures, on higher level processing and
applications; while Section 7 is on the hands-on ex-
ercises we developed. The evaluation of the course
and of the students’ performance is the topic of Sec-
tion 8, and Section 9 sums up the experiences and
novelties of the course and the effects it has so far
had on introducing NLP in Ethiopia.

2 Languages and NLP in Ethiopia

Ethiopia was the only African country that managed
to avoid being colonised during the big European
power struggles over the continent during the 19th
century. While the languages of the former colonial
powers dominate the higher educational system and
government in many other countries, it would thus
be reasonable to assume that Ethiopia would have
been using a vernacular language for these purposes.
However, this is not the case. After the removal
of the Dergue junta, the Constitution of 1994 di-
vided Ethiopia into nine fairly independent regions,
each with its own “nationality language”, but with
Amharic being the language for countrywide com-
munication. Until 1994, Amharic was also the prin-
cipal language of literature and medium of instruc-
tion in primary and secondary schools, but higher
education in Ethiopia has all the time been carried
out in English (Bloor and Tamrat, 1996).

The reason for adopting English as theLingua
Francaof higher education is primarily the linguis-
tic diversity of the country (and partially also an ef-
fect of the fact that British troops liberated Ethiopia
from a brief Italian occupation during the Second
World War). With some 70 million inhabitants,
Ethiopia is the third most populous African country
and harbours more than 80 different languages —
exactly how many languages there are in a country

is as much a political as a linguistic issue; the count
of languages of Ethiopia and Eritrea together thus
differs from 70 up to 420, depending on the source;
with, for example, the Ethnologue (Gordon, 2005)
listing 89 different ones.

Half-a-dozen languages have more than 1 million
speakers in Ethiopia; three of these are dominant:
the language with most speakers today is probably
Oromo, a Cushitic language spoken in the south and
central parts of the country and written using the
Latin alphabet. However, Oromo has not reached
the same political status as the two large Semitic
languages Tigrinya and Amharic. Tigrinya is spo-
ken in Northern Ethiopia and is the official lan-
guage of neighbouring Eritrea; Amharic is spoken
in most parts of the country, but predominantly in
the Eastern, Western, and Central regions. Oromo
and Amharic are probably two of the five largest lan-
guages on the continent; however, with the dramatic
population size changes in many African coun-
tries in recent years, this is difficult to determine:
Amharic is estimated to be the mother tongue of
more than 17 million people, with at least an addi-
tional 5 million second language speakers.

As Semitic languages, Amharic and Tigrinya are
distantly related to Arabic and Hebrew; the two lan-
guages themselves are probably about as close as
are Spanish and Portuguese (Bloor, 1995). Speak-
ers of Amharic and Tigrinya are mainly Orthodox
Christians and the languages draw common roots
to the ecclesiastic Ge’ez still used by the Coptic
Church. Both languages use the Ge’ez (Ethiopic)
script, written horizontally and left-to-right (in con-
trast to many other Semitic languages). Written
Ge’ez can be traced back to at least the 4th century
A.D. The first versions of the script included con-
sonants only, while the characters in later versions
represent consonant-vowel pairs. Modern Amharic
words have consonantal roots with vowel variation
expressing difference in interpretation.

Several computer fonts have been developed for
the Ethiopic script, but for many years the languages
had no standardised computer representation. An
international standard for the script was agreed on
only in year 1998 and later incorporated into Uni-
code, but nationally there are still about 30 differ-
ent “standards” for the script, making localisation of
language processing systems and digital resources

50



difficult; and even though much digital information
is now being produced in Ethiopia, no deep-rooted
culture of information exchange and dissemination
has been established. In addition to the digital di-
vide, several other factors have contributed to this
situation, including lack of library facilities and cen-
tral resource sites, inadequate resources for digital
production of journals and books, and poor docu-
mentation and archive collections. The difficulties
of accessing information have led to low expecta-
tions and consequently under-utilisation of existing
information resources (Furzey, 1996).

UNESCO (2001) classifies Ethiopia among the
countries with “moribund or seriously endangered
tongues”. However, the dominating languages of
the country are not under immediate threat, and seri-
ous efforts have been made in the last years to build
and maintain linguistic resources in Amharic: a lot
of work has been carried out mainly by Ethiopian
Telecom, Ethiopian Science and Technology Com-
mission and Addis Ababa University, as well as by
Ethiopian students abroad, in particular in Germany,
Sweden and the United States. Except for some ini-
tial efforts for the related Tigrinya, work on other
Ethiopian languages has so far been scarce or non-
existent — see Alemu et al. (2003) or Eyassu and
Gamb̈ack (2005) for short overviews of the efforts
that have been made to date to develop language pro-
cessing tools for Amharic.

One of the reasons for fostering research in lan-
guage processing in Ethiopia was that the exper-
tise of a pool of researchers in the country would
contribute to maintaining those Ethiopian languages
that are in danger of extinction today. Starting
with Amharic and developing a robust linguistic re-
source base in the country, together with including
the Amharic language in modern language process-
ing tools could create the critical mass of experience,
which is necessary in order to expand to other ver-
nacular languages, too.

Moreover, the development of those conditions
that lay the foundations for language and speech
processing research and development in the country
would prevent potential brain drain from Ethiopia;
instead of most language processing work being
done by Ethiopian students abroad (at present), in
the future it could be done by students, researchers
and professionals inside the country itself.

3 Infrastructure and Student Body

Addis Ababa University (AAU) is Ethiopia’s old-
est, largest and most prestigious university. The De-
partment of Information Science (formerly School
of Information Studies for Africa) at the Faculty of
Informatics conducts a two-year Master’s Program.
The students admitted to the program come from
all over the country and have fairly diverse back-
grounds. All have a four-year undergraduate degree,
but not necessarily in any computer science-related
subject. However, most of the students have been
working with computers for some time after their
under-graduate studies. Those admitted to the pro-
gram are mostly among the top students of Ethiopia,
but some places are reserved for public employees.

The initiative of organising a language process-
ing course as part of the Master’s Program came
from the students themselves: several students ex-
pressed interest in writing theses on speech and lan-
guage subjects, but the faculty acknowledged that
there was a severe lack of staff qulified to teach the
course. In fact, all of the university is under-staffed,
while admittance to the different graduate programs
has been growing at an enormous speed; by 400%
only in the last two years. There was already an
ICT support program in effect between AAU and
SAREC, the Department for Research Cooperation
at the Swedish International Development Coopera-
tion Agency. This cooperation was used to establish
contacts with Stockholm University and the Swedish
Institute of Computer Science, that both had experi-
ence in developing computational linguistic courses.

Information Science is a modern department with
contemporary technology. It has two computer labs
with PCs having Internet access and lecture rooms
with all necessary aids. A library supports the teach-
ing work and is accessible both to students and staff.
The only technical problems encountered arose from
the frequent power failures in the country that cre-
ated difficulties in teaching and/or loss of data. In-
ternet access in the region is also often slow and un-
reliable. However, as a result of the SAREC ICT
support program, AAU is equipped with both an in-
ternal network and with broadband connection to the
outside world. The central computer facilities are
protected from power failures by generators, but the
individual departments have no such back-up.

51



4 Course Design

The main aim of the course plan was to introduce
the students successfully to the main subjects of lan-
guage and speech processing and trigger their inter-
est in further investigation. Several factors were im-
portant when choosing the course materials and de-
ciding on the content and order of the lectures and
exercises, in particular the fact that the students did
not have a solid background in either Computer Sci-
ence or Linguistics, and the time limitations as the
course could only last for ten weeks. As a result, a
curriculum with a holistic view of NLP was built in
the form of a “crash course” (with many lectures and
labs per week, often having to use Saturdays too)
aiming at giving as much knowledge as possible in
a very short time.

The course was designed before the team travelled
to Ethiopia, but was fine-tuned in the field based on
the day-by-day experience and interaction with the
students: even though the lecturers had some knowl-
edge of the background and competence of the stu-
dents, they obviously would have to be flexible and
able to adjust the course set-up, paying attension
both to the specific background knowledge of the
students and to the students’ particular interests and
expectations on the course.

From the outset, it was clear that, for example,
very high programming skills could not be taken for
granted, as given that this is not in itself a require-
ment for being admitted to the Master’s Program.
On the other hand, it was also clear thatsomesuch
knowledge could be expected, this course would be
the last of the program, just before the students were
to start working on their theses; and several labora-
tory exercises were developed to give the students
hands-on NLP experience.

