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Abstract

Speech interface is often required in many
application environments such as telephone-
based information retrieval, car navigation sys-
tems, and user-friendly interfaces, but the low
speech recognition rate makes it difficult to ex-
tend its application to new fields. Several ap-
proaches to increase the accuracy of the recog-
nition rate have been researched by error cor-
rection of the recognition results, but previ-
ous approaches were mainly lexical-oriented
ones in post error correction. We suggest
an improved syllable-based model and a new
semantic-oriented approach to correct both se-
mantic and lexical errors, which is also more
accurate for especially domain-specific speech
error correction. Through extensive experi-
ments using a speech-driven in-vehicle telem-
atics information retrieval, we demonstrate
the superior performance of our approach and
some advantages over previous lexical-oriented
approaches.

1 Introduction
New application environments such as telephone-based
retrieval, car navigation systems, and mobile information
retrieval, often require speech interface to conveniently
process user queries. In these environments, keyboard
input is inconvenient or sometimes impossible because
of spatial limitation on mobile devices and instability in
manipulating the devices.

However, because of the low recognition rate in current
speech recognition systems, the performance of speech
applications such as speech-driven information retrieval
(IR) and question answering (QA), and speech dialogue
systems is very low. The performance of the serially con-
nected spoken QA system, based on the QA system from

text input which has 76% performance and the output of
the ASR which operated at a 30% WER, was only 7%
(Harabagiu et al., 2002). (Harabagiu et al., 2002) ex-
poses several fundamental flaws of this simple combina-
tion of an automatic speech recognition (ASR) and QA
system, including the importance of named entity infor-
mation, and the inadequacies of current speech recogni-
tion technology based on n-gram language models.

The major problem of speech-driven IR and QA is the
decreasing of the performance due to the recognition er-
rors in ASR systems. Erroneously recognized spoken
queries drop the precision and recall of IR and QA sys-
tem. Some authors investigated the relation of ASR er-
rors and precision of IR (Barnett et al., 1997; Crestani,
2000). They evaluated the effectiveness of the IR systems
through various error rates using 35 queries of TREC.
Their researches show that the increasing word error rate
(WER) quickly decreases the precision of IR. Another
group investigated the performance of spoken queries in
NTCIR collections (Fujii et al., 2002A). They evaluated
a variety of speakers, and calculated the error rate with
respect to a query term, which is a keyword used for the
retrieval. They showed that the WER of the query terms
was generally higher than that of the general words ir-
respective of the speakers. In other words, recognition
of content words related to the IR and QA performance
was more difficult than that of normal words. So, they
introduced a method to improve the precision of speech-
driven IR by suggesting a new type of IR system tightly-
integrated with a speech input interface (Fujii et al.,
2002B). In their system, document collection provides an
adaptation of the language model of the ASR, which re-
sults in a drop of the word error rate.

For this reason, some appropriate adaptation tech-
niques are required for overcoming speech recognition
errors such as post error correction. ASR error correc-
tion can be one of the domain adaptation techniques to
improve the recognition accuracy, and the primary advan-



Figure 1: Adaptation via Post Error Correction

tage of the error correction approach is its independence
of the specific speech recognizer. If the speech recog-
nizer can be regarded as a black-box, we can perform ro-
bust and flexible domain adaptation through the post error
correction process. Figure 1 shows the paradigm of this
post error correction approach.

One approach in post error correction, which is a
straightforward and intuitive method to robustly handle
many kinds of recognition errors, was rule-based ap-
proach (Kaki et al., 1998). (Kaki et al., 1998) collected
many lexical error patterns that occurred in a speech
translation system in Japanese. They could correct any
type of errors by matching the strings in the transcription
with lexical error patterns in the database. However, their
approach has a disadvantage in that the correction is only
feasible to the trained (or collected) lexical error patterns.

