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Abstract
We present a data and error analysis for semantic role
labelling. In a first experiment, we build a generic statis-
tical model for semantic role assignment in the FrameNet
paradigm and show that there is a high variance in perfor-
mance across frames. The main hypothesis of our paper
is that this variance is to a large extent a result of differ-
ences in the underlying argument structure of the pred-
icates in different frames. In a second experiment, we
show that frame uniformity, which measures argument
structure variation, correlates well with the performance
figures, effectively explaining the variance.

1 Introduction
Recent years have witnessed growing interest in
corpora with semantic annotation, especially on
the semantic role (or argument structure) level. A
number of projects are working on producing such
corpora through manual annotation, among which
are FrameNet (Baker et al., 1998), the Prague
Dependency Treebank (Hajičová, 1998), Prop-
Bank (Kingsbury et al., 2002), and SALSA (Erk et
al., 2003).

For semantic role annotation to be widely useful
for NLP, however, robust and accurate methods for
automatic semantic role assignment are necessary.
Starting with Gildea and Jurafsky (2000), a num-
ber of studies have developed (almost exclusively
statistical) models of this task, e.g. Thompson et
al. (2003) and Fleischman et al. (2003). This year
(2004), semantic role labelling served as the shared
task at two conferences, CoNLL1 and SENSEVAL2.

However, almost all studies have concentrated on
the technical aspects of the models – identifying in-
formative feature sets and suitable statistical frame-
works – with the goal of optimising the performance
of the models on the complete dataset. The only
study we are aware of with a more detailed evalu-
ation is Fleischman et al. (2003), who nevertheless
come to the conclusion that either “new features”,

1http://www.lsi.upc.es/~conll04st/
2http://www.clres.com/SensSemRoles.html

“more data”, or “more sophisticated models” are
needed.

The present study is a first step in pursuing the
third alternative, presenting a data and error anal-
ysis for semantic role assignment in the FrameNet
paradigm. We first build two different, generic sta-
tistical models for semantic role assignment, which
are fairly representative for the span of models in-
vestigated in the literature. A frame-wise evalua-
tion shows that the models exhibit a large variance
in performance across frames.

Our hypothesis is that this variance is to a large
extent caused by differences in the underlying ar-
gument structure of the predicates: Frames which
are less uniform, i.e. whose predicates have a more
heterogeneous mapping between semantic roles and
syntactic functions, are more difficult to label auto-
matically. In order to put this hypothesis, which is
intuitively very plausible, on a a firm empirical foot-
ing, we investigate the relationship between frame
uniformity and the variance in the data and show
that the two variables correlate. Since argument
structure has been investigated mostly for verbs, we
restrict our study to verbal predicates.

Structure of the paper. In Section 2 we give a
brief introduction to FrameNet. Section 3 outlines
the first experiment and discusses the variance in
performance across frames. In Section 4, we define
two measures of frame uniformity based on argu-
ment structure, and show in our second experiment
(Section 5) that they correlate with the performance
figures. Finally, Section 6 discusses the implica-
tions of our results for semantic role assignment.

2 FrameNet

FrameNet is a lexical resource based on Fillmore’s
Frame Semantics (Fillmore, 1985). It is designed
as an ontology of frames, representations of pro-
totypical situations. Each frame provides a set of
predicates (nouns, verbs or adjectives) which can
introduce the frame. The semantic roles are frame-
specific, since they are defined as categories of enti-



ties or concepts pertaining to the particular situation
a predicate evokes.

The following sentences are examples for the se-
mantic annotation provided in the FrameNet cor-
pus for verbs in the IMPACT frame, which describes
a situation in which typically “an Impactor makes
sudden, forcible contact with the Impactee, or two
Impactors both ... [make] forcible contact”3 .

(1) a. [Impactee His car] was struck [Impactor by
a third vehicle].

b. [Impactor The door] slammed
[Result shut].

c. [Impactors Their vehicles] collided
[Place at Pond Hill].

Note that the frame-specificity of semantic roles in
FrameNet has important consequences for semantic
role assignment, since there is no direct way to gen-
eralise across frames. Therefore, the learning for
automatic assignment of semantic roles has to pro-
ceed frame-wise. Thus, the data sparseness prob-
lem is especially acute, and automatic assignment
for frames with no training data is very difficult (see
Gildea and Jurafsky (2002)).

