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Abstract

In this paper we describe current efforts aimed at
adapting an existing Question Answering system to
a new document set, namely research papers in the
genomics domain. The system has been originally
developed for another restricted domain, however it
has already proved its portability. Nevertheless, the
process is not painless, and the specific purpose of
this paper is to describe the problems encountered.

1 Introduction

One of the core problems in exploiting scientific
papers in research and clinical settings is that the
knowledge that they contain is not easily acces-
sible. Although various resources which attempt
to consolidate such knowledge are being created
(e.g. UMLS1, SWISS-PROT, OMIM, GeneOntol-
ogy, GenBank, LocusLink), the amount of informa-
tion available keeps growing exponentially (Stapley
and Benoit, 2000).

There is accordingly a pressing need for intelli-
gent systems capable of accessing that information
in an efficient and user-friendly way. Question An-
swering systems aim at providing a focused way
to access the information contained in a document
collection. Specific research in the area of Ques-
tion Answering has been prompted in the last few
years in particular by the Question Answering track
of the Text REtrieval Conference (TREC-QA) com-
petitions (Voorhees, 2001). The TREC-QA compe-
titions focus on open-domain systems, i.e. systems
that can (potentially) answer any generic question.
As these competitions are based on large volumes
of text, the competing systems (normally) resort to a
relatively shallow text analysis.2 In contrast a ques-
tion answering system working on a restricted do-
main can take advantage of the formatting and style

1
http://www.nlm.nih.gov/research/umls/

2With some notable exception, e.g. (Harabagiu et al., 2001).

conventions in the text, can make use of the specific
domain-dependent terminology, and of full parsing.

In many restricted domains, including technical
documentation and research papers, terminology
plays a pivotal role. This is in fact one of the
major differences between restricted domains and
open domain texts. While in open domain systems
Named Entities play a major role, in technical doc-
umentation, as well as in research papers, they have
a secondary role, by contrast a far greater role is
played by domain terminology. Terminology is a
major obstacle for processing research papers and
at the same time a key access path to the knowledge
encoded in those papers. Terminology provides the
means to name and access domain-specific concepts
and objects.

Restricted domains present the additional prob-
lem of “domain navigation”. Users of the system
cannot always be expected to be completely fa-
miliar with the domain terminology. Unfamiliar-
ity with domain terminology might lead to ques-
tions which contain imperfect formulations of do-
main terms. It becomes therefore essential to be
able to detect terminological variants and exploit the
relations between terms (like synonymy, meronymy,
antonymy). The process of variation is well in-
vestigated in terminological research (Daille et al.,
1996). In the Biomedical domain, an example of a
system that deals with terminological variants (also
called “aliases”) can be found in (Pustejovsky et al.,
2002).

In the rest of this paper we will first briefly de-
scribe our existing Question Answering system, Ex-
trAns (section 2). In the following section (3) we
detail the specific problems encountered in the new
domain and the steps that we have taken to solve
them. We conclude the paper with an overview of
related research (section 4).



Figure 1: Example of document to be analyzed

2 The original Question Answering system

ExtrAns is a Question Answering system aimed at
restricted domains, in particular terminology-rich
domains. While open domain Question Answering
systems typically are targeted at large text collec-
tions and use relatively little linguistic information,
ExtrAns answers questions over such domains by
exploiting linguistic knowledge from the documents
and terminological knowledge about a specific do-
main. Various applications of the ExtrAns system
have been developed, from the original prototype
aimed at the Unix documentation files (Mollá et al.,
2000) to a version targeting the Aircraft Mainte-
nance Manuals (AMM) of the Airbus A320 (Mollá
et al., 2003; Rinaldi et al., 2004). In the present pa-
per we describe current work in applying the system
to a different domain and text type: research papers
in the genomics area.

Our approach to Question Answering is particu-
larly computationally intensive; this allows a deeper
linguistic analysis to be performed, at the cost of
higher processing time. The documents are an-

alyzed in an off-line stage and transformed in a
semantic representation (called ‘Minimal Logical
Forms’ or MLFs), which is stored in a Knowledge
Base (KB). In an on-line phase (see fig. 2) the user
queries are analyzed using the same basic machin-
ery (however the cost of processing them is neg-
ligible, so that there is no visible delay) and their
semantic representation is matched in the KB. If a
match is encountered, the sentences that gave origin
to the match are presented as possible answer to the
question.

