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Abstract 

It is often useful to classify email accord-
ing to the intent of the sender (e.g., "pro-
pose a meeting", "deliver information"). 
We present experimental results in learn-
ing to classify email in this fashion, 
where each class corresponds to a verb-
noun pair taken from a predefined ontol-
ogy describing typical “email speech 
acts”.   We demonstrate that, although 
this categorization problem is quite dif-
ferent from “topical” text classification, 
certain categories of messages can none-
theless be detected with high precision 
(above 80%) and reasonable recall (above 
50%) using existing text-classification 
learning methods. This result suggests 
that useful task-tracking tools could be 
constructed based on automatic classifi-
cation into this taxonomy.  

1 Introduction 

In this paper we discuss using machine learn-
ing methods to classify email according to the 
intent of the sender.  In particular, we classify 
emails according to an ontology of verbs (e.g., 
propose, commit, deliver) and nouns (e.g., infor-
mation, meeting, task), which jointly describe the 
“email speech act” intended by the email sender.   

A method for accurate classification of email 
into such categories would have many potential 
benefits. For instance, it could be used to help an 
email user track the status of ongoing joint activi-
ties.  Delegation and coordination of joint tasks is 
a time-consuming and error-prone activity, and 
the cost of errors is high: it is not uncommon that 
commitments are forgotten, deadlines are missed, 
and opportunities are wasted because of a failure 
to properly track, delegate, and prioritize sub-
tasks. The classification methods we consider  

 
methods which could be used to partially auto-
mate this sort of activity tracking. A hypothetical 
example of an email assistant that works along 
these lines is shown in Figure 1. 

Bill,

Do you have any sample 
scheduling-related email we 
could use as data?  -Steve

Assistant announces:  “new 
email request, priority 
unknown.”

Sure, I’ll put some together 
shortly. -Bill

Assistant:  “should I add this 
new commitment to your to-
do list?”

Fred, can you collect the msgs
from the CSPACE corpora 
tagged w/ the  “meeting”
noun, ASAP? -Bill

Assistant:  notices outgoing
request, may take action if no 
answer is received promptly.

Yes, I can get to that in the 
next few days.  Is next 
Monday ok? -Fred

Assistant:  notices incoming 
commitment. “Should I send 
Fred a reminder on Monday?”

 
Figure 1 - Dialog with a hypothetical email assistant 
that automatically detects email speech acts.  Dashed 
boxes indicate outgoing messages.  (Messages have 
been edited for space and anonymity.) 

2 Related Work 

Our research builds on earlier work defining il-
locutionary points of speech acts (Searle, 1975), 
and relating such speech acts to email and work-
flow tracking (Winograd, 1987, Flores & Lud-
low, 1980, Weigant et al, 2003). Winograd 
suggested that research explicating the speech-act 
based “language-action perspective” on human 
communication could be used to build more use-
ful tools for coordinating joint activities.  The 
Coordinator (Winograd, 1987) was one such sys-
tem, in which users augmented email messages 
with additional annotations indicating intent. 

While such systems have been useful in lim-
ited contexts, they have also been criticized as 
cumbersome: by forcing users to conform to a 
particular formal system, they constrain commu-
nication and make it less natural (Schoop, 2001); 
in short, users often prefer unstructured email 
interactions (Camino et al. 1998). We note that 



these difficulties are avoided if messages can be 
automatically annotated by intent, rather than 
soliciting a statement of intent from the user. 

Murakoshi et al. (1999) proposed an email an-
notation scheme broadly similar to ours, called a 
“deliberation tree”, and an algorithm for con-
structing deliberation trees automatically, but 
their approach was not quantitatively evaluated. 
The approach is based on recognizing a set of 
hand-coded linguistic “clues”.  A limitation of 
their approach is that these hand-coded linguistic 
“clues” are language-specific (and in fact limited 
to Japanese text.) 