Coming to a department as external lecturers is
also in general tricky and makes it more difficult to
know what actual student skill level to expect. The
lecturer team had quite extensive previous experi-
ences of giving external courses this way (in Sweden
and Finland) and thus knew that “the home depart-
ment” often tends to over-estimate the knowledge of
their students; another good reason for trying to be
as flexible as possible in the course design. and for
listening carefully to the feedback from the students
during the course.

The need for flexibility was, however, somewhat
counter-acted by the long geographical distance and
time constraints. It was necessary to give the course
in about two months time only, and with one of the
lecturers present during the first half of the course
and the other two during the second half, with some
overlap in the middle. Thus the course was split into
two main parts, the first concentrating on general lin-
guistic issues, morphology and lexicology, and the
second on syntax, semantics and application areas.

The choice of reading was influenced by the need
not to assume very elaborated student programming
skills. This ruled out books based mainly on pro-
gramming exercises, such as Pereira and Shieber
(1987) and Gazdar and Mellish (1989), and it was
decided to use Jurafsky and Martin (2000) as the
main text of the course. The extensive web page
provided by those authors was also a factor, since it
could not be assumed that the students would have
full-time access to the actual course book itself. The
costs of buying a regular computer science book is
normally too high for the average Ethiopian student.

To partially ease the financial burden on the stu-
dents, we brought some copies of the book with us
and made those available at the department library.
We also tried to make sure that as much as possible
of the course material was available on the web. In
addition to the course book we used articles on spe-
cific lecture topics particularly material on Amharic,
for which we also created a web page devoted to on-
line Amharic resources and publications.

The following sections briefly describe the differ-
ent parts of the course and the laboratory exercises.
The course web page contains the complete course
materials including the slides from the lectures and
the resources and programs used for the exercises:

www.sics.se/humle/ile/kurser/Addis

5 Linguistics and word level processing

The aim of the first part of the course was to give the
students a brief introduction to Linguistics and hu-
man languages, and to introduce common methods
to access, manipulate, and analyse language data at
the word and phrase levels. In total, this part con-
sisted of seven lectures that were accompanied by
three hands-on exercises in the computer laboratory.

52



5.1 Languages: particularities and structure

The first two lectures presented the concept of a
human language. The lectures focused around five
questions: What is language? What is the ecolog-
ical situation of the world’s languages and of the
main languages of Ethiopia? What differences are
there between languages? What makes spoken and
written modalities of language different? How are
human languages built up?

The second lecture concluded with a discussion of
what information you would need to build a certain
NLP application for a language such as Amharic.

5.2 Phonology and writing systems

Phonology and writing systems were addressed in
a lecture focusing on the differences between writ-
ing systems. The SERA standard for transliterating
Ethiopic script into Latin characters was presented.
These problems were also discussed in a lab class.

5.3 Morphology

After a presentation of general morphological con-
cepts, the students were given an introduction to
the morphology of Amharic. As a means of hand-
ling morphology, regular languages/expressions and
finite-state methods were presented and their limi-
tations when processing non-agglutinative morphol-
ogy were discussed. The corresponding lab exercise
aimed at describing Amharic noun morphology us-
ing regular expressions.

In all, the areas of phonology and morphology
were allotted two lectures and about five lab classes.

5.4 Words, phrases and POS-tagging

Under this heading the students were acquainted
with word level phenomena during two lectures. To-
kenisation problems were discussed and the concept
of dependency relations introduced. This led on
to the introduction of the phrase-level and N-gram
models of syntax. As examples of applications us-
ing this kind of knowledge, different types of part-
of-speech taggers using local syntactic information
were discussed. The corresponding lab exercise,
spanning four lab classes, aimed at building N-gram
models for use in such a system.

The last lecture of the first part of the course
addressed lexical semantics with a quick glance at
word sense ambiguation and information retrieval.

6 Applications and higher level processing

The second part of the course started with an
overview lecture on natural language processing
systems and finished off by a final feedback lecture,
in which the course and the exam were summarised
and students could give overall feedback on the total
course contents and requirements.

The overview lecture addressed the topic of what
makes up present-day language processing systems,
using the metaphor of Douglas Adams’ Babel fish
(Adams, 1979): “What components do we need to
build a language processing system performing the
tasks of the Babel fish?” — to translate unrestricted
speech in one language to another language — with
Gamb̈ack (1999) as additional reading material.

In all, the second course part consisted of nine
regular lectures, two laboratory exercises, and the
final evaluation lecture.

6.1 Machine Translation

The first main application area introduced was Ma-
chine Translation (MT). The instruction consisted
of two 3-hour lectures during which the following
subjects were presented: definitions and history of
machine translation; different types of MT systems;
paradigms of functional MT systems and translation
memories today; problems, terminology, dictionar-
ies for MT; other kinds of translation aids; a brief
overview of the MT market; MT users, evaluation,
and application of MT systems in real life. Parts of
Arnold et al. (1994) complemented the course book.

There was no obligatory assignment in this part
of the course, but the students were able to try out
and experiment with online machine translation sys-
tems. Since there is no MT system for Amharic, they
used their knowledge of other languages (German,
French, English, Italian, etc.) to experience the use
of automatic translation tools.

6.2 Syntax and parsing

Three lectures and one laboratory exercise were de-
voted to parsing and the representation of syntax,
and to some present-day syntactic theories. After in-
troducing basic context-free grammars, Dependency
Grammar was taken as an example of a theory un-
derlying many current shallow processing systems.
Definite Clause Grammar, feature structures, the

53



concept of unification, and subcategorisation were
discussed when moving on to more deeper-level,
unification-based grammars.

In order to give the students an understanding of
the parsing problem, both processing of artificial and
natural languages was discussed, as well as human
language processing, in the view of Kimball (1973).
Several types of parsers were introduced, with in-
creasing complexity: top-down and bottom-up pars-
ing; parsing with well-formed substring tables and
charts; head-first parsing and LR parsing.

6.3 Semantics and discourse

Computational semantics and pragmatics were cov-
ered in two lectures. The first lecture introduced
the basic tools used in current approaches to se-
mantic processing, such as lexicalisation, compo-
sitionality and syntax-driven semantic analysis, to-
gether with different ways of representing meaning:
first-order logic, model-based and lambda-based se-
mantics. Important sources of semantic ambiguity
(quantifiers, for example) were discussed together
with the solutions allowed by using underspecified
semantic representations.

The second lecture continued the semantic repre-
sentation thread by moving on to how a complete
discourse may be displayed in a DRS, a Discourse
Representation Structure, and how this may be used
to solve problems like reference resolution. Dia-
logue and user modelling were introduced, covering
several current conversational systems, with Zue and
Glass (2000) and Wilks and Catizone (2000) as extra
reading material.

6.4 Speech technology

The final lecture before the exam was the only one
devoted to speech technology and spoken language
translation systems. Some problems in current spo-
ken dialogue systems were discussed, while text-to-
speech synthesis and multimodal synthesis were just
briefly touched upon. The bulk of the lecture con-
cerned automatic speech recognition: the parts and
architectures of state-of-the-art speech recognition
systems, Bayes’ rule, acoustic modeling, language
modeling, and search strategies, such as Viterbi and
A-star were introduced, as well as attempts to build
recognition systems based on hybrids between Hid-
den Markov Models and Artificial Neural Networks.

7 Laboratory Exercises

Even though we knew before the course that the stu-
dents’ actual programming skills were not extensive,
we firmly believe that the best way to learn Compu-
tational Linguistics is by hands-on experience. Thus
a substantial part of the course was devoted to a set
of laboratory exercises, which made up almost half
of the overall grade on the course.

Each exercise was designed so that there was an
(almost obligatory) short introductory lecture on the
topic and the requirements of the exercise, followed
by several opportunities for the students to work on
the exercise in the computer lab under supervision
from the lecturer. To pass, the students both had
to show a working system solving the set problem
and hand in a written solution/explanation. Students
were allowed to work together on solving the prob-
lem, while the textual part had to be handed in by
each student individually, for grading purposes.

7.1 Labs 1–3: Word level processing

The laboratory exercises during the first half of the
course were intended to give the students hands-
on experience of simple language processing using
standard UNIX tools and simple Perl scripts. The
platform was cygwin,1 a freeware UNIX-like envi-
ronment for Windows. The first two labs focused
on regular expressions and the exercises included
searching using ‘grep’, simple text preprocessing us-
ing ‘sed’, and building a (rather simplistic) model
of Amharic noun morphology using regular expres-
sions in (template) Perl scripts. The third lab exer-
cise was devoted to the construction of probabilis-
tic N-gram data from text corpora. Again standard
UNIX tools were used.