3 Experiment 1: Frame-Wise Evaluation
of Semantic Role Assignment

In our first experiment, we perform a detailed
(frame-wise) evaluation of semantic role assign-
ment to discover general patterns in the data. Our
aim is not to outperform existing models, but to
replicate the workings of existing models so that our
findings are representative for the task as it is cur-
rently addressed. To this end, we (a) use a standard
dataset, the FrameNet data, (b) model the task with
two different statistical frameworks, and (c) keep
our models as generic as possible.

3.1 Data and experimental setup

For this experiment, we use 57758 manually anno-
tated sentences from FrameNet (release 2), corre-
sponding to all the sentences with verbal predicates
(2228 lemmata from 196 frames). Gildea and Ju-
rafsky (2000) and Fleischman et al. (2003) used a
previous release of the dataset with less annotated
instances, but covered all predicates (verbs, nouns
and adjectives).

Data preparation. After tagging the data with
TnT (Brants, 2000), we parse them using the Collins
parsing model 3 (Collins, 1997). We consider only

3From the definition of the frame at http://www.icsi.
berkeley.edu/~framenet/. Examples adapted from
the FrameNet data, release 2.

the most probable parse for each sentence and sim-
plify the resulting parse tree by removing all unary
nodes. We lemmatise the head of each constituent
with TreeTagger (Schmid, 1994).

Gold standard. We transform the FrameNet
character-offset annotations for semantic roles into
our constituent format by determining the maximal
projection for each semantic role, i.e. the set of con-
stituents that exactly covers the extent of the role. A
constituent is assigned a role iff it is in the maximum
projection of a role.

Classification procedure. The instances to be
classified are all parse tree constituents. Since di-
rect assignment of role labels to instances fails due
to the preponderance of unlabelled instances, which
make up 86.7% of all instances, we follow Gildea
and Jurafsky (2000) in splitting the task into two
sequential subtasks: first, argument recognition de-
cides for each instance whether it bears a semantic
role or not; then, argument labelling assigns a label
to instances recognised as role-bearers. For the sec-
ond step, we train frame-specific classifiers, since
the frame-specificity of roles does not allow to eas-
ily combine training data from different frames.

Statistical modelling. We perform the classifica-
tion twice, with two learners from different statisti-
cal frameworks, in order to make our results more
representative for the different statistical models
employed so far for the task. The first learner uses
the maximum entropy (Maxent) framework, which
has been applied e.g. by Fleischman et al. (2003).
The model is trained with the estimate software,
which implements the LMVM algorithm (Malouf,
2002)4. The second learner is an instance of a
memory-based learning (MBL) algorithm, the

�
-

nearest neighbour algorithm. We use the implemen-
tation provided by TiMBL (Daelemans et al., 2003)
with the recommended parameters, namely

�����
,

adopting modified value difference with gain ratio
feature weighting as similarity metric.

3.2 Features
In accordance with our goal of keeping our models
generic, we use a set of vary (syntactic and lexical)
features which more than one study in the literature
has found helpful, without optimising the features
for the individual learners.

Constituent features: The first type of feature
represents properties of the constituent in question.
We use the phrase type and head lemma of each
constituent; its preposition (if available); its position

4Software available for download at http://www-
rohan.sdsu.edu/ malouf/pubs.html



relative to the predicate (left, right or overlapping);
the phrase type of its mother constituent; whether it
is an argument of the target, according to the parser;
and the path between target and constituent as well
as its length.

Sentence level features: The second type of fea-
ture describes the context of the current instance.
The predicate is represented by its lemma, its part of
speech, its (heuristic) subcategorisation frame, and
its governing verb. We also compile a list of all the
prepositions in the sentence.

3.3 Results
All results in this section are averages over F scores
obtained using 10-fold cross validation. For each
frame, we perform two evaluations, one in exact
match and one in overlap mode. In exact match
mode, an assignment only counts as a true positive
if it coincides exactly with the gold standard, while
in overlap mode it suffices that they are not disjoint.
F scores are then computed in the usual manner.

Table 1 shows the performance of the different
configurations over the complete dataset, and the
standard deviation of these results over all frames.
To illustrate the results for individual frames, Ta-
ble 2 lists frame-specific performances for five ran-
domly selected frames and how they varied over
cross validation runs.