Prior research on machine learning for text 
classification has primarily considered classifica-
tion of documents by topic (Lewis, 1992; Yang, 
1999), but also has addressed sentiment detection 
(Pang et al., 2002;  Weibe et al., 2001) and au-
thorship attribution (e.g., Argamon et al, 2003).   
There has been some previous use of machine 
learning to classify email messages (Cohen 1996; 
Sahami et al., 1998; Rennie, 2000; Segal & 
Kephart, 2000).  However, to our knowledge, 
none of these systems has investigated learning 
methods for assigning email speech acts. Instead, 
email is generally classified into folders (i.e., ac-
cording to topic) or according to whether or not it 
is “spam”. Learning systems have been previ-
ously used to automatically detect acts in 
conversational speech (e.g. Finke et al., 1998). 

3 An Ontology of Email Acts 

Our ontology of nouns and verbs covering some 
of the possible speech acts associated with emails 
is summarized in Figure 2.  We assume that a 
single email message may contain multiple acts, 
and that each act is described by a verb-noun pair 
drawn from this ontology (e.g., "deliver data").   
The underlined nodes in the figure indicate the 
nouns and verbs for which we have trained clas-
sifiers (as discussed in subsequent sections). 

To define the noun and verb ontology of 
Figure 2, we first examined email from several 
corpora (including our own inboxes) to find regu-
larities, and then performed a more detailed 
analysis of one corpus. The ontology was further 
refined in the process of labeling the corpora de-
scribed below. 

In refining this ontology, we adopted several 
principles. First, we believe that it is more impor-

tant for the ontology to reflect observed linguistic 
behavior than to reflect any abstract view of the 
space of possible speech acts. As a consequence, 
the taxonomy of verbs contains concepts that are 
atomic linguistically, but combine several illocu-
tionary points. (For example, the linguistic unit 
"let's do lunch" is both directive, as it requests the 
receiver, and commissive, as it implicitly com-
mits the sender. In our taxonomy this is a single 
'propose' act.) Also, acts which are abstractly 
possible but not observed in our data are not rep-
resented (for instance, declarations). 
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Figure 2 – Taxonomy  

Second, we believe that the taxonomy must re-
flect common non-linguistic uses of email, such 
as the use of email as a mechanism to deliver 
files. We have grouped this with the linguistically 
similar speech act of delivering information. 

The verbs in Figure 1 are defined as follows.  



A request asks (or orders) the recipient to per-
form some activity. A question is also considered 
a request (for delivery of information).  

A propose message proposes a joint activity, 
i.e., asks the recipient to perform some activity 
and commits the sender as well, provided the re-
cipient agrees to the request.  A typical example 
is an email suggesting a joint meeting.  

An amend message amends an earlier proposal. 
Like a proposal, the message involves both a 
commitment and a request.  However, while a 
proposal is associated with a new task, an 
amendment is a suggested modification of an 
already-proposed task. 

A commit message commits the sender to 
some future course of action, or confirms the 
senders' intent to comply with some previously 
described course of action.   

A deliver message delivers something, e.g., 
some information, a PowerPoint presentation,  
the URL of a website, the answer to a question, a 
message sent "FYI”, or an opinion. 

The refuse, greet, and remind verbs occurred 
very infrequently in our data, and hence we did 
not attempt to learn classifiers for them (in this 
initial study). The primary reason for restricting 
ourselves in this way was our expectation that 
human annotators would be slower and less reli-
able if given a more complex taxonomy.  

The nouns in Figure 2 constitute possible ob-
jects for the email speech act verbs. The nouns 
fall into two broad categories. 

Information nouns are associated with email 
speech acts described by the verbs Deliver, Re-
mind and Amend, in which the email explicitly 
contains information. We also associate informa-
tion nouns with the verb Request, where the 
email contains instead a description of the needed 
information (e.g., "Please send your birthdate." 
versus "My birthdate is …".  The request act is 
actually for a 'deliver information' activity). In-
formation includes data believed to be fact as 
well as opinions, and also attached data files. 

