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Abstract

This paper describes the four entries from the Uni-
versity of Utah in the semantic role labeling task
of SENSEVAL-3. All the entries took a statisti-
cal machine learning approach, using the subset
of the FrameNet corpus provided by SENSEVAL-3
as training data. Our approach was to develop a
model of natural language generation from seman-
tics, and train the model using maximum likelihood
and smoothing. Our models performed satisfacto-
rily in the competition, and can flexibly handle vary-
ing permutations of provided versus inferred infor-
mation.

1 Introduction

The goal in the SENSEVAL-3 semantic role labeling
task is to identify roles and optionally constituent
boundaries for each role, given a natural language
sentence, target, and frame. The Utah approach to
this task is to apply machine learning techniques
to create a model capable of semantically analyz-
ing unseen sentences. We have developed a set of
generative models (Jordan, 1999) that have the ad-
vantages of flexibility, power, and ease of applica-
bility for semi-supervised learning scenarios. We
can supplement any of the generative models with
a constituent classifier that determines, given a sen-
tence and parse, which parse constituents are most
likely to correspond to a role. We apply the com-
bination to the “hard,” or restricted version of the
role labeling task, in which the system is provided
only with the sentence, target, and frame, and must
determine which sentence constituents to label with
roles.

We discuss our overall model, the constituent
classifier we use in the hard task, and the classifier’s
use at role-labeling time. We entered four sets of
answers, as discussed in Section 5. The first two
correspond to the “easy” task, in which therole-
bearing constituents– those parts of the sentence
corresponding to a role – are provided to the system
with the target and frame. The second two are vari-

ants for the “hard” task. Finally, we discuss Future
Work and conclude the paper.

2 Role Labeler
Our general approach is to use a generative model
defining a joint probability distribution over targets,
frames, roles, and constituents. The advantage of
such a model is its generality: it can determine the
probability of any subset of the variables given val-
ues for the others. Three of our entries used the
generative model illustrated in Figure 1, and the
fourth used a model grouping all roles together, as
described further below. The first model functions
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Figure 1: First Order Model.

as follows. First, a target,T , is chosen, which then
generates a frame,F . The frame generates a (lin-
earized) role sequence,R1 through Rn which in
turn generates each constituent of the sentence,C1

throughCn. Note that, conditioned on a particular
frame, the model is just a first-order Hidden Markov
Model.

The second generative model treats all roles as a
group. It is no longer based on a Hidden Markov
model, but all roles are generated, in order, simul-
taneously. Therefore, the role sequence in Figure 1
is replaced by a single node containing alln roles.
This can be compared to a case-based approach that
memorizes all seen role sequences and calculates
their likelihood. It is also similar to Gildea & Juraf-
sky’s (2002) frame element groups, though we dis-
tinguish between different role orderings, whereas
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they do not. However, we still model constituent
generation sequentially.

The FrameNet corpus contains annotations for all
of the model components described above. We rep-
resent each constituent by its phrasal category to-
gether with its head word. As in Gildea & Jurafsky’s
(2002) approach, we determine head words from the
sentence’s syntactic parse, using a simple heuristic1

when syntactic alignment with a parse is not avail-
able.

We estimate most of the model parameters us-
ing a straightforward maximum likelihood estimate
based on fully labeled training data. We smooth
emission probabilities with phrase type labels, due
to the sparseness of head words. To label a test ex-
ample, consisting of a target, frame, and constituent
sequence, with a role label, we use the Viterbi algo-
rithm. For further details, see Thompson (2003).

3 Constituent Classification for Role
Labeling

To address the “hard” task we build a constituent
classifier, whose goal is to detect the role-bearing
constituents of a sentence. We use a Naive Bayes
classifier from the Weka Machine Learning toolkit
(Witten and Frank, 2000) to classify every sentence
constituent as role-bearing or not. In our cross-
validation studies, Naive Bayes was both accurate
and efficient. To generate the training examples for
the classifier, we generate a parse tree for every sen-
tence in the SENSEVAL-3 training data, using the
Collins (1996) statistical parser. We call each node
in this tree a constituent. Once it is trained, the clas-
sifier can sift through a new constituent list and de-
cide which are likely to be role-bearing. The se-
lected constituents are passed on to the Role La-
beler for labeling with semantic roles, as described
in Section 4.

