
Tree-Adjoining Grammars for Optimality Theory Syntax

Virginia Savova
Department of Cognitive Science

Johns Hopkins University
savova@jhu.edu

Robert Frank
Department of Cognitive Science

Johns Hopkins University
rfrank@jhu.edu

Abstract

This paper explores an optimality-theoretic
approach to syntax based on Tree-Adjoining
Grammars (TAG), where two separate opti-
mizations are responsible for the construc-
tion of local pieces of tree structure (ele-
mentary trees) and the combination of these
pieces of structure. Thelocal optimization
takes a non-recursive predicate-argument struc-
ture (PA-chunk) as an underlying representa-
tion and chooses the best tree structure real-
izing it. The linking optimization takes as an
underlying representation a tree whose nodes
are labeled by PA-chunks and chooses among
a set of structurally isomorphic TAG deriva-
tion trees. We provide formal definitions of the
OTAG system and prove equivalence in strong
generative capacity between OTAG and TAG.
Finally, we apply the mechanics of the formal
system to the analysis of cross-serial dependen-
cies in Swiss-German.

1 Introduction

Optimality Theory (OT) claims that linguistic expres-
sions are restricted by a set of universal, mutually incon-
sistent and violable constraints (Prince and Smolensky,
1993). Conflicts result in the satisfaction of higher ranked
constraints at the expense of their lower ranked adver-
saries. The variations among languages are attributed to
differences in the constraint rankings. In OT, a gram-
matical linguistic expression is a winner of an optimiza-
tion. Given an underlying representation (UR), a gener-
ator function (Gen) produces a (potentially infinite) set
of surface realizations (SRs), and a process of optimiza-
tion picks the SRs that minimally violate the constraints
according to a language-particular ranking.

OT is a general framework that can give rise to a va-
riety of specific formal instantiations depending on the
types of representations and constraints invoked, but it
is a largely unresolved question just what sort of for-
malism is appropriate for OT syntax. Since natural lan-
guage syntax permits recursively embedded structures,
this suggests that the OT optimizations ought to apply
to unbounded domains. However, optimization over such
structures can give rise to a system with excessive gener-
ative capacity, if the number of violations of a constraint
can grow without bound as well (Frank and Satta, 1998;
Wartena, 2000). Moreover, if we look at the properties
of natural language syntax, it appears that the structural
tradeoffs that arise from the resolution of constraint con-
flict take place over local domains.

We therefore propose an OT formalism based on Tree
Adjoining Grammar, which we call Optimality Tree Ad-
joining Grammar (OTAG), where separate optimizations
are responsible for the construction of local pieces of tree
structure (elementary trees) and the combination of these
pieces of structure.The first optimization (which we call
local optimization) takes as UR a non-recursive predicate
argument structure (PA-chunk) and chooses among a set
of local trees generated by Gen as candidate SRs of this
PA-chunk. The local optimization yields a finite tree lan-
guage which serves as a set of elementary trees. The sec-
ond type of optimization (which we refer to aslinking
optimization) takes as UR a tree whose nodes are labeled
by PA-chunks (a derivation tree of sorts) and chooses
among a set of structurally isomorphic TAG derivation
trees, where each node in these trees is labeled by an ele-
mentary tree that is among the locally optimal outputs for
the corresponding PA-chunk.

2 Definitions

Let us begin with a formal definition of an OT system,
adapted from (Frank and Satta, 1998).

Def. 1 An optimality system is a 4-tuple OS =

TAG+7: Seventh International Workshop on Tree Adjoining Grammar and Related Formalisms.
May 20-22, 2004, Vancouver, BC, CA.

Pages 72-79.

{Σ,Γ, Gen, C} whereΣ and Γ are the finite input and
output alphabets, Gen is a relation overΣ∗ × Γ∗, andC
is a finite set of total functions fromΣ∗ × Γ∗ to N .

As seen in this definition, Gen maps a UR to a set of SRs,
while a constraint is a function from a candidate UR-SR
pair to a natural number, which we take to represent the
degree of violation incurred by that candidate on that con-
straint. An OS gives rise to a set of optimality grammars
(OG), defined in (2):

Def. 2 An optimality grammarOG is an OS together
with a total orderingR onC, called aranking.

Frank and Satta’s definition is not directly applicable to
OT syntax because it defines the URs and the SRs as
strings. We assume that in syntax, the SRs are trees,
while the URs are predicate-argument (PA) structures in
tree form. A PA structure may contain simple and nested
predicates. A simple predicate is a predicate applied over
atomic arguments, i.e., arguments that do not contain
predicates, as in example (1).

