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Abstract 

In this paper, a novel linguistically advanced text 
summarization system is described for reducing 
the minimum size of highly readable variable -
sized summaries of digitized text documents pro-
duced by text summarization methods that use 
discourse analysis to rank sentences for inclusion 
in the final summary. The basic algorithm used in 
FXPAL’s PALSUMM text summarization sys-
tem combines text structure methods that pre-
serve readability and correct reference resolution 
with statistical methods to reduce overall sum-
mary length while promoting the inclusion of 
important material. 

1 Introduction 

In this paper, we present algorithms to address the 
shortcomings of both purely structural and purely 
statistical methods of sentence extraction summa-
rization. We present the PALSUMM hybrid sum-
marization algorithms that use structural methods 
based on discourse parsing to construct a repre-
sentation of the text, apply conventional statistical 
methods to identify salient information (See dis-
cussion and references in Marcu 2003) and then 
construct a partial discourse tree that includes the 
information identified as most salient along with 
the text at all nodes dominating that salient infor-
mation. Optionally, sentence compression tech-
niques are applied to the resulting summary to 
further compress text length (Grefenstette, 1998; 
Knight and Marcu, 2002).  

The novelty of our approach lies in combining 
text structural methods with sentence extraction 
methods which evaluate relevance on the basis of 
external factors such as lexical frequency or lexi-

cal field information in the specific document, in 
related or documents in general or, alternatively 
by matching lexical items in a query against lexi-
cal items in a document. The sentences selected 
by the external oracle are then providing context 
for anaphora resolution and reference interpreta-
tion through inclusion of hierarchically superordi-
nate information from the structural tree. 

2 The PALSUMM System 

PALSUMM summarization algorithms operate on 
data structures generated by FX Palo Alto’s Lin-
guistic Discourse Analysis System (LIDAS). 
LIDAS is a computational discourse parser im-
plementing the Unified Linguistic Discourse 
Model (U-LDM). A description of the LIDAS 
system and the U-LDM as well as a summary of 
an article from the New Yorker are described in 
earlier work (Polanyi et al, 2004a, b, Thione 
2004). Due to space limitations we can only 
sketch the main points of the system here. 

The LIDAS parser itself is purely symbolic. It 
parses a text discourse segment by discourse seg-
ment to construct a tree that captures discourse 
continuity and accessibility relations between the 
segments. The tree identifies what discourse con-
stituents are available for further development and 
what information given by discourse constituents 
is available to be referred to. We use the fact that 
the resulting tree encodes (semantic) accessibility 
relations between the segments, and not rhetorical 
relations, to guarantee that the pruning algorithm 
used to summarize preserve antecedents for ana-
phors thus fostering readability. 

The basic units of this theory (Basic Discourse 
Unit or BDUs) are the syntactic reflexes of lin-
guistically realized minimal semantic unit of 



meaning1 or functions, interpreted relative to the 
context given by the preceding discourse. To iden-
tify the BDUs in a text, LIDAS relies on the 
Xerox Linguistic Environment to parse sentences 
from a text (Maxwell and Kaplan, 1989). After 
sentential parsing is complete, the XLE sentence 
parse trees are segmented into BDUs using a set 
of robust sentence and discourse level rules de-
scribed in detail in Polanyi et al 2004a, b. After 
parsing, BDUs (which need not be contiguous) are 
recombined into one or more discourse trees cor-
responding to (parts of) the sentence, called BDU-
trees. 

For each BDU-tree, one BDU, normally the 
main clause of a sentence or a compound unit of 
discourse directly derived from it, is designated as 
the Main-BDU (M-BDU) and is represented by 
the root node of the BDU-tree. The entire BDU-
tree is attached as a unit to the emerging Open 
Right Tree representation of the structure of the 
discourse by relating syntactic, semantic and lexi-
cal information in the M-BDU (and preposed ad-
verbial modifiers, clauses and “cue” words) to 
information available in nodes along the right 
edge of the tree using formal linguistic discourse 
attachment rules involving relationships among 
semantic, syntactic and lexical information to 
compute both the site of attachment and the at-
tachment relation.  

