
A resource for constructing customized test suites
for molecular biology entity identification systems

K. Bretonnel Cohen

Center for Computational Pharmacology,
University of Colorado School of Medicine

kevin.cohen@uchsc.edu

Lorraine Tanabe
National Center for Biotechnology

Information, NLM, NIH
tanabe@ncbi.nlm.nih.gov

Shuhei Kinoshita
Fujitsu Ltd. Bio-IT Lab, and Center for

Computational Pharmacology, University of
Colorado School of Medicine

shuhei.kinoshita@uchsc.edu

Lawrence Hunter
Center for Computational Pharmacology,

University of Colorado School of Medicine
larry.hunter@uchsc.edu

Abstract
This paper describes a data source and
methodology for producing customized test
suites for molecular biology entity
identification systems. The data consists of:
(a) a set of gene names and symbols classified
by a taxonomy of features that are relevant to
the performance of entity identification
systems, and (b) a set of sentential
environments into which names and symbols
are inserted to create test data and the
associated gold standard. We illustrate the
utility of test sets producible by this
methodology by applying it to five entity
identification systems and describing the error
patterns uncovered by it, and investigate
relationships between performance on a
customized test suite generated from this data
and the performance of a system on two
corpora.

1 Introduction
This paper describes a methodology and data for the
testing of molecular biology entity identification (EI)
systems by developers and end users. Molecular
biology EI systems find names of genes and gene
products in free text. Several years’ publication history
has established precision, recall, and F-score as the de
facto standards for evaluating EI systems for molecular
biology texts at the publication stage and in
competitions like BioCreative
(www.mitre.org/public/biocreative). These measures
provide important indices of a system’s overall output
quality. What they do not provide is the detailed sort of
information about system performance that is useful for
the system developer who is attempting to assess the

strengths and weaknesses of a work in progress, nor do
they provide detailed information to the potential
consumer who would like to compare two systems
against each other. Hirschman and Mani (2003) point
out that different evaluation methods are useful at
different points in the software life-cycle. In particular,
what they refer to as feature-based evaluation via test
suites is useful at two points: in the development phase,
and for acceptance testing. We describe here a
methodology and a set of data for constructing
customized feature-based test suites for EI in the
molecular biology domain. The data consists of two
sets. One is a set of names and symbols of entities as
that term is most commonly understood in the
molecular biology domain—genes and gene products.
(Sophisticated ontologies such as GENIA (Ohta et al.
2002) include other kinds of entities relevant to
molecular biology as well, such as cell lines.) The
names and symbols exemplify a wide range of the
features that characterize entities in this domain—case
variation, presence or absence of numbers, presence or
absence of hyphenation, etc. The other is a set of
sentences that exemplify a range of sentential contexts
in which the entities can appear, varying with respect to
position of the entity in the sentence (initial, medial, or
final), presence of keywords like gene and protein,
tokenization issues, etc. Both the entities and the
sentential contexts are classified in terms of a taxonomy
of features that are relevant to this domain in particular
and to natural language processing and EI in general.
The methodology consists of generating customized test
suites that address specific performance issues by
combining sets of entities that have particular
characteristics with sets of contexts that have particular
characteristics. Logical combination of subsets of
characteristics of entities and contexts allows the
developer to assess the effect of specific characteristics
on performance, and allows the user to assess
performance of the system on types of inputs that are of

 Association for Computational Linguistics.
 Linking Biological Literature, Ontologies and Databases, pp. 1-8.
 HLT-NAACL 2004 Workshop: Biolink 2004,

particular interest to them. For example, if the
developer or end-user wants to assess the ability of a
system to recognize gene symbols with a particular
combination of letter case, hyphenation, and presence
or absence of numerals, the data and associated code
that we provide can be used to generate a test suite
consisting of symbols with and without that
combination of features in a variety of sentential
contexts.