Maxent MBL
Exact Match 53.3 � 10.8 56.9 � 10.1
Overlap 70.0 � 11.0 74.2 � 10.0

Table 1: Overall F scores and standard deviation
across frames for Experiment 1.

3.4 Analysis and Discussion
In terms of overall results, the MBL model outper-
forms the Maxent model by 3 to 4 points F-score.
However, all our results lie broadly in the range
of existing systems with a similar architecture (i.e.
sequential argument identification and labelling):
Gildea and Jurafsky (2002) report � � � ����� , and
Fleischman et al. (2003) � � �����
	 for exact match
evaluation. We assume that our feature formulation
is more suitable for the MBL model. Also, we do
not smooth the Maxent model, while we use the rec-
ommended optimised parameters for TiMBL.

Our most remarkable finding is the high amount
of variance presented by the numbers in Table 1.
Computed across frames, the standard deviation
amounts to 10% to 11%, consistently across eval-
uation measures and statistical frameworks. Since
these figures are results of a 10-fold cross valida-
tion run, it is improbable that the effect is solely

Exact match Maxent MBL
APPEARANCE 50.5 � 4.5 60.1 � 7.3
AVOIDING 47.9 � 5.0 51.3 � 6.9
JUDGM._COMM. 57.0 � 1.5 57.5 � 3.4
ROBBERY 38.4 � 19.1 37.9 � 16.2
WAKING_UP 60.5 � 11.4 64.4 � 11.8

Overlap Maxent MBL
APPEARANCE 68.3 � 4.0 75.0 � 5.6
AVOIDING 68.6 � 4.3 72.7 � 5.9
JUDGM._COMM. 76.9 � 1.6 77.6 � 1.8
ROBBERY 61.2 � 20.6 55.2 � 17.6
WAKING_UP 75.1 � 9.1 77.6 � 7.8

Total Exact Match 53.3 � 0.5 56.9 � 0.4
Total Overlap 70.0 � 0.4 74.2 � 0.5

Table 2: F scores and standard deviations over cross
validation runs for five random frames (Exp. 1).

due to chance splits into training and test data. This
assessment is supported by Table 2, which shows
that, while the performance on individual frames
can vary largely (especially for small frames like
ROBBERY), the average performance on all frames
varies less than 0.5% over the cross validation runs.

The reasons which lead to the across-frames vari-
ance warrant investigation, since they may lead to
new insights about the nature of the task in question,
answering Fleischman et al.’s (2003) call for bet-
ter models. Some of the plausible variables which
might explain the variance are the number of seman-
tic roles per frame, the amount of training data, and
the number of verbs per frame.

However, we suggest that a fourth variable might
have a more decisive influence. Seen from a lin-
guistic perspective, semantic role assignment is just
an application of linking, i.e. learning the regulari-
ties of the relationship between semantic roles and
their possible syntactic realisation and applying this
knowledge. Therefore, our main hypothesis is: The
more varied the realisation possibilities of the verbs
in a frame, the more difficult it is for the learner to
learn the correct linking patterns, and therefore the
more error-prone semantic role assignment. Even
though this claim appears intuitively true, it has
never been explicitly made nor empirically tested,
and its consequences might be relevant for the de-
sign of future models of semantic role assignment.

As an example, compare the frame IMPACT,
as exemplified by the instances in (1), with the
frame INGESTION, which contains predicates such
as drink, consume or nibble. While every sentence
in (1) shows a different linking pattern, linking for



INGESTION is rather straightforward: the subject is
usually the Ingestor, and the direct object is an In-
gestible. This is reflected in the scores: � � �������
for IMPACT and � � ��� �
	

for INGESTION (exact
match scores for the MBL model).

The most straightforward strategy to test for the
different variables would be to perform multiple
correlation analyses. However, this approach has a
serious drawback: The results are hard to interpret
when more than one variable is significantly corre-
lated with the data, and this is increasingly prob-
able with higher amounts of data points. Instead,
we adopt a second strategy, namely to design a new
data set in which all variables but one are controlled
for and correlation can be tested unequivocally. The
new experiment is explained in Section 5. Section 4
describes the quantitative model of argument struc-
ture required for the experiment.