Due to the students’ lack of experience with this
type of computer processing, more time than ex-
pected was spent on acquainting them with the
UNIX environment during the first lab excercises.

7.2 Labs 4–5: Higher level processing

The practical exercises during the second half of
the course consisted of a demo and trial of on-line
machine translation systems, and two obligatory as-
signments, on grammars and parsing and on seman-
tics and discourse, respectively. Both these exercises

1www.cygwin.com

54



consisted of two parts and were carried out in the
(freeware) SWI-Prolog framework.2

In the first part of the fourth lab exercise, the
students were to familiarise themselves with basic
grammars by trying out and testing parsing with a
small context-free grammar. The assignments then
consisted in extending this grammar both to add cov-
erage and to restrict it (to stop “leakage”). The
second part of the lab was related to parsing. The
students received parsers encoding several different
strategies: top-down, bottom-up, well-formed sub-
string tables, head parsing, and link parsing (a link
parser improves a bottom-up parser in a similar way
as a WFST parser improves a top-down parser, by
saving partial parses). The assignments included
creating a test corpus for the parsers, running the
parsers on the corpus, and trying to determine which
of the parsers gave the best performance (and why).

The assignments of the fifth lab were on lambda-
based semantics and the problems arising in a gram-
mar when considering left-recursion and ambiguity.
The lab also had a pure demo part where the students
tried out Johan Bos’ “Discourse Oriented Represen-
tation and Inference System”, DORIS.3

8 Course Evaluation and Grading

The students were encouraged from the beginning
to interact with the lecturers and to give feedback
on teaching and evaluation issues. With the aim of
coming up with the best possible assessment strat-
egy — in line with suggestions in work reviewed by
Elwood and Klenowski (2002), three meetings with
the students took place at the beginning, the middle,
and end of the course. In these meetings, students
and lecturers together discussed the assessment cri-
teria, the form of the exam, the percentage of the
grade that each part of the exam would bear, and
some examples of possible questions.

This effort to better reflect the objectives of the
course resulted in the following form of evaluation:
the five exercises of the previous section were given,
with the first one carrying 5% of the total course
grade, the other four 10% each, and an additional
written exam (consisting of thirteen questions from
the whole curriculum taught) 55%.

2www.swi-prolog.org
3www.cogsci.ed.ac.uk/ ∼jbos/doris

While correcting the exams, the lecturers tried to
bear in mind that this was the first acquaintance of
the students with NLP. Given the restrictions on the
course, the results were quite positive, as none of the
students taking the exam failed the course. After the
marking of the exams an assessment meeting with
all the students and the lecturers was held, during
which each question of the exam was explained to-
gether with the right answer. The evaluation of the
group did not present particular problems. For grad-
ing, the American system was used according to the
standards of Addis Ababa University (i.e., with the
grades ’A+’, ’A’, ..., ’F’).

9 Results

Except for the contents of the course, the main inno-
vation for the Information Science students was that
the bulk of the course reading list and relevant ma-
terials were available online. The students were able
to access the materials according to their own needs
— in terms of time schedule — and download and
print it without having to go to the library to copy
books and papers.

Another feature of the on-line availability was that
after the end of the course and as the teaching team
left the country, the supervision of the students’ the-
ses was carried out exclusively through the Internet
by e-mail and chat. The final papers with the signa-
tures of the supervisors were even sent electronically
to the department. The main difficulty that had to be
overcome concerned the actual writing of the theses;
the students were not very experienced in producing
academic text and required some distance training,
through comments and suggestions, on the subject.

The main results of the course were that, based
strictly on the course aims, students were success-
fully familiarised with the notion of NLP. This also
led to eight students choosing to write their Mas-
ter theses on speech and language issues: two on
speech technology, on text-to-speech synthesis for
Tigrinya and on speech recognition for Amharic;
three on Amharic information access, on informa-
tion filtering, on information retrieval and text cat-
egorisation, and on automatic text summarisation;
one on customisation of a prototype English-to-
Amharic transfer-based machine translation system;
one on predictive SMS (Short Message Service) text

55



input for Amharic; and one on Amharic part-of-
speech tagging. Most of these were supervised from
Stockholm by the NLP course teaching team, with
support from the teaching staff in Addis Ababa.

As a short-term effect, several scientific papers
were generated by the Master theses efforts. As
a more lasting effect, a previously fairly unknown
field was not only tapped, but also triggered the stu-
dents’ interest for further research. Another impor-
tant result was the strengthening of the connections
between Ethiopian and Swedish academia, with on-
going collaboration and supervision, also of students
from later batches. Still, the most important long-
term effect may have been indirect: triggered by the
success of the course, the Addis Ababa Faculty of
Informatics in the spring of 2005 decided to estab-
lish a professorship in Natural Language Processing.

10 Acknowledgments

Thanks to the staff and students at the Department
of Information Science, Addis Ababa University,
in particular Gashaw Kebede, Kinfe Tadesse, Saba
Amsalu, and Mesfin Getachew; and to Lars Asker
and Atelach Alemu at Stockholm University.

This NLP course was funded by the Faculty of
Informatics at Addis Ababa University and the ICT
support program of SAREC, the Department for
Research Cooperation at Sida, the Swedish Inter-
national Development Cooperation Agency.

References

Douglas Adams. 1979.The Hitch-Hiker’s Guide to the
Galaxy. Pan Books, London, England.

Atelach Alemu, Lars Asker, and Mesfin Getachew. 2003.
Natural language processing for Amharic: Overview
and suggestions for a way forward. InProceedings
of the 10th Conference on Traitement Automatique des
Langues Naturelles, volume 2, pages 173–182, Batz-
sur-Mer, France, June.

Douglas Arnold, Lorna Balkan, Siety Meijer, R. Lee
Humphreys, and Louisa Sadler. 1994.Machine Trans-
lation: An Introductory Guide. Blackwells-NCC,
London, England.

Thomas Bloor and Wondwosen Tamrat. 1996. Issues
in Ethiopian language policy and education.Jour-
nal of Multilingual and Multicultural Development,
17(5):321–337.

Thomas Bloor. 1995. The Ethiopic writing system: a
profile. Journal of the Simplified Spelling Society,
19:30–36.

Jannette Elwood and Val Klenowski. 2002. Creating
communities of shared practice: the challenges of as-
sessment use in learning and teaching.Assessment &
Evaluation in Higher Education, 27(3):243–256.

Samuel Eyassu and Björn Gamb̈ack. 2005. Classifying
Amharic news text using Self-Organizing Maps. In
ACL 2005 Workshop on Computational Approaches to
Semitic Languages, Ann Arbor, Michigan, June. ACL.

Jane Furzey. 1996. Enpowering socio-economic devel-
opment in Africa utilizing information technology. A
country study for the United Nations Economic Com-
mission for Africa (UNECA), African Studies Center,
University of Pennsylvania.

Björn Gamb̈ack. 1999. Human language technology:
The Babel fish. Technical Report T99-09, SICS,
Stockholm, Sweden, November.

Gerald Gazdar and Chris Mellish. 1989.Natural Lan-
guage Processing in Prolog. Addison-Wesley, Wok-
ingham, England.

Raymond G. Gordon, Jr, editor. 2005.Ethnologue: Lan-
guages of the World. SIL International, Dallas, Texas,
15 edition.

Daniel Jurafsky and James H. Martin. 2000.Speech
and Language Processing: An Introduction to Natu-
ral Language Processing, Computational Linguistics,
and Speech Recognition. Prentice Hall, Upper Saddle
River, New Jersey.

John Kimball. 1973. Seven principles of surface
structure parsing in natural languages.Cognition,
2(1):15–47.

Fernando C. N. Pereira and Stuart M. Shieber. 1987.
Prolog and Natural Language Analysis. Number 10
in Lecture Notes. CSLI, Stanford, California.

Yorick Wilks and Roberta Catizone. 2000. Human-
computer conversation. InEncyclopedia of Microcom-
puters. Dekker, New York, New York.

Stephen Wurm, editor. 2001.Atlas of the World’s Lan-
guages in Danger of Disappearing. The United Na-
tions Educational, Scientific and Cultural Organization
(UNESCO), Paris, France, 2 edition.