Inspiration for this work comes on the one hand
from standard principles of software engineering and
software testing, and on the other hand from descriptive
linguistics (Harris 1951, Samarin 1967). In Hirschman
and Mani’s taxonomy of evaluation techniques, our
methodology is referred to as feature-based, in that it is
based on the principle of classifying the inputs to the
system in terms of some set of features that are relevant
to the application of interest. It is designed to provide
the developer or user with detailed information about
the performance of her EI system. We apply it to five
molecular biology EI and information extraction
systems: ABGene (Tanabe and Wilbur 2002a, Tanabe
and Wilbur 2002b); KeX/PROPER (Fukuda et al.
1997); Yapex (Franzén et al. 2002); the stochastic POS
tagging-based system described in Cohen et al. (in
submission); and the entity identification component of
Ono et al.’s information extraction system (Ono et al.
2001), and show how it gives detailed useful
information about each that is not apparent from the
standard metrics and that is not documented in the cited
publications. (Since we are not interested in punishing
system developers for graciously making their work
available by pointing out their flaws, we do not refer to
the various systems by name in the remainder of this
paper.)

Software testing techniques can be grouped into
structured (Beizer 1990), heuristic (Kaner et al. 2002),
and random categories. Testing an EI system by
running it on a corpus of texts and calculating precision,
recall, and F-score for the results falls into the category
of random testing. Random testing is a powerful
technique, in that it is successful in finding bugs. When
done for the purpose of evaluation, as distinct from
testing (see Hirschman and Thompson 1997 for the
distinction between the two, referred to there as
performance evaluation and diagnostic evaluation), it
also is widely accepted as the relevant index of
performance for publication. However, its output lacks
important information that is useful to a system
developer (or consumer): it tells you how often the
system failed, but not what it failed at; it tells you how
often the system succeeds, but not where its strengths
are.

For the developer or the user, a structured test suite
offers a number of advantages in answering these sorts
of questions. The utility of such test suites in general

software testing is well-accepted. Oepen et al. (1998)
lists a number of advantages of test suites vs.
naturalistic corpora for testing natural language
processing software in particular:
• Control over test data: test suites allow for

“focussed and fine-grained diagnosis of system
performance” (15). This is important to the
developer who wants to know exactly what
problems need to be fixed to improve performance,
and to the end user who wants to know that
performance is adequate on exactly the data that
they are interested in.

• Systematic coverage: test suites can allow for
systematic evaluation of variations in a particular
feature of interest. For example, the developer
might want to evaluate how performance varies as
a function of name length, or case, or the presence
or absence of hyphenation within gene symbols.
The alternative to using a structured test suite is to
use a corpus, and then search through it for the
relevant inputs and hope that they are actually
attested.

• Control of redundancy: while redundancy in a
corpus is representative of actual redundancy in
inputs, test suites allow for reduction of
redundancy when it obscures the situation, or for
increasing it when it is important to test handling of
a feature whose importance is greater than its
frequency in naturally occurring data. For
example, names of genes that are similar to names
of inherited diseases might make up only a small
proportion of the gene names that occur in PubMed
abstracts, but the user whose interests lie in
curating OMIM might want to be able to assure
herself that coverage of such names is adequate,
beyond the level to which corpus data will allow.

• Inclusion of negative data: in the molecular
biology domain, a test suite can allow for
systematic evaluation of potential false positives.

• Coherent annotation: even the richest metadata is
rarely adequate or exactly appropriate for exactly
the questions that one wants to ask of a corpus.
Generation of structured, feature-based test suites
obviates the necessity for searching through
corpora for the entities and contexts of interest, and
allows instead the structuring of contexts and
labeling of examples that is most useful to the
developer.

The goal of this paper is to describe a methodology and
publicly available data set for constructing customized
and refinable test suites in the molecular biology
domain quickly and easily. A crucial difference
between similar work that simply documents a
distributable test suite (e.g. Oepen (1998) and Volk
(1998)) and the work reported in this paper is that we
are distributing not a static test suite, but rather data for

generating test suites—data that is structured and
classified in such a way as to allow software developers
and end users to easily generate test suites that are
customized to their own assessment needs and
development questions. We build this methodology
and data on basic principles of software engineering
and of linguistic analysis. The first such principle
involves making use of the software testing notion of
the catalogue.