(1) loves(John, Mary)

A nested predicate is a predicate applied to other predi-
cates, likesaysin example (2).

(2) says(Bill, (loves(John, Mary)))

We postulate a grammatical component, the
PA− chunker, which breaks down a complex PA
structure into simple PA structures by substituting
non-atomic arguments with predicate labels, which are
treated as atomic arguments in the local optimization.

Def. 3 A PA-chunkeris a function from a nested PA
structure P to a set of pairs containing a simple PA-
structure (PA-chunks)S and a labell for that structure,
such that

i. each predicate inP is a predicate in exactly one of
the PA-chunks inS;

ii. the atomic arguments of each predicate inP are the
same as the arguments of that predicate in corre-
sponding PA-chunk inS; and

iii. each complex argumentA of a predicateπ in P is
replaced in the PA-chunk containingπ in S by the
label uniquely associated with the simple PA-chunk
in S corresponding toA.

For example, the nested PA structure in (2) will give rise
to the set of simple PA structures in (3) (where X and Y
are predicate labels).

(3) {([says (Bill, X)], Y), ([loves (John, Mary)], X)}

In our setting, PA-chunks are the URs for optimizations
over bounded domains whose outputs are local trees. The
URs for optimizations over unbounded domains are tree

structures over nodes labeled by a PA-chunk and all win-
ning surface realizations of that PA-chunk (in the form of
syntactic trees).

With this in mind, we define Optimality Tree Adjoin-
ing Systems (OTAS) as follows:

Def. 4 An Optimality Tree Adjoining Systemis a 9-
tuple
OTAS = {Σ,Γ,Π, Chunk, Loc,GenC , GenK , C,K}
where

• Σ andΓ are finite input and output alphabets;
• Π is a set of predicate labels;
• Chunk and Loc are finite sets of finite trees la-
beled byΣ ∪Π andΓ respectively;
• GenC is a relation overChunk × Loc;
• GenK is a relation overΨ× Ξ, where

i. Ψ is the set of finite trees each of whose nodes
are labeled by members ofChunk×Π× 2Loc

where for eachτ ∈ Ψ, a node labeled(σ, π, γ)
is a daughter of node(σ′, π′, γ′) iff σ′ contains
labelπ;

ii. Ξ is the set of finite trees labeled byΓ;

• C is a finite set of total functions fromChunk ×
Loc to N ;
• K is a finite set of total functions fromΨ×Ξ to N
(with Ψ andΞ defined as above).

The alphabetsΣ andΓ are the sets of symbols in the rep-
resentations making up the UR and SR, respectively. In
our current conception,Σ consists of the set of predicate
and argument symbols, whileΓ contains the set of termi-
nal and non-terminal symbols.1 Chunk will contain the
set of URs that feed the local optimization, the set of PA-
chunks, whileLoc contains the SRs that can be the out-
put of this process, the possible syntactic realizations of
the PA-chunks.GenC maps a PA-chunkσ ∈ Chunk to
corresponding SRγ ∈ Loc. GenK maps any tree struc-
ture whose nodes are labeled by (local-UR, pred-label,
locally-optimal-SRs) triples to a recursive surface tree re-
alization.C is the set of constraints on local trees, while
K is the constraints over recursive trees.2 According to
definition (2), an OT grammar is obtained by imposing
a unique ranking on the set of constraints. In OTAG, a
ranking must be specified for each type of optimization.

Def. 5 An OTAG Grammar(OTG) is an OTAS with a
pair of rankingsRC , RK onC andK.

1To keep things relatively simple, our definition neither
enforces the arity requirements of predicate symbols nor the
proper placement of predicate labels, terminal and non-terminal
symbols in building members ofChunk or Loc.

2Note that we are assuming that set of possible realizations
of a member ofChunk is finite. This is reasonable under
the assumption that there is a finite set of winners for each
optimization.

73

Grammar A. YNA

�� HH
a Y

c

Y
�� HH
b Y

L = ab∗c

Grammar B. Y
�� HH
a YNA

c

Y
�� HH
b Y

L = b∗ac

Figure 1: Related TAG grammars.

