
Conversational Dialogue Management in the FASiL project

Kerry Robinson, David Horowitz, Emilio Bobadilla, Mark Lascelles, Ana Suarez
Vox Generation Limited, 8 Duncannon Street, London, England.

{krobinson, dhorowitz, ebobadilla, mlascelles,
asuarez}@voxgeneration.com

Abstract

The FASiL dialogue manager is described in
the context of the commercial deployment of
conversational interfaces. A practical dia -
logue model is presented that uses a list-like
structure to manage mixed-initiative dialogue
using highly modularised, and independently
specified dialogue comp onents.

1 Introduction

In the context of the FASiL project1 we investigate dia-
logue management for conversational user interfaces.
We are developing a virtual personal assistant (VPA)
application that provides a user with access to personal
information like email. This paper describes the moti-
vation and design of the FASiL dialogue manager
(DM). The next section surveys models of dialogue
management that have informed our design decisions.
Section 3 discusses the particular requirements for the
commercial deployment of dialogue systems and the
objectives of FASiL in this regard. Section 4 describes
the FASiL DM including a step-by-step analysis of an
example dialogue. Section 5 explains the distributed
execution model.

2 Models of Dialogue Management

The basic role of the DM in a spoken user interface can
be reduced to two basic actions (Levin et al., 1999):
§ Interpret observations (usually of user input) in

context, and update the internal representation of
the dialogue state.

§ Determine the next action of the dialogue system
according to some dialogue policy.

While these steps are in common with all dialogue man-
agers, each step is non-trivial and as such, has lead to a
proliferation of different approaches. In the design of
the FASiL DM we have drawn features from several
different dialogue management paradigms. These are
briefly reviewed in the following section.

1 FASiL: Flexible Adaptive Spoken Language and Multi-
Modal Interface.

2.1 Finite State Models

Some of the first models to be used for dialogue man-
agement in spoken dialogue systems were based on Fi-
nite State networks (e.g. McTear, 1998). Each node in
the network represents a state of the system, and deter-
mines the prompts and grammar that are used at that
point in the dialogue. The result of user input is to tran-
sition to a different node. This paradigm begins to be-
come unwieldy when the number of possible states and
transitions becomes as large as in the VPA application,
but we adopt the use of transition networks for their
transparency in specifying the dialogue policy.

2.2 Form Filling

Approaches based on form filling have been used to
support mixed initiative dialogue, where the user does
not have to respond to the system prompts directly, but
can give different or additional information. Form-
based approaches (Goddeau, 1996) are characterised by
a data-structure that allows developers to specify a set
of slots that must be filled by user-input, and a set of
prompts to elicit the values for the required slots. The
dialogue policy is usually determined by a general algo-
rithm that seeks to complete the form by prompting the
user for unfilled slots. We avoid the use of a general
algorithm to define the dialogue policy, but draw upon
the concept of a form in maintaining the dialogue state.

2.3 State of the Art Approaches

Many of the more sophisticated approaches to dialogue
management can be characterised by a separation be-
tween the data structure that stores the current state of
the dialogue, and the specification of the dialogue pol-
icy. This is the case with the FASiL DM. Differences
arise in the way in which the dialogue state is struc-
tured, and the way the dialogue policy is specified.
Some use rules with pre -conditions that depend on the
dialogue state, and actions that determine the next dia -
logue step (Seneff, 1997; Traum and Larsson, 2003).
Others use transition networks to specify the dialogue
policy (Lemon et al., 2001; Catizone et al., 2003). A
structure may be adopted that allows the dialogue man-
agement task to be broken down into sub-tasks, perhaps
recursively (e.g. Wang and Lin, 2000)

In spite of the myriad different configurations, Ca-
tizone et al. (2003) note that there are many similarities

between modern dialogue systems, and suggest that all
consist of a subset of basic functional components. If
this is the case, then perhaps the major philosophical
differences exist in decisions around the programming
methodology, architecture and communications proto-
cols. While these aspects of system design may not
directly influence the performance of a system in the
lab, they are key to the practical performance of de-
ployed systems. Issues of scalability, robustness, main-
tainability, and the availability of suitably skilled
development and design professionals directly affect the
quality of systems that can be realistically deployed.