A catalogue is a list of test conditions, or qualities
of particular test inputs (Marick 1997). It corresponds
to the features of feature-based testing, discussed in
Hirschman and Mani (2003) and to the schedule
(Samarin 1967:108-112) of descriptive linguistic
technique. For instance, a catalogue of test conditions
for numbers might include:
• zero, non-zero, real, integer
• positive, negative, unsigned
• the smallest number representable in some data

type, language, or operating system; smaller than
the smallest number representable

• the largest number representable; larger than the
largest number representable

Note that the catalogue includes both “clean”
conditions and “dirty” ones. This approach to software
testing has been highly successful, and indeed the best-
selling book on software testing (Kaner et al. 1999) can
fairly be described as a collection of catalogues of
various types.

The contributions of descriptive linguistics include
guiding our thinking about what the relevant features,
conditions, or categories are for our domain of interest.
In this domain, that will include the questions of what
features may occur in names and what features may
occur in sentences—particularly features in the one that
might interact with features in the other. Descriptive
linguistic methodology is described in detail in e.g.
Harris (1951) and Samarin (1967); in the interests of
brevity, we focus on the software engineering
perspective here, but the thought process is very
similar. The software engineering equivalent of the
descriptive linguist’s hypothesis is the fault model
(Binder 1999)—an explicit hypothesis about a potential
source of error based on “relationships and components
of the system under test” (p. 1088). For instance,
knowing that some EI systems make use of POS tag
information, we might hypothesize that the presence of
some parts of speech within a gene name might be
mistaken for term boundaries (e.g. the of in bag of
marbles, LocusID 43038). Catalogues are used to
develop a set of test cases that satisfies the various
qualities. (They can also be used post-hoc to group the
inputs in a random test bed into equivalence classes,
although a strong motivation for using them in the first
place is to obviate this sort of search-based post-hoc
analysis.) The size of the space of all possible test

cases can be estimated from the Cartesian product of all
catalogues; the art of software testing (and linguistic
fieldwork) consisting, then, of selecting the highest-
yielding subset of this often enormous space that can be
run and evaluated in the time available for testing.

At least three kinds of catalogues are relevant to
testing an EI system. They fall into one of two very
broad categories: syntagmatic, having to do with
combinatory properties, and paradigmatic, having to do
with varieties of content. The three kinds of catalogues
are:
1. A catalogue of environments in which gene names

can appear. This is syntagmatic.
2. A catalogue of types of gene names. This is

paradigmatic.
3. A catalogue of false positives. This is both

syntagmatic and paradigmatic.
The catalogue of environments would include, for
example, elements related to sentence position, such as
sentence-initial, sentence-medial, and sentence-final;
elements related to list position, such as a single gene
name, a name in a comma-separated list, or a name in a
conjoined noun phrase; and elements related to
typographic context, such as location within
parentheses (or not), having attached punctuation (e.g. a
sentence-final period) (or not), etc. The catalogue of
types of names would include, for example, names that
are common English words (or not); names that are
words versus “names” that are symbols; single-word
versus multi-word names; and so on. The second
category also includes typographic features of gene
names, e.g. containing numbers (or not), consisting of
all caps (or not), etc. We determined candidate features
for inclusion in the catalogues through standard
structuralist techniques such as examining public-
domain databases containing information about genes,
including FlyBase, LocusLink, and HUGO, and by
examining corpora of scientific writing about genes,
and also by the software engineering techniques of
“common sense, experience, suspicion, analysis, [and]
experiment” (Binder 1999). The catalogues then
suggested the features by which we classified and
varied the entities and sentences in the data.
General format of the data
The entities and sentences are distributed in XML
format and are available at a supplemental web site
(compbio.uchsc.edu/Hunter_lab/testing_ei). A plain-
text version is also available. A representative entity is
illustrated in Figure 1 below, and a representative
sentence is illustrated in Figure 2. All data in the
current version is restricted to the ASCII character set.
Test suite generation
Data sets are produced by selecting sets of entity
features and sets of sentential context features and
inserting the entities into slots in the sentences. This

can be accomplished with the user’s own tools, or using
applications available at the supplemental web site.
The provided applications produce two files: a file
containing raw data for use as test inputs, and a file
containing the corresponding gold standard data marked
up in an SGML-like format. For example, if the raw
data file contains the sentence ACOX2 polymorphisms
may be correlated with an increased risk of larynx
cancer, then the gold standard file will contain the
corresponding sentence <gp>ACOX2</gp>
polymorphisms may be correlated with an increased
risk of larynx cancer. Not all users will necessarily
agree on what counts as the “right” gold standard—see
Olsson et al. (2002) and the BioCreative site for some
of the issues. Users can enforce their own notions of
correctness by using our data as input to their own
generation code, or by post-processing the output of our
applications.