Another approach has been based on a statistical
method utilizing the probabilistic information of words
in a spoken dialogue situation and the language models
adapted to the application domain (Ringger and Allen,
1996). (Ringger and Allen, 1996) applied the noisy chan-
nel model to the correction of the errors in speech recog-
nition. They simplified a statistical machine translation
(MT) model called an IBM model (Brown et al., 1990),
and tried to construct a general post-processor that can
correct errors generated by any speech recognizer. The
model consists of two parts: a channel model, which ac-
counts for errors made by the ASR, and the language
model, which accounts for the likelihood of a sequence of
words being uttered. They trained the channel model and
the language model both using some transcriptions from
TRAINS-95 dialogue system which is a train traveling
planning system (Allen et al., 1996). Here, the channel
model has the distribution that an original word may be
recognized as an erroneous word. They use the proba-
bility of mistakenly recognized words, the co-occurrence
information extracted from the words and their neighbor-
ing words, and the tagged word bi-grams, which are all
lexical clues in error strings.

Such approaches based on lexical information of words
have shown some successful results, but they still have
major drawbacks; The performance of such systems de-
pends on the size and the quality of speech recognition
result, or on the database of collected error strings since
they are directly dependent on lexical items. The error

patterns constructed are available but not enough, be-
cause it is expensive to collect them; so in many cases,
they fail to recover the original strings from the lexical
specific error patterns. Also, since they are sensitive to
the error patterns, they occasionally mis-identify a cor-
rect word as an error word.

We suggest a more improved and robust semantic-
oriented error correction approach, which can be in-
tegrated into previous fragile lexical-based approaches.
In our approach, in addition to lexical information, we
use high level syntactic and semantic information of the
words in a speech transcription. We obtain semantic in-
formation from a knowledge base such as general the-
sauri and a special domain dictionary that we construct
by ourselves to contain some domain specific knowledge
to the target application.

In the next section, we first describe a general noisy
channel model for ASR error correction and discuss some
problems with them. We then introduce our improved
channel model especially for Korean language in section
3. We also propose a new high-level error correction
model using syntactic and semantic knowledge in section
4. We prove the feasibility of our approach through some
experiments in section 5, and draw some conclusions in
section 6.

2 Noisy Channel Error Correction Model
The noisy channel error correction framework has been
applied to a wide range of problems, such as spelling
correction, statistical machine translation, and ASR error
correction (Brill and Moore, 2000; Brown et al., 1990;
Ringger and Allen, 1996). The key idea of noisy chan-
nel model is that we can model some channel properties
through estimating the posterior probabilities.

The problem of ASR error correction can be stated
in this model as follows: For an input sentence, O =
o1, o2, . . . , on produced as the output sequence of ASR,
find the best word sequence,Ŵ = w1, w2, . . . , wn, that
maximizes the posterior probability P (W |O). Then, ap-
plying Bayes’ rule and dropping the constant denomina-
tor, we can rewrite as:

Ŵ = arg max
W

P (W |O) = arg max
W

P (W )P (O|W ) (1)

Now, we have a noisy channel model for ASR er-
ror correction, with two components, the source model
P (W ) and the channel model P (O|W ). The probability
P(W) is given by the language model and can be decom-
posed as:

P (W ) =
∏

i

P (wi|w1,i−1) (2)



Figure 2: Example of Word-based Channel Model

The distribution P (W ) can be defined using n-grams,
structured language model (Chelba, 1997), or any other
tool in the statistical language modeling.

