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Abstract

We describea systemfor semanticrole assignment
built as part of the Senseval III task, basedon an
off-the-shelfparserandMaxentandMemory-Based
learners.We focuson generalisationusingseveral
similarity measuresto increasetheamountof train-
ing dataavailableandon theuseof EM-basedclus-
tering to improve role assignment.Our final score
is Precision=73.6%,Recall=59.4%(F=65.7).

1 Intr oduction

This paperdescribesa study in semanticrole la-
belling in the context of the Senseval III task, for
which the training and test datawere both drawn
from the currentFrameNetrelease(Johnsonet al.,
2002). We concentratedon two questions: first,
whetherroleassignmentcanbeimprovedby gener-
alisationover traininginstancesusingdifferentsim-
ilarity measures;and second,the impact of EM-
basedclustering,bothin deriving moreinformative
selectionalpreferencefeaturesandin the generali-
sationsmentionedabove. The basisof our experi-
mentswas formedby off-the-shelfstatisticaltools
for dataprocessingandmodelling.

After listing our datapreparationsteps(Sec.2)
andfeatures(Sec.3), we describeour classification
procedureandthelearnerswe used(Sec.4). Sec.5
outlinesour experimentsin similarity-basedgener-
alisations,andSection6 discussesour results.

2 Data and Instances

Parsing. To tag and parse the data, we used
LoPar (Schmid, 2000), a probabilistic context-
free parser, which comeswith a Head-Lexicalised
Grammarfor English (Carroll and Rooth, 1998).
We consideredonly the most probableparsefor
eachsentenceand simplified parsetreesby elim-
inating unary nodes. The resulting nodes form
the instancesof our classification. We used the
Stuttgart TreeTagger(Schmid,1994) to lemmatise
constituentheads.

Projection of role labels. FrameNetprovidesse-
mantic roles as characteroffsets. We labelled
thoseinstances(i.e. nodesin the parsetree) with
goldstandardsemanticroleswhichcorrespondedto
roles’ maximalprojections. 13.95%of rolesin the
training corpusspannedmore than one parsetree
node. Figure1 shows an examplesentencefor the
AWARENESS frame. Thenodes’respective seman-
tic role labelsaregivenin smallcaps,andthetarget
predicateis markedin boldface.

S (NONE)

NP (COGNIZER)

Peter

VP (NONE)

V (NONE)

does not VP (NONE)

know NP (CONTENT)

the answer

Figure1: Exampleparsetreewith role labels

Semanticclustering. We usedclusteringto gen-
eraliseoverpossiblefillers of roles.In afirst model,
we derived a probability distribution ������� for pairs���	�
���������� , where��� is a target:rolecombination
and � � is the headlemmaof a role filler. The key
ideais that � � and� � aremutuallyindependent,but
conditionedon anunobservedclass����� . In this
manner, wedefinetheprobabilityof �����
� � ��� � � �� ��� � � as:

���
����� �! #" ��� � �����$� �! %" ��� � �
���
�'& � �� �! #" ��� � ������� � & � �����
� � & � �
Estimationwas performedusing a variant of the
expectation-maximisationalgorithm (Prescheret
al., 2000).Weusedthismodelbothasa featureand
in the generalisationdescribedin Sec.5. In a sec-
ondmodel,we clusteredpairsof target:roleandthe
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syntacticpropertiesof the role fillers; the resulting
modelwasonly usedfor generalisation.

3 Features

Constituent features. The first group of fea-
tures representspropertiesof instances(i.e. con-
stituents).Weusedthephrasetypeandheadlemma
of eachconstituent,itspreposition,if any (otherwise
NONE), its relative positionwith respectto thetar-
get (left, right, overlapping),the phrasetype of its
mothernode,andthe simplified pathfrom the tar-
get to theconstituent:all phrasetypesencountered
on theway, andwhethereachstepwasup or down.
Two further featuresstatedwhetherthis path had
beenseenasa frameelementin the training data,
andwhethertheconstituentwassubcategorisedfor
(determinedheuristically).