Victor Zue and James Glass. 2000. Conversational inter-
faces: Advances and challenges.Proceedings of the
IEEE, 88(8):1166–1180.

56



Proceedings of the Second ACL Workshop on Effective Tools and Methodologies for Teaching NLP and CL, pages 57–61,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Teaching Language Technology at the North-West University 
 

Suléne Pilon Gerhard B van Huyssteen Bertus van Rooy 
sktsp@puk.ac.za ntlgbvh@puk.ac.za ntlajvr@puk.ac.za 

Research Focus Area: Languages and Literature in the South African Context North-West University, 
Potchefstroom  

2531 
 South Africa  
   

Abstract 

The BA Language Technology program 
was recently introduced at the North-West 
University and is, to date, the only of its 
kind in South Africa. This paper gives an 
overview of the program, which consists 
of computational linguistic subjects as 
well as subjects from languages, computer 
science, mathematics, and statistics. A 
brief discussion of the content of the pro-
gram and specifically the computational 
linguistics subjects, illustrates that the BA 
Language Technology program is a voca-
tionally directed, future oriented teaching 
program, preparing students for both fu-
ture graduate studies and a career in lan-
guage technology. By means of an 
example, it is then illustrated how stu-
dents and researchers alike benefit from 
working side by side on research and de-
velopment projects by using a problem-
based, project-organized approach to cur-
riculum design and teaching.  

1 Introduction 

A new undergraduate teaching program, BA Lan-
guage Technology, was recently introduced at the 
Potchefstroom Campus of the North-West Univer-
sity (NWU). The introduction of this program was 
motivated by two factors: 
(a) a need within the Faculty of Arts to develop 
teaching programs that are relevant, vocationally 
directed, and future-oriented; and 
(b) a need in the South African higher education 
system for capacity building in the field of in lan-
guage technology (PanSALB & DACST, 2000). 

To date, the BA Language Technology program 
is the only one of its kind in South Africa. It has 
therefore remained imperative that the program 
equips students adequately to fill positions in the 
emerging South African language technology in-
dustry. At the same time, students should be able 
to continue with graduate studies, and therefore the 
program had to be designed in such a way that stu-
dents receive an academic training that incorpo-
rates a solid theoretical component alongside the 
need to get enough practical experience. These two 
imperatives are reflected in the program structure, 
and also in the project-based learning approach 
that we adopted. 

2 Program Structure  

After wide consultation with international and lo-
cal role players and experts, a program was de-
signed that combines language subjects and natural 
sciences (mainly computer science, mathematics 
and statistics) with a core group of computational 
linguistic and language technology subjects. This 
section offers an overview of the BA Language 
Technology program. An example of a typical pro-
gram will be given and the modules which form 
part of the program will be discussed briefly. 

The program has a basic core of compulsory 
modules, but allows some room for students to 
take modules based on personal interest and abil-
ity. A student who excels in computer program-
ming can choose to take additional modules from 
that field after completing the compulsory mod-
ules. Students may also choose to take more lan-
guage or mathematics modules after completing 
their compulsory modules. There are also a number 
of general formative subjects that all students at the 
University must take, which are not being dis-
cussed here. The basic course structure is presented 
in Table 1.   

57



Table 1: BA Language Technology compulsory modules with choices 
 

The various general formative modules offered at 
the university include academic literacy, study 
skills, computer literacy and information skills, 
philosophy and academic and scientific writing 
courses. The elective modules from which the stu-
dents can choose are mathematics, computer sci-
ence and languages. The languages from which the 
students can choose are Afrikaans, English or 
Setswana (regular university courses) or introduc-
tory courses (foreign language level) in two South 
African languages, Setswana and isiZulu and two 
foreign European languages, German and French.  

Students are encouraged to take at least one 
South African language. This is motivated in part 
by trends in the macro-political environment. In 
government policy documents, such as the final 
language policy presented to cabinet, language 
technology is principally regarded as a means to 
promote multilingualism and increase access of 
information in a country with eleven official lan-
guages. In the context of the program itself, it is 
expected that students acquire and/or improve their 
proficiency in the various languages; students are 
also expected to develop basic knowledge of the 
structure of the particular languages. This basic 
knowledge is then developed further in the module 
“Linguistics for language technology students” 
(second year, first semester). The module includes 
components of phonetics, morphology and syntax, 
to enable students to learn how to do detailed lin-
guistic data analysis.  

In the first semester of the second year, students 
are introduced to Language Technology. An over-

view of the field of study is given and it is indi-
cated how the knowledge students gained in the 
modules they have completed, should be put to use 
within the field. The course also focuses on the 
relationship between a more practical language 
technology orientation and a more theoretical natu-
ral language processing (NLP) orientation, to en-
able students to see the broader picture and 
develop a sense for the coherence of the teaching 
program.  

Language technologies are the subject of two 
modules in the second semester of the third year. 
They spend equal amounts of time on speech-
based technologies and text-based technologies. 
The focus of these courses is specific language 
technology applications. At any given time, there 
are a number of ongoing projects at the university. 
Students are involved in these projects, learning to 
develop the specific applications, but also develop-
ing general skills for other types of applications, 
within the framework of project-based learning, as 
will be outlined later in this paper. Students are 
expected to participate in ongoing projects on vari-
ous levels, ranging from annotating corpora to in-
tricate programming – depending on their aptitude 
and preferences.  

This is followed by a six-month internship in the 
first semester of the fourth year, at an approved 
company or higher education or research institu-
tion. Apart from extending their training in the de-
velopment of language technology applications, 
the internship is intended to let students get a “real 

YEAR 1 YEAR 2 YEAR 3 YEAR 4 
First semester First semester First semester First semester 

Modules Modules Modules Modules 
Computer Science  
(programming) 

Language Technology: 
Introduction 

Introduction to NLP Language technology: 
Internship 

2 Languages 1 Language 1 CHOICE  
Statistics (introduction) Computer Science  

(programming) 
2 General formative mod-
ules 

 

Mathematics 1 CHOICE   
Applied Mathematics    
2 General formative modules    

Second semester Second semester Second semester Second semester 
Modules Modules Modules Modules 

Computer Science  
(programming) 

Language Technology: 
Linguistics for language 
technology students 

Language Technology: 
Speech applications 

Advanced NLP 

1 Language 1 CHOICE Language Technology: 
Text applications 

Language Technology 
Project 

Statistics (Inferential) 2 General formative mod-
ules 

1 CHOICE  

1 CHOICE    

58



world” experience in the language technology in-
dustry before they have to make career decisions.  

In their final semester, students have to com-
plete a supervised project, which fits in with cur-
rent research at the university. It is important that 
students should be positive about this project and 
therefore students are consulted when project to-
pics are chosen. In this stage of the program, stu-
dents have very little class in order to enable them 
to work on their projects on a full-time base, which 
provides for more practical experience. 

Students are introduced to Natural Language 
Processing in the first semester of the third year. 
This course focuses mainly on statistical tech-
niques for the analysis of the kinds of phonetic, 
morphological and syntactic data that were intro-
duced in the second semester of the second year. 
The logic is that students must be able to analyze 
data manually as linguists first, in order to develop 
an appreciation for the capabilities, power and 
limitations of statistical NLP methods.  

An advanced NLP course is offered in the se-
cond semester after students have completed their 
internship and while they are working on their own 
projects. This course is tailored to the individual 
interests and needs of the students. The specific 
NLP techniques relevant to their projects, as well 
as problems they encountered during their intern-
ships, serve as guiding principles for the selection 
of content. At the same time, we incorporate a se-
lection of hot topics in NLP research and some 
techniques for dealing with semantic data. 

As computational linguistics is a relatively new 
field of study in South Africa, students and lectur-
ers/researchers have to learn together, even by 
making mistakes and taking ‘wrong’ sidetracks 
during the learning process. In order to facilitate 
these circumstances, a problem-oriented and pro-
ject-organized approach, based on the educational 
system developed at the Aalborg University, Den-
mark, since 1974 (Kjersdam & Enemark, 1994), 
was taken in the design of the curricula of the Lan-
guage Technology and NLP modules. This means 
that the content of some of the Language Technol-
ogy and NLP subjects vary from year to year, de-
pending on the current project(s) being conducted 
at the university. However, by working alongside 
each other on research and development projects, 
both students and lecturers engage in active learn-
ing, proving to yield excellent results in the acquir-
ing of knowledge in the field. The next section 

describes how various research and development 
projects are integrated in the undergraduate and 
graduate teaching programs, in order to facilitate 
hands-on, outcome-based learning.  

