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Abstract 
In this paper, we present a named entity 
recognition system in the biomedical domain. In 
order to deal with the special phenomena in the 
biomedical domain, various evidential features are 
proposed and integrated through a Hidden 
Markov Model (HMM). In addition, a Support 
Vector Machine (SVM) plus sigmoid is proposed 
to resolve the data sparseness problem in our 
system. Besides the widely used lexical-level 
features, such as word formation pattern, 
morphological pattern, out-domain POS and 
semantic trigger, we also explore the name alias 
phenomenon, the cascaded entity name 
phenomenon, the use of both a closed dictionary 
from the training corpus and an open dictionary 
from the database term list SwissProt and the alias 
list LocusLink, the abbreviation resolution and in-
domain POS using the GENIA corpus.  

1. The Baseline System 

1.1 Hidden Markov Model 
In this paper, we use the Hidden Markov Model 
(HMM) as described in Zhou et al (2002). Given 
an output sequence O , the system finds 
the most likely state sequence S  that 
maximizes  as follows:  
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From Equation (1), we can see that: 
• The first term can be computed by applying 
chain rules. In ngram modeling (Chen et al 1996), 
each tag is assumed to be dependent on the N-1 
previous tags.  
• The second term is the summation of log 
probabilities of all the individual tags. 
• The third term corresponds to the “lexical” 
component (dictionary) of the tagger.   

The idea behind the model is that it tries to 
assign each output an appropriate tag (state), which 

contains boundary and class information.  For 
example, “TCF 1 binds stronger than NF kB to 
TCEd DNA”. The tag assigned to token “TCF” 
should indicate that it is at the beginning of an 
entity name and it belongs to the “Protein” class; 
and the tag assigned to token “binds” should 
indicate that it does not belong to an entity name.  
Here, the Viterbi algorithm (Viterbi 1967) is 
implemented to find the most likely tag sequence.  

The problem with the above HMM lies in the 
data sparseness problem raised by P  in the 
third term of Equation (1). In this paper, a Support 
Vector Machine (SVM) plus sigmoid is proposed 
to resolve this problem in our system. 
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1.2 Support Vector Machine plus Sigmoid 
Support Vector Machines (SVMs) are a popular 
machine learning approach first presented by 
Vapnik (1995). Based on the structural risk 
minimization of statistical learning theory, SVMs 
seek an optimal separating hyper-plane to divide 
the training examples into two classes and make 
decisions based on support vectors which are 
selected as the only effective examples in the 
training set. However, SVMs produce an un-
calibrated value that is not probability. That is, the 
unthresholded output of an SVM can be 
represented as 
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To map the SVM output into the probability, we 
train an additional sigmoid model(Platt 1999): 
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Basically, SVMs are binary classifiers. 
Therefore, we must extend SVMs to multi-class 
(e.g. K) classifiers. For efficiency, we apply the 
one vs. others strategy, which builds K classifiers 
so as to separate one class from all others, instead 
of the pairwise strategy, which builds K*(K-1)/2 
classifiers considering all pairs of classes. 
Moreover, we only apply the simple linear kernel, 
although other kernels (e.g. polynomial kernel) and 
pairwise strategy can have better performance. 
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1.3 Features 
Various widely used lexical-level features are 
explored in the baseline system. 
• Word Formation Pattern (FWFP): The purpose 
of this feature is to capture capitalization, 
digitalization and other word formation 
information. In this paper, the same feature as in 
Shen et al 2003 is used. 
• Morphological Pattern (FMP): Morphological 
information, such as prefix and suffix, is 
considered as an important cue for terminology 
identification.  Same as Shen et al 2003, we use a 
statistical method to get the most useful 
prefixes/suffixes from the training data.  
• Part-of-Speech (FPOS): Since many of the 
words in biomedical entity names are in lowercase, 
capitalization information in the biomedical 
domain is not as evidential as that in the newswire 
domain. Moreover, many biomedical entity names 
are descriptive and very long. Therefore, POS may 
provide useful evidence about the boundaries of 
biomedical entity names. In the baseline system, an 
out-domain POS using the PENN TreeBank is 
applied. 
• Head Noun Trigger (FHEAD): The head noun, 
which is the major noun of a noun phrase, often 
describes the function or the property of the noun 
phrase. In this paper, we automatically extract 
unigram and bigram head nouns from the training 
data, and rank them by frequency. For each entity 
class, we select 50% of top ranked head nouns as 
head noun triggers.   