Activity nouns are generally associated with 
email speech acts described by the verbs Pro-
pose, Request, Commit, and Refuse.  Activities 
include meetings, as well as longer term activities 
such as committee memberships.   

Notice every email speech act is itself an ac-
tivity.  The <verb><noun> node in Figure 1 indi-
cates that any email speech act can also serve as 

the noun associated with some other email 
speech act.  For example, just as (deliver infor-
mation) is a legitimate speech act, so is (commit 
(deliver information)). Automatically construct-
ing such nested speech acts is an interesting and 
difficult topic; however, in the current paper we 
consider only the problem of determining top-
level the verb for such compositional speech acts. 
For instance, for a message containing a (commit 
(deliver information)) our goal would be to 
automatically detect the commit verb but not the 
inner (deliver information) compound noun. 

4 Categorization Results 

4.1 Corpora 

Although email is ubiquitous, large and realis-
tic email corpora are rarely available for research 
purposes.  The limited availability is largely due 
to privacy issues: for instance, in most US aca-
demic institutions, a users’ email can only be dis-
tributed to researchers if all senders of the email 
also provided explicit written consent. 

The email corpora used in our experiments 
consist of four different email datasets collected 
from working groups who signed agreements to 
make their email accessible to researchers. The 
first three datasets, N01F3, N02F2, and N03F2 
are annotated subsets of a larger corpus, the 
CSpace email corpus, which contains approxi-
mately 15,000 email messages collected from a 
management course at Carnegie Mellon Univer-
sity. In this course, 277 MBA students, organized 
in approximately 50 teams of four to six mem-
bers, ran simulated companies in different market 
scenarios over a 14-week period (Kraut et al.). 
N02F2, N01F3 and N03F2 are collections of all 
email messages written by participants from three 
different teams, and contain 351, 341 and 443 
different email messages respectively.  

The fourth dataset, the PW CALO corpus, was 
generated during a four-day exercise conducted 
at SRI specifically to generate an email corpus. 
During this time a group of six people assumed 
different work roles (e.g. project leader, finance 
manager, researcher, administrative assistant, etc) 
and performed a number of group activities.  
There are 222 email messages in this corpus. 



These email corpora are all task-related, and 
associated with a small working group, so it is 
not surprising that they contain many instances of 
the email acts described above—for instance, the 
CSpace corpora contain an average of about 1.3 
email verbs per message. Informal analysis of 
other personal inboxes suggests that this sort of 
email is common for many university users. We 
believe that negotiation of shared tasks is a cen-
tral use of email in many work environments.  

All messages were preprocessed by removing 
quoted material, attachments, and non-subject 
header information.  This preprocessing was per-
formed manually, but was limited to operations 
which can be reliably automated. The most diffi-
cult step is removal of quoted material, which we 
address elsewhere (Carvalho & Cohen, 2004). 

4.2 Inter-Annotator Agreement  

Each message may be annotated with several 
labels, as it may contain several speech acts.   To 
evaluate inter-annotator agreement, we double-
labeled N03F2 for the verbs Deliver, Commit, 
Request, Amend, and Propose, and the noun, 
Meeting, and computed the kappa statistic (Car-
letta, 1996) for each of these, defined as 

R

RA

−
−=

1
κ  

where A is the empirical probability of agreement 
on a category, and R is the probability of agree-
ment for two annotators that label documents at 
random (with the empirically observed frequency 
of each label). Hence kappa ranges from -1 to +1. 
The results in Table 1 show that agreement is 
good, but not perfect. 
 

Email Act Kappa 
Meeting 0.82 

Deliver 0.75 

Commit 0.72 

Request 0.81 

Amend 0.83 

Propose 0.72 

Table 1 - Inter-Annotator Agreement on N03F2. 

We also took doubly-annotated messages 
which had only a single verb label and con-
structed the 5-class confusion matrix for the two 
annotators shown in Table 2. Note kappa values 

are somewhat higher for the shorter one-act mes-
sages. 
 