3  Teaching Approach: Problem-Based, 
Project-Organized Learning 

Problem-Based Learning (PBL; also called pro-
blem-oriented education) can be defined as learn-
ing “based on working with unsolved, relevant and 
current problems from society/real life… By ana-
lyzing the problems in depth the students learn and 
use the disciplines and theories which are consid-
ered to be necessary to solve the problems posed, 
i.e. the problem defines the subjects and not the 
reverse” (Kjersdam & Enemark, 1994: 16; cf. 
Schwartz et al., 2001; Macdonald, 2002). This ap-
proach is successfully implemented world-wide in 
the teaching of specifically more applied sciences, 
such as, inter alia, medicine (Albanese & Mitchell, 
1993; Barrows and Tamblyn, 1980; Moore et al., 
1994), and engineering (De Graaf & Kolmos, 
2003; Fink, 2002). 

Within the context of computational linguistics, 
this "applied-teaching approach" maintains a dy-
namic triangular equilibrium between training, re-
search and product development, serving 
researchers, students, and the industry alike. A pro-
ject-organized approach offers lecturers an oppor-
tunity to align course material with their research 
projects, while students are enabled to gain “com-
prehensive knowledge of the development of theo-
retical and methodological tools” (Kjersdam and 
Enemark, 1994: 17). Therefore, after completion of 
their formal studies, students should be able to 
contribute to research and the development of 
original paradigms to solve new and complex 
problems in the future. 

In the BA Language Technology program, PBL 
is incorporated with project-organized education in 
two ways. On the one hand various project-based 
modules are included in the curriculum. For in-
stance in the third year of study, the modules 
“Language Technology: Speech Applications” and 
“Language Technology: Text Applications” are 
introduced, where students have to develop various 
small modules for both speech and text technologi-
cal applications (e.g. a simple rule-based stemmer). 
In the final year of study, the largest part of the 
year is spent on independent project work, which is 

59



conducted either at the university, or while doing 
an internship elsewhere. These projects are on a 
much larger scale than the third year projects, with 
the possibility to build on the work of the previous 
year (e.g. to develop a more sophisticated stemmer, 
using more advanced NLP techniques).  

On the other hand, some of the other modules 
(e.g. the “Natural Language Processing” modules) 
are more project-driven, since they are organized 
around existing research projects. Students are 
mostly drawn in on a so-called “design-oriented” 
level, i.e. where they have to deal with “know-how 
problems which can be solved by theories and 
knowledge they have acquired in their lectures” 
(Kjersdam & Enemark, 1994: 7). After the project 
and the problems related to the project are ex-
plained to students, they get involved by collecting 
data, identifying possible/different solutions, for-
mulating rules and algorithms, analyzing data, 
evaluating different components, etc. In this way 
they get know-how and experience in theoretical, 
methodological, and implementation issues. 

This can be illustrated by a recent example, 
where work on a spelling checker project was inte-
grated in the curricula of various modules. In this 
project, involving the development of spelling 
checkers for five different South African lan-
guages, a variety of NLP techniques were imple-
mented in the various spelling checkers, depending 
on the orthographical complexity of and resources 
available for a specific language. For instance, lan-
guages such as Tswana and Northern Sotho have a 
relatively simple orthographical structure (in the 
sense that it is more disjunctive), and a straight-
forward lexicon-based approach to spelling check-
ing therefore suffice for these languages. In 
contrast, Afrikaans, Zulu and Xhosa are ortho-
graphically more complex languages, requiring a 
spelling checking approach based on morphologi-
cal analysis or decomposition, which is of course 
more interesting from a computational linguistic 
perspective. For all of these languages, almost no 
resources were available at the start of the project, 
posing a huge but interesting challenge (e.g. could 
available technologies for other languages, such as 
a Porter stemmer, be adapted for these lan-
guages?). 

From the onset of the spelling checker project, 
students were involved in all aspects of the project. 
Using Jurafsky & Martin (2000) as a point of de-
parture, students were introduced to the basic pro-

blems of spelling checking, relating it to the 
current project and specifically to the challenges 
posed by spelling checking for Afrikaans (e.g. pro-
ductive concatenative compound formation, deri-
vational word formation, etc.). Students were 
thoroughly involved in all discussions of the aims 
of the project, potential problems and possible so-
lutions, as well as the general system architecture 
(i.e. students were involved on the design-oriented 
level). Students were therefore introduced to basic 
concepts such as tokenization, stemming, and 
Levenshtein Distance (for purposes of generating 
suggestions), within a real-world context.  

 After the planning and design phase, each stu-
dent got involved in solving different problems of 
the project, e.g. developing a stemmer (using fi-
nite-state techniques) and a compound analyzer 
(using machine-learning techniques), the automatic 
generation of a lexicon, evaluating spelling check-
ers (within the broader context of the evaluation of 
NLP applications), etc. Although each student 
worked separately on different problems, they 
were forced to extend their experience by helping 
each other with their different tasks, thereby ex-
panding their general knowledge and experience. 
In this way, students also came to learn that differ-
ent problems call for different approaches: to use 
finite-state techniques for hyphenation in Afri-
kaans is simply to labor-intensive, while machine 
learning offers highly efficient solutions to the 
problem. An introduction to machine learning was 
therefore also introduced in the curriculum. 

The advantages of this approach proved to be 
many: not only did the project benefit from the 
sub-projects of each of the students, but students 
got the feeling that they were involved in “impor-
tant” and relevant work. They got the opportunity 
to apply the theoretical knowledge they acquired in 
the classes in a practical, hands-on environment, to 
improve their understanding of the theories and 
concepts of the study field, and to solve real-world 
problems. Additionally, members of staff were 
enabled to harmonize their research and teaching 
responsibilities, optimizing the quality and quantity 
of their outputs. Moreover, existing students were 
motivated to continue with their studies in compu-
tational linguistics on MA level (where they are 
working on more advanced problems), while un-
dergraduate student numbers increased (which can 
be ascribed to a greater awareness of language 
technology in the community, brought about par-

60



tially by media coverage of the project, focusing 
on the promotion of multilingualism and language 
empowerment). 

4 Conclusion 

Since its very inception, the BA Language Tech-
nology program at the North-West University was 
designed as a vocationally directed, future-oriented 
teaching program. A curriculum with a core of 
computational linguistic subjects, strengthened by 
a strong foundation in languages, computer sci-
ence, mathematics, and statistics, equips students 
both with enough practical experience to start 
working in the industry, and with enough theoreti-
cal knowledge to continue with postgraduate stu-
dies.  

By taking a problem-based, project-organized 
approach to curriculum design, students and re-
searchers alike benefit from working side by side 
on research and development projects (as illustra-
ted by the incorporation of a spelling checker pro-
ject in the curricula of various subjects). The same 
approach is followed in other subjects, such as 
"Language Technology: Speech Applications", 
where students are working in collaboration with 
their lecturers on various speech-based projects. As 
new research projects are initiated, the curricula of 
the various subjects are adapted accordingly. For 
example, in 2005 a new research project on syntac-
tic parsing commenced – consequently, new stu-
dents are confronted with other problems than their 
predecessors, while still learning, for example, 
about the differences between linguistic and statis-
tical approaches to NLP. With the help of students 
in the program and others involved, the program is 
constantly evaluated and adjusted accordingly, 
thereby ensuring that it delivers well-educated and 
informed students, prepared for the challenges of a 
career in language technology. 

References  

Albanese MA & Mitchell S. 1993. Problem-based learn-
ing: A review of literature on its outcomes and im-
plementation issues. Academic Medicine 68, 52-81. 

Barrows HS & Tamblyn RM. 1980. Problem-Based 
Learning: An Approach to Medical Education. New 
York: Springer Publishing Company. 

De Graaff, E & Kolmos, A. 2003. Characteristics of 
Problem-Based Learning. International Journal of 
Engineering Education 19(5). 

Fink, FK. 2002. Problem-Based Learning in engineering 
education: a catalyst for regional industrial develop-
ment. World Transactions on Engineering and Tech-
nology Education 1(1): 29-32. 

Jurafsky, D & Martin, JH. 2000. Speech and language 
processing : an introduction to natural language 
processing. Upper Saddle River: Prentice Hall, 2000. 

Kjersdam F & Enemark S. 1994. The Aalborg Experi-
ment: Project Innovation in University Education. 
Aalborg: Aalborg University Press. 