Sentencelevel features. Thesecondtypeof fea-
ture describedthe context of the current instance:
The target word was characterisedby its lemma,
POS, voice, subcat frame (determinedheuristi-
cally), andits governingverb; we alsocompileda
list of all prepositionsin thesentence.

Semantic features. The third type of features
madeuseof EM-basedclustering,statingthemost
probablelabel assignedto the constituentby the
clusteringmodelaswell asa confidencescorefor
this decision.

4 Classification

We first describeour generalprocedure,then the
two differentmachinelearningsystemsweused.

Classification Procedure. As the semanticrole
labelsof FrameNetareframe-specific,we decided
to train oneclassifierfor eachframe. To copewith
thelargeamountof constituentsbearingno role la-
bel,wedividedtheprocedureinto two steps,distin-
guishingargumentidentificationandargumentla-
belling. First, argumentidentificationdecidesfor
all constituentswhetherthey arerole-bearersor not.
Then,argumentlabelling assignssemanticrolesto
thosesequencesclassifiedas role-bearing. In our
example(Fig. 1), thefirst stepof classificationide-
ally would singleout the two NPsaspossiblerole
fillers,while thesecondstepwouldassigntheCOG-
NIZER andCONTENT roles.

Maximum Entr opy Learning. Ourfirst classifier
wasa log-linearmodel,wherethe probability of a
class� givenanfeaturevector () is definedas

��� � & ()��$�+*, -�.!/10320
43576 �!8

where
,

is a normalisationconstant, 9 - �
)�� � � the
value of feature ) - for class � , and : - the weight
assignedto 9 - . Themodelis trainedby optimising
theweights: - subjectto themaximumentropycon-
straintwhich ensuresthat the leastcommittalopti-
mal model is learnt. Maximum Entropy (Maxent)
modelshave beensuccessfullyappliedto semantic
role labelling (Fleischmanet al., 2003). We used
theestimate softwarefor estimation,which im-
plementstheLMVM algorithm(Malouf, 2002)and
waskindly providedby RobMalouf.

Memory-based Learning. Our second learner
implementsan instanceof a memory-basedlearn-
ing (MBL) algorithm,namelythe ; -nearestneigh-
bour algorithm. This algorithm classifiestest in-
stancesby assigningthemthelabelof themostsim-
ilar examplesfrom the training set. Its parameters
are the numberof training examplesto be consid-
ered,the similarity metric, andthe featureweight-
ing scheme.We usedthe implementationprovided
by TiMBL (Daelemansetal.,2003)with thedefault
parameters,i.e. ; =1 andtheweightedoverlapsimi-
larity metricwith gain ratio featureweighting.

5 Similarity-based Generalisationover
Training Instances

FrameNet role labels are frame-specific. This
makes it necessaryto either train individual clas-
sifierswith little training dataper frame,or train a
largeclassifierwith many sparseclasses.Sooneim-
portantquestionis whetherwe cangeneralise, i.e.
exploit similaritiesbetweenframeelements,to gain
moretrainingdata.

We experimentedwith different generalisation
methods,all following thesamebasicidea:If frame
elementA1 of frame A and frame elementB1 of
frameB aresimilar, we re-useA1 training dataas
B1 instances.In this process,we maskout features
whichmightharmlearningfor A1, suchastargetsor
sentencelevel features,or semanticfeaturesin case
of syntacticsimilarities (and vice versa). We ex-
ploredthreetypesof role similarities,two basedon
symbolicinformationfrom theFrameNetdatabase,
andonestatistical.

Frame Hierar chy. FrameNetspecifiesframe-to-
framerelations,amongthemthreethatorderframes
hierarchically:Inheritance, theUsesrelationof par-
tial inheritance,and the Subframerelation linking
largersituationframesto their individualstages.All
threeindicatesemanticsimilarity between(at least
some)frameelements;in somecasescorresponding
frame elementsare also syntacticallysimilar, e.g.
theVictim roleof Cause_harmandtheEvalueerole



of Corporal_punishmentareboth typically realised
asdirectobjects.