Documents (and queries) are first tokenized, then
they go through a terminology-processing module.
If a term belonging to a synset in the terminolog-
ical knowledge base is detected, then the term is
replaced by a synset identifier in the logical form.
This results in a canonical form, where the synset
identifier denotes the concept that each of the terms
in the synset names. In this way any term contained
in a user query is automatically mapped to all its
variants. This approach amounts to an implicit ‘ter-
minological normalization’ for the domain, where
the synset identifier can be taken as a reference to
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Figure 2: Schematic representation of the core QA engine

the ‘concept’ that each of the terms in the synset de-
scribes (Kageura, 2002).

ExtrAns depends heavily on its use of logical
forms, which are designed so that they are easy to
build and to use, yet expressive enough for the task
at hand (Molĺa, 2001). The logical forms and asso-
ciated semantic interpretation methods are designed
to cope with problematic sentences, which include
very long sentences, even sentences with spelling
mistakes, and structures that are not recognized by
the syntactic analyzer. An advantage of ExtrAns’
Minimal Logical Forms (MLFs) is that they can be
produced with minimal domain knowledge. This
makes our technology easily portable to different
domains. The only true impact of the domain is
during the preprocessing stage of the input text and
during the creation of a thesaurus that reflects the
specific terms used in the chosen domain, their lex-
ical relations and their word senses.

Unlike sentences in documents, user queries
are processed on-line and the resulting MLFs are
proved by deduction over the MLFs of document
sentences stored in the KB. When no direct answer
for a user query can be found, the system is able to
relax the proof criteria in a stepwise manner. First,
hyponyms are added to the query terms. This makes
the query more general but maintains its logical cor-
rectness. If no answers can be found or the user
determines that they are not good answers, the sys-
tem will attempt approximate matching, in which
the sentence that has the highest overlap of predi-
cates with the query is retrieved. The matching sen-
tences are scored and the best matches are returned.

The MLFs contain pointers to the original text
which allow ExtrAns to identify and highlight those
words in the retrieved sentence that contribute most
to a particular answer. An example of the output of
ExtrAns can be seen in fig. 3. When the user clicks
on one of the answers provided, the corresponding
document will be displayed with the relevant pas-

sages highlighted. Another click displays the an-
swer in the context of the document and allows the
user to verify the justification of the answer.

3 Moving to the new domain
The first step in adapting the system to a new do-
main is identifying the specific set of documents to
be analyzed. We have experimented with two dif-
ferent collections in the genomics domain. The first
collection (here called the ‘Biovista’ corpus) has
been generated from Medline using two seed term
lists of genes and pathways (biological process) to
extract an initial corpus of research papers (full ar-
ticles). The second collection is constituted by the
GENIA corpus (Kim et al., 2003)3, which contains
2000 abstracts from Medline (a total of 18546 sen-
tences). The advantage of the latter is that domain-
specific terminology is already manually annotated.
However focusing only on that case would mean
disregarding a number of real-world problems (in
particular terminology detection).

3.1 Formatting information
An XML based filtering tool has been used to select
zones of the documents that need to be processed
in a specific fashion. Consider for instance the case
of bibliography. The initial structure of the docu-
ment allows to identify easily each bibliographical
item. Isolating the authors, titles and publication in-
formation is then trivial (because it follows a regular
structure). The name of the authors (together with
the html cross-references) can then be used to iden-
tify the citations within the main body of the paper.
If a preliminary zone identification (as described) is
not performed, the names of the authors used in the
citations would appear as spurious elements within
sentences, making their analysis very difficult.

Another common case is that of titles. Normally
they are Nominal Phrases rather than sentences. If

3
http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/



Figure 3: Example of interaction with the system

the parser was expecting to find a sentence it would
fail. However using the knowledge that a title is
being processed, we can modify the configuration
of the parser so that it accepts an NP as a correct
parse.