Macdonald R. 2002. Problem-based learning: some ref-
erences. Available at: [WWW:]www.ics.ltsn.ac.uk/ 
pub/pbl [Accessed 5 May 2003]. 

Moore GT, Block SD, Briggs Style C & Mitchell R. 
1994. The influence of the New Pathway curriculum 
on Harvard medical students. Academic Medicine 69, 
983-989. 

Pan South African Language Board (PanSALB) & De-
partment of Arts, Culture, Science and Technology 
(DACST). 2000. The development of Human Lan-
guage Technologies in South Africa: Strategic Plan-
ning. (Report by the joint steering committee). 
Pretoria: Government Printers. Available at: 
www.dac.gov.za/about_us/cd_nat_language/lan-
guage_planning/hlt_strategic_plan/hlt_strategic_plan
2.htm#policy [Accessed April 1, 2005]. 

Schwartz P, Mennin S & Webb G. 2001. Problem-
based Learning: Case Studies, Experience and Prac-
tice. London: Kogan Page. 

 

61



Proceedings of the Second ACL Workshop on Effective Tools and Methodologies for Teaching NLP and CL, pages 62–68,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Hands-On NLP for an Interdisciplinary Audience 

 

 
Elizabeth D. Liddy and Nancy J. McCracken 

Center for Natural Language Processing 

School of Information Studies 

Syracuse University 
liddy@syr.edu, njm@ecs.syr.edu 

 

 

 

 

Abstract 

The need for a single NLP offering for a 

diverse mix of graduate students (including 

computer scientists, information scientists, 

and linguists) has motivated us to develop a 

course that provides students with a breadth 

of understanding of the scope of real world 

applications, as well as depth of knowledge 

of the computational techniques on which 

to build in later experiences. We describe 

the three hands-on tasks for the course that 

have proven successful, namely: 1) in-class 

group simulations of computational proc-

esses;  2) team posters and public presenta-

tions on state-of-the-art commercial NLP 

applications, and; 3) team projects imple-

menting various levels of human language 

processing using open-source software on 

large textual collections. Methods of 

evaluation and indicators of success are 

also described. 

1 Introduction 

This paper presents both an overview and some of 

the details regarding audience, assignments, tech-

nology, and projects in an interdisciplinary course 

on Natural Language Processing that has evolved 

over time and been successful along multiple di-

mensions – both from the students’ and the fac-

ulty’s perspective in terms of accomplishments and 

enjoyment. This success has required us to meet 

the challenges of enabling students from a range of 

disciplines and diverse experience to each gain a 

real understanding of what is entailed in Natural 

Language Processing. 

2 A Course Within Multiple Curricula 

The course is entitled Natural Language Processing 

and is taught at the 600 graduate course level in a 

School of Information Studies in a mid to large-

size private university. While NLP is not core to 

any of the three graduate degree programs in the 

Information School, it is considered an important 

area within the Information School for both profes-

sional careers and advanced research, as well as in 

the Computer Science and Linguistic Programs on 

campus. The course has been taught every 1½ to 2 

years for the last 18 years. While some aspects of 

the course have changed dramatically, particularly 

in regards to the nature of the student team pro-

jects, the basic structure – the six levels of lan-

guage processing – has remained essentially the 

same, with updates to topics within these levels 

reflecting recent research findings and new appli-

cations. 

3 Audience 

At the moment, this is the only course offering on 

NLP within the university, but a second-level, 

seminar course, entitled Content Analysis Research 

Using Natural Language Processing, geared to-

wards PhD students doing social science research 

on large textual data sets, will be offered for the 

first time in Fall 2005. Given that the current NLP 

course is the only one taught, it cannot, by neces-

sity, have the depth that could be achieved in cur-

ricula where there are multiple courses. In a more 

extensive curriculum, courses provide a greater 

depth than is possible in our single course.  Our 

goal is to provide students with a solid, broad basis 

on which to build in later experiences, and to en-

62



able real understanding of a complex topic for 

which students realize there is a much greater 

depth of understanding that could be reached. 

The disciplinary mix of students in the course is 

usually an even mix of information science and 

computer science students, with slightly fewer lin-

guistics majors. Recently the Linguistics Depart-

ment has established a concentration in 

Information Representation and Retrieval, for 

which the NLP course is a required course. Also, 

the course is cross-listed as an elective for com-

puter science graduate students. All of the above 

facts contribute to the widely diverse mix of stu-

dents in the NLP course, and has required us to 

develop a curriculum that enables all students to be 

successful in achieving solid competency in NLP. 

4 Topics Covered 

The topics in the course include typical ones cov-

ered in most NLP courses and are organized 

around the levels of language processing and the 

specific computational techniques within each of 

these. Discussions of more general theoretic no-

tions such as statistical vs. symbolic NLP, repre-

sentation theories, and language modeling are 

interspersed. A single example of topics that are 

taught within the levels of language processing 

include: 

 

Morphology - Finite state automata 

Lexicology - Part-of-speech tagging 

Syntax - Parsing with context free grammars 

Semantics - Word sense disambiguation 

Discourse - Sublanguage analysis 

Pragmatics - Gricean Maxims 

 

Each of the topics has assigned readings, from the 

course’s textbook, Speech and Language Process-

ing: An Introduction to Natural Language Process-

ing, Computational Linguistics, and Speech 

Recognition by Daniel Jurafsky & James H. Mar-

tin, as well as from recent and seminal papers. 

5 Methods 

What really enables the students to fully grasp the 

content of the course are the three important hands-

on features of the course, namely: 

1. Small, in-class group simulations of compu-

tational processes.   

2. Team posters and public presentations re-

porting on the state-of-the-art in commer-

cial NLP applications such as 

summarization, text mining, machine 

translation, question answering, speech 

recognition, and natural language genera-

tion.  

3. Team projects implementing various levels 

of human language processing using open-

source software on large collections. 

Each of these features of the course is described in 

some detail in the following sections.  

The course is designed around group projects, 

while the membership of the teams changes for 

each assignment. This is key to enabling a diverse 

group to learn to work with students from different 

disciplines and to value divergent experience. It 

has also proven extremely successful in forming a 

class that thinks of itself as a community and in 

encouraging sharing of best practices so that eve-

ryone advances their learning significantly further 

than if working alone or with the same team 

throughout the course. The way that teams are 

formed for the three types of projects varies, and 

will be described in each of the following three 

sections. 

Furthermore, constant, frequent presentations to 

the class of the group work, no matter how brief, 

enable students to own their newly-gained under-

standings. In fact, this course no longer requires 

any written papers, but instead focuses on applica-

tion of what is learned, first at the specific level of 

language processing, then to new data for new 

purposes, and then, to understanding real-world 

NLP systems performing various applications – 

with the group constantly reporting their findings 

back to the class. 

5.1 In-class Group Simulations of Computa-

tional Processes 

During the first third of the course, lectures on 

each level of language processing are followed by 

a 30 to 45 minute exercise that enables the students 

who work in small groups to simulate the process 

they have just learned about, i.e. morphological 

analysis, part-of-speech tagging, or parsing some 

sample sentences with a small grammar. These 

groups are formed by the professor in an ad hoc 

manner by counting off by 4 in a different pattern 

each week to ensure that students work with stu-

63



dents on the other side of the room, given that 

friends or students from the same school tend to sit 

together. After the exercise, each group has 5 min-

utes to report back to the class on how they ap-

proached the task, with visuals.  

We’ve found that the formation of these small 

groups is pedagogically sound and enables learning 

in three ways. First, the groups break down social 

barriers and as the course advances the students 

find it much easier to work together and are more 

comfortable in sharing their work. Secondly, the 

students begin to understand and value what the 

students from different disciplines bring to bear on 

NLP problems. That is, the computer scientists 

recognize the value of the deeper understanding of 

language of the linguistic students, and the linguis-

tic students learn how the computer science stu-

dents approach the task computationally. Thirdly, 

while there were concerns on our part that these 

simulations might be too easy, the students have 

affirmed in mid-term course evaluations (which are 

not required, but do provide invaluable insight into 

a class’s engagement with and assimilation of the 

material) that these simulations really help them to 

understand conceptually what the task is and how 

it might be accomplished before they have to 

automate the processes. 