Peripheral frame elements. FrameNet distin-
guishescore, extrathematic,and peripheralframe
elements. Peripheralframe elementsare frame-
independentadjuncts;however the sameframeel-
ementmay be peripheralto oneframeandcoreto
another. So we took a peripheralframe element
assimilar to the sameperipheralframeelementin
other frames: Given an instanceof a peripheral
frame element,we usedit as training instancefor
all framesfor which it wasmarkedasperipheralin
theFrameNetdatabase.

Group 6: puzzle:Experiencer_obj.Stimulus,increase:Change_posi-
tion_on_a_scale.Item,praise:Judgment_communication.Communi-
cator, travel:Travel. Traveler, . . .
Group 11: lodge:Residence.Location,scoff:Judgment_communi-
cation.Evaluee,chug:Motion_noise.Path,emerge:Departing.Source,
. . .

Figure2: EM-basedsyntacticclustering: excerpts
of 2 clusters

EM-based clustering. The EM-basedclustering
methodsintroducedin Sec.2 measurethe “good-
nessof fit” betweena target word and a potential
role filler. We now say that two frame elements
are similar if they are appropriatefor somecom-
moncluster. For theheadlemmaclusteringmodel,
wedefinetheappropriateness< � �
=?>1� of atarget:role
pair =@> for acluster � asfollows:

< � ��=@>1�$� A BDCFEHG 2I4
A
6 JLK 8
MIN

9 ��OP�
��� � & O��

where< � �
=?>1� is thetotal frequency of all headlem-
masO thathave beenseenwith =@> , weightedby the
class-membershipprobability of O in � . This ap-
propriatenessmeasure< � ��=@>1� is built on top of the
class-basedfrequencies9 �
O��
��� � & O�� rather than on
thefrequencies9 �
O�� or theclass-membershipprob-
abilities ��� � & OP� in isolation:For sometasksthecom-
bination of lexical and semanticinformation has
beenshown to outperformeachof thesingleinfor-
mation sources(Prescheret al., 2000). Our simi-
larity notion is now formalisedasfollows: With a
thresholdQ asa parameter, two frameelements=@> � ,=@>R� countassimilar if for someclass� , < � �
=@>S��$T Q
and< � �
=@> � �$T Q .

In thesyntacticclusteringmodel,a rolefiller was
describedas a combinationof the path from in-
stanceto target, the instance’s preposition,andthe
target voice. The appropriatenessof a target:role
pair is definedasfor theabovemodel.For timerea-
sons,only verbaltargetswereconsidered.

Figure2 shows excerptsof two “syntactic” clus-
ters in the form of target:frame.rolemembers.
Group6 is a very homogeneousgroup,consisting
of rolesthatareusuallyrealisedassubjects.Group
11 containsrolesrealisedasprepositionalphrases,
but with very diverseprepositions,including in, at,
along, andfrom.

6 Resultsand Discussion
We first give thefinal resultsof our systemson the
testsetaccordingto theofficial evaluationsoftware.
Thenwe discussdetailedresultson a development
setwe randomlyextractedfrom thetrainingdata.

6.1 Final Results
We submittedthe resultsof two models. Onewas
producedusing the maximumentropy learner, in-
cludingall featuresof Sec.3 andwith thethreemost
helpfulgeneralisationtechniques(EM headlemma,
EM path,andPeripherals).For the secondmodel
we usedthe MBL learnertrainedon all features,
with no additionaltrainingdata1. Theperformance
of thetwo modelsis shown in Table1.

Maxent MBL
Precision 73.6% 65.4%
Recall 59.4% 47.1%
F-score 65.7 54.8
Coverage 80.7% 72.0%
Overlap 67.5% 60.2%

Table1: Testsetresults(official scoringscheme)

6.2 DetailedResults
For adetailedevaluation,werandomlysplit off 10%
of thetrainingdatato form developmentsets.In this
section,we reportresultsof two suchsplits to take
chancevariationinto account.