2. Deep Knowledge Resources 
Besides the widely used lexical-level features as 
described above, we also explore the name alias 
phenomenon, the cascaded entity name 
phenomenon, the use of both a closed dictionary 
from the training corpus and an open dictionary 
from the database term list SwissProt and the alias 
list LocusLink, the abbreviation resolution and in-
domain POS using the GENIA corpus. 

2.1 Name Alias Resolution 

A novel name alias feature is proposed to resolve 
the name alias phenomenon. The intuition behind 
this feature is the name alias phenomenon that 
relevant entities will be referred to in many ways 
throughout a given text and thus success of named 
entity recognition is conditional on success at 
determining when one noun phrase refers to the 
very same entity as another noun phrase.  

During decoding, the entity names already 
recognized from the previous sentences of the 

document are stored in a list. When the system 
encounters an entity name candidate (e.g. a word 
with a special word formation pattern), a name 
alias algorithm (similar to Schwartz et al 2003) is 
invoked to first dynamically determine whether the 
entity name candidate might be alias for a 
previously recognized name in the recognized list. 
The name alias feature FALIAS is represented as 
ENTITYnLm (L indicates the locality of the name 
alias phenomenon). Here ENTITY indicates the 
class of the recognized entity name and n indicates 
the number of the words in the recognized entity 
name while m indicates the number of the words in 
the recognized entity name from which the name 
alias candidate is formed.  For example, when the 
decoding process encounters the word “TCF”, the 
word “TCF” is proposed as an entity name 
candidate and the name alias algorithm is invoked 
to check if the word “TCF” is an alias of a 
recognized named entity. If “T cell Factor” is a 
“Protein” name recognized earlier in the 
document, the word “TCF” is determined as an 
alias of “T cell Factor” with the name alias feature 
Protein3L3 by taking the three initial letters of the 
three-word “protein” name “T cell Factor”. 

2.2 Cascaded Entity Name Resolution 

It is found (Shen et al 2003) that 16.57% of entity 
names in GENIA V3.0 have cascaded 
constructions, e.g.  

<RNA><DNA>CIITA</DNA> mRNA</RNA>.   
Therefore, it is important to resolve such 
phenomenon.  

Here, a pattern-based module is proposed to 
resolve the cascaded entity names while the above 
HMM is applied to recognize embedded entity 
names and non-cascaded entity names. In the 
GENIA corpus, we find that there are six useful 
patterns of cascaded entity name constructions: 
• <ENTITY> := <ENTITY> + head noun, e.g. 

<PROTEIN> binding motif <DNA> 
• <ENTITY> := <ENTITY>  + <ENTITY> 
• <ENTITY> := modifier + <ENTITY>, e.g.          

anti <Protein> <Protein> 
• <ENTITY> := <ENTITY>  + word + 

<ENTITY> 
• <ENTITY> :=  modifier + <ENTITY> + head 

noun 
• <ENTITY> := <ENTITY> +  <ENTITY>  + 

head noun 
In our experiments, all the rules of above six 

patterns are extracted from the cascaded entity 
names in the GENIA V3.0 to deal with the 
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cascaded entity name phenomenon where the 
<ENTITY> above is restricted to the five 
categories in the shared task: Protein, DNA, RNA, 
CellLine, CellType.  

2.3 Abbreviation Resolution 

While the name alias feature is useful to detect the 
inter-sentential name alias phenomenon, it is 
unable to identify the inner-sentential name alias 
phenomenon: the inner-sentential abbreviation.  
Such abbreviations widely occur in the biomedical 
domain.   

In our system, we present an effective and 
efficient algorithm to recognize the inner-sentential 
abbreviations more accurately by mapping them to 
their full expanded forms. In the GENIA corpus, 
we observe that the expanded form and its 
abbreviation often occur together via parentheses. 
Generally, there are two patterns: “expanded form 
(abbreviation)” and “abbreviation (expanded 
form)”.  

Our algorithm is based on the fact that it is 
much harder to classify an abbreviation than its 
expanded form. Generally, the expanded form is 
more evidential than its abbreviation to determine 
its class.  The algorithm works as follows: Given a 
sentence with parentheses, we use a similar 
algorithm as in Schwartz et al (2003) to determine 
whether it is an abbreviation with parentheses. If 
yes, we remove the abbreviation and the 
parentheses from the sentence. After the sentence 
is processed, we restore the abbreviation with 
parentheses to its original position in the sentence.  
Then, the abbreviation is classified as the same 
class of the expanded form, if the expanded form is 
recognized as an entity name. In the meanwhile, 
we also adjust the boundaries of the expanded form 
according to the abbreviation, if necessary. Finally, 
the expanded form and its abbreviation are stored 
in the recognized list of biomedical entity names 
from the document to help the resolution of 
forthcoming occurrences of the same abbreviation 
in the document. 