            Req Prop Amd Cmt Dlv kappa 

Req 55 0 0 0 0 0.97 

Prop 1 11 0 0 1 0.77 

Amd 0 1 15 0 0 0.87 

Cmt 1 3 1 24 4 0.78 

Dlv 1 0 2 3 135 0.91 

Table 2 - Inter-annotator agreement on documents 
with only one category. 

4.3 Learnability of Categories 

Representation of documents. To assess the 
types of message features that are most important 
for prediction, we adopted Support Vector Ma-
chines (Joachims, 2001) as our baseline learning 
method, and a TFIDF-weighted bag-of-words as 
a baseline representation for messages.  We then 
conducted a series of experiments with the 
N03F2 corpus only to explore the effect of dif-
ferent representations.   

NF032 Cmt Dlv Directive 

Baseline SVM 25.0 49.8 75.2 
no tfidf  47.3 58.4 74.6 
+bigrams 46.1 66.1 76.0 
+times 43.6 60.1 73.2 
+POSTags 48.6 61.8 75.4 
+personPhrases 41.2 61.1 73.4 

 

NF02F2 and NF01F3 Cmt Dlv Directive 

Baseline SVM 10.1 56.3 66.1 
All ‘useful’ features 42.0 64.0 73.3 

Table 3 – F1 for different feature sets. 

 
We noted that the most discriminating words 

for most of these categories were common words, 
not the low-to-intermediate frequency words that 
are most discriminative in topical classification. 
This suggested that the TFIDF weighting was 
inappropriate, but that a bigram representation 
might be more informative. Experiments showed 
that adding bigrams to an unweighted bag of 
words representation slightly improved perform-
ance, especially on Deliver. These results are 
shown in Table 4 on the rows marked “no tfidf” 
and “bigrams”. (The TFIDF-weighted SVM is 
shown in the row marked “baseline”, and the ma-



jority classifier in the row marked “default”; all 
numbers are F1 measures on 10-fold cross-
validation.) Examination of messages suggested 
other possible improvements. Since much nego-
tiation involves timing, we ran a hand-coded ex-
tractor for time and date expressions on the data, 
and extracted as features the number of time ex-
pressions in a message, and the words that oc-
curred near a time (for instance, one such feature 
is “the word ‘before’ appears near a time”). 
These results appear in the row marked “times”.  
Similarly, we ran a part of speech (POS) tagger 
and added features for words appearing near a 
pronoun or proper noun (“personPhrases” in the 
table), and also added POS counts. 

To derive a final representation for each cate-
gory, we pooled all features that improved per-
formance over “no tfidf” for that category.  We 
then compared performance of these document 
representations to the original TFIDF bag of 
words baseline on the (unexamined) N02F2 and 
N01F3 corpora.  As Table 3 shows, substantial 
improvement with respect to F1 and kappa was 
obtained by adding these additional features over 
the baseline representation. This result contrasts 
with previous experiments with bigrams for topi-
cal text classification (Scott & Matwin, 1999)  
and sentiment detection (Pang et al., 2002).  The 
difference is probably that in this task, more in-
formative words are potentially ambiguous: for 
instance, “will you” and “I will”  are correlated 
with requests and commitments, respectively, but 
the individual words in these bigrams are less 
predictive. 

Learning methods.  In another experiment, 
we fixed the document representation to be un-
weighted word frequency counts and varied the 
learning algorithm. In these experiments, we 
pooled all the data from the four corpora, a total 
of 9602 features in the 1357 messages, and since 
the nouns and verbs are not mutually exclusive, 
we formulated the task as a set of several binary 
classification problems, one for each verb. 