4 Argument Structure and Frame
Uniformity

In this section, we define the concepts we require to
test our hypothesis quantitatively. First, we define
argument structure for our data in a corpus-driven
way. Then, we define the uniformity of a frame ac-
cording to its variance in argument structure.

4.1 An Empirical Model of Argument
Structure

Work in theoretical linguistics since at least Gru-
ber (1965) and Jackendoff (1972) has attempted to
account for the regularities in the syntactic reali-
sation of semantic arguments. Models for role as-
signment also rely on these regularities, as can be
seen from the kind of features used for this task (see
Section 3.2), which are either syntactic or lexical.
Thus, current models for automatic role labelling
rely on the regularities at the syntax-semantics in-
terface. Unlike theoretical work, however, they do
not explicitly represent these regularities, but extract
statistical properties about them from data.

The model of argument structure we develop in
this section retains the central idea of linking theory,
namely to model argument structure symbolically,
but deviates in two ways from traditional work in
order to bridge the gap to statistical approaches: (1),
in order to emulate the situation of the learners, we
use only the data available from the FrameNet cor-
pus; this excludes e.g. the use of more detailed lexi-
cal information about the predicates. (2), to be able
to characterise not only the possibility, but also the
probability of linking patterns, we take frequency
information into account.

Our definition proceeds in three steps. First, we

define the concept of a pattern, then we define the
argument structure of a predicate, and finally the ar-
gument structure of a frame.

Patterns. A pattern encodes the argument struc-
ture information present in one annotated corpus
sentence. It is an unordered set of pairs of seman-
tic role and syntactic function, corresponding to all
roles occurring in the sentences and their realisa-
tions. The syntactic functions used in the FrameNet
corpus are as follows5: COMP (complement), EXT

(subject in a broad sense, which includes control-
ling subjects), OBJ (object), MOD (modifier), GEN

(genitive modifier, as ‘John’ in John’s hat). For ex-
ample, Sentence (1-a) gives rise to the pattern���

Impactee � EXT ��� � Impactor � COMP �
	
which states that the Impactee is realised as subject
and the Impactor as complement.

Argument Structure for Predicates and Frames.
For each verb, we collect the set of all patterns in
the annotated sentences. The argument structure of
a verb is then a vector �� , whose dimensionality is the
number of patterns found for the frame. Each cell ��
is filled with the frequency with which pattern � oc-
curs for the predicate, so that the vector mirrors the
distribution of the occurrences of the verb over the
possible patterns. Finally, the set of all vectors for
the predicates in a frame is a model for the argument
structure of the frame.

The intuition behind this formalisation is that two
verbs which realise their arguments alike will show
a similar distribution of patterns, and conversely, if
they differ in their linking, these differences will be
mirrored in different pattern distributions.

Example. If we only had the three sentences in (1)
for the IMPACT corpus, the three occurring patterns
would be {(Impactee, EXT), (Impactor, COMP)},
{(Impactor, EXT), (Result, COMP)}, and {(Im-
pactors, EXT), (Place, MOD)}. The argument struc-
ture of the frame would be������� ���

�� � �� �
��
�� � �� ��

�

������
�

containing the information for the predicates strike,
slam and collide, respectively. The variation arises
from differences in syntactic construction (e.g. pas-
sive vs. active), but also, more significantly, from
lexical differences: collide accepts a reciprocal plu-
ral subject, i.e. an Impactors role, while strike does
not. This model is very simple, but achieves the

5See Johnson et al. (2002) for details.



goal of highlighting the differences and similarities
in the mapping between semantics and syntax for
different verbs in a frame.

4.2 Uniformity of Argument Structure

At this point, we can define a measure to compute
the uniformity of a frame from the frame’s argument
structure, which is defined as a set of integer-valued
vectors.