For timereasons,thisdetailedevaluationwasper-
formedusingourown evaluationsoftware,which is
basedon our internalconstituent-basedrepresenta-
tion. This softwaregivesthesametendencies(im-
provements/ deteriorations)astheofficial software,
but absolutevaluesdiffer; so we restrictourselves
to reportingrelativefigures.

Basisfor Comparison. All following modelsare
comparedagainsta setof basicmodelstrainedon
all featuresof Sec.3. Table2 givesthe resultsfor
thesemodels,usingourown scoringsoftware.

Contrib ution of Features. Wecomputedthecon-
tribution of individual featuresby leaving out each
featurein turn. Table3 shows theresults,averaging

1For timereasons,wewerenotableto testgeneralisationin
theMemory-BasedLearningparadigm.



1stsplit 2ndsplit
Maxent F=80.02 F=80.86
MBL F=86.43 F=85.66

Table2: Devel setresults(own scoringscheme)U
F-score

Feature MBL Maxent
headlemma 0 0.6
emmclabel 3.9 3.9
emmcprob -0.3 1.8
motherphrasetype -0.7 -0.3
governingverb -0.1 -0.5
is subcategorized -0.1 -0.5
path 0.2 0.5
pathlength -0.5 -0.5
pathseen 1.6 3.4
preposition 0 -0.3
all preps -0.2 -0.7
phrasetype 1.2 2.2
position 0.5 0.3
scframe 0.1 -0.2
targetlemma 0 -0.6
targetPOS 0.1 -0.3
voice 0.1 -0.3

Table3: Contributionof eachfeature

over the two splits. The featuresthat contributed
most to the performancewere the samefor both
learners:thelabelassignedby theEM-basedmodel,
thephrasetype,andwhetherthepathhadbeenseen
to lead to a frame element. The relative position
to the target helpedin one MBL and one Maxent
run. Interestingly, the Maxent learnerprofits from
theprobabilitywith which theEM-basedmodelas-
signsits label,while MBL doesnot.

Generalisation. To measurethe effect of each
of the similarity measureslisted in Sec. 5, we
testedthem individually using the Maximum En-
tropy learnerwith all features.

As mentionedabove, training instancesof one
frameweregeneralisedandthenaddedto thetrain-
ing instancesof another, retainingonly part of the
featuresin the generalisation.Table 4 shows the
featuresretainedfor each similarity measure,as
well as the numberof additional instancesgener-
ated,summedover all frames. We empirically de-
terminedtheoptimalparametervaluesas:For FN-h
(sem)andFN-h (syn), 1 level in the hierarchy; for
EM head, aweightthresholdof Q ��V�W , andfor EM
path, aweightthresholdof Q � * W .

Table 5 gives the improvements made over
the baselinethrough adding data gained by each

FN hierarchy (sem): X 10,000instances
headlemma

FN hierarchy (syn): X 10,000instances
phrasetype,path,prep.,pathseen,is subcat-
egorised,voice,targetPOS

Peripherals: X 55,000instances
headlemma,phrasetype, path, prep., path
seen,is subcategorised,voice,targetPOS

EM head: X 1,000,000instances
headlemma

EM path: X 433,000instances
phrasetype, motherphrasetype, path, path
length, prep., path seen,is subcategorised,
voice,targetPOS

Table4: Similarity-basedgeneralisation:Features
retainedandnumberof generatedinstancesU

F-score
Strategy Split 1 Split 2
FN hierarchy (sem) 0.3 -0.5
FN hierarchy (syn) -0.2 -0.4
Peripherals 0.2 -0.1
EM head 0.4 0.5
EM path 1.0 0.2

Table5: Contributionof generalizationstrategies

generalisationstrategy. Results are shown in
points F-score and individually for both train-
ing/development splits. EM-based clustering
provedto behelpful, showing both thehighestsin-
gle improvement(EM path) andthehighestconsis-
tentimprovement(EM head), while all othergener-
alisationsshow mixedresults.