ID: 136
name_vs_symbol: n
length: 3
case: a
contains_a_numeral: y
contains_Arabic_numeral: y
Arabic_numeral_position: f
contains_Roman_numeral:
<several typographic features omitted>
contains_punctuation: 1
contains_hyphen: 1
contains_forward_slash:
<several punctuation-related features omitted>
contains_function_word:
function_word_position:
contains_past_participle: 1
past_participle_position: i
contains_present_participle:
present_participle_position:
source_authority: HGNC ID: 2681 "Approved Gene
Name" field
original_form_in_source: death-associated
protein 6
data: death-associated protein 6

Figure 1 A representative entry from the entity data
file. A number of null-valued features are omitted for
brevity—see the full entry at the supplemental web site.
The data field (last line of the figure) is what is output
by the generation software.
ID: 25
type: tp
total_number_of_names: 1
list_context:
position: I
typographic_context:
appositive:
source_id: PMID: 14702106
source_type: title
original_form_in_source: Stat-3 is required
for pulmonary homeostasis during hyperoxia.
slots: <> is required for pulmonary
homeostasis during hyperoxia.

Figure 2 A representative entry from the sentences
file. Features and values are explained in section 2.2
Feature set for sentential contexts below. The slots
field (last line of the figure) shows where an entity
would be inserted when generating test data.

2 The taxonomy of features for entities
and sentential contexts
In this section we describe the feature sets for entities
and sentences, and motivate the inclusion of each,
where not obvious.

2.1 Feature set for entities
Conceptually, the features for describing name-inputs
are separated into four categories:
orthographic/typographic, morphosyntactic, source, and
lexical.
• Orthographic/typographic features describe the
presence or absence of features on the level of
individual characters, for example the case of letters,
the presence or absence of punctuation marks, and the
presence or absence of numerals.

• Morphosyntactic features describe the presence or
absence of features on the level of the morpheme or
word, such as the presence or absence of participles,
the presence or absence of genitives, and the presence
or absence of function words.

• Source features are defined with reference to the
source of an input. (It should be noted that in software
engineering, as in Chomskyan theoretical linguistics,
data need not be naturally-occurring to be useful;
however, with the wealth of data available for gene
names, there is no reason not to include naturalistic
data, and knowing its source may be useful, e.g. in
evaluating performance on FlyBase names, etc.)
Source features include source type, e.g. literature,
database, or invention; identifiers in a database;
canonical form of the entity in the database; etc.

• Lexical features are defined with respect to the
relationship between an input and some outside source
of lexical information, for instance whether or not an
input is or contains a common English word. This is
also the place to indicate whether or not an input is
present in a resource such as LocusLink, whether or not
it is on a particular stoplist, whether it is in-vocabulary
or out-of-vocabulary for a particular language model,
etc.

The distinction between these three broad
categories of features is not always clear-cut. For
example, presence of numerals is an
orthographic/typographic feature, and is also
morphosyntactic when the numeral postmodifies a
noun, e.g. in heat shock protein 60. Likewise, features
may be redundant—for example, the presence of a
Greek letter in the square-bracket- or curly-bracket-

enclosed formats, or the presence of an apostrophized
genitive, are not independent of the presence of the
associated punctuation marks. However, Boolean
queries over the separate feature sets let them be
manipulated and queried independently. So, entities
with names like A' can be selected independently of
names like Parkinson’s disease.

2.1.1 Orthographic/typographic features
Length: Length is defined in characters for

symbols and in whitespace-tokenized words for names.
Case: This feature is defined in terms of five

possible values: all-upper-case, all-lower-case, upper-
case-initial-only, each-word-upper-case-initial (e.g.
Pray For Elves), and mixed. The fault model
motivating this feature hypothesizes that taggers may
rely on case to recognize entities and may fail on some
combinations of cases with particular sentential
positions. For example, one system performed well on
gene symbols in general, except when the symbols are
lower-case-initial and in sentence-initial position (e.g.
p100 is abundantly expressed in liver… (PMID
1722209) and bif displays strong genetic interaction
with msn (PMID 12467587).