5.2 Real World Applications of NLP 

This year, two semester-long team projects were 

assigned – the usual team-based computer imple-

mentation of NLP for a particular computational 

task – and an investigation into how NLP is util-

ized in various state-of-the-art commercial NLP 

applications. The motivation for adding this second 

semester-long team project was that a number of 

the students in the course, particularly the masters 

students in Information Management, are most 

likely to encounter NLP in their work world when 

they need to advise on particular language-based 

applications. It has become clear, however, that as 

a result of this assignment, all of the students are 

quite pleased with their own improved ability to 

understand what a language-based technology is 

actually doing. Even if a student is more research-

focused, they are intrigued by what might be done 

to improve or add to a particular technology. 

Students are given two weeks to familiarize 

themselves outside of class with the suggested ap-

plications sufficiently to select a topic of real inter-

est to them. This year’s choices included Spell 

Correction, Machine Translation, Search Engines, 

Text Mining, Summarization, Question Answer-

ing, Speech Recognition, Cross-Language Infor-

mation Retrieval, Natural Language Generation, 

and Dialogue Agents.  

Students then sign up, on a first-come basis, for 

their preferred application. The teams are kept 

small (up to four) to ensure that each student con-

tributes. At times a single student is sufficiently 

interested in a topic that a team of one is formed. 

Students arrange their own division of labor. There 

are three 10 to 20 minute report-backs by each 

team over the course of the semester, the first two 

to the class and the final one during an open invita-

tion, school-wide Poster & Reception event. There 

are guidelines for each of the three presentations, 

as well as a stated expectation that the teams ac-

tively critique and comment on the presentations, 

both in terms of the information presented as well 

as presentational factors. Five minutes are allowed 

for class comments and students are graded on how 

actively they participate and provide feedback. 

The 1
st
 presentation is a non-technical overview 

of what the particular NLP application does and 

includes examples of publicly available systems / 

products the class might know. The 2
nd
 presenta-

tion covers technical details of the application, 

concentrating on the computational linguistic as-

pects, particularly how such an application typi-

cally works, and the levels of NL processing that 

are involved (e.g., lexical, syntactic, etc). The 3
rd
 

presentation involves a poster which incorporates 

the best of their first two presentations and sugges-

tions from the class, plus a laptop demo if possible. 

As stated above, the 3
rd
 presentation is done in 

an open school-wide Poster and Reception event 

which is attended by faculty and students, mainly 

PhD students. The Poster Receptions have proven 

very successful along multiple dimensions – first, 

the students take great pride in the work they are 

presenting;  second, posters are better than one-

time, in-class presentations as the multiple oppor-

tunities to explain their work and get feedback im-

prove the students’ ability to create the best 

presentation of their work; third, the wider expo-

sure of the field and its applications builds an audi-

ence for future semesters and instills in the student 

body a sense of the reach and importance of NLP. 

5.3 Hands-On NL Processing of Text  

64



The second of the semester-long team projects is 

the computer implementation of NLP.  The goal of 

the project is for students to gain hands-on experi-

ence in utilizing NLP software in the context of 

accomplishing analysis of a large, real-world data 

set. The project comprises two tasks, each of which 

is reported back to the class by each team. These 

presentations were not initially in the syllabus, but 

interestingly, the students requested that each team 

present after each task so that they could all learn 

from the experiences of the other teams. 

The corpus chosen was the publicly available 

Enron email data set, which consists of about 

250,000 unique emails from 150 people. With du-

plication, the data has approximately 500,000 files 

and takes up 2.75 gigabytes. The data set was pre-

pared for public release by William Cohen at CMU 

and, available at http://www-2.cs.cmu.edu/~enron/. 

This data set is useful not only as real text of the 

email genre, but it can be easily divided into 

smaller subsets suitable for student projects. (And, 

of course, there is also the human interest factor in 

that the data set is available due to its use in the 

Enron court proceedings!) 

The goal of the project is to use increasing lev-

els of NLP to characterize a selected subset of En-

ron email texts. The project is designed to be 

carried out in two parts, involving two assigned 

levels of NLP. The first level, part-of-speech tag-

ging, is accomplished as Task 1 and the second, 

phrase-bracketing or chunk-parsing, is assigned as 

Task 2. However, the overall characterization of 

the text is left open-ended, and the student teams 

chose various dimensions for their analyses.  Pro-

jects included analyzing the topics of the emails of 

different people, social network analyses based on 

people and topics mentioned in the email text, and 

analyses based on author and recipient header in-

formation about each email. 

Teams are established for these projects by the 

professor based on the capabilities and interests of 

the individual students as reported in short self-

surveys. This resulted in teams on which there is a 

mix of computer science, linguistics and informa-

tion science expertise. The teams accomplished the 

tasks of choosing a data analysis method, process-

ing data subsets, designing NL processing to ac-

complish the analysis, programming the NL 

processing, conducting the data analysis, and pre-

paring the in-class reports. 

5.3.1 Tools Used in the Project  

For preliminary processing of the Enron email 

files, programs and data made available by Profes-

sor Andrés Corrada-Emmanuel at the University of 

Massachusetts at Amherst, and available at 

http://ciir.cs.umass.edu/~corrada/ were used. The 

emails were assigned MD5-digest numbers in or-

der to identify them uniquely, and the data con-

sisted of mappings from the digest numbers to 

files, as well as to authors and recipients of the 

email. The programs contained filters that could be 

used to remove extraneous text such as headers and 

forwarded text. The teams adapted parts of these 

programs to convert the email files to files with 

text suitable for NL processing. 

For the NL processing, the Natural Language 

Toolkit (NL Toolkit or NLTK), developed at the 

University of Pennsylvania by Loper and Bird 

(2002), and available for download from Source-

Forge at http://nltk.sourceforge.net/ was used.  The 

NL Toolkit is a set of libraries written in the Py-

thon programming language that provides core 

data types for processing natural language text, 

support for statistical processing, and a number of 

standard processing algorithms used in NLP, in-

cluding tokenization, part of speech (POS) tagging, 

chunk parsing, and syntactic parsing. The toolkit 

provides demonstration packages, tutorials, exam-

ple corpora and documentation to support its use in 

educational classes.  Experience using the Toolkit 

shows that in order to use the NL Toolkit, one 

member of each team should have at least some 

programming background in order to write Python 

programs that use the NL Toolkit libraries.  The 

use of Python as the programming language was 

successful in that the level needed to use the NL 

Toolkit was manageable by the students with only 

a little programming background and in that the 

computer science students were able to adapt to the 

Python programming style and could easily utilize 

the classes and libraries. 

At the beginning of the term project, the stu-

dents were offered a lab session and lab materials 

to get them started. Since no one knew the Python 

programming language at the outset, there was an 

initial learning curve for the Python language as 

well as for the NL Toolkit. The lab materials pro-

vided to the students consisted of installation in-

structions for Python and NL Toolkit and a number 

of example programs that combined programming 

65



snippets from the NL Toolkit tutorials to process 

text through the NLP phases of tokenization, POS 

tagging and the construction of frequency distribu-

tions over the POS tagged text. During the lab ses-

sion, some of the example programs were worked 

through as a group with the goal of enabling the 

students to become competent in Python and to 

introduce them to the NL Toolkit tutorials that had 

additional materials. The NL Toolkit tutorials are 

extensive on the lower levels of NL processing 

(e.g. lexical and syntactic) and students with some 

programming background were able to utilize 

them. 

As part of their first task, the student teams were 

asked to select a subset of the Enron emails to 

work with. The entire Enron email directories were 

placed on a server for the teams to look at in mak-

ing their selections. The teams also used informa-

tion about the Enron employees as described in a 

paper by Corrada-Emmanuel (2005). Some student 

teams elected to work with different email topic 

folders for one person, while others chose a few 

email folders each from a small number of people 

(2-5). Their selected emails first needed to be 

processed to text using programs adapted from 

Corrada-Emmanuel. For the most part, the sub-

corpora choices of the student teams worked out 

well in terms of size and content. Several hundred 

emails turned out to be a good size, providing 

enough data to experience the challenges of long 

processing times and to appreciate why NLP is 

useful in processing large amounts of data, without 

being unduly overwhelmed. Initially, one team 

chose all the emails from several people. The 

number of email files involved was several thou-

sand and it took several hours to unzip those direc-

tories, let alone process them, and they 

subsequently reduced the number of files for their 

analysis. 