Combining the three most promising generali-
sationtechniques(Peripherals,EM head,and EM
path) led to an improvementof 0.7 pointsF-score
for split 1 and1.1pointsF-scorefor split 2.

6.3 Discussion.

Feature quality. The featuresthat improved the
learners’ performancemost are EM-basedlabel,
phrasetype and the “path seenas FE”. The other
featuresdid not show much impact for us. The
Maxentlearnerwasnegatively affectedby sentence-
level featuressuchasthesubcatframeand“is sub-
categorised”.

Comparing the learners. In a comparableba-
sic setting (all features, no generalisation),the
Memory-BasedlearnereasilyoutperformstheMax-
entlearner, accordingto our scoringscheme.How-
ever, the official scoring schemedeterminesthe
Memory-basedlearner’s performanceat morethan



10 pointsF-scorebelow theMaxentlearner. We in-
tendto run theMemory-basedlearnerwith general-
isationdatafor amorecomprehensivecomparison.

Generalisation. Gildea and Jurafsky (2002) re-
port an improvement of 1.6% through generali-
sation, which is roughly comparableto our fig-
ures. The two strategies sharethe commonidea
of exploiting role similarities, but the realisations
are converse: Gildea and Jurafsky manuallycom-
pactsimilar frameelementsinto 18abstract,frame-
independentroles,whereaswekeeptherolesframe-
specificbut augmentthe training datafor eachby
automaticallydiscoveredsimilarities.

Onereasonfor thedisappointingperformanceof
theFrameNethierarchy-basedgeneralisationstrate-
giesmay be simply the amountof data,asshown
by Table4: FN-h (sem)andFN-h (syn)eachonly
yield 10,000additional instancesas comparedto
around1,000,000for EM head. That the reliabil-
ity of the resultsroughly seemsto go up with the
numberof additional instancesgenerated(Periph-
erals: ca. 50,000,EM-Path: ca. 400,000)fits this
argumentationwell.

The input to the EM path clustersis a tuple of
the path, target voice andprepositioninformation.
In the resulting model, generalisationover voice
worked well, yielding clusterscontainingboth ac-
tive and passive alternationsof similar frame el-
ements. However, prepositionswere distributed
morearbitrarily. While this may indicateproblems
of clusteringwith morestructuredformsof input, it
mayalsojustbeaconsequenceof noisyinput,asthe
prepositionfeaturehasnot hadmuchimpacteither
on thelearners’performance.

The EM head strategy adds large amountsof
head lemma instances,which probably alleviates
thesparsedataproblemthatmakestheheadlemma
featurevirtually useless.Anotherway of capitalis-
ing on this typeof informationwould beto usethe
FN hierarchy generalisationto derivemoreinputfor
EM-basedclusteringandseeif this indirect useof
generalisationstill improves semanticrole assign-
ment. Interestingly, the EM headstrategy andthe
EM-basedclusteringfeature,bothgearedatsolving
the samesparsedataproblem,do not canceleach
otherout. In futurework,wewill try to combinethe
EM headstrategy with the FrameNethierarchy to
derive moreinput for theclusteringmodelto seeif
this canimprove thepresentgeneralisationresults.

Comparison with CoNLL. We recentlystudied
semanticrole labellingin thecontext of theCoNLL
sharedtask(Baldewein et al., 2004). The two key
differencesto thisstudywerethatthesemanticroles
in questionwerePropBankrolesandthatonly shal-

low information was available. Our systemthere
showed two main differencesto the current sys-
tem: the overall level of accuracy was lower, and
EM-basedclusteringdid not improve the perfor-
mance. While the performancedifferenceis evi-
dently a consequenceof only shallow information
beingavailable,it remainsaninterestingopenques-
tion why EM-basedclusteringcould improve one
system,but not theother.
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