With these definitions in place, we can now define the
notion of optimization in an OTG. Let us begin with local
optimization:

Def. 6 The local optimum, LOpt(p), associated with
a simple predicate argument structurep is defined recur-
sively, as in (Frank and Satta, 1998):

LOpti(p) =
{

GenC(p) if i = 0;
argminci

(LOpti−1(p)) if i ≥ 1

LOpt(p) = LOptm(p) wherem = |C|

Given such a set of local optima, we can now define the
linking optimization process. Assume that we have a re-
cursive predicate argument structureΠ. The input to the
linking optimization is a tree whose labels are taken from
the following set of locally optimal pairings:

Λ = {(p, π, LOpt(p))|(p, π) ∈ PA-Chunk(p)}

Given such aΛ, there will be a unique treeτ such that
(p, π, γ) is a daughter of node(p′, π′, γ′) iff p′ contains
predicate labelπ. Linking optimization is now defined
over thisτ as in definition 6, usingGenK and constraint
setK.

3 Substitution, adjoining and the Linking
Optimization

In traditional TAG, grammars sharing the same set of lo-
cal trees can generate different languages. An example of
this situation is depicted in Figure 1, where we see two
grammars that differ only in the locus of adjoining con-
straints and generate distinct languages. Since the link-
ing optimization in OTAG constrains how the elementary
trees that result from the local optimization are put to-
gether, the languages of these grammars could also gener-
ated by two OTAGs derived from the same OTAG system
with different constraint rankings (Figure 2).

The constraints on adjoining are implemented in the
set of violable constraints K, which prohibit or require

adjoining at a set of nodes. In the grammar illustrated
here,C1 requires some adjoining to take place,C2 for-
bids adjoining at the root Y node of theac elementary
tree, andC3 forbids adjoining at the lower Y node of the
same tree. WhenC1 is ranked above either or both ofC2

or C3, the higher ranked of this latter pair of constraints
determines where adjoining applies, whereas whenC1 is
lowest ranked, no adjoining takes place at all. Constraint
reranking, then, achieves the effect of altering the loci
of adjoining constraints. In principle, the linking opti-
mization may apply globally, evaluating the whole UR
against a derivation, but that would lead to the possibil-
ity of conditioning an adjunction at high levels on lower
level adjunctions. In order to limit the generative power
of OTAG, we require that the linking optimization apply
cyclically. Each cycle adjoins a set of auxiliary trees into
a single local tree, and these cycles proceed in a bottom-
up fashion through the PA-chunk structure that is the in-
put to the linking optimization. The result of a linking
optimization may be used for a subsequent cycle, when a
derived auxiliary is adjoined. This constraint enforces a
strong parallelism between the OTAG derivation and the
TAG derivation. They differ only by the presence of an
optimization step in OTAG, which determines where the
auxiliary tree is adjoined into another elementary tree. In
other words, an OTAG derivation tree represents a series
of optimal adjoining operations.

With this restriction in place, it turns out that the result-
ing formalism is exactly as powerful as the TAG formal-
ism. Specifically, we can prove the following theorems
(see appendix for proofs):

Theorem 1 For any TAG G, there is a OTAG G’ such
that T(G) = T(G’).

Theorem 2 For any OTAG G’, there is a TAG G such
that T(G’) = T(G).

4 OTAG in action: An illustrative example

To illustrate the practical application of the formalism,
we will go through the steps of a derivation of the Swiss-
German cross-serial construction, and the corresponding

C1 >> C2 >> C3

Y
�� HH
a Y

��HH
Y

b

c

C1 >> C3 >> C2

Y
�� HH
b Y

��HH
Y

a

c

{C2, C3} >> C1

Y
�� HH
a Y

c

Figure 2: Output of OTAG grammars that differ only in
constraint ranking.

74

German and English constructions. Swiss-German ex-
hibits cross-serial dependencies that can be modeled by
the languageLCross = anbmcndm|m,n ∈ N (Shieber,
1985).

(4) De Jan
John-NOM

säit,
says

dass
that

mer
we

em Hans
Hans-DAT

es
the

huus
house

hälfed
helped

aastriiche.
paint

(Swiss German)

‘John says that we helped Hans paint the house.’

Compare this to the English and German equivalents.

(5) John says that we helped Hans paint the house.

(6) Jan
John

sagt,
says

daß
that

wir
we

Hans
Hans

das
the

Haus
house-Acc

anstreichen
paint

hilften.
helped

(German)

‘John says that we help Hans paint the house.’

The German sentence exhibits center embedding - the in-
nermost verb case-marking the innermost noun, the out-
ermost verb case-marking the outermost noun. In the En-
glish case, there is no embedding at all: verbs always
immediately precede their associated arguments.

