
The MITRE Logical Form Generation System

Samuel Bayer and John Burger and Warren Greiff and Ben Wellner
The MITRE Corporation

Bedford, MA 01730�
sam,john,greiff,wellner � @mitre.org

Abstract
In this paper, we describe MITRE’s contribution to
the logical form generation track of Senseval-3. We
begin with a description of the context of MITRE’s
work, followed by a description of the MITRE sys-
tem and its results. We conclude with a commentary
on the form and structure of this evaluation track.

1 Introduction
The logic form identification track of the 2004 Sen-
seval evaluation requires its participants to produce
a version of each input sentence with each input
word in citation form, annotated with both a scope-
free Davidsonian logic and lexical category infor-
mation for major categories. The output ignores el-
ements like determiners and negation, and features
such as plurals and verb tenses.

This evaluation is of interest to the MITRE Cor-
poration because it has a long-standing interest in
text processing and understanding, in all its various
dimensions. In our current internally funded Read-
ing Comprehension (RC) project, we focus on the
detailed understanding of individual stories, using
the ability to answer comprehension questions as-
sociated with these stories as our evaluation metric.
At the moment, we are interested in getting a sense
of how much inference is routinely needed in order
to answer RC questions; so generation of sentence
meanings is not currently our research focus. How-
ever, in the context of our exploration, we continue
to maintain an automated system for producing sen-
tence meanings from text.

2 The MITRE logic generation system
The system which MITRE employed for the
Senseval-3 logical form evaluation consists of the
following components:

� the Humphreys/Carroll/Minnen morphological
analyzer (Minnen et al., 2001)

� the CMU Link Grammar parser (Sleator and
Temperley, 1991)

� a link interpretation language which is used to
produce a dependency graph

� additional lexical knowledge sources
� an argument canonicalizer based partially on

the principles of Relational Grammar (Perl-
mutter, 1983)

� a task-specific logical form generator

The morphological analyzer is straightforward,
and we will not say more about it. We discuss the
remaining components below.

2.1 The CMU Link Grammar parser
The Link Grammar formalism consists of labeled,
undirected links among pairs of words. Each word
in the Link Grammar dictionary is mapped to a com-
plex logical expression of the link ends the word can
participate in. These link ends have a major compo-
nent (indicated by uppercase letters), a minor com-
ponent (indicated by lowercase letters), and a re-
quired direction (looking leftward (-) or rightward
(+)). Two words can be joined by a link if their link
ends are compatible. The Link Parser provides rea-
sonable performance achieving 75% labeled con-
stituent accuracy on the TreeBank data. There are
a large number of link types some of which pro-
vide very detailed distinctions beyond those found
in phrase structure grammars. For further details,
see (Sleator and Temperley, 1991).

Figure 1 shows the processing of the simple sen-
tence Chris loves Sam. We describe link parser
output as a set of 6-tuples, consisting of the index,
word, and link end for each end of the link; we omit
the direction information from the link, since it can
be inferred from the tuple. For instance, loves at in-
dex 2 is joined to Sam at index 3 via an O link; loves
bears O looking rightward in the lexicon, and Sam
bears O looking leftward, and these link ends are
compatible. As mentioned, ndividual lexical items
may (and often do) have multiple link types associ-
ated with them (e.g. Sam also bears S looking right-
ward for the case when Sam is a subject.)

 Association for Computational Linguistics
 for the Semantic Analysis of Text, Barcelona, Spain, July 2004
 SENSEVAL-3: Third International Workshop on the Evaluation of Systems

input sentence Chris loves Sam
link parser 1 Chris Ss 2 loves Ss
output 2 loves O 3 Sam Os
rules (1) LINK (S SF SX) role[left]: arg:S role[right]: head

(2) LINK O role[left]: head role[right]: arg:O
(3) FEAT (S- SX-) category: v

dependency [v [Chris 1:H]:S loves 2:H,3singular,present [Sam 3:H]:O]
object
logic form Chris (x1) loves:v (e1, x1, x2) Sam (x2)

Figure 1: Processing “Chris loves Sam”

Link parses contain a great deal of detail, but be-
cause the link parser is a general-purpose tool, ex-
tracting this detail for a particular task may require
further processing. In particular, the category and
head/dependent information that is needed for logi-
cal form generation can be computed to a large de-
gree, but is not explicitly present. Our link interpre-
tation language addresses this issue.

2.2 The link interpretation language

Our link interpretation language operates on the out-
put of the link parser, and assembles a dependency
graph. The link interpretation language can assign
properties and categories to individual link ends via
FEAT rules, and assign head/dependency relations
to links via LINK rules.

Look again at Figure 1. Rule (1) applies to any
link whose ends are compatible with the link ends
S, SF or SX1 . This rule assigns the arg:S role
(i.e., subject argument) to the left end of the link,
and the head role to the right end. In other words,
if two words are linked by an S link, the left element
is the subject of the right element. Rule (2) creates
an analogous dependency for the O link, making the
right element the object of the left element. Rule (3)
says that anything on the leftward-looking end of an
S or SX link) should be assigned the category v; i.e.,
it’s a verb.