Next, the conditional probability, P (O|W ) reflects the
channel characteristics of the ASR environment. If we as-
sume that the output word sequence produced under ASR
are independent of one another, we have the following
formula:

P (O|W ) =
∏

i

P (o1,i|w1,i) =
∏

i

P (oi|wi) (3)

So,

Ŵ = arg max
W

P (W )P (O|W )

= arg max
W

(
∏

i

P (wi|w1,i−1)
∏

i

P (oi|wi))(4)

However, this simple one-to-one model is not suitable
to handling split or merged errors, which frequently ap-
pear in an ASR output, because we assume that the out-
put word sequence are independent of one another. For
example, 1figure 2 shows a split or a merged error prob-
lem. To solve this problem, Ringger and Allen used the
fertility of pre-channel word (Ringger and Allen, 1996).
Following (Brown et al., 1990), we refer to the num-
ber of post-channel words oi produced by a pre-channel
word wi as a fertility. They simplified the fertility model
of IBM statistical MT model-4, and permitted the fer-
tility within 2 windows such as P (oi−1, oi|wi) for two-
to-one channel probability, and P (oi|wi, wi+1) for one-
to-two channel probability. So, the fertility model can
deal with (TO LEAVE, TOLEDO) substitution. But this
improved fertility model only slightly increased the ac-
curacy in experiments (Ringger and Allen, 1996), and
we think the major reason is due to the data-sparseness
problem. Because substitution probability is based on the
whole word-level, this fertility model requires enormous
training data. We call the model a word-based channel
model, because this model is based on the word-to-word
transformation. The word-based model focused on inter-
word substitutions, so it requires enough results of ASR
and transcription pairs. Considering the cost of building
the enough amount of correction pairs, we need a smaller
unit than a word for overcoming the data-sparseness.

1This example is from (Ringger and Allen, 1996).

3 Syllable-based Channel Model
We suggest an improved channel model for smaller train-
ing data. If we can use smaller unit such as letter,
phoneme or syllable than word, relatively smaller training
set is needed. For dealing with intra-word transformation,
we suggest a syllable-based channel model, which can
deal with syllable-to-syllable transformation. This model
is especially reasonable for Korean. In some agglutina-
tive languages such as Korean, syllable is a basic unit of
written form like a Chinese character. In Korean, the av-
erage number of syllables in one word is about three or
four.

3.1 The Model
Suppose S = s1, s2, . . . , sn is a syllable sequence of
ASR output and W = w1, w2, . . . , wm is a source word
sequence, then our purpose is to find the best word se-
quence Ŵ as follows:

Ŵ = arg max
W

P (W |S) (5)

We can apply the same Bayes’ rule and decompose the
syllable-to-word channel model into syllable-to-syllable
channel model.

P (w|s) =
P (s|w)P (w)

P (s)
∝ P (s|w)P (w)

≈ P (s|x)P (x|w)P (w) (6)

So, final formula can be written as:

Ŵ = arg max
W

(P (W )P (X|W )P (S|X)) (7)

Here, P (S|X) is the probability of a syllable-to-
syllable transformation, where X = x1, x2, . . . , xn is
a source syllable sequence. P (X|W ) is a word model,
which can convert syllable lattice into word lattice. The
conversion can be done efficiently by dictionary look-up.

This model is similar to a standard hidden markov
model (HMM) of continuous speech recognition. In
speech recognition system, P (S|X) can be an acoustic
model in signal-to-phoneme level, and P (X|W ) can be
a pronunciation dictionary. Then, we applied the fertility
into our syllable-to-syllable channel model. We set the
maximum 2-fertility of syllable, which was determined
experimentally.

3.2 Training the Model
To train the model, we need a training data consisting
of {X,S} pairs which are manually transcribed strings
and ASR outputs. And, we align the pair based on mini-
mizing the edit distance between xi and si by dynamic



Figure 3: Example of Syllable-based Channel Model

programming. 2Figure 3 shows an alignment for the
syllable-model (For understanding, we use an English ex-
ample and a letter-to-letter alignment. In Korean, each
syllable is clearly distinguished much like a letter in En-
glish.). For example, (TO LEAVE, TOLEDO) pair in pre-
vious section can be divided into (TO, TO), (L, L), (EA,
E), and (VE, DO) with fertility 2.

