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Abstract
This paper describes the HKPolyU-HKUST sys-
tems which were entered into the Semantic Role La-
beling task in Senseval-3. Results show that these
systems, which are based upon common machine
learning algorithms, all manage to achieve good
performances on the non-restricted Semantic Role
Labeling task.

1 Introduction
This paper describes the HKPolyU-HKUST sys-
tems which participated in the Senseval-3 Semantic
Role Labeling task. The systems represent a diverse
array of machine learning algorithms, from decision
lists to SVMs to Winnow-type networks.

Semantic Role Labeling (SRL) is a task that
has recently received a lot of attention in the NLP
community. The SRL task in Senseval-3 used
the Framenet (Baker et al., 1998) corpus: given a
sentence instance from the corpus, a system’s job
would be to identify the phrase constituents and
their corresponding role.

The Senseval-3 task was divided into restricted
and non-restricted subtasks. In the non-restricted
subtask, any and all of the gold standard annotations
contained in the FrameNet corpus could be used.
Since this includes information on the boundaries
of the parse constituents which correspond to some
frame element, this effectively maps the SRL task
to that of a role-labeling classification task: given a
constituent parse, identify the frame element that it
belongs to.

Due to the lack of time and resources, we chose to
participate only in the non-restricted subtask. This
enabled our systems to take the classification ap-
proach mentioned in the previous paragraph.
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2 Experimental Features
This section describes the features that were used
for the SRL task. Since the non-restricted SRL task
is essentially a classification task, each parse con-
stituent that was known to correspond to a frame
element was considered to be a sample.

The features that we used for each sample have
been previously shown to be helpful for the SRL
task (Gildea and Jurafsky, 2002). Some of these
features can be obtained directly from the Framenet
annotations:

• The name of the frame.

• The lexical unit of the sentence — i.e. the lex-
ical identity of the target word in the sentence.

• The general part-of-speech tag of the target
word.

• The “phrase type” of the constituent — i.e. the
syntactic category (e.g. NP, VP) that the con-
stituent falls into.

• The “grammatical function” (e.g. subject, ob-
ject, modifier, etc) of the constituent, with re-
spect to the target word.

• The position (e.g. before, after) of the con-
stituent, with respect to the target word.

In addition to the above features, we also ex-
tracted a set of features which required the use of
some statistical NLP tools:

• Transitivity and voice of the target word —
The sentence was first part-of-speech tagged
and chunked with the fnTBL transformation-
based learning tools (Ngai and Florian, 2001).
Simple heuristics were then used to deduce the
transitivity voice of the target word.

• Head word (and its part-of-speech tag) of the
constituent — After POS tagging, a syntactic
parser (Collins, 1997) was then used to ob-
tain the parse tree for the sentence. The head
word (and the POS tag of the head word) of
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the syntactic parse constituent whose span cor-
responded most closely to the candidate con-
stituent was then assumed to be the head word
of the candidate constituent.

The resulting training data set consisted of 51,366
constituent samples with a total of 151 frame ele-
ment types. These ranged from “Descriptor” (3520
constituents) to “Baggage” and “Carrier” (1 con-
stituent each). This training data was randomly par-
titioned into a 80/20 “development training” and
“validation” set.

3 Methodology
The previous section described the features that
were extracted for each constituent. This section
will describe the experiment methodology as well
as the learning systems used to construct the mod-
els.

Our systems had originally been trained on the
entire development training (devtrain) set, gener-
ating one global model per system. However, on
closer examination of the task, it quickly became
evident that distinguishing between 151 possible
outcomes was a difficult task for any system. It
was also not clear that there was going to be a
lot of information that could be generalized across
frame types. We therefore partitioned the data by
frame, so that one model would be trained for each
frame. (This was also the approach taken by (Gildea
and Jurafsky, 2002).) Some of our individual sys-
tems tried both approaches; the results are com-
pared in the following subsections. For compar-
ison purposes, a baseline model was constructed
by simply classifying all constituents with the most
frequently-seen (in the training set) frame element
for the frame.