The LINK rules can assign a range of roles, in-
cluding:

� head
� argument of a particular type (e.g., S or O)
� modifier of a particular type (e.g., DET)
� merge, which promotes all dependents of the

merged element and constructs a complex lex-
ical head (e.g., for idioms or multi-word proper
names)

1S links are simple subject-verb relations, SF is used for the
special case where the subject is it or there (e.g. It was raining.),
and SX is used whent he subject is the first person pronoun I.

� filler and hole, which establish relationships re-
lated to unbounded dependencies

In addition, LINK and FEAT rules can assign
roles, properties and categories to the parents of the
left and right elements when necessary, and the pro-
cessor postpones these assignments until the appro-
priate parent relationships are established.

The processor which interprets this language be-
gins by assigning a dependency object to each word
in the sentence; the word is the head of the depen-
dency object, and the object has no dependents. The
processor then looks at each of the links, in any or-
der. It applies all relevant FEAT operators to each
link end, and finds the first LINK rule which ap-
plies. If any LINK rules which must be postponed
are found, the processor collects all candidate rules,
and chooses among them after the parent relation-
ships are established.

The output of this procedure as shown in the
fourth row of Figure 1 is a set of interconnected de-
pendency objects. Every dependency object which
has been identified as a non-head link end will have
the object it depends on as its parent. In the ideal
case, this set will have only one parentless object,
which will be the dependency object associated with
the matrix verb. Figure 1 also shows the topmost
dependency object for our example sentence; in this
representation, each word or constituent bears a suf-
fix indicating that it is the head (:H) or the relation-
ship it bears to the head (e.g., :O).

In general the process of adding LINK and FEAT
rules was carried out in a data-driven manner. Cur-
rently, there are 88 LINK rules and 63 FEAT rules.
While the number of potential rules is quite large
due to a large number of link types, catagories, and
properties, we have found that these rules general-
ize reasonably well and expect that the remaining
rules that would be required to represent very spe-
cific cases.

2.3 Additional lexical knowledge sources
For the purposes of deriving logical forms, the link
parser output doesn’t contain quite enough informa-
tion. We rely on two additional sources of lexical
knowledge: a small dictionary, developed in concert
with the link interpretation language, which identi-
fies features such as auxiliary for verbs, and a body
of lexical control information, derived from sub-
categorization classes in Comlex (Macleod et al.,
1998). The first source informs the link interpre-
tation process, by identifying which verbs are de-
pendents of other verbs. The second source informs
our next step, the argument canonicalizer.

2.4 The argument canonicalizer
In this step, we construct an argument network for
each dependency object, in the spirit of Relational
Grammar (Perlmutter, 1983). For those predicative
phrases in argument positions which lack a subject,
we determine and assign a subject to control the
phrase. We use the lowest available grammatical
relation (first object, then subject) as the controller,
unless the information we’ve collected from Com-
lex indicates otherwise (e.g., in the case of promise).
We then identify those argument networks to which
Passive has applied, and undo it, and do the same for
Dative Movement, in order to derive the canonical
predicate argument order.

2.5 Deriving the logical forms
At this point, we have all the information we need to
derive the logical forms required for this evaluation
track. We generate logical forms via the following
steps:

1. We eliminate those words for which no output
is required (e.g., determiners).

2. We identify the remaining words which require
a part of speech suffix (e.g., nouns but not
proper nouns).

3. We identify the remaining words which take
arguments (e.g., verbs but not nouns) and those
which add their own instance variable (e.g.,
verbs but not prepositions).

4. We add the appropriate argument structures for
noun-noun compounds, and make other task-
specific adjustments.

5. We collect and format the appropriate predi-
cates and argument lists.

In some cases, a subject argument was required, but
we could not infer the appropriate filler; in these
cases, we insert the string “MISSING” as the log-
ical subject in the logical form.

3 Results

Table 1 shows the precision and recall over both ar-
guments and predicates. Table 2 includes the pre-
centage of sentences of which all arguments were
identified (SentArg) and all predicates were identi-
fied (SentPred). SentArgPred indicates the percent-
age of sentences for which all arguments were iden-
tified correctly out of sentences that had all pred-
icates identified correctly. SentArgPredSent is the
percentage of sentences for which all arguments and
all predicates were identified correctly (SentArg-
PredSent).

Precision Recall
Arguments 0.74 0.66
Predicates 0.84 0.78

Table 1: Argument and predicate precision and re-
call.

Accuracy
SentArg 0.27
SentPred 0.21
SentArgPred 0.40
SentArgPredSent 0.087

Table 2: Sentence-based accuracy of extracted logic
forms.

Clearly, these results indicate room for improve-
ment in this task.