We can then calculate the probability of each sub-
stitution P (si|xi) by Maximum-Likelihood Estimation
(MLE). Let C(xi) be the frequency of source syllable,
and C(xi, si) be the frequency of events where xi substi-
tute si. Then,

PMLE(si|xi) =
C(xi, si)

C(xi)
(8)

The total number of theoretical unique syllables is
about ten thousands in Korean, but the number of syl-
lables, which appeared at least one time, is about 2,300
in a corpus which has about 3 billion syllables. Thus, we
used Witten-Bell method for smoothing unseen substitu-
tions (Witten and Bell, 1991). Let T (xi) be the number
of substitution types, and N be the number of syllables in
a training data. For Witten-Bell discounting, we should
define Z(xi), which is the number of syllable xi with
count zero. Then, we can write as follows:

PWB(si|xi) =
T (xi)

Z(xi)(N + T (xi))
, if C(xi, si) = 0 (9)

3.3 Decoding the Model
Given a syllable sequence S, we want to find
arg maxW (P (W )P (X|W )P (S|X)). This will be to re-
turn an N-best list of candidates according to the models,
and then rescore these candidates by taking into account
the language model probabilities. To rescore the candi-
dates, we used Viterbi search algorithm to find the best
sequence. For implementation of candidate generation,
we store the syllable channel probabilities P (si|xi) as a
hash-table to pop them easily and fast. The system can
generate a candidate word sequence network using sylla-
ble channel model and a lexicon. And then, we can find
optimal sequence which has the best probability through
Viterbi decoding by including a language model.

2We omitted detail character-level match lines to simplify.
The whole word match is depicted in bold lines, while no-line
means character-level match errors.

Figure 4: Common semantic category values

4 Using Syntactic and Semantic
Knowledge

In some similar areas such as spelling error correction
or optical character recognition (OCR) error correction,
NLP researchers traditionally identified five levels of er-
rors in a text: (1) a lexical level, (2) a syntactic level,
(3) a semantic level, (4) a discourse structure level, and
(5) a pragmatic level (Kukich, 1992). In spelling cor-
rection and OCR error correction problem, correction
schemes mainly have focused on non-word errors at the
lexical level, which is an isolated word correction prob-
lem. However, errors of speech recognition tend to be
continuous word errors which should be better classi-
fied into syntactic and semantic level errors, because the
recognizer only produces word sequences existing in a
lexicon. So, this section presents a more syntax and
semantic-oriented approach to correct erroneous outputs
of a speech recognizer using a domain knowledge which
provides syntactic and semantic information. We fo-
cus on continuous word error detection and correction,
using syntactic and semantic knowledge, and pipeline
this high-level error correction method with the syllable-
based channel model.

4.1 Lexico-Semantic Pattern
A lexico-semantic pattern (LSP) is a structure where lin-
guistic entries and semantic types are used in combina-
tion to abstract certain sequences of the words in a text.
It has been used in the area of natural language interface
for database (NLIDB) (Jung et al., 2003) and a TREC
QA system for the purpose of matching the user query
with the appropriate answer types at syntax/semantic
level (Kim et al., 2001; Lee et al., 2001). In an LSP,
linguistic entries consist of words, phrases and part-of-
speech (POS) tags, such as ‘YMCA,’ ‘Young Men’s
Christian Association,’ and ‘NNP.’3 Semantic types con-

3Part-of-speech tag denoting a proper noun which is used in
Penn TreeBank (Marcus et al., 1994).



Phrases LSP
Reading trainer
Fairy tale trainer %hobby @position
Recreation coach

Table 1: Example of a template abstracted by LSP

sist of common semantic classes and domain-specific (or
user-defined) semantic classes. The common semantic
tags again include attribute-values in databases, such as
‘@corp’ for a company name like ‘IBM,’ and pre-define
83 semantic category values, such as ‘@location’ for lo-
cation names like ‘New York’ (Jung et al., 2003). Fig-
ure 4 shows an example of predefined common semantic
category values which will be used in an ontology dictio-
nary.