Let us consider the necessary steps in an OTAG analy-
sis of these data. First, we must isolate the local winners.
As we know, they are SRs corresponding to PA-chunks.
Table 4 shows the simple predicates and the correspond-
ing yield of the local winners in English, German, and
Swiss-German. The symbolmarks the insertion site for
the other SR. The question we need to tackle is what kind
of trees yield these strings. We notice that the German
and Swiss-German cases differ from the English case by
the position of the verb with respect to its arguments. One
way to account for this difference would be to invoke a
Headedness constraint on the local trees, Head-Left, and
a counter-constraint, e.g., Head-Right. We also invoke
a local Markedness constraint such as “Move V” which
conflicts with a Faithfulness constraint “*trace” (a.k.a.
“Stay!”, cf. Grimshaw1977). These constraints are de-
fined as follows:
• Move V: Raise V to T.
• *trace: No traces.

In German, unlike English, “*trace” is ranked lower than
“Move V”. Note that the overt difference between En-
glish and German can be explained by assuming the verb
help raises to node Y, without assuming anything about
the verbpaint. However, our OTAG analysis forces us
to make a theoretical commitment thatpaint also raises,
since the tree it is part of is a winner of a local optimiza-
tion under the same constraint hierarchy.

We can now characterize the Swiss-German case in a
way consistent with our theory of the English and Ger-
man cases. At this point, we are going to make use of the

X1

�
����

H
HHHH

we �
��

H
HH

��� HHH

�� HH
Hans thelp

X2

help

X3

����

HHHH

PRO ���
HHH

X4

�� HH
house tpaint

paint

Figure 3: Adjoining occurs atX4 in Swiss-German,X3

in German

linking optimization to distinguish German from Swiss-
German in particular. Descriptively, Swiss-German dif-
fers from German by the fact thathelpintervenes between
paint and its argument. This is exactly what we expect if
we assume that adjoining in Swiss-German takes place at
a lower node than adjoining in German. In the analysis of
English and German, the nodeX3 was the adjoining site.
By supposing that instead, the adjoining site for Swiss-
German isX4, we obtain the desired cross-serial depen-
dency. To enforce this difference in adjoining sites, we
need to postulate two constraints that play a role in the
linking optimization by favoring nodesX3 andX4, re-
spectively. A linguistically motivated constraint favoring
X3 may be related to the relationship between Hans and
PRO resulting from the adjoining. In English and Ger-
man, but not in Swiss-German, Hans c-commands PRO
in the output of the linking optimization. Another plausi-
ble constraint is a subcategorization constraint on the ad-
joining tree. Suppose the adjoining tree is of type A and
nodeX3 is of a particular type N. Thus, the linking opti-
mization may involve a constraint “C-PRO: PRO must be
c-commanded” and a constraint “A-to-N: Adjoin trees of
type A to nodes of type N” ranked differently with respect
to each other. In our case, let us suppose “trees of type A”
means “Auxiliary trees of type VP” and “Nodes of type
N” means “Highest VP node of initial tree.” To recount,
here is how our model analysis would play out. Table
4 presents the local optimizations with candidate struc-
tures, including the winners for English (E), German (G)
and Swiss-German (SG).

Note that at this point the local optimization contains
two constraints more than necessary to account for the
data. We can prune the analysis by removing any pair of
constraints that favor opposite candidates. For example,

75

PA-chunks English German Swiss-German
([paint(Hans, house)], X) paint the house das Haus anstreichenes huus aastriiche
helped(we, Hans,X) We helped Hans wir Hans hilften mer em Hanshälfed

Table 1: PA-chunks

(paint(Hans, house)],X) Head-Left Head-Right *trace Move V
E: [PRO [paint house]] * *
G, SG:[PRO [[tpaint house] paint]] * *
help(we, Hans, X)
E: [we [[help Hans]]] * *
G, SG:[we [[[thelp Hans]] help]] * *

Table 2: Local optimizations

paint(Hans, house) Head-Left Head-Right
E: [PRO [paint [tpaint house]]] *
G, SG: [PRO [[tpaint house] paint]] *
help(we, Hans,X)
E: [we [help [thelp Hans]]] *
G, SG: [we [[[thelp Hans]] help]] *

Table 3: Local optimization simplified

we have the option of scrapping either the pair Head-Left,
Move V or the pair Head-Right, *trace from the con-
straint set. If we get rid of the former pair, we will essen-
tially be claiming that movement of the verb happens in
order to position the head to the right of the verb phrase.
Alternatively, if we remove the latter constraint pair, we
will be suggesting that movement of the verb can only
happen to the right and hence necessarily violates Head-
Left. There is no reason to dismiss either scenario right
away. On the other hand, some new data might discredit
either alternative and persuade us to keep all constraints
in the set. Finally, a third scenario may involve obliga-
tory verb movement in both English and German/Swiss-
German. In this case, the only relevant players in the
constraint set are Head-Left and Head-Right, which force
the movement to take the preferred direction. The op-
timization would include only candidate representations
in which movement has occurred (i.e. Loc would be re-
stricted to such structures, Table 3).