Similarity metrics developed for vector space
models are obvious candidates, but work in this area
has concentrated on metrics for comparing two vec-
tors, whereas we may have an arbitrary number of
predicates per frame. Therefore, we borrow the con-
cept of cost function from clustering, as exemplified
by the well known sum-of-squares function used
in the k-means algorithm (see e.g. Kaufman and
Rousseeuw (1990)), which estimates the “cost” of
a cluster as the sum of squared distances � between
each vector ��  and the cluster centroid �� : 6

� � ���� � � � � � ���� � � �� 	�
� � � ��� � �� ���
Under this view, a good cluster is one with a low
cost, and the goal of the clustering algorithm is
to minimise the average distance to the centroid.
However, for our purposes it is more convenient
for a good cluster to have a high rating. Therefore,
we turn the cost function into a “quality” function.
By replacing the distance function with a similarity
function  , we say that a good cluster is one with a
high average similarity to the centroid:

� � �� � � � � � � �� � � � �� ��
�  � ��  � �� � �
If we consider each frame to be a cluster and each
predicate to be an object in the cluster, represented
by the argument structure vector, the values of

�
can be interpreted as a measure for frame unifor-
mity: Verbs with a similar argument structure will
have similar vectors, resulting in high values of

�
for the frame, and vice versa.

What intuitively validates this formalisation is
that frames are clusters of predicates grouped to-
gether on semantic grounds, i.e. predicates in a
frame share a common set of arguments. What

�
checks is whether the mapping from semantics to
syntax is also similar.

6The centroid of a cluster is “a point in � -dimensional space
found by averaging the measurement values along each dimen-
sion” (Kaufman and Rousseeuw, 1990, p. 112), so that it is the
point situated at the “center” of the cluster.

In order to obtain an actual measure for frame
uniformity, we take two further steps. First, we in-
stantiate  with the cosine similarity ���  , which has
been found to be appropriate for a wide range of
linguistic tasks (see e.g. Lee (1999)) and ranges be-
tween 0 (least similar) and 1 (identity):

���  � ���� � �� � � � � ���
� ����� �� � � � � � ���
� � ����  � � ���
� � �� � 
Second, we normalise the values of

�
, which

grow in � ��� � , the number of vectors, to � ��� �! , to
make them interpretable analogously to values of
the cosine similarity. Since this is possible in two
different ways, we obtain two different measures for
frame uniformity. The first one, which we call nor-
malised quality-based uniformity ( "�# ), simply di-
vides the values by

�
:

"�# � ���� � � � � � ���� � � �
�

�� 	�
� � ���  � ��  � �� �  �
The second measure, weighted quality-based uni-
formity ( $%"�# ), is a weighted average of the simi-
larities. The weights are given by the vector sizes –
in our case, the frequency of the predicates:

$&"'# � ���� � � � � � ���� � � �
� �( �
�
) �� ( )

�� ��
� ) ��� ) � ���  � ��  � �� �  �
The weighting lends more importance to well-
attested predicates, limiting the amount of noise in-
troduced by infrequent predicates. Therefore, our
intuition is that $%"�# should be a better measure
than "�# for argument structure uniformity.

5 Experiment 2: Explaining the Variance
With Argument Structure

With two measures for the uniformity of argument
structure at hand, we now proceed to test our main
hypothesis.

5.1 Data and Experimental Setup
As argued in Section 3.4, our aim in this experiment
is to control for the most plausible sources of per-
formance variance and isolate the influence of argu-
ment structure.

To meet this condition, we perform both the ex-
periments and the uniformity measure calculation
on a controlled subset of the data, with the condi-
tion that both the number of verbs and the number
of sentences are the same for each frame.

Following the methodology in Keller and La-
pata (2003), we divide the verbs into four fre-
quency bands, frequency being absolute number of



annotated sentences: low (5), medium-low (12),
medium-high (22), and high (38). We set the bound-
aries between the bands as the quartiles of all the
verbs containing at least 5 annotated examples7 . For
each frame, 2 verbs in each frequency band are
randomly chosen. This reduces our frame sample
from 196 to 40. We furthermore randomly select a
number of sentences for each verb which matches
the boundaries between frequency bands, that is, all
verbs in each frequency bands are artificially set to
have the same number of annotated sentences. This
method assures that all frames in the experiment
have 8 verbs and 154 sentences, so that both the per-
formance figures and the uniformity measures were
acquired under equal conditions.

The models for semantic role assignment were
trained in the same way as for Experiment 1 (see
Section 3.1), using the same features. We also per-
formed 10-fold cross validation as before. The uni-
formity measures "�# and $%"�# were computed ac-
cording to the definitions in Section 4.2.

5.2 Results and Discussion

Table 3 shows the overall results and variance across
frames for the new dataset. Table 4 contains detailed
performance results (Columns 1 and 2) and unifor-
mity figures (Columns 3 and 4) for five randomly
drawn frames.