In domain-specific application, well defined semantic
concepts are required, and the domain-specific seman-
tic classes represent these requirements. The domain-
specific semantic classes include special attribute names
in databases, such as ‘%action’ for ‘active’ and ‘inac-
tive,’ and semantic category names, such as ‘%hobby’ for
‘reading’ and ‘recreation,’ for which the user wants a spe-
cific meaning in the application domain. Moreover, we
used the classes to abstract out several synonyms into a
single concept. For example, a domain-specific semantic
class ‘%question’ represents some words, such as ‘ques-
tion’, ‘query’, ‘asking’, and ‘answer.’

The domain dictionary is a subset of the general se-
mantic category dictionary, and focuses only on the nar-
row extent of the knowledge it concerns, since it is im-
possible to cover all the knowledge of the world in imple-
menting an application. On the other hand, the ontology
dictionary for common semantic classes reflects the pure
general knowledge of the world; hence it performs a sup-
plementary role to extract semantic information. The do-
main dictionary provides the specific vocabulary which is
used in semantic representation tasks of a user query and
the template database.

4.2 Construction of a Domain Knowledge

For semantic-oriented error correction, we constructed a
domain knowledge, which consists of a domain dictio-
nary, an ontology dictionary, and template queries that
are similar to question types in a QA system (Lee et
al., 2001). Query sentences are semantically abstracted
by LSP’s and are automatically collected for the template
database.

Because Fujii et al. (Fujii et al., 2002B) have shown
the importance of the language model which well de-
scribes the domain knowledge, we reflect the domain
information with a template database: database of tem-
plate queries of the source statements which are used

Figure 5: Process of Semantic-oriented Error Correction

for the actual error detection and correction task after
speech recognition. The template queries are automati-
cally acquired by the Query-to-LSP translation from the
source statements using two semantic category dictionar-
ies: domain dictionary and an ontology dictionary. As-
suming that some speech statements for a specific target
domain are predefined, a record of the template database
is composed of a fixed number of LSP elements, such as
POS tags, semantic tags, and domain-specific semantic
classes. Table 1 shows an example of template abstracted
by LSP conversion in a predefined domain of “on-line ed-
ucation.”

Query-to-LSP translation transforms a given query into
a corresponding LSP, and the LSP’s enhance the cov-
erage of extraction by information abstraction through
many-to-one mapping between queries and an LSP. The
words in a query sentence are converted into the LSP
through several steps. First, a morphological analysis is
performed, which segments a sentence of words into mor-
phemes, and adds POS tags to the morphemes (Lee et al.,
2002). NE recognition discovers all the possible seman-
tic types for each word by consulting a domain dictionary
and an ontology dictionary. NE tagging selects a seman-
tic type for each word so that a sentence can be mapped
into a suitable LSP sequence by searching several types
in the semantic dictionaries (An et al., 2003).

4.3 Semantic-oriented Error Correction Process
Now, we will show the working mechanism of post error
correction of a speech recognition result using the domain
knowledge of template database and domain-specific dic-
tionary. Figure 5 is a schematic diagram of the post error



correction process.
The overall process is divided into two stages: a syn-

tactic/semantic recovery and a lexical recovery stage. In
the semantic error detection stage, a recognized query is
converted into the corresponding LSP. The converted LSP
may be ill-formed depending on the errors in the rec-
ognized query. Semantic error correction is performed
by replacing these syntactic and/or semantic errors us-
ing a semantic confusion table. We used a pre-collected
template database to recover the semantic level errors,
and the technique for searching most similar templates
are based on a minimum edit distance dynamic program-
ming search, which has been used as a similarity search
in many areas such as spelling correction, OCR post cor-
rection, and DNA sequence analysis (Wagner and Fis-
cher, 1974). The semantic confusion table provides the
matching cost, which can be semantic similarity, to the
dynamic programming search process. The ‘minimum
edit distance’ between two words is originally defined as
the minimum number of deletions, insertions, and sub-
stitutions required to transform one word into the other.
We compute the minimum edit distances between the er-
roneous LSP’s and the template LSP’s in the template
database using the similarity cost functions at the seman-
tic level, and select, as the final template query, the one
which has the minimum distance among them. At this
stage, replaced LSP elements can provide some clues of
the recognition errors and the original query’s meaning
to the next lexical recovery stage. Moreover, candidate
error boundary can also be detected by this procedure.