3 Commercial Systems

There is a significant gap between the level of sophisti-
cation of commercially deployed spoken dialogue sys-
tems and the impressive technology demo nstrators that
have been developed by academic and other research
institutions. Of course, this is partly due to the imma-
turity of some components: the robustness and scalabil-
ity requirements of a comme rcial product are
significantly more stringent than for a technology dem-
onstrator, but we still believe that there is a potential for
the widespread deployment of more conversational sys-
tems. In the FASiL project, we have tried to identify
factors that contribute to the gap, and seek to address
them in the design and development of the DM:
§ In support of rapid development, maintainability

and extensibility we modularize the dialogue de-
velopment: dividing applications into tasks, and
tasks into commands that can be independently au-
thored and maintained.

§ To allow potential clients to capitalize on their ex-
isting investment in voice infrastructure, we use
VXML as the interface with the ASR and TTS re-
sources, and have in mind support, and easy porting
to other emerging standards.

§ To capitalise on investments in dialogue systems, a
key aim of the project is to develop technology that
supports straightforward localis ation.

4 The Dialogue Manager

We wanted our DM to support dialogues where the user
could take initiative at any time, so expert users could
dictate the flow of conversation and all users could in-
terrupt and correct recognition and understanding errors.
At the same time a system-driven backbone must be
provided to guide new users through the system. We
also had in mind our objectives related to the commer-
cial deployment of such systems.

Applications are divided into several independent
tasks that are completed by executing commands de-
rived from users’ speech. Users can expedite task com-
pletion by speaking in longer sentences that imply

several commands, but the tasks and commands are still
implemented independently of one another, allowing
several developers to work on the system. To support a
mixed initiative interaction with independently defined
commands, we introduce the concept of a User Intention
Set (UIS): a list structure that manages commands that
are currently being processed. Kronenberg and Regel-
Brietzman (2001) use a similar approach to manage re-
usable dialogue mo dules, while Catizone et al. (2003)
use a modified stack structure to keep track of the con-
versation. Stack structures are also used by Traum and
Larsson (2003), to keep track of ‘Issues’ and ‘Questions
Under Discussion’, but there is a closer similarity with
the stack of ‘discourse obligations’ described by Traum
and Allen (1994).

4.1 Task and Command Frames

The dialogue state is represented using frames. Task
frames deal with the current task, like sending an email
and store information that is agreed with the user, like
the recipient list or the priority of the mail. Co mmand
frames deal with actions that a user takes toward com-
pleting a task, like adding a recipient to an email. The
user issues commands that operate on the task frame
until a task is complete.

4.2 Specifying the Dialogue Policy

In contrast to form-based approaches, our frames do not
imply anything about the dialogue policy. Instead of a
generic algorithm, we specify separate dialogue policies
for each task-frame, and for every command. This in-
troduces a small overhead in the implementation of
simpler dialogues, but the designer has absolute free-
dom in the specification of the strategy. Still, if there is
an opportunity for generic behaviour, policies can be re-
used (as we do for the add, copy, blind copy and delete
commands in the VPA). In common with Catizone et
al. (2003) we choose to specify dialogue policies using
transition networks instead of rules (Seneff, 1997). We
feel this supports a more transparent specification, aid-
ing development, maintenance and quality assurance.

4.3 Dialogue walkthrough

This section describes the processing behind the exa m-
ple interaction in Figure 1. We choose the send email
task for simplicity and begin with the first system turn.

The system decides what step to take by traversing
the network describing the policy for the send-email
task. Task policies consist of three main branches. The
first deals with task completion: if there is sufficient
information to complete the task (including any neces-
sary confirmation from the user) then the system will
carry out the required action, for example, sending the
email. The second branch deals with user-initiative: if
there are any commands from the user that have not yet

been dealt with, these are given priority. The third
branch deals with system-initiative.

At the beginning of the example interaction, the
send-email task-frame is empty (so the email cannot be
sent), and there are no commands from the user, so the
system must take the initiative. In the send-email task,
if there are no recipients, a traversal of the dialogue pol-
icy network will end up at a system initiative node that
asks: “Who would you like to send the email to?” (Fig-
ure 1, turn S1). To which the user may respond with
U1: “Anna Brown and copy David Smith”. The se-
mantic interpretation of the utterance is mapped to one
or more new commands. In this case a ‘To’ command
and a ‘CC’ command.