We train the classifier on examples extracted from
the SENSEVAL-3 training data. Each example is a
list of attributes corresponding to a constituent in
a sentence’s parse tree, along with its classification
as role-bearing or not. We extract the attributes by
traversing each sentence’s parse tree from the root
node down to nodes all of whose children are pre-
terminals.2 We create a training example for every
visited node.

We decided to use the following attributes from
the parse trees and FrameNet examples:
Target Position: The position of the target word as

1The heuristic chooses the preposition for PP’s and the last
word of the phrase for all other phrases.

2We later fixed this to traverse the tree to the pre-terminals
themselves, as discussed further in Section 5.

beingBEFORE, AFTER, or CONTAINS(contained
in) the constituent.
Distance from target: The number of words be-
tween the start of the constituent and target word.
Depth: The depth of the constituent in the parse
tree.
Height: The number of levels in the parse tree be-
low the constituent.
Word Count: The number of words in the con-
stituent.
Path to Target: Gildea and Jurafsky (2002) show
that the path from a constituent node to the node
corresponding to the target word is a good indicator
that a constituent corresponds to a role. We use the
35 most frequently occurring paths in the training
corpus as attribute values, as these cover about 68%
of the paths in the training corpus. The remaining
paths are specified as “OTHER”.
Length of Path to Target: The number of nodes
between the constituent and the target in the path.
Constituent Phrase Type
Target POS: The target word’s part-of-speech –
noun, verb, or adjective.
Frame ID

By generating examples in the manner described
above, we create a data set that is heavily biased
towards negative examples – 90.8% of the con-
stituents are not role bearing. Therefore, the classi-
fier can obtain high accuracy by labeling everything
as negative. This is undesirable since then no con-
stituents would be passed to the Role Labeler. How-
ever, passing all constituents to the labeler would
cause it to try to label all of them and thus achieve
lower accuracy. This results in the classic precision-
recall tradeoff. We chose to try to bias the classifier
towards high recall by using a cost matrix that pe-
nalizes missed positive examples more than missed
negatives. The resulting classifier’s cross-validation
precision was 0.19 and its recall was 0.91. If we
do not use the cost matrix, the precision is 0.30 and
the recall is 0.82. We are still short of our goal of
perfect recall and reasonable precision, but this pro-
vides a good filtering mechanism for the next step
of role labeling.

4 Combining Constituent Classification
with Role Labeling

The constituent classifier correctly picks out most of
the role bearing constituents. However, as we have
seen, it still omits some constituents and, as it was
designed to, includes several irrelevant constituents
per sentence. For this paper, because we plan to
improve the constituent classifier further, we did not
use it to bias the Role Labeler at training time, but



only used it to filter constituents at test time for the
hard task.

When using the classifier with the Role Labeler
at testing time, there are two possibilities. First, all
constituents deemed relevant by the classifier could
be presented to the labeler. However, because we
aimed for high recall but possibly low precision,
this would allow many irrelevant constituents as in-
put. This both lowers accuracy and increases the
computational complexity of labeling. The second
possibility is thus to choose some reasonable subset
of the positively identified constituents to present
to the labeler. The options we considered were a
top-down search, a bottom-up search, and a greedy
search; we chose a top-down search for simplic-
ity. In this case, the algorithm searches from the
root down in the parse tree until it finds a posi-
tively labeled constituent. While this assumes that
no subtree of a role-bearing constituent is also role-
bearing, we discovered that some role-bearing con-
stituents do overlap with each other in the parse
trees. However, in the Senseval training corpus,
only 1.2% of the sentences contain a (single) over-
lapping constituent. In future work we plan to inves-
tigate alternative approaches for constituent choice.

After filtering via our top down technique, we
present the resulting constituent sequence to the
role labeler. Since the role labeler is trained on
sequences containing only true role-bearing con-
stituents but tested on sequences with potentially
missing and potentially irrelevant constituents, this
stage provides an opportunity for errors to creep into
the process. However, because of the Markovian as-
sumption, the presence of an irrelevant constituent
has only local effects on the overall choice of a role
sequence.