In total, five individual systems were trained for
the SRL task, and four ensemble models were gen-
erated by using various combinations of the indi-
vidual systems. With one exception, all of the indi-
vidual systems were constructed using off-the-shelf
machine learning software. The following subsec-
tions describe each system; however, it should be
noted that some of the individual systems were not
officially entered as competing systems; therefore,
their scores are not listed in the final rankings.

3.1 Boosting
The most successful of our individual systems is
based on boosting, a powerful machine learning
algorithm which has been shown to achieve good
results on NLP problems in the past. Our sys-
tem was constructed around the Boostexter soft-
ware (Schapire and Singer, 2000), which imple-

Model Prec. Recall Attempted
Single Model 0.891 0.795 89.2%
Frame Separated 0.894 0.798 89.2%
Baseline 0.444 0.396 89.2%

Table 1: Boosting Models: Validation Set Results

ments boosting on top of decision stumps (decision
trees of one level), and was originally designed for
text classification. The same system also partici-
pated in the Senseval-3 lexical sample tasks for Chi-
nese and English, as well as the Multilingual lexical
sample task (Carpuat et al., 2004).

Table 1 compares the results of training one sin-
gle overall boosting model (Single) versus training
separate models for each frame (Frame). It can be
seen that training frame-specific models produces
a small improvement over the single model. The
frame-specific model was used in all of the ensem-
ble systems, and was also entered into the competi-
tion as an individual system (hkpust-boost).

3.2 Support Vector Machines

The second of our individual systems was based
on support vector machines, and implemented using
the TinySVM software package (Boser et al., 1992).

Since SVMs are binary classifiers, we used a
one-against-all method to reduce the SRL task to
a binary classification problem. One model is con-
structed for each possible frame element and the
task of the model is to decide, for a given con-
stituent, whether it should be classified with that
frame element. Since it is possible for all the bi-
nary classifiers to decide on “NOT-<element>”, the
model is effectively allowed to pass on samples that
it is not confident about. This results in a very pre-
cise model, but unfortunately at a significant hit to
recall.

A number of kernel parameter settings were in-
vestigated, and the best performance was achieved
with a polynomial kernel of degree 4. The rest of
the parameters were left at the default values. Table
2 shows the results of the best SVM model on the
validation set. This model participated in the all of
the ensemble systems, and was also entered into the
competition as an individual system.

System Prec. Recall Attempted
SVM 0.945 0.669 70.8%
Baseline 0.444 0.396 89.2%

Table 2: SVM Models: Validation Set Results



3.3 Maximum Entropy

The third of our individual systems was based on
the maximum entropy model, and implemented on
top of the YASMET package (Och, 2002). Like the
boosting model, the maximum entropy system also
participated in the Senseval-3 lexical sample tasks
for Chinese and English, as well as the Multilingual
lexical sample task (Carpuat et al., 2004).

Our maximum entropy models can be classi-
fied into two main approaches. Both approaches
used the frame-partitioned data. The more conven-
tional approach (“multi”) then trained one model
per frame; that model would be responsible for clas-
sifying a constituent belonging to that frame with
one of several possible frame elements. The second
approach (binary) used the same approach as the
SVM models, and trained one binary one-against-
all classifier for each frame type-frame element
combination. (Unlike the boosting models, a single
maximum entropy model could not be trained for all
possible frame types and elements, since YASMET
crashed on the sheer size of the feature space.)

System Prec. Recall Attempted
multi 0.856 0.764 89.2%
binary 0.956 0.539 56.4%
Baseline 0.444 0.396 89.2%

Table 3: Maximum Entropy Models: Validation Set
Results

Table 3 shows the results for the maximum en-
tropy models. As would have been expected, the
binary model achieves very high levels of precision,
but at considerable expense of recall. Both systems
were eventually used in the some of the ensemble
models but were not submitted as individual contes-
tants.

3.4 SNOW

The fourth of our individual systems is based on
SNOW — Sparse Network Of Winnows (Muńoz et
al., 1999).