Maxent MBL
Exact Match 47.5 � 11.0 53.4 � 11.1
Overlap 66.4 � 11.0 72.4 � 9.9

Table 3: Overall F scores and standard deviation
across frames for Experiment 2.

The overall results for the new, controlled dataset
are 3 to 5 points F-score worse than in Experi-
ment 1, which is a result of the artificial limitation
of larger frames to fewer training examples. Other-
wise, the same tendencies hold: The memory-based
learner again performs better than the maximum en-
tropy learner, and overlap evaluation returns higher
scores than exact match. More relevantly, the data
show the same amount of variance across frames as
before (between 10 and 11%), even though the most
plausible sources of variance are controlled for. The
variation over cross validation runs is somewhat
larger, but still small (2.0%/1.9% for Maxent and
0.9%/0.8% for MBL, respectively).

We can now test our main hypothesis through an
analysis of the correlation between performance and

7We consider 5 to be the (very) minimum number of in-
stances necessary to construct a representative argument struc-
ture for a predicate.

Exact match Maxent MBL "�# $%"�#
BODY_MOVMT. 51.2 57.5 33.0 39.0
COMMERCE 25.7 41.9 27.4 31.1
MOTION 54.6 58.1 57.2 60.8
PERC._ACTIVE 52.1 51.5 30.0 35.4
REMOVING 59.3 60.1 58.7 64.2

Overlap Maxent MBL "�# $%"�#
BODY_MOVMT. 56.4 64.8 33.0 39.0
COMMERCE 48.9 66.4 27.4 31.1
MOTION 68.1 71.9 57.2 60.8
PERC._ACTIVE 69.3 69.0 30.0 35.4
REMOVING 76.1 77.2 58.7 64.2

Table 4: F scores and frame uniformities for data
from Exp. 2. "'# = normalised uniformity, $%"�# =
weighted uniformity (in percentages).

uniformity figures. We log-transformed both vari-
ables to guarantee normal distribution and used the
standard Pearson product-moment correlation coef-
ficient, testing for positive correlation (higher uni-
formity – higher performance). The results in Ta-
ble 5 show that all correlation tests are significant,
and most are highly significant. This constitutes
very good empirical support for our hypothesis.

Exact match Maxent MBL
"�# 0.39 (� =0.007) 0.33 (� =0.04)$%"�# 0.45 (� =0.002) 0.35 (� =0.01)

Overlap Maxent MBL
"�# 0.54 (� <0.001) 0.50 (� <0.001)$%"�# 0.58 (� <0.001) 0.55 (� <0.001)

Table 5: Pearson coefficients � � and significance
levels for correlating frame performance and frame
uniformity for the dataset from Experiment 2.

We find that $&"�# yields consistently higher cor-
relation measures (and therefore more significant
correlations) than "�# , which supports our hypoth-
esis from Section 4 that $%"�# is a better measure for
argument structure uniformity. Recall that the in-
tuition behind the weighting is to let well-attested
predicates (those with higher frequency) have a
larger influence upon the measure. However, an in-
dependent experiment for the adequacy of the mea-
sures should be devised to verify this hypothesis.

A comparison of the evaluation modes shows that
frame uniformity correlates more strongly with the
overlap evaluation measures than with exact match.
We presume that this is due to the evaluation figures
in exact match mode being somewhat noisier. All
other things being equal, random errors introduced



during the different processing stages (e.g. parsing
errors) are more likely to influence the exact match
outcome: A processing error which leads to a par-
tially right argument assignment will influence the
outcome of the exact match evaluation, but not of
the overlap evaluation.

As for the two statistical frameworks, uniformity
is better correlated with the Maxent model than with
the MBL model, even though MBL performs bet-
ter on the evaluation. However, this does not mean
that the correlation will become weaker for seman-
tic role labelling systems performing at higher levels
of accuracy. We compared our current models with
an earlier version, which had an overall lower per-
formance of about 5 points F-score. Using the same
data, the correlation coefficients � � were on average
0.09 points lower, and the p-values were not signif-
icant for the Maxent model in exact match mode.
This indicates that correlations tend to increase for
better models.