Numeral-related features: A set of features
encodes whether or not an entity contains a numeral,
whether the numeral is Arabic or Roman, and the
positions of numerals within the entity (initial, medial,
or final). The motivation for this feature is the
hypothesis that a system might be sensitive to the
presence or absence of numerals in entities. One
system failed when the entity was a name (vs. a
symbol), it contained a number, and the number was in
the right-most (vs. a medial) position in a word. It
correctly tagged entities like glucose 6 phosphate
dehydrogenase but missed the boundary on
<gp>alcohol dehydrogenase</gp> 6. This pattern was
specific to numbers—letters in the same position are
handled correctly.

Punctuation-related features: A set of features
includes whether an entity contains any punctuation, the
count of punctuation marks, and which marks they are
(hyphen, apostrophe, etc.). One system failed to
recognize names (but typically not symbols) when they
included hyphens. Another system had a very reliable
pattern of failure involving apostrophes just in case they
were in genitives.

Greek-letter-related features: These features
encode whether or not an entity contains a Greek letter,
the position of the letter, and the format of the letter.
(This feature is an example of an orthographic feature
which may be defined on a substring longer than a
character, e.g. beta.) Two systems had problems
recognizing gene names when they contained Greek
letters in the PubMed Central format, i.e. [beta]1
integrin.

2.1.2 Morphosyntactic features
The most salient morphosyntactic feature is whether an
entity is a name or a symbol. The fault model
motivating this feature suggests that a system might
perform differently depending on whether an input is a
name or a symbol. The most extreme case of a system
being sensitive to this feature was one system that
performed very well on symbols but recognized no
names whatsoever.

Features related to function words: a set of
features encodes whether or not an entity contains a
function word, the number of function words in the
entity, and their positions—for instance, the facts: that
scott of the antarctic (FlyBase ID FBgn0015538)
contains two function words; that they are of and the;
and that they are medial to the string. This feature is
motivated by two fault models. One posits that a
system might apply a stoplist to its input and that
processing of function words might therefore halt at an
early stage. The other posits that a system might
employ shallow parsing to find boundaries of entities
and that the shallow parser might insert boundaries at
the locations of function words, causing some words to
be omitted from the entity. One system always had
partial hits on names that were multi-word unless each
word in it was upper-case-initial, or there was an
alphanumeric postmodifier (i.e. a numeral, upper-cased
singleton letter, or Greek letter) at the right edge.

Features related to inflectional morphology: a
set of features encodes whether or not an entity contains
nominal number or genitive morphology or verbal
participial morphology, and the positions of the words
in the entity that contain those morphemes, for instance
the facts that apoptosis antagonizing transcription
factor (HUGO ID 19235) contains a present participle
and that the word that contains it is medial to the string.

Features related to parts of speech: Future
development of the data will include features encoding
the parts of speech present in names.

2.1.3 Source features
Source or authority: This feature encodes the

source of or authority cited for an entity. For many of
the entries in the current data, it is an identifier from
some database. For others, it is a website (e.g.
www.flynome.org). Other possible values include the
PMID of a document in which it was observed.

Original form in source: Where there is a source
for the entity or for some canonical form of the entity,
the original form is given. This is not equivalent to the
“official” form, but rather is the exact form in which the
entity occurs; it may even contain typographic errors
(e.g. the extraneous space in nima –related kinase,
LocusID 189769 (reported to the NCBI service desk).

http://www.flynome.org/

2.1.4 Lexical features
These might be better called lexicographic features.
They can be encoded impressionistically, or can be
defined with respect to an external source, such as
WordNet, the UMLS, or other lexical resources. They
may also be useful for encoding strictly local
information, such as whether or not a gene was attested
in training data or whether it is present in a particular
language model or other local resource. These features
are allowed in the taxonomy but are not implemented in
the current data. Our own use of the entity data
suggests that it should be, especially encoding of
whether or not names include common English words.
(The presence of function words is already encoded.)