After this procedure, lexical recovery is performed in
the next stage. Recovered semantic tags and the erro-
neous queries produced by ASR are the clues of lexi-
cal recovery. Erroneous query and recovered template
query are aligned by dynamic programming again, after
which some lexical candidates are generated by our im-
proved syllable-based channel model. Figure 6 4 shows
an example of semantic error correction process using the
same data in TRAIN-95 (Allen et al., 1996).

5 Experiments
5.1 Experimental Setup
We performed several experiments on the domain of in-
vehicle telematics IR related to navigation question an-
swering services. The speech transcripts used in the ex-
periments were composed of 462 queries, which were
collected by 1 male speaker in a real application. We
also used two Korean speech recognizers: a speech rec-
ognizer made by LG-Elite (LG Electronics Institute of
Technology) and a Korean commercial speech recog-
nizer, ByVoice (refer to http://www.voicetech.co.kr). For

4In corrected sentence, note that word ‘A’ is not recovered
because this word is meaningless functional word.

Figure 6: Example of Semantic-oriented Error Correction

our semantic-oriented error correction, we constructed a
domain knowledge for our target domain. We constructed
3,195 entries of domain dictionary, 13,154 entries of on-
tology dictionary, and 436 semantic templates generated
automatically using domain dictionary and ontology dic-
tionary.

We implemented both word-based and syllable-based
model for comparison, and combined the system of
syllable-based lexical correction with the LSP-based se-
mantic error correction. For experiments, we use trigrams
language model generated by SRILM toolkit (Stolcke,
2002), and a training program for channel model made
by ourselves. And, we divided the 462 queries into 6 dif-
ferent sets, and evaluated the results of 6-fold cross vali-
dation for each model.

5.2 Results

To measure error correction performance, we use word
error rate (WER) and term error rate (TER):

WER =
|Sw| + |Iw| + |Dw|

|Wtruth|
(10)

TER =
|St| + |It| + |Dt|

|Ttruth|
(11)

|Wtruth| is the number of original words, and |Ttruth|
is the number of query term (or keyword) in original
words, that is, an error rate of content words directly re-
lated to the performance of IR and QA system (Fujii et
al., 2002A).

Table 2, 3 present the experiments results of WER of
baseline ASR, word-based channel model, our syllable-
based channel model and combined syllable-based chan-
nel model with the LSP semantic correction model. The
performances of baseline systems were about 79% ∼
81% on the utterances in in-vehicle telematics IR domain.
This result shows that the semantic error correction of



Test set 1 2 3 4 5 6 AVG.
Baseline 18.1% 21.6% 19.4% 22.8% 19.9% 19.2% 20.17%

Word-based 12.8% 20.3% 15.5% 17.5% 16.7% 17.7% 16.75%
Syllable-based 10.6% 16.0% 11.5% 16.1% 14.0% 10.6% 13.13%
Syllable + LSP 9.7% 14.9% 10.4% 15.3% 13.0% 10.7% 12.33%

Table 2: Result of LG-Elite Recognizer

Test set 1 2 3 4 5 6 AVG.
Baseline 20.5% 18.8% 19.8% 17.0% 16.9% 17.8% 18.47%

Word-based 19.9% 14.8% 18.4% 16.2% 15.3% 15.1% 16.75%
Syllable-based 16.7% 13.8% 17.0% 13.3% 12.7% 12.2% 14.28%
Syllable + LSP 15.3% 13.4% 15.8% 12.9% 11.3% 11.8% 13.42%

Table 3: Result of ByVoice

speech recognition result is a viable approach to improve
the performance.