Although a full discussion of these rules lies 
beyond the scope of this paper, Table 1 sketches 
some simple principles which are both language 
and domain independent.2 

These rules are weighted and ordered in appli-
cation, and multiple rules may “vote” for the same 
or different attachment points and discourse rela-
tions. The precise relationships among the rules 
remains a subject for future research. 

The U-LDM is similar in form to RST, but its 
primitives are rather different. Whereas RST takes 
rhetorical relations as primitives, the LDM takes 
its primitives from syntactic structure. The ontol-
ogy of LDM relations has three top relations: co-
ordination, subordination and n-ary.  

                                                                 
1 We understand a minimum unit of Meaning to communicate information 
about not more than one “event” or state of affairs in a “possible world” of 
some type (roughly event -type predicates); while a minimal Functional unit 
encodes information about how previously occurring (or possibly subsequent) 
utterances relate structurally, semantically, interactionally or rhetorically to 
other units in the discourse or context in which the discourse takes place 
(Greetings, discourse PUSH/POP markers, connectives etc. are all Functional 
segments). 
2 One reviewer remarked, quite correctly: “how a sentence is attached to the 
emerging representation of the structure of the discourse … is the heart of  the 
algorithm”. This issue is discussed in detail in Polanyi et al., 2004a,b  ; Thione 
et al. 2004. 

Evidence attachment is a subordination 
Syntactic promotion: If the subject of an M-BDU 
co-refers with the object of the AP. 
Sub-cases: If the subject of the M-BDU refers to a 
sub-case of the subject of the AP. Sub-cases include 
subsets (all children /some children), sub-types  (peo-
ple/children), etc. 
Verbal properties: If the tense, aspect, modality or 
genericity of the verbs are different.  
 

Evidence attachment is a coordination 
Narrative: If the verbs express events. 
Lists: If the subjects are synonyms/antonyms and/or 
the syntactic structures of M-BDU and AP are suffi-
ciently similar. 

Table 1: Some simple examples of dis-
course principles 
 
 
Coordinations express a symmetric relation-

ship between the children, including: lists, narra-
tives, etc. Subordinations express an asymmetric 
relationship between children, including: elabora-
tions, interruptions, etc. Finally, n-aries include a 
number of cases where the structure is defined by 
specific language constructions. Note that these 
constructions are not arbitrary, and often follow 
from (sentence) syntactic constructions. Examples 
include scope setting operators and units (when 
john comes, he will be happy), and more or less 
fixed forms like greetings and question-answer 
pairs, etc. It is the practice to also consider genre-
specific structures (e.g. “a paper consists of a title, 
an abstract, an introduction, some sections, a con-
clusion, and references”) to be n-aries. 

Because to characterize the large structure of 
the discourse we only need to refer to coordina-
tions, subordinations and n-aries, it is often 
claimed that the number of relations in the LDM 
is much smaller than in RST, even though strictly 
speaking this depends on which versions of LDM 
and RST one compares. The real difference be-
tween the two theories lies in the rather different 
origins of the rules. 

All non-terminal nodes in U-LDM trees are 
first class citizens and contain, in addition to a 
node label, content and context information inher-
ited from child nodes. Under RST only terminal 
nodes have content; non-terminal nodes that rep-
resent the relationships obtaining among spans of 
the text longer than one sentence are labeled for 
the relationship between daughter nodes only.  

As in Summarist (Hovy and Lin, 1999), once 
the source text has been parsed and a discourse 
tree incrementally constructed, text summarization 



algorithms are applied to the resulting tree. How-
ever, the difference between constructing a 
semantic rather than a rhetorical representation of 
the text  accounts for how PALSUMM summaries 
preserve readability and reference resolution: be-
cause the entire analysis involves matching se-
mantically defined contextual units to the 
appropriate contexts available on the tree, nodes 
that structurally dominate other nodes necessarily 
contain the information needed to contextually 
interpret the dominated units. 