Commands are created and completed by mapping
functions. Context -dependent mapping functions are
associated with system actions, and allow the system to
interpret user-input in the context of the previous system
turn. The first command in the example above is the
result of context -dependent mapping. The user only
gave a name, but the context dependent mapping is used
to infer, and generate the appropriate command (‘To’)
and command content (the name Anna Brown, abbrevi-
ated to AB in the figure). There are also generic map-
ping functions that map any remaining user-input to the
appropriate command. The ‘CC’ command in the above
example is the product of a generic mapping function.

Commands derived from user input are stored in a
list-like structure called the User-Intention Set (UIS).
The UIS stores all commands that have been created
from user-input, but have not yet been executed. The
boxes on the left hand side of figure 1 show the UIS at
various points in the example dialogue.

After an utterance is mapped into the intention set,
the system must again decide the best next step in the
dialogue. Continuing with the example, the pre-
conditions for sending an email are still not met, so the
first branch of the dialogue policy is ignored, but this

time the UIS contains commands that have not yet been
dealt with. There are two pending commands: a ‘To’
command and a ‘CC’ command. Commands are dealt
with one at a time, so the system selects the first one
from the UIS and delegates control to the sub-network
specifying the dialogue policy for that command.

The dialogue policy for a command frame is speci-
fied in the same way as for a task frame. In the case of
the ‘To’ command, a traversal of the policy network
ends in a node that requests a confirmation from the
user (S2). The user may stay silent, implicitly confirm-
ing the command, or respond with an explicit confirma-
tion and additional commands, as in U2. The
confirmation is mapped into the command at the front
of the UIS (shown in figure 1 as an emboldened abbre-
viation of the name) and the additional command is in-
serted after it. The policy network for the ‘To’
command is again traversed. This time the pre-
conditions for command execution are met (there are
one or more confirmed recipients), so the command
‘executes’, with the effect that the recipient Anna
Brown is added to the send-email task-frame, and the
command is removed from the UIS.

The system then proceeds to complete and execute
the remaining commands in the UIS by implicitly con-
firming their contents (S3, S4). The user remains silent
for the first confirmation, but interrupts with a correc-
tion on the second (U3). The correction is mapped into
the in-focus command, and the system attempts confir-
mation again (S5).

Command policies don’t just deal with confirmation.
They can define command completion and disambigua-
tion behaviour as well. For example, if a user just gives
the command “copy someone”, a traversal of the CC
command policy results in a system initiative prompt:
“Who do you want to copy?”

4.4 Managing the User Intention Set

The UIS consists of a list of command frames that have
not yet been executed. The command at the head of the
list is always the next to be dealt with, and when the
user gives commands, they are added to the beginning
of the list. In common with the stack of discourse obli-
gations employed by Traum and Allen (1994), this
mechanism ensures that the DM always responds to the
user’s most recent utterance (or system obligation) first.
This is necessary for the system to appear responsive to
user initiative, but it means the system must sometimes
return to topics that were raised earlier in the dialogue
(like the confirmation in S4).

A single utterance may consist of several com-
mands. They are stored in the UIS in the order that they
are said, so that they will be dealt with in the same or-
der. We don’t currently deal with utterances like “do X,
but first do Y”, preferring instead to guide the user into
a more straightforward mode of communication.

To
AB

CC
DS

To
AB

CC
DS

To
AB

Pr
Hi

CC
DS

To
AB

Pr
Hi

CC
DS

U3: No, David Fish

U1: Anna Brown, and copy David Smith

S1: Who do you want to send the email to?

S2: To Anna Brown…

U2: Yes and make it high priority

S3: Making the email High priority…

S4: Copying David Smith…

CC
DF
CC
DF

S5: Copying David Fish…

Figure 1

5 Distributed DM Architecture

We adopt a distributed approach to DM based on the
Model, View, Controller (MVC) pattern (Krasner and
Pope, 1988), and similar to Komatani et al. (2003). The
VXML browser takes responsibility for managing sim-
pler aspects of the interaction, while more complex in -
formation processing is the responsibility of the FASiL
DM. This allows us to conveniently factor out some
generic aspects of the dialogue implementation, leading
to a simpler dialogue specification, while the use of
open-standards like VXML to interact with external
components (telephony, ASR, TTS) supports portability
between different platforms. The Open Speech Appli-
cation Framework (Carpenter 2002), developed by a
member of the FASiL consortium provides the MVC
pattern, and recursive transition networks.