The first task was to analyze the chosen emails 

based solely on lexical level information, namely 

words with POS tags. NL Toolkit provides librar-

ies for tokenization where the user can define the 

tokens through regular expressions, and the stu-

dents used these to tailor the tokenization of their 

emails. The Toolkit also provides a regular expres-

sion POS tagger as well as n-gram taggers, and the 

students used these in combination for their POS 

tagging. Students experimented with the Brown 

corpus and a part of the Penn Treebank corpus, 

provided by NL Toolkit to train the POS taggers, 

and compared the results.  

Building on the first task, the second task ex-

tended the analysis of the chosen emails to phrases 

from the text. Again, NL Toolkit provides a library 

for chunk parsing where regular expressions can be 

used to specify patterns of words with POS tags 

either to be included or excluded from phrases. 

Since chunk parsing depends on POS tagging, 

there was a need for a larger training corpus. A 

research center within the Information School has 

a license for Penn Treebank, and  provided addi-

tional Penn Treebank files for the class to use for 

that purpose. Most teams used regular expressions 

to bracket proper names, minimal noun phrases, 

and verb phrases. One team used these to group 

maximal noun phrases, and another team used 

regular expressions to find patterns of communica-

tion verbs for use in social network analysis.   

In retrospect, it was found that the chunk pars-

ing did not take the teams far enough in NLP 

analysis of text. Experience in teaching using the 

NL Toolkit suggests that use of the syntactic pars-

ing libraries to find more complex structures in the 

text would have provided more depth of analysis. 

Students also suggested that they would have liked 

to incorporate semantic level capabilities, such as 

the use of WordNet to find conceptual groupings 

via synonym recognition. The next offering of the 

course will include these improvements. 

Using the NL Toolkit for NL processing worked 

out well overall and enabled the students to ob-

serve and appreciate details of the processing steps 

without having to write a program for every algo-

rithm themselves. The tutorials are good, both at 

explaining concepts and providing programming 

examples. There were a few places where some 

data structure details did not seem to be suffi-

ciently documented, either in the tutorials or in the 

API.  This was true for  the recently added Brill 

POS tagger, and is likely due to its recency of ad-

dition to the toolkit.  However for the most part, 

the coverage of the documentation is impressive. 

6 Evaluation  

Multiple types of evaluation are associated with 

the course. First, the typical evaluation of the stu-

dents by the professor (here, 2 professors) was 

done on multiple dimensions that contributed pro-

portionately to the student’s final grade as follows: 

66



 

• In-Class group exercises 20% 

• NLToolkit Team Assignments 35% 

• NLP Application Team Poster &  

         Presentations 

35% 

• Contributions to class discussion  

         (both quality and quantity) 

10% 

 

Additionally, each team member evaluated each of 

their fellow team members as well as themselves. 

This was done for both of the teams in which a 

student participated. For each team member, the 

questions covered:  the role or tasks of the student 

on the project; an overall performance rating from 

1 for POOR to 4 for EXCELLENT; the rationale 

for this score, and finally; what the student could 

have done to improve their contribution. Knowl-

edge of this end-of-semester team self-evaluation 

tended to ensure that students were active team 

contributors. 

The professor was also evaluated by the stu-

dents. And while there are quantitative scores that 

are used by the university for comparison across 

faculty and to track individual faculty improve-

ments over time, the most useful feature of the stu-

dent evaluations is the set of open-ended questions 

concerning what worked well in the course, what 

didn’t work well, and what could be done to im-

prove the course. Over the years of teaching this 

course, these comments (plus the mid-term evalua-

tions) have been most instructive in efforts to find 

ways to improve the course. Frequently the sugges-

tions are very practical and easy to implement, 

such as showing a chart with the distribution of 

grades on each assignment when they are returned 

so that the students know where they stand relative 

to the class as grading is on a scale of 1 to 10. 

 

7. Indicators of Success 

 
Finally, how is the success of this course measured 

in the longer term?  For this, success is measured 

by:  whether students elect to do continued work in 

NLP, either in the context of further courses in 

which NLP is utilized, such as Information Re-

trieval or Text Mining;  whether the masters (and 

undergraduate) students decide to pursue an ad-

vanced degree based on the excitement engendered 

and knowledge gained from the NLP course; or 

whether PhD students elect to do continued re-

search either in the school’s Center for Natural 

Language Processing or as part of their disserta-

tion. For students in a terminal degree program, 

success is reflected by their seeking and obtaining 

jobs that utilize the NLP they have learned in the 

course and that has provided them with a solid, 

broad basis on which to build. For several of the 

undergraduate computer science students in the 

course, their NLP experience has given them an 

added dimension of specialization and competitive 

advantage in a tight hiring market.  

An additional measure of success was the re-

quest by the doctoral students in the home school 

for a PhD level seminar course to build on the NLP 

course. This course is entitled Content Analysis 

Research Using Natural Language Processing and 

will enable PhD students doing social science re-

search on large textual data sets to explore and ap-

ply the NLP tools that are developed within the 

school, as well as to understand how these NLP 

tools can be successfully interleaved with commer-

cial content analysis tools to support rich explora-

tion of their data. As is the current course, this 

seminar will be open to PhD students from all 

schools across campus and already has enrollees 

from public policy, communications, and man-

agement, as well as information science. 

 

8. Summary 

 
While it might appear that a disproportionate 

amount of thought and attention is given to the 

more human and social aspects of designing and 

conducting this course, experience shows that such 

attention is the key to the success of this diverse 

body of students in learning and understanding the 

content of the course. Furthermore, given the great 

diversity in class-level and disciplinary back-

ground of students, this attention to structuring the 

course has paid off in the multiple ways exempli-

fied above. While it is obvious that a course for 

computer-science majors alone would be designed 

quite differently, it would not provide the enriched 

understanding of the field of NLP and its applica-

tion value that is possible with the contributions by 

the variety of disciplines brought together in this 

course. 

Acknowledgements 

67



We would like to acknowledge the contributions of 

the students in all the classes over the years whose 

efforts and suggestions have continually improved 

the course. We would to especially acknowledge 

this year’s class, who were especially contributory 

of ideas for improving and building on a currently 

successful course, namely Agnieszka Kwiat-

kowska, Anatoliy Gruzd, Carol Schwartz, Cun-

Fang Cheng, Freddie Wade, Joshua Legler, Kei-

suke Inoue, Matthew Wolf, Michael Fudge, Michel 

Tinuiri, Olga Azarova, Rebecca Gilbert, Shuyuan 

Ho, Tuncer Can, Xiaozhony Liu, and Xue Xiao. 

References  

Loper, E. & Bird, S., 2002.  NLTK, the Natural 

Language Toolkit. In Proceedings of the ACL 

Workshop on Effective Tools and Methodolo-

gies for Teaching Natural Language Processing 

and Computational Linguistics. Philadelphia: 

Association for Computational Linguistics. 

 

Corrada-Emmanuel, A. McCallum, A., Smyth, P., 

Steyvers, M. & Chemudugunta, C., 2005. Social 

Network Analysis and Topic Discovery for the 

Enron Email Dataset. In Proceedings of the 

Workshop on Link Analysis, Counterterrorism 

and Security at 2005 SIAM International Con-

ference in Data Mining. 

68



Author Index

Arens, Robert,28

Brew, Chris,15

Cassell, Justine,9

Dickinson, Markus,15

Eriksson, Gunnar,49

Fourla, Athanassia,49
Freedman, Reva,37

Gamb̈ack, Bj̈orn,49

Hearst, Marti,1

Kirchmeier-Andersen, Sabine,43
Klein, Dan,23
Kordoni, Valia,43
Kubon, Vladislav,43

Liddy, Elizabeth,62
Light, Marc,28, 32
Lincoln, Nashira,32
Lu, Xin, 28

McCracken, Nancy,62
Meurers, W. Detmar,15

Pilon, Suĺene,57

Rosner, Michael,43

Stone, Matthew,9

Uszkoreit, Hans,43

Van Huyssteen, Gerhard B,57
Van Rooy, Bertus,57

69


	Program
	Teaching Applied Natural Language Processing: Triumphs and Tribulations
	Teaching Dialogue to Interdisciplinary Teams through Toolkits
	"Language and Computers": Creating an Introduction for a General Undergraduate Audience
	A Core-Tools Statistical NLP Course
	Web-based Interfaces for Natural Language Processing Tools
	Making Hidden Markov Models More Transparent
	Concrete Assignments for Teaching NLP in an M.S. Program
	Language Technology from a European Perspective
	Natural Language Processing at the School of Information Studies for Africa
	Teaching Language Technology at the North-West University
	Hands-On NLP for an Interdisciplinary Audience