Using both baseline ASR systems, we achieved 39%
and 27% of error reduction rate. In comparison with the
previous word-based model, our new approaches have
more accurate error correction performance in this do-
main. Table 4 shows the result of the experiments for
TER. The result of TER shows that baseline ASR systems
alone are not appropriate to process the user’s queries in
speech-driven IR, QA or dialog understanding system.
However, with a post error correction, the error reduc-
tion rate of TER is much higher than that of WER. And
we achieved better performance than word-based model.
With this result, our methods are considered to be more
appropriate in speech-driven IR and QA applications.
Compared with the word-based noisy channel model that
has been the best approach in the error correction so far,
our semantic-oriented error correction suggests alterna-
tive more successful methods for speech recognition error
correction.

Baseline Word-
based

Syllable-
based

Syllable
+ LSP

LG-Elite 56.4 % 31.5% 30.1% 26.7%
ByVoice 64.1% 34.1% 32.8% 27.6%

Table 4: Result of Term Error Rate

6 Conclusion and Future Works
We proposed an improved syllable-based noisy channel
model and combined higher level linguistic knowledge
for semantic-oriented approach in a speech recognition
error correction, which shows a superior performance in
domain-specific IR applications.

The previous works only focused on inter-word level

error correction, commonly depending on a large amount
of training corpus for the error correction model and the
language model. So, previous approaches require enor-
mous results of ASR and are dependent on specific speak-
ers and environments. On the other hand, our method
takes in far smaller training corpus, and it is possible to
implement the method easily and in a short time to ob-
tain the better error correction rate because it utilizes the
semantic information of the application domain.

And our semantic-oriented approach has more advan-
tages over lexical based ones, since it is less sensitive to
each error pattern. Also, the approach has a broader cov-
erage of error patterns, since several similar common er-
ror strings in the semantic ground can be reduced to one
semantic error pattern, which enables us to improve the
probability of recovering from erroneous recognition re-
sults.

And, because the LSP scheme transforms pure lexical
entries into abstract semantic categories, the size of the
error pattern database can be reduced remarkably, and
it also increases the coverage and robustness compared
with the previous pure lexical entries that can only deal
with the morphological variants.

With all these facts, the LSP correction has a high
possibility of generating semantically correct correction
due to the massive use of semantic contexts. Hence, it
shows a high performance, especially when combined
with domain-specific speech-driven natural language IR
and QA systems.

Future work should include the end-performance ex-
periments with IR or QA application for our error correc-
tion model.

7 Acknowledgements

This work was partly supported by Jungki KeoJeom
Project (MOCIE, ITEP), and by 21C Frontier Project



(MOST).

References
James F. Allen, Bradford W. Miller, Eric K. Ringger, and

Teresa Sikorski. 1996. A Robust System for Natural
Spoken Dialogue. In Proceedings of the 34th Annual
Meeting of the ACL

Juhui An, Seungwoo Lee, and Gary Geunbae Lee. 2003.
Automatic acquisition of Named Entity tagged corpus
from World Wide Web. In Proceedings of the 41st an-
nual meeting of the ACL (poster presentation).

J. Barnett, S. Anderson, J. Broglio, M. Singh, R. Hud-
son, and S.W. Kuo. 1997. Experiments in spoken
queries for documents retrieval. In Proceedings of Eu-
rospeech, (3):1323-1326.

Eric Brill and Robert C. Moore. 2000. An Improved
Error Model for Noisy Channel Spelling Correction.
ACL2000, 286-293.

P. F. Brown, J. Cocke, S. A. Della Pietra, V. J. Della
Pietra, F. Jelinek, J. D. Lafferty, R. L. Mercer, and P.
S. Roossin. 1990. A Statistical Approach to Machine
Translation. Computational Linguistics, 16(2):79-85

Ciprian Chelba. 1997. A Structured Language Model. In
Proceedings of the Thirty-Fifth Annual Meeting of the
ACL and Eighth Conference of the European Chapter
of the ACL, 498-503.