The following learners were used from the 
Based on the MinorThird toolkit (Cohen, 2004). 
VP is an implementation of the voted perceptron 
algorithm (Freund & Schapire, 1999). DT is a 
simple decision tree learning system, which 
learns trees of depth at most five, and chooses 
splits to maximize the function 

( )00112 −+−+ + WWWW  suggested by Schapire and 

Singer (1999) as an appropriate objective for 
“weak learners”. AB is an implementation of the 
confidence-rated boosting method described by 
Singer and Schapire (1999), used to boost the DT 
algorithm 10 times.  SVM is a support vector ma-
chine with a linear kernel (as used above). 

 
Act  VP AB SVM  DT 
Request 
(450/907) 

Error 
F1 

0.25 
0.58 

0.22 
0.65 

0.23 
0.64 

0.20 
0.69 

Proposal 
(140/1217) 

Error 
F1 

0.11 
0.19 

0.12 
0.26 

0.12 
0.44 

0.10 
0.13 

Delivery 
(873/484) 

Error 
F1 

0.26 
0.80 

0.28 
0.78 

0.27 
0.78 

0.30 
0.76 

Commit-
ment 
(208/1149) 

Error 
F1 

0.15 
0.21 

0.14 
0.44 

0.17 
0.47 

0.15 
0.11 

Directive 
(605/752) 

Error 
F1 

0.25 
0.72 

0.23 
0.73 

0.23 
0.73 

0.19 
0.78 

Commis-
sive 
(993/364) 

Error 
F1 

0.23 
0.84 

0.23 
0.84 

0.24 
0.83 

0.22 
0.85 

Meet 
(345/1012) 

Error 
F1 

0.187 
0.573 

0.17 
0.62 

0.14 
0.72 

0.18
0.60 

Table 4 – Learning on the entire corpus. 

Table 4 reports the results on the most common 
verbs, using 5-fold cross-validation to assess ac-
curacy. One surprise was that DT (which we had 
intended merely as a base learner for AB) works 
surprisingly well for several verbs, while AB sel-
dom improves much over DT.  We conjecture 
that the bias towards large-margin classifiers that 
is followed by SVM, AB, and VP (and which has 
been so successful in topic-oriented text classifi-
cation) may be less appropriate for this task, per-
haps because positive and negative classes are 
not clearly separated (as suggested by substantial 
inter-annotator disagreement). 
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Figure 3 - Precision/Recall for Commissive act 

Further results are shown in Figure 3-5, which 
provide precision-recall curves for many of these 
classes. The lowest recall level in these graphs 



corresponds to the precision of random guessing. 
These graphs indicate that high-precision predic-
tions can be made for the top-level of the verb 
hierarchy, as well as verbs Request and Deliver, 
if one is willing to slightly reduce recall.  
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Figure 4 - Precision/Recall for Directive act 
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Figure 5 - Precision/Recall of 3 different classes 
using AdaBoost 
 

 
Transferability. One important question in-
volves the generality of these classifiers: to what 
range of corpora can they be accurately applied?  
Is it possible to train a single set of email-act 
classifiers that work for many users, or is it nec-
essary to train individual classifiers for each 
user? To explore this issue we trained a DT clas-
sifier for Directive emails on the NF01F3 corpus, 
and tested it on the NF02F2 corpus; trained the 
same classifier on NF02F2 and tested it on 
NF01F3; and also performed a 5-fold cross-
validation experiment within each corpus.   
(NF02F2 and NF01F3 are for disjoint sets of us-
ers, but are approximately the same size.)  We 
then performed the same experiment with VP for 
Deliver verbs and SVM for Commit verbs (in 

each case picking the top-performing learner with 
respect to F1).  The results are shown in Table 5. 
  

 Test Data 
DT/Directive 1f3 2f2 
Train Data Error F1 Error F1 

1f3 25.1 71.6 16.4 72.8 
2f2 20.1 68.8 18.8 71.2 

VP/Deliver  
1f3 30.1 55.1 21.1 56.1 
2f2 35.0 25.4 21.1 35.7 

SVM/Commit  
1f3 23.4 39.7 15.2 31.6 
2f2 31.9 27.3 16.4 15.1 

Table 5 - Transferability of classifiers 
 

If learned classifiers were highly specific to a 
particular set of users, one would expect that the 
diagonal entries of these tables (the ones based 
on cross-validation within a corpus) would ex-
hibit much better performance than the off-
diagonal entries.  In fact, no such pattern is 
shown. For Directive verbs, performance is simi-
lar across all table entries, and for Deliver and 
Commit, it seems to be somewhat better to train 
on NF01F3 regardless of the test set. 