2.2 Feature set for sentential contexts
In many ways, this data is much harder to build and
classify than the names data, for at least two reasons.
Many more features interact with each other, and as
soon as a sentence contains more than one gene name,
it contains more than one environment, and the number
of features for the sentence as a whole is multiplied, as
are the interactions between them. For this reason, we
have focussed our attention so far on sentences
containing only a single gene name, although the
current version of the data does include a number of
multi-name sentences.

2.2.1 Positivity
The fundamental distinction in the feature set for
sentences has to do with whether the sentence is
intended to provide an environment in which gene
names actually appear, or whether it is intended to
provide a non-trivial opportunity for false positives.

True positive sentences contain some slot in which
entities from the names data can be inserted, e.g. <>
polymorphisms may be correlated with an increased
risk of larynx cancer or <> interacts with <> and <>
in the two-hybrid system.

False positive sentences contain one or more
tokens that are deliberately intended to pose
challenging opportunities for false positives. Certainly
any sentence which does not consist all and only of a
single gene name contains opportunities for false
positives, but not all potential false positives are created
equal. We include in the data set sentences that contain
tokens with orthographic and typographic
characteristics that mimic the patterns commonly seen
in gene names and symbols, e.g. The aim of the present
study is to evaluate the impact on QoL… where QoL is
an abbreviation for quality of life. We also include
sentences that contain “keywords” that may often be
associated with genes, such as gene, protein, mutant,
expression, etc., e.g. Demonstration of antifreeze
protein activity in Antarctic lake bacteria.

2.2.2 Features for TP sentences
Number and positional features encode the total number
of slots in the sentence, and their positions. The value
for the position feature is a list whose values range over
initial, medial, and final. For example, the sentence
<> interacts with <> and <> in the two-hybrid system
has the value I,M (initial and medial) for the position
feature.

Typographic context features encode issues
related to tokenization, specifically related to
punctuation, for example if a slot has punctuation on
the left or right edge, and the identity of the punctuation
marks.

List context features encode data about position in
lists. These include the type of list (coordination,
asyndetic coordination, or complex coordination).

The appositive feature is for the special case of
appositioned symbols or abbreviations and their full
names or definitions, e.g. The Arabidopsis INNER NO
OUTER (INO) gene is essential for formation and…
For the systems that we have tested with it, it has not
revealed problems that are independent of the
typographic context. However, we expect it to be of
future use in testing systems for abbreviation expansion
in this domain.

Source features encode the identification and type
of the source for the sentence and its original form in
the source. The source identifier is often a PubMed ID.
It bears pointing out again that there is no a priori
reason to use sentences with any naturally-occurring
“source” at all, as opposed to the products of the
software engineer’s imagination. Our primary rationale
for using naturalistic sources at all for the sentence data
has more to do with convincing the user that some of
the combinations of entity features and sentential
features that we claim to be worth generating actually
do occur. For instance, it might seem counterintuitive
that gene symbols or names would ever occur lower-
case-initial in sentence initial position, but in fact we
found many instances of this phenomenon; or that a
multi-word gene name would occur in text in all upper-
case letters, but see the INNER NO OUTER example
above.

Syntactic features encode the characteristics of
the local environment. Some are very lexical, such as:
whether the following word is a keyword; whether the
preceding word is a species name. Others are more
abstract, such as whether the preceding word is an
article; whether the preceding word is an adjective;
whether the preceding word is a conjunction; whether
the preceding word is a preposition. Interactions with
the list context features are complex. The fault model
motivating these features hypothesizes that POS context
and the presence of keywords might affect a system’s
judgments about the presence and boundaries of names.

2.2.3 Features for FP sentences
Most features for FP sentences encode the
characteristics that give the contents of the sentence
their FP potential. The keyword feature is a list of
keywords present in the sentence, e.g. gene, protein,
expression, etc. The typographic features feature
encodes whether or not the FP potential comes from
orthographic or typographic features of some token in
the sentence, such as mixed case, containing hyphens
and a number, etc. The morphological features feature
encodes whether or not the FP potential comes from
apparent morphology, such as words that end with ase
or in.