When a user calls the system, the browser makes a
request to the DM, which dynamically generates and
returns a page of VXML. The user interacts with the
VXML page until a valid end-point is reached. The
result of the interaction is then communicated back to
the DM as part of the request for a new page.

The logic of the VXML page extends only to inter-
preting and responding to miss-recognition, silence and
requests for help from the user. As soon as meaningful
input is received, control is passed to the FASiL DM.

5.1 View Generator

Every VXML page is created by the view-generator,
which is implemented as a Java Server Page (JSP). The
view generator receives at least two parameters as part
of the request for a new page – a state-type, and a state
number. The state-type defines how the VXML page
handles conditions such as no-input (user stays silent),
no-match (miss-recognition) and requests for help.
Several state types are defined covering common
prompting patterns that can be re-used in any applica-
tion. The state number references a list of prompts de-
fined in a spreadsheet. A spreadsheet macro compiles a
JavaScript file that is used in the VXML page created
by the view generator. The separation of the prompt
definitions into a separate spreadsheet allows them to be
easily managed by UI designers. They can also be used
to generate scripts for prompt recording, and support
easy translation into different languages. In FASiL we
used the spreadsheets to support translation of the
prompts from English into Swedish and Portuguese.

6 Conclusion

We have described the motivation for, and design of the
FASiL dialogue manager. In particular, we described a
dialogue model based on frames, transition networks
and a list structure called the UIS. At the time of writ -
ing we are preparing user-trials through which we hope

to analyse the performance of the system, and derive
corpora and usability feedback that will inform further
development of the technology.

This research was partially funded by the European
Commission under the FASiL project, contract number:
IST-2001-38685.

7 References

B. Carpenter, S. Caskey, K. Dayanidhi, C. Drouin, R.
Pieraccini. 2002. A Portable, Server-Side Dialog
Framework for VoiceXML. In Proceedings, ICSLP 2002
R. Catizone, A. Setzer, Y. Wilks. 2003. Multimodal
Dialogue Management in the COMIC Project. In Pro-
ceedings, EACL 2003
D. Goddeau, H. Meng, J. Polifroni, S. Seneff, S. Bu-
sayapongchaiy. 1996. A Form-Based Dialogue Man-
ager For Spoken Language Applications. In
Proceedings, ICSLP 1996

K. Komatani, F. Adachi, S. Ueno, T. Kawahara, H. G.
Okuno. 2003. Flexible Spoken Dialogue System based
on User Models and Dynamic Generation of VoiceXML
Scripts. In Proceedings SIGdial 2003.
G. E. Krasner and S. T. Pope. 1988. A cookbook for
using the model-view controller user interface paradigm
in Smalltalk -80. Journal of Object-Oriented Progra m-
ming, 1(3):26-49, August/September 1988.
S. Kronenberg and P. Regel-Brietzman. 2001. Bridging
the gap between mixed initiative dialogues and re-
usable sub-dialogues. In Proceedings, ASRU 2001
O. Lemon, A. Bracy, A. Gruenstein, S. Peters. 2001.
The WITAS Multi-Modal Dialogue System I. In Pro-
ceedings, Eurospeech 2001
E.Levin, R.Pieraccini, W. Eckert, P. Di Fabbrizio, S.
Narayanan. 1999 . Spoken language dialogue, from
theory to practice. In Proceedings, ASRU 1999
M. McTear. 1998. Modelling spoken dialogues with
state transition diagrams: experiences with the CSLU
toolkit. In Proceedings, ICSLP 1998
S. Seneff. 1997. Discourse and Dialogue Modelling in
the Galaxy System. In Proceedings, Dialogue System
and Discourse Analysis Workshop, Taiwan, 1997.
D. Traum and J. Allen. 1994. Discourse obligations in
dialogue processing. In Proceedings, ACL 1994
D. Traum and S. Larsson. 2003. The Information State
Approach to Dialogue Management. To appear in Smith
and Kuppevelt (eds.): Current and New Directions in
Discourse & Dialogue, Kluwer Academic Publishers.
H. Wang and Y. Lin. 2000. Goal-oriented Table-driven
Design for Dialogue Manager. In Proceedings,
ICSLP2000.