3 Pruning PALSUMM Trees 

Summarization methods based on discourse struc-
ture all rely on assigning a numeric value to all 
intermediate and leaf nodes encoding their impor-
tance , based on the labels at the nodes. The dif-
ference between different methods orig inates in 
the different ways this importance measure is cal-
culated. Because RST (Marcu, 2000) and U-LDM 
trees differ, there are key differences between the 
simple pruning methods applied to U-LDM trees 
as opposed to RST trees. 

Under the U-LDM theory of discourse, the 
asymmetric relationship expressed by subordina-
tions implicitly encodes a notion of importance. 
The subordinated child elaborates or further quali-
fies the head, or temporarily interrupts the flow of 
discourse. Subordinated material is almost always 
less important to the main line of the text than 
subordinating material: the level of embedding 
thus gives a first rough measure of importance of 
a unit of discourse.  

Our original summarization algorithm, Sym-
Trim, used the level of embedding directly. It 
pruned the tree at a given level of embedding, and 
generated a summary based on the span of the 
remaining tree. The number of possible summary 
lengths, however, was restricted to the number of 
embedding levels, resulting in a discreet number 
of summaries of a fixed length, often ones longer 
than desired. This led to a need for more subtle 
pruning algorithms. 

3.1 Solving the SymTrim Restriction 

There are two theoretic problems that underlie the 
practical problems of SymTrim. First, across the 
board pruning at a fixed level is of limited utility. 
If two sections of a document differ significantly 
in size, the larger section will have more space for 
deeper sub-trees. Consequently, units of equal 

importance may occur at deeper levels of larger 
sub-trees. 

Secondly, no method that relies solely on 
purely structural information can determine what 
parts of the document contain important informa-
tion. For this an approximation the meaning of the 
units is needed. A description of the relationships 
among them does not suffice. 

We address the first issue by not trimming the 
tree at an absolute level, but at a level relative to 
the depth of the sub-branch in which a node is 
found. We address the second issue by skewing 
the pruning level using statistical methods3 as an 
oracle to indicate relative importance. 

3.2 Score Adjustment and Percolation 

We assign every node a relative depth T(l), based 
on the local and global structure of the tree branch 
to which it belongs, calculated as follows: (1) es-
tablish the absolute depth D(l) of each node, (2) 
calculate an embedding branch weight W(l) by 
percolating the value of D(l) up from the leaves 
according to the percolation algorithm outlined in 
Figure 1, (3) assign each node a relative depth T(l) 
= 1 – (D(l) – 1) / W(l).4 

We also compute a statistical score that ap-
proximates the “semantic importance” of every 
node. To do so, we begin by seeding every leaf 
node l with a statistical seed S(l) using the MEAD 
statistical summarizer. Each segment is scored by 
MEAD in the context of the full document, with a 
score that mirrors its judgment of the relevance of 
that segment for a summary. MEAD’s metrics 
include: TF/IDF cosine similarity between a seg-
ment and the document – optionally skewed to-
wards a query entered by the user, the relative 
position of a segment within the document, an 
adverse score against segments deemed as too 
similar to the current summary, and our own im-
plementation of a feature concerning the presence 
of certain cue words (Hirschberg and Litman, 
1993). After scoring, the values are percolated up 
through the tree, as before. During percolation of 
both structurally and statistically obtained scores, 
the new value of a node that receives a higher 
score from a child node is percolated downwards 
through all non-subordinated children. Children of 

                                                                 
3 We use the publicly available MEAD (Radev et al. 2003). Adopting a sen-
tence extraction approach, it is capable of assigning scores to each and every 
sentence. PALSUMM does its own discourse segmentation and sends the 
segments to MEAD as if they were sentences. This allows us to assign inde-
pendent scores to discourse segments, thus enabling sub -sentential summariza-
tion (segment-extraction vs. sentence extraction) and yielding more 
compressed yet still highly readable summ aries. 
4 The expression for T(l) was chosen to assign the top node relative depth 1.  



coordinations and n-aries are considered equally 
relevant and scored equally, whereas subordinated 
children are less relevant then subordinating 
ones.5 After percolation we normalize the statisti-
cal scores, dividing by the maximum occurring 
value. 

