
Lookahead in Deterministic Left-Corner Parsing∗

James HENDERSON
School of Informatics, University of Edinburgh

2 Buccleuch Place
Edinburgh EH8 9LW

United Kingdom
james.henderson@ed.ac.uk

Abstract

To support incremental interpretation, any
model of human sentence processing must not
only process the sentence incrementally, it must
to some degree restrict the number of analyses
which it produces for any sentence prefix. De-
terministic parsing takes the extreme position
that there can only be one analysis for any sen-
tence prefix. Experiments with an incremen-
tal statistical parser show that performance is
severely degraded when the search for the most
probable parse is pruned to only the most prob-
able analysis after each prefix. One method
which has been extensively used to address the
difficulty of deterministic parsing is lookahead,
where information about a bounded number
of subsequent words is used to decide which
analyses to pursue. We simulate the effects of
lookahead by summing probabilities over pos-
sible parses for the lookahead words and using
this sum to choose which parse to pursue. We
find that a large improvement is achieved with
one word lookahead, but that more lookahead
results in relatively small additional improve-
ments. This suggests that one word lookahead
is sufficient, but that other modifications to our
left-corner parsing model could make determin-
istic parsing more effective.

1 Introduction

Incremental interpretation is a fundamental
property of the human parsing mechanism. To
support incremental interpretation, any model
of sentence processing must not only process the
sentence incrementally, it must to some degree
restrict the number of analyses which it pro-
duces for any sentence prefix. Otherwise the
ambiguity of natural language would make the
number of possible interpretations at any point
in the parse completely overwhelming. Deter-

∗ This work has been supported by the Department of
Computer Science, University of Geneva.

ministic parsing takes the extreme position that
there can only be one analysis for any sentence
prefix. We investigate methods which make
such a strong constraint feasible, in particular
the use of lookahead.

In this paper we do not try to construct a sin-
gle deterministic parser, but instead consider a
family of deterministic parsers and empirically
measure the optimal performance of a determin-
istic parser in this family. As has been previ-
ously proposed by Brants and Crocker (2000),
we take a corpus-based approach to this em-
pirical investigation, using a previously defined
statistical parser (Henderson, 2003). The sta-
tistical parser uses an incremental history-based
probability model based on left-corner parsing,
and the parameters of this model are estimated
using a neural network. Performance of this
basic model is state-of-the-art, making these re-
sults likely to generalize beyond this specific sys-
tem.

We specify the family of deterministic parsers
in terms of pruning the search for the most prob-
able parse. Both deterministic parsing and the
use of k-word lookahead are characterized as
constraints on pruning this search. We then de-
rive the optimal pruning strategy given these
constraints and the probabilities provided by
the statistical parser’s left-corner probability
model. Empirical experiments on the accuracy
of a parser which uses this pruning method in-
dicate the best accuracy we could expect from
a deterministic parser of this kind. This al-
lows us to compare different deterministic pars-
ing methods, in particular the use of different
amounts of lookahead.

In the remainder of this paper, we first dis-
cuss how the principles of deterministic parsing
can be expressed in terms of constraints on the
search strategy used by a statistical parser. We
then present the probability model used by the
statistical parser, the way a neural network is
used to estimate the parameters of this proba-

bility model, and the methods used to search for
the most probable parse according these param-
eters. Finally, we present the empirical experi-
ments on deterministic parsing with lookahead,
and discuss the implications of these results.

2 Approximating Optimal
Deterministic Parsing

The general principles of deterministic parsing,
as proposed by Marcus (1980), are that parsing
proceeds incrementally from left to right, and
that once a parsing decision has been made, it
cannot be revoked or overridden by an alter-
native analysis. We translate the first principle
into the design of a statistical parser by using an
incremental generative probability model. Such
a model provides us with probabilities for par-
tial parses which generate prefixes of the sen-
tence and which do not depend on the words
not in this prefix. We can then translate the
second principle into constraints on how a sta-
tistical parser chooses which partial parses to
pursue further as it searches for the most prob-
able complete parse.

The principle that decisions cannot be re-
voked or overridden means that, given a se-
quence of parser actions a1,..., ai−1 which we
have already chosen, we need to choose a sin-
gle parser action ai before considering any sub-
sequent parser action ai+1. However, this con-
straint does not prevent considering the effects
of multiple alternative parser actions for ai be-
fore choosing between them. This leaves a great
deal of flexibility for the design of a determin-
istic parser, because the set of actions defined
by a deterministic parser does not have to be
the same as the basic decisions defined by our
probability model. We can combine any fi-
nite sequence of decisions dj ,..., dj+l from our
probability model into a single parser action ai.
This combination allows a deterministic parser
to consider the effects of the entire sequence of
decisions dj ,..., dj+l before deciding whether to
choose it. Different deterministic parser designs
will combine the basic decisions into parser ac-
tions in different ways, thereby imposing differ-
ent constraints on how long a sequence of fu-
ture decisions dj ,..., dj+l can be considered be-
fore choosing a parser action.