5 Evaluation

The SENSEVAL-3 committee chose 40 of the most
frequent 100 frames from FrameNet II for the
competition. In experiments with validation sets,
our algorithm performed better using only the
SENSEVAL-3 training data, as opposed to also us-
ing sentences from the remaining frames, so all our
models were trained only on that data. We cal-
culated performance using SENSEVAL-3’s scoring
software.

We submitted two set of answers for each task.
We summarize each system’s performance in Ta-
ble 1. For the easy task, we used both the grouped
(FEG Easy) and first order (FirstOrder Easy) mod-
els. The grouped model performed better on exper-
iments with validation sets, perhaps due to the fact
that many frames have a small number of possible

System Precision Recall Overlap
FEG Easy 85.8% 84.9% 85.7%
FirstOrder Easy 72.8% 72.1% 72.5%
CostSens Hard 38.7% 33.5% 29.5%
Hard 35.5% 45.3% 25.5%

Table 1: System Scores.

System Precision Recall Overlap
CostSens Hard 47.2% 42.2% 41.5%
Hard 60.2% 24.7% 57.1%

Table 2: Newer System Scores.

role permutations corresponding to a given number
of constituents. In less artificial conditions this ver-
sion would be less flexible in incorporating both rel-
evant and irrelevant constituents.

For the hard task, we used only the first order
model, due both to its greater flexibility and to the
low precision of our classifier: if all positively clas-
sified constituents were passed to the group model,
the sequence length would be greater than any seen
at training time, when only correct constituents are
given to the labeler. We used both the cost sensi-
tive classifier (CostSens Hard) and the regular con-
stituent classifier to filter constituents (Hard). There
is a precision/recall tradeoff in using the different
classifiers. We were surprised how poorly our la-
beler was performing on validation sets as we pre-
pared our results. We found out that our classi-
fier was omitting about70% of the role-bearing
constituents from consideration, because they only
matched a parse constituent at a pre-terminal node.
We fixed this bug after submission, learned a new
constituent classifier, and used the same role labeler
as before. The improved results are shown in Ta-
ble 2. Note that our recall has an upper limit of
85.8% due to mismatches between roles and parse
tree constituents.

6 Future Work
We have identified three problems for future re-
search. First, our constituent classifier should be
improved to produce fewer false positives and to in-
clude a higher percentage of true positives. To do
this, we first plan to enhance the feature set. We will
also explore improved approaches to combining the
results of the classifier with the role labeler. For ex-
ample, in preliminary studies, a bottom-up search
for positive constituents in the parse tree seems to
yield better results than our current top-down ap-
proach.

Second, since false positives cannot be entirely



avoided, the labeler needs to better handle con-
stituents that should not be labeled with a role. To
solve this problem, we will adapt the idea ofnull
generatedwords from machine translation (Brown
et al., 1993). Instead of having a word in the target
language that corresponds to no word in the source
language, we have a constituent that corresponds to
no state in the role sequence.

Finally, we will address roles that do not label a
constituent, callednull-instantiatedroles. An exam-
ple is the sentence “The man drove to the station,”
in which the VEHICLE role does not have a con-
stituent, but is implicitly there, since the man obvi-
ously drovesomethingto the station. This problem
is more difficult, since it involves obtaining infor-
mation not actually in the sentence. One possibility
is to consider inserting null-instantiated roles at ev-
ery step. We will consider only roles seen as null-
instantiated at training time. This method will re-
strict the search space, which would otherwise be
extremely large.

7 Conclusions

In conclusion, our generative model performs ro-
bustly on the easy version of the SENSEVAL-3 role
labeling task. The combination of our constituent
classifier with the role labeling has more room for
improvement, but performed reasonably well con-
sidering the difficulties of the task and the sparse
feature set that we incorporated into our generative
model. Alternative sentence chunking models for
semantic analysis, and the extension of our gener-
ative models, should lead to future improvements.
The key advantage of our approach is the treatment
of a sentence’s roles as a sequence. This allows the
model to consider relationships between roles as it
semantically analyzes a sentence.
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