3.2 Terminology

The high frequency of terminology in technical text
produces various problems when locating answers.
A primary problem is the increased difficulty of
parsing text in a technical domain due to domain-
specific sublanguage. Various types of multi-word
terms characterize these domains, in particular re-
ferring to specific concepts (e.g. genome sequences,
proteins). These multi-word expressions might in-
clude lexical items which are either unknown to a
generic lexicon (e.g. “argentine methylation”), have
a specific meaning unique to this domain or dever-
bal adjectives (and nouns) are often mistagged as
verbs (e.g. “mediated activation”, “ cell killing”).
Abbreviations and acronyms, often complex (e.g.
bracketed inside NPs, like “adenovirus (ad) infec-
tion”) are another common source of inconsisten-
cies. In such cases the parser might either fail to
identify the compound as a phrase and consequently
fail to parse the sentence including such items. Al-
ternatively a parser might attempt to ‘guess’ their
lexical category (in the set of open class categories),
leading to an exponential growth of the number of
possible syntactic parses and often incorrect deci-
sions. Not only the internal structure of the com-
pound can be multi-way ambiguous, also the bound-
aries of the compounds are difficult to detect and the

parsers may try odd combinations of the tokens be-
longing to the compounds with neighboring tokens.

We have described in (Rinaldi et al., 2002) some
approaches that might be taken towards terminology
extraction for a specific domain. The GENIA cor-
pus removes these problems completely by provid-
ing pre-annotated terminological units. This allows
attention to be focused on other challenges of the
QA task, rather than getting ‘bogged down’ with
terminology extraction and organization.

In the case of the Biovista corpus, we had to
perform a phase of terminology discovery, which
was facilitated by the existence of the seed lists of
genes and pathways. We first marked up those terms
which appear in the corpus using additional xml
tags. This identified 900 genes and 218 pathways
that occur in the corpus - represented as boxed to-
kens in fig. 4. Next the entire corpus is chunked into
nominal and verbal chunks using LT Chunk (Finch
and Mikheev, 1997). Ignoring prepositions and
gerunds the chunks are a minimal phrasal group -
represented as the square braces in fig. 4. The cor-
pus terms are then expanded to the boundary of the
phrasal chunk they appear in. For example, NP3 in
fig. 4 contains two terms of interest producing the
new term “IFN-induced transcription”. The 1118
corpus terms were expanded into 6697 new candi-
date terms. 1060 involve a pathway in head position
and 1154 a gene. The remaining 4483 candidate
terms involve a novel head with at least one gene or
pathway as a modifier.

Once the terminology is available, it is necessary
to detect relations among terms in order to exploit
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Figure 4: An example of syntactic analysis

it. We have focused our attention in particular to
the relations of synonymy and hyponymy, which
are detected as described in (Dowdall et al., 2003)
and gathered in a Thesaurus. The organizing unit is
the WordNet style synset which includes strict syn-
onymy as well as three weaker synonymy relations.
These sets are further organized into a isa hierarchy
based on two definitions of hyponymy.

One of the most serious problems that we have
encountered in working in restricted domains is
the syntactic ambiguity generated by multi-word
units, in particular technical terms. Any generic
parser, unless developed specifically for the do-
main at hand, will have serious problems dealing
with those multi-words. The solution that we have
adopted is to parse multi-word terms as single syn-
tactic units. The tokenizer detects the terms (pre-
viously collected in the Thesaurus) as they appear in
the input stream, and packs them into single lexical
tokens prior to syntactical analysis, assigning them
the syntactic properties of their head word. In previ-
ous work this approach has proved to be particularly
effective, bringing a reduction in the complexity of
parsing of 46% (Rinaldi et al., 2002).

3.3 Parsing

The deep syntactic analysis builds upon the chunks
to identify sentence level syntactic relations be-
tween the heads of the chunks. The output is a
hierarchical structure of syntactic relations - func-
tional dependency structures - represented as the di-
rected arrows in fig. 4. The parser (Pro3Gres) uses
hand-written declarative rules to encode acknowl-
edged facts, such as verbs typically take one but
never two subjects, combined with a statistical lan-
guage model that calculates lexicalized attachment
probabilities, similar to (Collins, 1999). Parsing is
seen as a decision process, the probability of a total
parse is the product of probabilities of the individual

decisions at each ambiguous point in the derivation.
Probabilistic parsers generally have the advan-

tage that they are fast and robust, and that they
resolve syntactic ambiguities with high accuracy.
Both of these points are prerequisites for a statistical
analysis that is feasible over large amounts of text
and beneficial to the Q&A system’s performance.