Once we have made a distinction between the
basic decisions of the probability model dj and
the parser actions ai = dj ,..., dj+l, it is conve-
nient to express the choice of the parse a1,..., an

as a search for the most probable d1,..., dm,

where a1,..., an = d1,..., dm. The search incre-
mentally constructs partial parses and prunes
this search down to a single partial parse after
each complete parser action. In other words,
given that the search has so far chosen the par-
tial parse a1,..., ai−1 = d1,..., dj−1, the search
first considers all the possible partial parses
d1,..., dj−1, dj ,..., dj+l where there exists an ai =
dj ,..., dj+l. The search is then pruned down to
only the best d1,..., dj−1, dj ,..., dj+l from this set,
and the search continues with all partial parses
containing this prefix. Thus the search is al-
lowed to delay pruning for as many basic deci-
sions as are combined into a single parser action.

Rather than considering one single determin-
istic parser design, in this paper we consider a
family of deterministic parser designs. We then
determine tight upper bounds on the perfor-
mance of any deterministic parser in this fam-
ily. We define a family of deterministic parsers
by starting with a particular incremental gen-
erative probability model, and consider a range
of ways to define parser action ai as finite se-
quences dj ,..., dj+l of these basic decisions.

We define the family of parser designs as al-
lowing the combination of any sequence of de-
cisions which occur between the parsing of two
words. After a word has been incorporated into
the parse, this constraint allows the search to
consider all the possible decision sequences lead-
ing up to the incorporation of the next word,
but not beyond. When the next word is reached,
the search must again be pruned down to a sin-
gle analysis. This is a natural point to prune,
because it is the position where new informa-
tion about the sentence is available. Given this
definition of the family of deterministic parsers
and the fact that we are only concerned with
an upper bound on a deterministic parser’s per-
formance, there is no need to consider parser
designs which require more pruning than this,
since they will never perform as well as a parser
which requires less pruning.

Unfortunately, allowing the combination of
any sequence of decisions which occur between
the parsing of two words does not exactly corre-
spond to the constraints on deterministic pars-
ing. This is because we cannot put a finite upper
bound on the number of actions which occur be-
tween two words. Thus this class of parsers in-
cludes non-deterministic parsers, and therefore
our performance results represent only an up-
per bound on the performance which could be
achieved by a deterministic parser in the class.

However, there is good reason to believe this
is a tight upper bound. Lexicalized theories of
syntax all assume that the amount of informa-
tion about the syntactic structure contributed
by each word is finite, and that all the informa-
tion in the syntactic structure is contributed by
some word. Thus it should possible to distribute
all the information about the structure across
the parse in such a way that a finite amount
falls in between each word. The parsing order
we use (a form of left-corner parsing) seems to
achieve this fairly well, except for the fact that
it uses a stack. Parsing right-branching struc-
tures, such as are found in English, results in
the stack growing arbitrarily large, and then the
whole stack needs to be popped at the end of
the sentence. With the exception of these se-
quences of popping actions, the number of ac-
tions which occur between any two words could
be bounded. In our training set, the bound on
the number of non-popping actions between any
two words could be set at just 4.

In addition to designing parser actions to
make deterministic parsing easier, another
mechanism which is commonly used in deter-
ministic parser designs is lookahead. With
lookahead, information about words which have
not yet been incorporated into the parse can be
used to decide what action to choose next. We
consider models where the lookahead consists of
some small fixed-length prefix of the un-parsed
portion of the sentence, which we call k-word
lookahead. This mechanisms is constrained by
the requirement that the parser be incremental,
since a deterministic parser with k-word looka-
head can only provide an interpretation for the
portion of the sentence which is k words be-
hind what has been input so far. Thus it is not
possible to include the entire unboundedly-long
sentence in the lookahead. The family of deter-
ministic parsers with k-word lookahead would
include parsers which sometimes choose parser
actions without waiting to see all k words (and
thus on average allow interpretation sooner),
but because here we are only concerned with
the optimal performance achievable with a given
lookahead, we do not have to consider these al-
ternatives.

The optimal deterministic parser with looka-
head will choose the partial parse which is the
most likely to lead to the correct complete parse
given the previous partial parse plus the k words
of lookahead. In other words, we are trying
to maximize P (at+1|a1,..., at, wt+1,..., wt+k),

which is the same as maximizing
P (at+1, wt+1,..., wt+k|a1,..., at) for the given
wt+1,..., wt+k. (Note that any partial parse
a1,..., at generates the words w1,..., wt, because
the optimal deterministic parser designs we
are considering all have parser actions which
combine the entire portion of a parse between
one word and another.) We can compute this
probability by summing over all parses which
include the partial parse a1,..., at+1 and which
generate the lookahead string wt+1,..., wt+k.

P (at+1, wt+1,..., wt+k|a1,..., at) =∑
(at+2,...,at+k) P (at+1, at+2,..., at+k|a1,..., at)

where at+1,..., at+k generates wt+1,..., wt+k .