4.4 Future Directions 

None of the algorithms or representations dis-
cussed above take into account the context of an 
email message, which intuitively is important in 
detecting implicit speech acts.  A plausible notion 
of context is simply the preceding message in an 
email thread. 

Exploiting this context is non-trivial for sev-
eral reasons.  Detecting threads is difficult; al-
though email headers contain a “reply-to” field, 
users often use the “reply” mechanism to start 
what is intuitively a new thread.  Also, since 
email is asynchronous, two or more users may 
reply simultaneously to a message, leading to a 
thread structure which is a tree, rather than a se-
quence.  Finally, most sequential learning models 
assume a single category is assigned to each in-
stance—e.g., (Ratnaparkhi, 1999)—whereas our 
scheme allows multiple categories. 

Classification of emails according to our verb-
noun ontology constitutes a special case of a gen-
eral family of learning problems we might call 
factored classification problems, as the classes 



(email speech acts) are factored into two features 
(verbs and nouns) which jointly determine this 
class. A variety of real-world text classification 
problems can be naturally expressed as factored 
problems, and from a theoretical viewpoint, the 
additional structure may allow construction of 
new, more effective algorithms.   

For example, the factored classes provide a 
more elaborate structure for generative probabil-
istic models, such as those assumed by Naïve 
Bayes. For instance, in learning email acts, one 
might assume words were drawn from a mixture 
distribution with one mixture component pro-
duces words conditioned on the verb class factor, 
and a second mixture component generates words 
conditioned on the noun (see Blei et al (2003) for 
a related mixture model).  Alternatively, models 
of the dependencies between the different factors 
(nouns and verbs) might also be used to improve 
classification accuracy, for instance by building 
into a classifier the knowledge that some nouns 
and verbs are incompatible.  

The fact that an email can contain multiple 
email speech acts almost certainly makes learn-
ing more difficult: in fact, disagreement between 
human annotators is generally higher for longer 
messages.  This problem could be addressed by 
more detailed annotation: rather than annotating 
each message with all the acts it contains, human 
annotators could label smaller message segments 
(say, sentences or paragraphs). An alternative to 
more detailed (and expensive) annotation would 
be to use learning algorithms that implicitly seg-
ment a message. As an example, another mixture 
model formulation might be used, in which each 
mixture component corresponds to a single verb 
category.    

5 Concluding Remarks 

We have presented an ontology of “email 
speech acts” that is designed to capture some im-
portant properties of a central use of email: nego-
tiating and coordinating joint activities. Unlike 
previous attempts to combine speech act theory 
with email (Winograd, 1987; Flores and Ludlow, 
1980), we propose a system which passively ob-
serves email and automatically classifies it by 
intention. This reduces the burden on the users of 
the system, and avoids sacrificing the flexibility 

and socially desirable aspects of informal, natural 
language communication. 

This problem also raises a number of interest-
ing research issues. We showed that entity ex-
traction and part of speech tagging improves 
classifier performance, but leave open the ques-
tion of whether other types of linguistic analysis 
would be useful. Predicting speech acts requires 
context, which makes classification an inherently 
sequential task, and the labels assigned to mes-
sages have non-trivial structure; we also leave 
open the question of whether these properties can 
be effectively exploited. 

  Our experiments show that many categories 
of messages can be detected, with high precision 
and moderate recall, using existing text-
classification learning methods. This suggests 
that useful task-tracking tools could be con-
structed based on automatic classifiers—a poten-
tially important practical application. 
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