The development approach for the SNOW mod-
els was similar to that of the boosting models. Two
main model types were generated: one which gener-
ated a single overall model for all the possible frame
elements, and one which generated one model per
frame type. Due to a bug in the coding which was
not discovered until the last minute, however, the
results for the frame-separated model were invali-
dated. The single model system was eventually used
in some of the ensemble systems, but not entered as
an official contestant. Table 4 shows the results.

System Prec. Recall Attempted
Single Model 0.764 0.682 89.2%
Baseline 0.444 0.396 89.2%

Table 4: SNOW Models: Validation Set Results

3.5 Decision Lists

The final individual system was a decision list im-
plementation contributed from the Swarthmore Col-
lege team (Wicentowski et al., 2004), which partic-
ipated in some of the lexical sample tasks.

The Swarthmore team followed the frame-
separated approach in building the decision list
models. Table 5 shows the result on the validation
set. This system participated in some of the final
ensemble systems as well as being an official par-
ticipant (hkpust-swat-dl).

System Prec. Recall Attempted
DL 0.837 0.747 89.2%
Baseline 0.444 0.396 89.2%

Table 5: Decision List Models: Validation Set Re-
sults

3.6 Ensemble Systems

Classifier combination, where the results of differ-
ent models are combined in some way to make a
new model, has been well studied in the literature.
A successful combined classifier can result in the
combined model outperforming the best base mod-
els, as the advantages of one model make up for the
shortcomings of another.

Classifier combination is most successful when
the base models are biased differently. That condi-
tion applies to our set of base models, and it was
reasonable to make an attempt at combining them.

Since the performances of our systems spanned
a large range, we did not want to use a simple ma-
jority vote in creating the combined system. Rather,
we used a set of heuristics which trusted the most
precise systems (the SVM and the binary maximum
entropy) when they made a prediction, or a combi-
nation of the others when they did not.

Table 6 shows the results of the top-scoring com-
bined systems which were entered as official con-
testants. As expected, the best of our combined sys-
tems outperformed the best base model.

4 Test Set Results
Table 7 shows the test set results for all systems
which participated in some way in the official com-
petition, either as part of a combined system or as
an individual contestant.



Model Prec. Recall Attempted
svm, boosting, maxent (binary) (hkpolyust-all(a)) 0.874 0.867 99.2%
boosting (hkpolyust-boost) 0.859 0.852 0.846%
svm, boosting, maxent (binary), DL (hkpolyust-swat(a)) 0.902 0.849 94.1%
svm, boosting, maxent (binary), DL, snow (hkpolyust-swat(b)) 0.908 0.846 93.2%
svm, boosting, maxent (multi), DL, snow (hkpolyust-all(b)) 0.905 0.846 93.5%
decision list (hkpolyust-swat-dl) 0.819 0.812 99.2%
maxent (multi) 0.827 0.735 88.8%
svm (hkpolyust-svm) 0.926 0.725 76.1%
snow 0.713 0.499 70.0%
maxent (binary) 0.935 0.454 48.6%
Baseline 0.438 0.388 88.6%

Table 7: Test set results for all our official systems, as well as the base models used in the ensemble system.

Base Models Prec. Recall Attempted
svm, boosting,
maxent (bin)

0.901 0.803 89.2%

svm, boosting,
maxent (bin), snow

0.938 0.8 85.2%

svm, boosting,
maxent (bin), DL

0.926 0.783 84.6%

svm, boosting,
maxent (multi),
DL, snow

0.935 0.797 85.2%

Baseline 0.444 0.396 89.2%

Table 6: Combined Models: Validation Set Results

The top-performing system is the combined sys-
tem that uses the SVM, boosting and the binary im-
plementation of maximum entropy. Of the individ-
ual systems, boosting performs the best, even out-
performing 3 of the combined systems. The SVM
suffers from its high-precision approach, as does the
binary implementation of maximum entropy. The
rest of the systems fall somewhere in between.

5 Conclusion

This paper presented the HKPolyU-HKUST sys-
tems for the non-restricted Semantic Role Labeling
task for Senseval-3. We mapped the task to that
of a simple classification task, and used features
and systems which were easily extracted and con-
structed. Our systems achieved good performance
on the SRL task, easily beating the baseline.
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