Therefore, we attribute the difference between
the Maxent and the MBL model to their individual
properties, or more specifically to differences in the
distribution of the performance figures for the in-
dividual frames around the mean. While they are
more evenly distributed in the MBL model, they
present a higher peak with more outliers in the Max-
ent model, which is also reflected in the slightly
higher standard deviation of the Maxent model (cf.
Tables 1 and 3). In short, the Maxent model appears
to be more sensitive to differences in the data.

Nevertheless, both models correlate strongly with
each other in both evaluation modes ( � � � � � ���

,
� <0.001 for exact match, � � � � ��� 	

, � <0.001 for
overlap). Thus, they agree to a large extent on which
frames are easy or difficult to label.

Our present results, thus, seem to indicate that
the influence of argument structure cannot be solved
by simply improving existing systems or choosing
other statistical frameworks. Instead, there is a sys-
tematic relationship between the uniformity of the
argument structures of the predicates in the frames
and the performance of automatic role assignment.

6 Conclusion and Outlook

In this paper, we have performed an error analysis
for semantic role assignment, concentrating on the
relationship between argument structure and seman-
tic role assignment. To obtain general results, we
kept our models as general as possible and verified
our results in two different statistical frameworks.

In our first experiment, we showed that there is
considerable variance across frames in the perfor-
mance of semantic role assignment, and hypothe-

sised that the effect was due to the varying “diffi-
culty” of the underlying argument structure. To test
the hypothesis, we defined a measure of frame uni-
formity which modelled the variability of argument
structure. In a second experiment, in which we con-
trolled for other plausible sources of variance, we
showed a reliable correlation between performance
and uniformity figures.

The underlying reason for the difficulty of seman-
tic role assignment is that FrameNet is essentially
an ontological classification. While the predicates
of one frame share the same semantic arguments,
they can vary widely in their linking patterns. With-
out unlimited training data, automatic role assign-
ment has to find and exploit regularities in linking
to achieve good results. A priori, this can only be
done within frames, since roles are frame-specific,
and there is no unique right mapping between roles.

Consequently, as observed by Fleischman et
al. (2003), relatively rare constructions, such as pas-
sives, are frequent error sources. Because such con-
structions have to be learnt individually for each
frame, data sparseness is a serious issue. A similar
problem arises for lexical differences in the linking
properties of predicates in a frame, as with the col-
lide vs. strike case discussed above. Here, the learn-
ing has to take into account that the relevant linking
properties differ between individual predicates.

Our results suggest that the variance caused by
argument structure will not disappear with better
classifiers, but that the problem of inadequate gener-
alisations should be addressed in a principled way.
There are several possible approaches to do so.

First, the classic statistical approach: Combin-
ing evidence from different frame-specific roles to
alleviate data sparseness. To this end, Gildea and
Jurafsky (2002) developed a mapping from frame-
specific to syntactic roles, but results did not im-
prove much. Baldewein et al. (2004) experiment
with EM-driven generalisation, and obtain also only
modest improvements.

A second approach is to identify other levels,
different from frames, at which regularities can be
learnt better. One possibility is to identify smaller
units within frames which have a more uniform
structure and which can be learnt more easily. Since
uniformity is defined in terms of a quality function,
clustering would be the natural method to employ
for this task. However, this method is only viable
for frames with a large amount of annotation.

A more general idea in this spirit is to construct an
independent classification of verbs motivated at the
argument structure level (transitive, intransitive, un-
accusative, etc.), e.g. using data sources like Levin’s



verb classes (Levin, 1993). This would allow mod-
els to learn class-specific regularities and diathesis
alternations more easily. However, it is unclear if
there is a unique level at which all relevant regulari-
ties can be stated. A more realistic variant might be
to map FrameNet roles to an existing, more syntac-
tically oriented role set, such as PropBank. These
roles can serve as an intermediate level to capture
mapping regularities, and can be translated back to
semantically defined FrameNet roles when the map-
ping has been accomplished.

A third, different approach to semantic role
assignment is presented by Frank (2004), who
presents a syntax-semantics interface to extract
symbolic frame element projection rules from an
LFG-annotated corpus and discusses strategies to
generalise over these rules. Such an approach is,
due to the finer control over the generalisation, not
as susceptible to the problem described in this study
as purely statistical models. However, it has yet to
be tested on large-scale semantic role assignment.
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