Different summarization algorithms result from 
the choice of seeding algorithms and methods of 
combining scores. Note that the percolation algo-
rithm in Figure 1 respects structural embedding by 
always assigning lower or equal scores to subor-
dinated nodes.  

3.3 Pruning Algorithms 

In order for summaries to maintain textual coher-
ence and readability, constituents that contain con-
textual or referential information necessary to 
interpreting other constituents selected for the 
summary must be marked for inclusion. For any 
node, this information is available in nodes that 
are siblings of the same coordination or n-ary, and 
in nodes that dominate it through subordination-
type relations. As long as the score assigned to 
nodes respects subordinations as in Figure 1, any 
pruning of the tree that excludes constituents 
whose final relevance score is smaller than a cho-
sen value is guaranteed to preserve the antece-
dents for the anaphora in the text, preserving well-
formedness of the resulting tree and the readabil-
ity of the summary it yields.  

In Table 2 we list four different final score as-
signments, based on the embedding level of the 
nodes (L), their percolated statistical score (S) and 
the percolated relative depth score (T). 
 

SymTrim F = 1/L 
SymTrim-R F =1/T 
HybReduce F = 1/L * S 

HybReduce-R F = 1/T * S 
Table 2: Different scoring algorithms. 

                                                                 
5 In a modified percolation scheme, downward percolation is restricted to 
preceding siblings in discourse-level coordination nodes. This is a result of the 
fact that contextual information necessary to preserve readability and referen-
tial integrity must appear before access. 

 

After scores are calculated and combined, a 
relative threshold is computed by sorting the set of 
constituent by final score and identifying the cut-
off value that more closely approximates the re-
quest of the user in terms of desired summary 
length. Note that the root node will always have 
normalized score 1 and will therefore always be 
included in a full summary. 6 

4 Evaluating PALSUMM  

The PALSUMM corpus contains over 300 
FXPAL Technical Reports in a wide range of do-
mains. The Reports vary in size from 10 to 30 
pages. To evaluate the readability of summaries 
and create a baseline for evaluating the SymTrim-
R and HybRduce-R algorithms, we conducted a 
small pilot study on five documents selected from 
the corpus. The documents were hand-annotated 
with their U-LDM discourse structures. The Sym-
Trim-R and HybReduce-R variants were then 
automatically applied to these discourse struc-
tures, and the summaries submitted to a panel of 
12 non-experts.  The panelists were asked to judge 
the summaries on a 6-point scale for readability 
by answering a set of questions including "How 
readable is this summary?" and "Did you get con-
fused at any point in the summary?” The initial 
results suggest that the discourse algorithms pro-
duced readable summaries and that the relative 
effectiveness of the discourse algorithms varies 
according to some still to be determined property 
of the documents. 

5 Conclusion 

Structural sentence extraction systems including 
Summarist and PALSUMM that create summaries 
by choosing sentences or parts of sentences corre-
sponding to nodes at a given level of depth of a 

                                                                 
6 In other applications of the algorithms described here, where the purpose is 
not that of retrieving a full summary of a document but rather that of building 
the necessary minimal context for interpreting a certain selected discourse 
constituent, percolation is only limited to the immediate surrounding context, 
where certain relations (usually ad-hoc binaries) constitute a barrier to further 
percolation towards upwards constituent. 

1. For seeding V, each leaf node l is assigned an a priori score V(l). 
2. Repeat for each node c0 with children c1 …cn, and relation type R until  no values change: 

2.1 Percolate or maintain highest score: V(c0) := maxi (V(ci)) , 0=i=n 
2.2 Percolate highest score downwards into non-subordinated nodes: 

if R is subordination and ci is  the head of n: V(ci) := V(c0) if V(ci) < V(c0) 
if R is coordination or n-aries: for all i=n, V(ci) := V(c0) if V(ci) < V(c0), 

Figure 1: General percolation algorithm. Both statistical seeds (V=S) and structural seeds 
(V=T) are percolated according to this algorithm, resulting in values S(n) and T(n) for nodes n. 
 



tree structured representation of the structure of 
the text produce excellent summaries that preserve 
the style and “flavor” of the original text. How-
ever, the summaries constructed may be longer 
than needed, including information that could be 
omitted without serious loss of informativity7. The 
excessive length results from the top-down nature 
of standard structural extraction algorithms which 
start by choosing the top context and then includes 
every possible sub-context down to a certain level. 