Another issue in the local optimization is the realiza-
tion of the argument “Hans” as PRO in one sentence, but
asHans in the other. This issue can only be solved by
exploiting the possibility of multiple winners in the local
optimizations. In other words PRO and the full argument
must be indistinguishable from the point of view of the
local optimization, but one or the other must be preferred
in the linking optimization. The argument is simple. By
virtue of our definition of the PA chunker, the predicate
argument structurepaint(Hans, house)is independent of

the larger complex predicate it was embedded in. Con-
sequently, the same predicate argument structure would
qualify as an UR ofHans paints the housesince the lat-
ter is a grammatical structure, Hans may equally surface
as PRO or simplyHans. We need to update our Table
once again by adding two more competitors, as shown
in Table 4. This competition is resolved in the subse-
quent linking optimizations as seen in Table 5. The con-
straint “*Repeat” penalizes the repetition of a nominal
element. Admittedly, this is a very crude way of enforc-
ing the presence of PRO in the final structure. A more
sophisticated way of defining *Repeat could refer to the
relationship between trees with argument Arg in SpecVP
on one hand, and trees with the same argument Arg in
a complement position on the other. For example: *Re-
peat: Do not adjoin trees with complement Arg to trees
with Arg in SpecVP This formulation is a better match
for the type of constraints we have used in our formal
treatment of OTAG so far.

The role of *Repeat here is to show how multiple win-
ners in the local optimization allow us to sneak in solu-
tions to differences in the form of main versus embedded
clauses. Recall that, if the PA-chunker is only given the
simple predicate argument structure to start with, the link-
ing optimization will involve adjoining of the null tree.
Consequently, “*Repeat” will not play a role, as shown
in Table 6. At the same time, any constraint related to
PRO would disadvantage PRO in this setting and the full
argument would surface. This completes our illustrative

76

paint(Hans, house) Head-Left Head-Right
E: [PRO [paint [[tpaint house]]] *
G, SG: [PRO [[tpaint house] paint]] *
E: [Hans [paint [tpaint house]]] *
G, SG: [Hans [[tpaint house] paint]] *

Table 4: Full NP andPRO are tied in the local optimization

help(we, Hans,X). paint(Hans, house) C − PRO A-to-N *Repeat
E: [we [[help Hans] [PRO [paint house]]]] *
G: [we [[[Hans t help] [PRO [[housetpaint] paint]]]help]] *
SG: [PRO [[we [[[Hans thelp] [housetpaint]] help]]paint]] *
* [we [[help Hans] [Hans [paint house]]]] * *
* [we [[[Hans thelp] [Hans [[housetpaint] paint]]]help]] * *
* [Hans [[we [[[Hans thelp] [housetpaint]]help]]paint]] * *

Table 5: Linking optimization licensesPRO in subordinate clause

∅ . paint(Hans, house) C − PRO *Repeat
* [PRO [paint house]] *
*[PRO [[housetpaint] paint]] *
E: [Hans [paint house]]
G, SG: [Hans [[housetpaint] paint]]

Table 6: Linking Optimization eliminates PRO in main clause

analysis of the Swiss-German construction and its cross-
linguistic counterparts. The important points to remem-
ber are:
• When analyzing a complex structure, complex PA

structures are broken into chunks.
• Predicate labels in the PA chunks constrain what ad-

joins into what in the linking optimization.
• Adjustments in the ranking among constraints in the

local optimization permit different structural vari-
ants to win.

• Both main clause and the embedded clause variants
of a PA chunk must be possible winners in the local
optimization.

• If the embedded clause is not grammatical as a main
clause, the linking optimization must include a con-
straint that favors the embedded clause over the
main clause.