In comparison to shallow processing methods,
parsing has the advantage that relations spanning
long stretches of text can still be recognized, and
that the parsing context largely contributes to the
disambiguation. In comparison to deep linguistic,
formal grammar-based parsers, however, the output
of probabilistic parsers is relatively shallow, pure
context-free grammar (CFG) constituency output,
tree structures that do not include grammatical func-
tion annotation nor co-indexation and empty nodes
annotation expressing long-distance dependencies
(LDD). In a simple example sentence “John wants
to leave”, a deep-linguistic syntactic analysis ex-
presses the identity of the explicit matrix clause
subject and implicit subordinate clause subject by
means of co-indexing the explicit and the empty im-
plicit subject tracet: “ [John1 wants [t1 to leave]]”.
A parser that fails to recognize these implicit sub-
jects, so-called control subjects, misses very impor-
tant information, quantitatively about 3 % of all sub-
jects.

Although LDD annotation is actually provided in
Treebanks such as the Penn Treebank (Marcus et al.,
1993) over which they are typically trained, most
probabilistic parsers largely or fully ignore this in-
formation. This means that the extraction of LDDs
and the mapping to shallow semantic representa-
tions such as MLF is not always possible, because
first co-indexation information is not available, sec-
ond a single parsing error across a tree fragment
containing an LDD makes its extraction impossible,
third some syntactic relations cannot be recovered



Figure 5: Dependency Tree output of the SWI Prolog graphical implementation of the parser

on configurational grounds only.
We therefore adapt ExtrAns to use a new statis-

tical broad-coverage parser that is as fast as a prob-
abilistic parser but more deep-linguistic because it
delivers grammatical relation structures which are
closer to predicate-argument structures and shallow
semantic structures like MLF, and more informative
if non-local dependencies are involved (Schneider,
2003). It has been evaluated and shown to have
state-of-the-art performance.

The parser expresses distinctions that are es-
pecially important for a predicate-argument based
shallow semantic representation, as far as they
are expressed in the Penn Treebank training data,
such as PP-attachment, most LDDs, relative clause
anaphora, participles, gerunds, and the argu-
ment/adjunct distinction for NPs.

In some cases functional relations distinctions
that are not expressed in the Penn Treebank are
made. Commas are e.g. disambiguated between
apposition and conjunction, or the Penn tagIN is
disambiguated between preposition and subordinat-
ing conjunction. Other distinctions that are less rel-
evant or not clearly expressed in the Treebank are
left underspecified, such as the distinction between
PP arguments and adjuncts, or a number of types of
subordinate clauses. The parser is robust in that it
returns the most promising set of partial structures
when it fails to find a complete parse for a sentence.
For sentences syntactically more complex than this
illustrative example, as many hierarchical relations
are returned as possible. A screenshot of its graphi-
cal interface can be seen in fig. 5. Its parsing speed
is about 300,000 words per hour.

Fig. 4 displays the three levels of analysis that are
performed on a simple sentence. Term expansion

yieldsNP3as a complete candidate term. However,
NP1 and NP2 form two distinct, fully expanded
noun phrase chunks. Their formation into a noun
phrase with an embedded prepositional phrase is re-
covered from the parser’s syntactic relations giv-
ing the maximally projected noun phrase involv-
ing a term: “Argentine methylation of STAT1” (or
juxtaposed “STAT1 Argentine methylation”). Fi-
nally, the highest level syntactic relations (subj
and obj ) identifies a transitive predicate relation
between these two candidate terms.

3.4 MLFs
The deep-linguistic dependency based parser partly
simplifies the construction of MLF. First, the map-
ping between labeled dependencies and a surface
semantic representation is often more direct than
across a complex constituency subtree (Schneider,
2003), and often more accurate (Johnson, 2002).
Dedicated labels can directly express complex re-
lations, the lexical participants needed for the con-
struction are more locally available.