3 Testing the relationship between
predictions from performance on a test
suite and performance on a corpus
Precision and recall on data in a structured test suite
should not be expected to predict precision and recall
on a corpus, since there is no relation between the
prevalence of features in the test suite and prevalence of
features in the corpus. However, we hypothesized that
performance on an equivalence class of inputs in a test
suite might predict performance on the same
equivalence class in a corpus. To test this hypothesis,
we ran a number of test suites through one of the
systems and analyzed the results, looking for patterns of
errors. The test suites were very simple, varying only
entity length, case, hyphenation, and sentence position.
Then we ran two corpora through the same system and
examined the output for the actual corpora to see if the
predictions based on the system’s behavior on the test
suite actually described performance on similar entities
in the corpora.

One corpus, which we refer to as PMC (since it
was sampled from PubMed Central), consists of 2417
sentences sampled randomly from a set of 1000 full-
text articles. This corpus contains 3491 entities. It is
described in Tanabe and Wilbur (2002b). The second
corpus was distributed as training data for the
BioCreative competition. It consists of 10,000
sentences containing 11,851 entities and is described in
detail at www.mitre.org/public/biocreative. Each
corpus is annotated for entities.

The predictions based on the system’s performance
on the test suite data were:
1. The system will have low recall on entities that

have numerals in initial position, followed by a
dash, e.g. 825-Oak, 12-LOX, and 18-wheeler
(/^\d+-/ in Perl).

2. The system will have low recall on names that
contain stopwords, such as Pray For Elves and ken
and barbie.

3. The system will have low recall on sentence-
medial terms that begin with a capital letter, such
as Always Early.

4. The system will have low recall on three-character-
long symbols.

5. The system will have good recall on (long) names
that end with numerals.

We then examined the system’s true positive, false
positive, and false negative outputs from the two
corpora for outputs that belonged to the equivalence
classes in 1-5. Table 1 shows the results.

 BioCreative
 TP FP FN P R
1 12 57 17 .17 .41
2 0 1 38 0.0 0.0
4 556 278 512 .67 .52
5 284 251 72 .53 .80
 PubMed Central
 TP FP FN P R
1 8 10 0 .44 1.0
2 1 0 2 1.0 .33
4 163 64 188 .72 .46
5 108 54 46 .67 .70

Table 1 Performance on two corpora for the
predictable categories Numbers in the far left column
refer to the predictions listed above. Overall
performance on the corpora was: BioCreative P = .65,
R = .68, and PMC P = .71, R = .62.

For equivalence classes 1, 2, and 4, the predictions
mostly held. Low recall was predicted, and actual
recall was .41, 0.0, .52, 1.0 (the one anomaly), .33, and
.46 for these classes of names, versus overall recall of
.68 on the BioCreative corpus and .62 on the PMC
corpus. The prediction held for equivalence class 5, as
well; good recall was predicted, and actual recall was
.80 and .70—higher than the overall recalls for the two
corpora. The third prediction could not be evaluated
due to the normalization of case in the gold standards.
These results suggest that a test suite can be a good
predictor of performance on entities with particular
typographic characteristics.

4 Conclusion
We do not advocate using this approach to replace the
quantitative evaluation of EI systems by precision,
recall, and F-measure. Arguably, overall performance
on real corpora is the best evaluation metric for entity
identification, in which case the standard metrics are
well-suited to the task. However, at specific points in
the software lifecycle, viz. during development and at
the time of acceptance testing, the standard metrics do
not provide the right kind of information. We can,

however, get at this information if we bear in mind two
things:
1. Entity identification systems are software, and as

such can be assessed by standard software testing
techniques.

2. Entity identification systems are in some sense
instantiations of hypotheses about linguistic
structure, and as such can be assessed by standard
linguistic “field methods.”

This paper describes a methodology and a data set for
utilizing the principles of software engineering and
linguistic analysis to generate test suites that answer the
right kinds of questions for developers and for end
users. Readers are invited to contribute their own data.

Acknowledgments
The authors gratefully acknowledge support for this
work from NIH/NIAAA grant U01-AA13524-02;
comments from Andrew E. Dolbey on an earlier
version of this work; Philip V. Ogren for help with
stochastic-POS-tagging-based system; the Center for
Computational Pharmacology NLP reading group and
the anonymous reviewers for insightful comments on
the current version; and Fukuda et al., Ono et al., and
Franzén et al. for generously making their systems
publicly available.