5 Conclusion

Our proposal is a step towards a restrictive and adequate
framework for handling syntactic phenomena in the spirit
of OT. We have demonstrated that the generative power
of any grammar specified within the framework is lim-
ited to the class of MCSLs, which many believe is the
complexity class of natural languages. The main theo-
retical advantage of the OTAG formalism is the locality

imposed by the optimization over simple predicates in
the first stage of the derivation of an arbitrarily complex
structure. Another, more practical advantage stems from
the relative transparency of the components of the frame-
work. Our formalism relies on a specific kind of under-
lying representation, a specific way to handle recursion,
and a general template for constraints. Clearly, further
work is needed to test the viability of this framework for
a broader range of empirical phenomena.

Acknowledgments

Special thanks to Paul Smolensky for helpful comments
on an earlier draft. The research in this paper was sup-
ported in part by NSF grant SBR-9972807.

References

Robert Frank and Giorgio Satta. 1998. Optimality theory
and the generative complexity of constraint violability.
Comput. Linguist., 24(2):307–315.

Alan Prince and Paul Smolensky. 1993. Optimality
theory: Constraint interaction in generative grammar.
Technical report, Rutgers University Center for Cogni-
tive Science.

Stuart Shieber. 1985. Evidence against the context-

77

freeness of natural language.Linguistics and Philos-
ophy, 8:333–343.

Christian Wartena. 2000. A note on the complexity of
optimality systems. Ms. Universität Potsdam, Rutgers
Optimality Archive (ROA-385-03100).

Appendix: Proofs of theorems

We define a TAG G as a tuple(A, I, R), whereA is the
set of auxiliary trees,I is the set of initial trees, andR
is the set of adjoining constraints associated with nodes
of A ∪ I. We require thatA contain a distinguished null
auxiliary treeε, capable of adjoining at any node. With
such anε tree, we can assume without loss of generality
that every legal TAG/OTAG derivation involves adjoin-
ing to every node of every tree involved in the derivation.
An adjoining constraintr ∈ R specifies a set of treesS
and a noded such thatS cannot adjoin atd (r = ∗S@d).
Such a constraint corresponds to the usual notion of se-
lective adjoining constraint. Obligatory adjoining con-
straints can be modeled as a constraint which forbids ad-
joining of ε. Null adjoining constraints permit adjoining
of only the treeε. On the OTAG side, we will assume
a constraint *NIL that penalizes SRs in the linking op-
timization in which trees present in the UR do not par-
ticipate in the TAG derivation yielding the surface tree.
Finally, we use the notationT (G) to refer to the set of
well-formed derivation trees in a TAG or OTAG.
Theorem 1. For any TAG G, there is a OTAG G’ such
that T(G) = T(G’).
Given a TAGG = (I,A, R), we define OTAGG′ =
(Σ,Γ,Π, Chunk, Loc, C,K), such thatLoc = A ∪ I
andKG′ = {∗NIL} ∪ {kr|r ∈ R} wherekr penalizes
a candidate if it involves an adjoining that would violate
TAG adjoining constraintr.3

Claim 1 D ∈ T (G) → D ∈ T (G′)
Proof by induction on the depth ofD (represented(D)):
Base caseLet (D) = 0.D consists of a nodet whose only
children are instances of the empty treeε. Let t be a tree
with nodes{1...n}. D /∈ T (G′) iff one of the following
is true:

1. {t, ε} /∈ Loc. But ε is always in A. Moreover,D ∈
T (G) by hypothesis, which is true only ift ∈ A∪ I.
SinceLoc = A ∪ I, t ∈ Loc.

2. ∃k1...kn ∈ K|ki = ∗{ε}@i, for i a node∈ t. This is
true only if ∃{r1...rn} ∈ R|ri = ∗{ε}@i, i a node
∈ t. But if {r1...rn} ∈ R was trueD ∈ T (G) would
be false.

Hence{k1...kn} do not exist andD ∈ T (G′)
Induction hypothesis Suppose Claim 1 is true for all

3We do not defineΣ, Π, Chunk, or C since the there is
no counterpart to the local optimization in TAG. Since the set
of elementary trees is finite, we can assume the existence of
some set of constraintC that will produce this set of trees from
appropriate URs.

(D) ≤ k. Let t be the root ofD and {1...n} the set
of nodes int. Let {D1...Dn} be a set of derivations with
roots{a1...an} ∈ A such thatai is adjoined to nodei in
t. Observe that(Di) ≤ k for 1 ≤ i ≤ n. D /∈ T (G′) iff
one of the following is true:

1. t /∈ Loc. But D ∈ T (G) by hypothesis, which is
true only if t ∈ A∪ I. SinceLoc = A∪ I, t ∈ Loc;

2. {D1...Dn} /∈ T (G′).But {D1...Dn} ∈ T (G′) by
the induction hypothesis;

3. ∃ki ∈ K|ki = ∗ai@i. This is true only if∃ri ∈
R|ri = ∗ai@i. But if this were true,D ∈ T (G)
would be false.