In this paper, we have proposed hybrid algo-
rithms which capitalize on the strengths of these 
methods while compensating for their limitations 
by proposing additional manipulations on the base 
trees. In our view, the value of the summarization 
methods described here, is the ability to compress 
a summary further without substantia l loss of in-
formativity. For summaries, especially those de-
signed for display on various sized devices, the 
work presented here constitutes an advance in the 
state of the art. 

6 Acknowledgements 

The authors would like to thank Dr. Sara Bly 
(Sara Bly Consulting) who designed and carried 
out the evaluation and Dr. Candace Kamm of 
FXPAL who provided help and guidance in the 
design and organization of the study. 

7 References 

Gregory Grefenstette. 1998. Producing intelligent 
text reduction to provide an audio screening 
service for the blind. Working Notes of AAAI 
Spring Symposium on Intelligent Text Summa-
rization, Pages 111–118,  Stanford. 

Julia Hirschberg and Diane Litman. 1993. Empir i-
cal studies on the disambiguation of cue 
phrases. Computational Linguistics, 19-3:501-
530.  

Ed Hovy and C-Y. Lin. 1999. Automated Text 
Summarization in SUMMARIST. In I. Mani 
and M. Maybury (eds), Advances in Automated 
Text Summarization, pages 81-94, MIT Press, 
Cambridge.  

Kevin Knight and Daniel Marcu. 2000. Statistics 
Based Summarization — Step One: Sentence 
Compression. In AAAI-2000 Proceedings, 
pages 703-710, Austin TX. 

                                                                 
7 Some of this excessive length can be addressed through compressing less 
relevant aspects of constituent sentences as in Grefenstette, 1998; Knight and 
Marcu, 2002. 

Daniel Marcu. 2000. The Theory and Practice of 
Discourse Parsing and Summarization. The 
MIT Press,  Cambridge, MA. 

Daniel Marcu. 2003. Automatic abstracting. In 
Encyclopedia of Library and Information Sci-
ence, pages 245-256.  

John Maxwell and Ronald M. Kaplan. 1989. An 
overview of disjunctive constraint satisfaction. 
In Proceedings of the International Workshop 
on Parsing Technologies. Pittsburgh, PA. 

Livia Polanyi, Martin van den Berg, Chris Culy, 
Gian Lorenzo Thione, and David Ahn. 2004a. 
A rule based approach to discourse parsing. 5th 
SigDial Workshop. 

Livia Polanyi, Martin van den Berg, Chris Culy, 
and Gian Lorenzo Thione 2004b. Sentential 
structure and discourse parsing. Discourse An-
notation Workshop, ACL04. 

Dragomir Radev, Timothy Allison, Sasha Blair-
Goldensohn, and John Blitzer, Arda Çelebi, 
Elliott Drabek, Wai Lam, Danyu Liu, Hong Qi, 
Horacio Saggion, Simone Teufel, Michael 
Topper, and Adam Winkel. 2003. The MEAD 
Multidocument Summarizer. 
http://www.summarization.com/mea
d/ 

Radu Soricut and Daniel Marcu. 2003. Sentence 
level discourse parsing using syntactic and lexi-
cal information. In Proceedings of 
HLT/NAACL, May 27-June 1, Edmonton, Can-
ada. 

Gian Lorenzo Thione, Martin van den Berg, Livia 
Polanyi, and Chris Culy. 2004. LiveTree: An 
integrated workbench for discourse processing. 
Discourse Annotation Workshop, ACL04.  