4 Comments on the evaluation

We found some problems in this evaluation.

4.1 Resolving vagueness in the task

In some cases, the details of the task are vague.
One example is collocations. The task description
clearly allows for collocations (e.g. proud of, at a
loss), but there is little guidance about how to decide
whether some word sequence should be a colloca-
tion. These decisions affect the system scores, and
the absence of clear guidance on this issue clearly
suggests uncertainty about what the scores mean.
Having an official list of collocations is only one
part of the solution, however. Since collocations
obscure internal structure, creating a collocation po-
tentially loses information; so the issue isn’t simply
to know what’s on the list, but to have some guide-
line for deciding what should be on the list.

One way in which to motivate guidelines, define
scoring metrics, etc. is to include a more goal-
directed task description. The last two decades of
research in computational linguistics have cemented

the crucial role of system evaluation, but the sum-
mary in (Hirschman and Thompson, 1996) makes
it clear that the best evaluations are defined with a
specific task in mind. In a previous attempt to define
predicate-argument structure, Semeval, the effort
was abandoned because so many constructs would
require detailed attention and resolution, and be-
cause most information-extraction systems did not
generate full predicate-argument structures (most
likely because the task did not require it) (Grishman
and Sundheim, 1996). While introducing a task cre-
ates its own problems by removing domain indepen-
dence, the constraints it provides are worth consid-
eration. For example, in a task such as Question An-
swering, certain distinctions in the logic-form pre-
sented here may serve no purpose or perhaps finer
grained distinctions are required.

As another example of this issue, the scorer pro-
vided for this task computes the precision and recall
for both predicates and predicate arguments in the
logic forms. In some circumstances, the scorer as-
signs the same score for predication of an incorrect,
independently specified variable (e.g., x2 instead of
x1 as the first argument of loves in Figure 1) as
for predication of an otherwise unspecified variable
(e.g., x3 instead of x1). This may be an informa-
tive scoring strategy, but having a more specific task
would help make this decision.

4.2 Suggested improvements in the logic

In many ways, it’s also impossible to make judg-
ments about the syntax and implied model for the
logic without a more specific task, but it’s still worth
pointing out some inconsistencies.

First, the implied account of noun-noun com-
pounds introduces an nn predicate, but assigns to
the resulting phrase a different variable than either
of the nominal constituents. Adjectival modifica-
tion, on the other hand, is represented by sharing
of variables. (Rus, 2002) argues for this account
of noun-noun compounds (p. 111), but provides
no motivation for treating the noun-noun compound
goat hair as having a separate variable from its
head but not doing the same for the adjective-noun
sequence curly hair.

Second, the account of pronominal possessives
(our, my) would lead to a poor account of full pos-
sessives. The possessive pronoun shares a variable
with its possesseed, which does not allow a paral-
lel or adequate account at all of the full possessives
(e.g., the poor boy’s father could only have boy,
poor, and father assigned to the same index). The
possessive should be treated like noun-noun com-
pounds, with a poss operator.

Finally, adverbs which modify adjectives have
nothing to attach to. In the single example of this
construction in the sample data (Sunshine makes me
very happy) the modifier very is predicated of me,
because happy is predicated of me. This account
leads immediately to problems with examples like
John is very tall but hardly imposing, where all four
modifying elements would end up being predicated
of John, introducing unnecessary ambiguity. In-
troducing properties in the logic as individuals (cf.
(Chierchia and Turner, 1988)) would almost cer-
tainly be an improvement.

References
G. Chierchia and R. Turner. 1988. Semantics

and property theory. Linguistics and Philosophy,
11:261–302.

Ralph Grishman and Beth Sundheim. 1996. Mes-
sage understanding conference - 6: A brief his-
tory. In Papers presented to the Sixteenth Inter-
national Conference On Computational Linguis-
tics (COLING -96), University of Copenhagen.

L. Hirschman and H. Thompson. 1996. Overview
of evaluation in speech and natural language pro-
cessing. In R. Cole, editor, Survey of the State
of the Art in Human Language Technology, chap-
ter 13. Cambridge University Press, Cambridge.

Catherine Macleod, Ralph Grishman, and Adam
Meyers, 1998. COMLEX Syntax Reference Man-
ual. Proteus Project, NYU.

G. Minnen, J. Carroll, and D. Pearce. 2001. Ap-
plied morphological processing of English. Nat-
ural Language Engineering, 7(3):207–223.

David M. Perlmutter, editor. 1983. Studies in Rela-
tional Grammar 1. University of Chicago Press.

Vasile Rus. 2002. Logic Forms for Wordnet
Glosses. Ph.D. thesis, Southern Methodist Uni-
versity.

Daniel Sleator and Davy Temperley. 1991. Pars-
ing English with a Link Grammar. Technical Re-
port CMU-CS-91-196, Carnegie Mellon Univer-
sity Dept. of Computer Science, October.