F. Crestani. 2000. Word recognition errors and relevance
feedback in spoken query processing In Proceedings
of the 2000 Flexible Query Answering Systems Confer-
ence, 267-281.

Atsushi Fujii, Katunobu Itou, and Tetsuya Ishikawa.
2002A. Speech-driven Text Retrieval: Using Target
IR Collections for Statistical Language Model Adapta-
tion in Speech Recognition. Anni R. Coden and Eric
W. Brown and Savitha Srinivasan (Eds.) Information
Retrieval Techniques for Speech Application (LNCS
2273), 94-104.

Atsushi Fujii, Katunobu Itou, and Tetsuya Ishikawa.
2002B. A method for open-vocabulary speech-driven
text retrieval. In Proceedings of the 2002 conference
on Empirical Methods in Natural Language Process-
ing, 188-195.

Sanda Harabagiu, Dan Moldovan, and Joe Picone. 2002.
Open-Domain Voice-Activated Question Answering.
COLING2002, (1):321-327, Taipei.

Hanmin Jung, Gary Geunbae Lee, Wonseug Choi,
KyungKoo Min, and Jungyun Seo. 2003. Multi-
lingual question answering with high portability on re-
lational databases. IEICE transactions on information
and systems, E-86D(2):306-315.

Satoshi Kaki, Eiichiro Sumita, and Hitoshi Iida. 1998.
A Method for Correcting Speech Recognition Using
the Statistical features of Character Co-occurrence.
COLING-ACL’98, 653-657.

Haksoo Kim, Kyungsun Kim, Gary Geunbae Lee, and
Jungyun Seo. 2001. MAYA: A Fast Question-
Answering System Based on a Predictive Answer In-
dexer. In Proceedings of the 39th Annual Meet-
ing of the Association for Computational Linguistics
(ACL’01), Workshop on Open-Domain Question An-
swering

K. Kukich. 1992. Techniques for automatically cor-
recting words in text. ACM Computing Surveys,
24(4):377-439.

Geunbae Lee, Jungyun Seo, Seungwoo Lee, Hanmin
Jung, Bong-Hyun Cho, Changki Lee, Byung-Kwan
Kwak, Jeongwon Cha, Dongseok Kim, JooHui An,
Harksoo Kim, and Kyungsun Kim. 2001. SiteQ: Engi-
neering High Performance QA System Using Lexico-
Semantic Pattern Matching and Shallow NLP. In Pro-
ceedings of the 10th Text Retrieval Conference (TREC-
10), Washington D.C.

Gary Geunbae Lee, Jeongwon Cha, and Jong-Hyeok
Lee. 2002. Syllable pattern-based unknown mor-
pheme segmentation and estimation for hybrid part-of-
speech tagging of Korean. Computational Linguistics,
28(1):53-70.

Mitchell P. Marcus and Beatrice Santorini and Mary Ann
Marcinkiewicz. 1994. Building a Large Annotated
Corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313-330.

Eric K. Ringger and James F. Allen. 1996. A fertility
model for post correction of continuous speech recog-
nition ICSLP’96, 897-900.

Andreas Stolcke 2002. SRILM - An Extensible Lan-
guage Modeling Toolkit. In Proceedings of Intl. Conf.
on Spoken Language Processing, (2):901-904, Denver,
Co. (http://www.speech.sri.com/projects/srilm/)

Robert A. Wagner and Michae J. Fischer. 1974. The
String-to-String Correction Problem. Journal of the
ACM, 21(1):168-173.

I. Witten and T. Bell. 1991. The Zero-Frequency Prob-
lem: Estimating the Probabilities of Novel Events in
Adaptive Text Compression. In IEEE Transactions on
Information Theory, 37(4).