2.4 Dictionary 

In our system, two different features are explored 
to capture the existence of an entity name in a 
closed dictionary and an open dictionary. Here, the 
closed dictionary is constructed by extracting all 
entity names from the training data while the open 
dictionary (~700,000 entries) is combined from the 
database term list Swissport and the alias list 
LocusLink. The closed dictionary feature is 
represented as ClosedENTITYn (Here ENTITY 
indicates the class of the entity name and n 

indicates the number of the words in the entity 
name) while the open dictionary feature is 
represented as Openn (Here n indicates the number 
of the words in the entity name. We don’t 
differentiate the class of the entity name since the 
open dictionary only contains protein/gene names 
and their aliases). 

2.5 In-domain POS 

We also examine the impact of an in-domain POS 
feature instead of an out-domain POS feature 
which is trained on PENN TreeBank. Here, the in-
domain POS is trained on the GENIA corpus 
V3.02p. 

3. Evaluation 
Table 1 shows the performance of the baseline 
system and the impact of deep knowledge 
resources while Table 2-4 show the detailed 
performance using the provided scoring algorithm. 
Table 1 shows that: 
• The baseline system achieves F-measure of 
60.3 while incorporation of deep knowledge 
resources can improve the performance by 12.2 to 
72.5 in F-measure. 
• The replacement of the out-domain POS with 
in-domain POS improves the performance by 3.8 
in F-measure. This suggests in-domain POS can 
much improve the performance. 
• The name alias feature in name alias resolution 
slightly improves the performance by 0.9 in F-
measure. 
• The cascaded entity name resolution improves 
the performance by 3.1 in F-measure. This 
suggests that the cascaded entity name resolution is 
very useful due to the fact that about 16% of entity 
names have cascaded constructions. 
• The abbreviation resolution improves the 
performance by 2.1 in F-measure. 
• The small closed dictionary improves the 
performance by 1.5 in F-measure. In the 
meanwhile, the large open dictionary improves the 
performance by 1.2 in F-measure largely due to the 
performance improvement for the protein class. It 
is interesting that the small closed dictionary 
contributes more than the large open dictionary 
does. This may be due to the high ambiguity in the 
open dictionary and that the open dictionary only 
contains protein and gene names. 
 
Table 1: Impact of Deep Knowledge Resources 

Performance F 
Baseline 60.3 
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+In-domain POS +3.8 
+Name Alias Feature +0.9 
+Cascaded Entity Name Res. +3.1 
+Abbreviation Resolution +2.1 
+Small Closed Dictionary +1.5 
+Large Open Dictionary +1.2 
+All Deep Knowledge Resources +12.2 

Table 2: Final Detailed Performance: full correct 
answer  

(# of correct 
answers) 

P R F 

Protein (4015) 69.01 79.24 73.77 
DNA (772) 66.84 73.11 69.83 
RNA (75) 64.66 63.56 64.10 
Cell Line (329) 53.85 65.80 59.23 
Cell Type (1391) 78.06 72.41 75.13 
Overall (6582) 69.42 75.99 72.55 

Table 3: Final Detailed Performance: correct left 
boundary with correct class information  

(# of correct 
answers) 

P R F 

Protein (4239) 72.86 83.66 77.89 
DNA (798) 69.09 75.57 72.18 
RNA (76) 65.52 64.41 64.96 
Cell Line (346) 56.63 69.20 62.29 
Cell Type (1418) 79.57 73.82 76.59 
Overall (6877) 72.53 79.39 75.80 

Table 4: Final Detailed Performance: correct right 
boundary with correct class information  

(# of correct 
answers) 

P R F 

Protein (4285) 73.65 84.57 78.73 
DNA (854) 73.94 80.87 77.25 
RNA (83) 71.55 70.34 70.94 
Cell Line (383) 62.68 76.60 68.95 
Cell Type (1532) 85.97 79.75 82.74 
Overall (7137) 75.27 82.39 78.67 

4. Conclusion 
In the paper, we have explored various deep 
knowledge resources such as the name alias 
phenomenon, the cascaded entity name 
phenomenon, the use of both a closed dictionary 
from the training corpus and an open dictionary 

from the database term list SwissProt and the alias 
list LocusLink, the abbreviation resolution and in-
domain POS using the GENIA corpus.  

In the near future, we will further improve the 
performance by investigating more on conjunction 
and disjunction construction and the combination 
of coreference resolution.  
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