Henceki do not exist andD ∈ T (G′)
Claim 2 W ∈ T (G′) → W ∈ T (G)
Proof by induction on the depth of W:
Base case(W) = 0. W consists of one optimization ad-
joining the empty treeε into somew ∈ Loc. W /∈ T (G)
iff one of the following is true:

1. w /∈ A ∪ I. But Loc = A ∪ I andw ∈ Loc. Hence
w ∈ A ∪ I.

2. ∃r1...rn ∈ R|ri = ∗{ε}@i, for i a node∈ t. This
is true only if∃{k1...kn} ∈ K|ki = ∗{ε}@i, for i
a node∈ t. But if {k1...kn} ∈ K was true,W ∈
T (G′) would be false.

Hence{r1...rn} do not exist andW ∈ T (G)
Induction hypothesis Suppose Claim 2 is true for any
derivation W,(W) ≤ k. Let w be the root ofW and
{1...n} the set of nodes inw. Let {W1...Wn} be a set
of derivations with roots{z1...zn} ∈ Loc such that
zi is adjoined at nodei. Observe that(Wi) ≤ k for
all 1 ≤ i ≤ n. W /∈ T (G) iff one of the following is true:

1. w /∈ A ∪ I. But w ∈ T (G′) by hypothesis, which is
true only ifw ∈ Loc. SinceLoc = A∪I, w ∈ A∪I;

2. {W1...Wn} /∈ T (G).But {W1...Wn} ∈ T (G) by
hypothesis;

3. ∃ri ∈ R|ri = ∗zi@i. This is true only if∃ki ∈
K|ki = ∗zi@i. But if ki ∈ K was trueW ∈ T (G′)
would be false.

Henceri do not exist andW ∈ T (G).
Theorem 2. For any OTAG G’, there is a TAG G such
that T(G’) = T(G).
Here, we will also give a general procedure for convert-
ing a OTAG into an equivalent TAG. Before we proceed,
it would be useful to informally consider the two cases
that cause complications in this conversion. Both cases
are easily illustrated with a minimal OTAG. Suppose Loc
contains only two trees: the initial tree t and the aux-
iliary tree a. In addition, let t contain only two non-
terminal nodes (n1, n2). Case 1: Now suppose that the
constraint set K of our OTAG G contains two OA con-
straints,k1 andk2, such thatk1 andk2 require the ad-
joining of the same treea at different nodes(n1, n2) of
the treet (k1 = ∗(A − a)@n1; k2 = ∗(A − a)@n2;).

78

Furthermore, suppose∗Null >> k1 >> k2. This
constraint ranking would enforce the adjoining ofa into
n2(t) only if another instance ofa is adjoined atn1(t).
Case 2 is similar: Suppose that the constraint set K of our
OTAG G contains two NA constraints,k1 andk2 against
adjoining any auxiliary treea at either one of two dif-
ferent nodes(n1, n2) of the same treet. Furthermore,
suppose∗Null >> k1 >> k2. This constraint rank-
ing would allow adjoining inton1(t) only if adjoining
has taken place already atn2(t). It is clear from these
cases that a simple translation of constraints into adjoin-
ing constraints is not sufficient. The violated OA con-
straintk2 cannot be emulated by an OA constraint forc-
ing a to adjoin atn2 (because the adjoining fails when
a is not adjoined atn1); nor does it correspond to a SA
constraint that merely allows adjoining ofa at n2 (be-
cause it the adjoining is obligatory whenever an instance
of a is already adjoined atn1). Thus, instead of pick-
ing a single type of constraint to place on each elemen-
tary tree, we need to multiply out the trees in Loc af-
fected by problematic constraint sets of this type. The
treet corresponds to a subset of two trees in the elemen-
tary tree set of the corresponding TAG: One tree has an
OA constraint on noden1. The other has an NA con-
straint on noden2. Similarly, the violated NA constraint
k2 cannot be emulated by a NA constraint againsta on
n1 (because the adjoining could occur if an instance ofa
is already adjoined atn2). Neither can it be completely
disregarded, because it preventsa from adjoining inton1