Let us look at the example sentence“Aden-
ovirus infection and transfection were used to model
changes in susceptibility to cell killing caused by
E1A expression”. The control relation (infection
is the implicit subject ofmodel) and the PP rela-
tion (including the description noun) are available
locally. The reduced relative clausekilling caused
by is expressed by a local dedicated label (modpart).
Only the conjunctioninfection and transfection, ex-
pressed here by bracketing, needs to be searched
across the syntactic hierarchy.

This leads to the following MLFs:

object(infection, o1, [o1]).
object(transfection, o2, [o2]).
object(change, o3, [o3]).



object(susceptibility, o4, [o4]).
object(killing, o5, [o5]).
object(expression, o6, [o6]).
object(cell, o7, [o7]).
evt(cause, e3, [o6]).
evt(model, e1, [(o1,o2), o3]).
evt(use, e2, [(o1,o2), e1]).
by(e3, o6).
in(o5, o7).
to(o4, o5).
in(o3, o4).

4 Related Work

Question Answering in Biomedicine is surveyed in
detail in (Zweigenbaum, 2003), in particular regard-
ing clinical questions. An example of a system ap-
plied to such questions is presented in (Niu et al.,
2003), where it is applied in a setting for Evidence-
Based Medicine. This system identifies specific
‘roles’ within the document sentences and the ques-
tions, determining the answers is then a matter of
comparing the roles in each. To this aim, natural
language questions are translated into the PICO for-
mat (Sackett et al., 2000).

Automatic knowledge extraction (or strategies for
improving these methods) over Medline articles are
numerous. For example, (Craven and Kumlien,
1999) identifies possible drug-interaction relations
(predicates) between proteins and chemicals using
a ‘bag of words’ approach applied to the sentence
level. This produces inferences of the type: drug-
interactions (protein, pharmacologic-agent) where
an agent has been reported to interact with a pro-
tein.

(Sekimizu et al., 1998) uses frequently occurring
predicates and identifies the subject and object ar-
guments in the predication, in contrast (Rindflesch
et al., 2000) uses named entity recognition tech-
niques to identify drugs and genes, then identifies
the predicates which connect them. This type of
‘object-relation-object’ inference may also be im-
plied (Cimino and Barnet, 1993). This method
uses ‘if then’ rules to extract semantic relationships
between the medical entities depending on which
MeSH headings these entities appear under. For
example, if a citation has “Electrocardiography”
with the subheading “Methods” and has “Myocar-
dial Infarction” with the subheading “Diagnosis”
then “Electrocardiography” diagnoses “Myocardial
Infarction”.

(Spasíc et al., 2003) uses domain-relevant verbs
to improve on terminology extraction. The co-
occurrence in sentences of selected verbs and can-

didate terms reinforces their termhood. But where
such linguistic inferences are stored in a KB as facts,
statistical inferences are only used to visualize pos-
sible relations between objects for further investiga-
tion. (Stapley and Benoit, 2000) measures statistical
gene name co-occurrence and graphically displays
the results for an expert to investigate the dominant
patterns. The PubMed4 system uses the UMLS to
relate metathesaurus concepts against a controlled
vocabulary used to index the abstracts. This allows
efficient retrieval of abstracts from medical journals,
but it makes use of hyponymy and lexical synonymy
to organize the terms. It collects terminologies from
differing sub-domains in a metathesaurus of con-
cepts.

All such inferences (especially statistical) need to
be verified by an expert to ensure their validity. Syn-
tactic parsing, if any, is reserved to shallow NP iden-
tifying strategies (Sekimizu et al., 1998), or possi-
bly supplemented with PP information (Rindflesch
et al., 2000). Semantic interpretation of the docu-
ments is only attempted through their MeSH head-
ings (Mendonca and Cimino, 1999).

5 Conclusion

This paper documents our approach towards QA in
the genomics domain. Although some aspects of
the work described in this paper are still experimen-
tal, we think that the description of the problems
that we have encountered and the specific solutions
adopted or planned will provide an interesting con-
tribution to the workshop. We conclude by observ-
ing that Question Answering is currently seen as an
“advanced” topic in the Genomics Track of TREC5,
due to be targeted for the first time in Year 2 (2005).
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