References
Beizer, Boris (1990). Software testing techniques, 2nd

ed. Van Nostrand Reinhold.
Binder, Robert V. (1999). Testing object-oriented

systems: models, patterns, and tools. Addison-
Wesley.

Cohen, K. Bretonnel; Philip V. Ogren; Shuhei
Kinoshita; and Lawrence Hunter (in submission).
Entity identification in the molecular biology domain
with a stochastic POS tagger. ISMB 2004.

Cole, Ronald; Joseph Mariani; Hans Uszkoreit; Annie
Zaenen; and Victor Zue (1997). Survey of the state of
the art in human language technology. Cambridge
University Press.

Franzén, Kristofer; Gunnar Eriksson; Fredrik Olsson;
Lars Asker; Per Lidén; and Joakim Cöster (2002).
Protein names and how to find them. International
Journal of Medical Informatics 67(1-3):49-61.

Fukuda, K.; T. Tsunoda; A. Tamura; and T. Takagi
(1997). Toward information extraction: identifying
protein names from biological papers. Pacific
Symposium on Biocomputing 1998, pp. 705-716.

Harris, Zellig S. (1951). Methods in structural
linguistics. University of Chicago Press.

Hirschman, Lynette; and Inderjeet Mani (2003).
Evaluation. In Mitkov (2003), pp. 415-429.

Hirschman, Lynette; and Henry S. Thompson (1997).
Overview of evaluation in speech and natural

language processing. In Cole et al. (1997), pp. 409-
414.

Kaner, Cem; Hung Quoc Nguyen; and Jack Falk
(1999). Testing computer software, 2nd ed. John
Wiley & Sons.

Kaner, Cem; James Bach; and Bret Pettichord (2002).
Lessons learned in software testing: a context-driven
approach. John Wiley & Sons.

Marick, Brian (1997). The craft of software testing:
subsystem testing including object-based and object-
oriented testing. Prentice Hall.

Mitkov, Ruslan (2003). The Oxford Handbook of
Computational Linguistics. Oxford University Press.

Nerbonne, John (1998). Linguistic Databases. CSLI
Publications.

Ohta, Tomoko; Yuka Tateisi; Jin-Dong Kim; Hideki
Mima; and Jun-ichi Tsujii (2002). The GENIA
corpus: an annotated corpus in molecular biology.
Proceedings of the Human Language Technology
Conference.

Oepen, Stephan; Klaus Netter; and Judith Klein (1998).
TSNLP – Test Suites for Natural Language
Processing. In Nerbonne (1998), pp. 13-36.

Olsson, Fredrik; Gunnar Eriksson; Kristofer Franzén;
Lars Asker; and Per Lidén (2002). Notions of
correctness when evaluating protein name taggers.
Proceedings of the 19th International Conference on
Computational Linguistics (COLING 2002), Taipei,
Taiwan.

Ono, Toshihide; Haretsugu Hishigaki; Akira Tanigami;
and Toshihisa Takagi (2001). Automated extraction
of information on protein-protein interactions from
the biological literature. Bioinformatics 17(2):155-
161.

Samarin, William J. (1967). Field linguistics: a guide
to linguistic field work. Irvington.

Tanabe, Lorraine; and W. John Wilbur (2002a).
Tagging gene and protein names in biomedical text.
Bioinformatics 18(8):1124-1132.

Tanabe, Lorraine; and W. John Wilbur (2002b).
Tagging gene and protein names in full text articles.
Proceedings of the workshop on natural language
processing in the biomedical domain, pp. 9-13.
Association for Computational Linguistics.

Volk, Martin (1998). Markup of a test suite with
SGML. In Nerbonne (1998), pp. 59-76.

	A resource for constructing customized test suites�for molec
	Abstract
	Introduction
	General format of the data
	Test suite generation

	2 The taxonomy of features for entities and sentential con
	2.1 Feature set for entities
	2.1.1 Orthographic/typographic features
	2.1.2 Morphosyntactic features
	2.1.3 Source features
	2.1.4 Lexical features
	2.2 Feature set for sentential contexts
	2.2.1 Positivity
	2.2.2 Features for TP sentences
	2.2.3 Features for FP sentences

	3 Testing the relationship between predictions from perfor
	4 Conclusion
	Acknowledgments
	References