if a has not adjoined ton2 beforehand. The treet maps
to a subset of two trees in the elementary tree set of the
corresponding TAG: One tree has an NA constraint on
n1, the other has an OA constraint onn2. Let G’ be a
OTAG = {Σ,Γ,Π, Chunk, Loc,GenC , GenK , C,K}
with rankingsRC andRK . Then TAGG = {A, I, R},
obtained based on the outcome of all linking optimiza-
tions involving the adjoining of a setS of trees fromLoc
into some treet in Loc (note that|S| ≤ the number of
non-terminals int).
Conversion algorithm:
Step 1: Create a tableTt of sizen×p associated with each
treet in Loc, wheren is the number of nodes int, andp is
the number of possible multisets of treesZ drawn from
Loc of cardinalityn. In each cell(j, k), enter all trees
z ∈ Z adjoined to nodej in some linking optimization
over Υ, whereΥ is a UR tree whose nodes are labeled
with triples(σi, π, γi) and∪(γi) = k.

Step 2: For every treet ∈ Loc, create a set of elementary
treesEt containing distinct copies oft for each cell of
Tt. For each sucht(i,j) ∈ Et, create adjoining constraints
r = ∗A−Tt(i, j)@h, whereh is the name of the copy of
nodei in t(i,j).

Claim 1: W ∈ T (G′) → W ∈ T (G)
Proof by induction on depth ofW .

Base caseLet (W) = 0. W involves one optimization
adjoining of only instances of the empty treeε into some
w ∈ Loc. W /∈ T (G) iff one of the following is true:

1. w /∈ A ∪ I. But A ∪ I ⊇ Loc andw ∈ Loc. Hence
w ∈ A ∪ I.

2. ∃r1...rn ∈ R|ri = ∗{ε}@i, i a node∈ t. This is true
only if ε never adjoins into w in the linking optimiza-
tion of G’. But if this were the case,W ∈ T (G′)
would be false.

Hence{r1...rn} do not exist andW ∈ T (G)
Induction hypothesis Suppose Claim 1 is true for any
derivation (W) ≤ k. Let w be the root ofW and
{1...n} the set of nodes inw. Let {W1...Wn} be a set
of derivations,(Wi) ≤ k with roots{z1...zn} ∈ Loc such
that zi is adjoined at nodei. W /∈ T (G) iff one of the
following is true:

1. w /∈ A ∪ I. But w ∈ T (G′) by hypothesis, which is
true only if w ∈ Loc. SinceA ∪ I contains copies
of all the trees inLoc,w ∈ A ∪ I;

2. {W1...Wn} /∈ T (G). But {W1...Wn} ∈ T (G) by
hypothesis;

3. ∃ri ∈ R|ri = ∗zi@i. This is true only if G’ disal-
lows adjoining ofzi to i, in which caseW ∈ T (G′)
would be false.

Henceri do not exist andW ∈ T (G).
Claim 2: D ∈ T (G) → D ∈ T (G′)
Proof by induction on depth ofD:
Base caseLet (D) = 0. D consists of a nodet whose
only children are the empty treeε. Let t be a tree with
nodes{1...n}. D /∈ T (G′) iff one of the following is
true:

1. {t, ε} /∈ Loc. But ε is always in A. Moreover,D ∈
T (G) by hypothesis, which is true only ift ∈ A∪ I.
SinceA∪ I contains only copies of trees inLoc, t ∈
Loc.

2. ∃k1...kn ∈ K|ki = ∗{ε}@i, i a node∈ t. This is
true only if ∃{r1...rn} ∈ R|ri = ∗{ε}@i, i a node
∈ t. But if {r1...rn} ∈ R was trueD ∈ T (G) would
be false.

Hence{k1...kn} do not exist andD ∈ T (G′)
Induction hypothesis Suppose Claim1 is true for any
(D) ≤ k. Let t be the root ofD and{1...n} the set of
nodes int. Let {D1...Dn} be a set of derivations,(Di) ≤
k with roots{a1...an} ∈ A such thatai is adjoined to
nodei. D /∈ T (G′) iff one of the following is true:

1. t /∈ Loc. But D ∈ T (G) by hypothesis, which is
true only if t ∈ A ∪ I. SinceA ∪ I contains only
copies of trees inLoc, t ∈ Loc;

2. {D1...Dn} /∈ T (G′).But {D1...Dn} ∈ T (G′) by
hypothesis;

3. ∃ki ∈ K|ki = ∗ai@i. This is true only if∃ri ∈
R|ri = ∗ai@i. But if ri ∈ R was trueD ∈ T (G)
would be false.

Henceki do not exist andD ∈ T (G′).

79