Because the parser actions are defined in terms
of basic decisions in the probability model, we
can compute this sum directly using the prob-
ability model. A real deterministic parser can-
not actually perform this computation explic-
itly, because it involves pursuing multiple anal-
yses which are then discarded. But ideally a
deterministic parser should compute an esti-
mate which approximates this sum. Thus we
can compute the performance of a deterministic
parser which makes the ideal use of lookahead
by explicitly computing this sum. Again, this
will be an upper bound on the performance of
a real deterministic parser, but we can reason-
ably expect that a real deterministic parser can
reach performance quite close to this ideal for a
small amount of lookahead.

This approach to lookahead can also be ex-
pressed in terms of pruning the search for the
best parse. After pruning to a single par-
tial parse a1,..., at which ends by generating
wt, the search is allowed to pursue multiple
parses in parallel until they generate the word
wt+k. The probabilities for these new partial
parses are then summed to get estimates of
P (at+1, wt+1,..., wt+k|a1,..., at) for each possible
at+1, and these sums are used to choose a single
at+1. The search is then pruned by removing all
partial parses which do not start with a1,..., at+1.
The remaining partial parses are then contin-
ued until they generate the word wt+k+1, and
their probabilities are summed to decide how to
prune to a single choice of at+2.

By expressing the family of deterministic
parsers with lookahead in terms of a pruning
strategy on a basic parsing model, we are able to
easily investigate the effects of different looka-
head lengths on the maximum performance of
a deterministic parser in this family. To com-

plete the specification of the family of determin-
istic parsers, we simple have to specify the basic
parsing model, as done in the next section.

3 A Generative Left-Corner
Probability Model

As with several previous statistical parsers
(Collins, 1999; Charniak, 2000), we use a gen-
erative history-based probability model of pars-
ing. Designing a history-based model of pars-
ing involves two steps, first choosing a mapping
from the set of phrase structure trees to the set
of parses, and then choosing a probability model
in which the probability of each parser decision
is conditioned on the history of previous deci-
sions in the parse. For the model to be genera-
tive, these decisions must include predicting the
words of the sentence. To support incremental
parsing, we want to map phrase structure trees
to parses which predict the words of the sen-
tence in their left-to-right order. To support de-
terministic parsing, we want our parses to spec-
ify information about the phrase structure tree
at appropriate points in the sentence. For these
reasons, we choose a form of left-corner parsing
(Rosenkrantz and Lewis, 1970).

In a left-corner parse, each node is introduced
after the subtree rooted at the node’s first child
has been fully parsed. Then the subtrees for the
node’s remaining children are parsed in their
left-to-right order. In the form of left-corner
parsing we use, parsing a constituent starts by
pushing the leftmost word w of the constituent
onto the stack with a shift(w) action. Parsing a
constituent ends by either introducing the con-
stituent’s parent nonterminal (labeled Y) with
a project(Y) action, or attaching to the parent
with a attach action.

More precisely, this parsing strategy is a ver-
sion of left-corner parsing which first applies
right-binarization to the grammar, as is done
in (Manning and Carpenter, 1997) except that
we binarize down to nullary rules rather than
to binary rules. This means that choosing the
children for a node is done one child at a time,
and that ending the sequence of children is a
separate choice. We also extended the parsing
strategy slightly to handle Chomsky adjunction
structures (i.e. structures of the form [X [X . . .]
[Y . . .]]) as a special case. The Chomsky ad-
junction is removed and replaced with a special
“modifier” link in the tree (becoming [X . . . [mod

Y . . .]]). This means that the parser’s set of
basic actions includes modify, as well as attach,

shift(w), and project(Y). We also compiled some
frequent chains of non-branching nodes (such as
[S [VP . . .]]) into a single node with a new la-
bel (becoming [S-VP . . .]). All these grammar
transforms are undone before any evaluation of
the output trees is performed.

Because this mapping from phrase structure
trees to sequences of parser decisions is one-to-
one, finding the most probable phrase structure
tree is equivalent to finding the parse d1,..., dm

which maximizes P (d1,..., dm), as is done in gen-
erative models. Because this probability in-
cludes the probabilities of the shift(wi) deci-
sions, this is the joint probability of the phrase
structure tree and the sentence. The probabil-
ity model is then defined by using the chain rule
for conditional probabilities to derive the prob-
ability of a parse as the multiplication of the
probabilities of each decision di conditioned on
that decision’s prior parse history d1,..., di−1.

P (d1,..., dm) = ΠiP (di|d1,..., di−1)

The parameters of this probability model are
the P (di|d1,..., di−1). Generative models are the
standard way to transform a parsing strategy
into a probability model, but note that we are
not assuming any bound on the amount of in-
formation from the parse history which might
be relevant to each parameter.

4 Estimating the Parameters with a
Neural Network

The most challenging problem in estimating
P (di|d1,..., di−1) is that the conditional includes
an unbounded amount of information. The
parse history d1,..., di−1 grows with the length of
the sentence. In order to apply standard prob-
ability estimation methods, we use neural net-
works to induce finite representations of this se-
quence, which we will denote h(d1,..., di−1). The
neural network training methods we use try to
find representations which preserve all the infor-
mation about the sequences which are relevant
to estimating the desired probabilities.

P (di|d1,..., di−1) ≈ P (di|h(d1,..., di−1))

Of the previous work on using neural net-
works for parsing natural language, by far the
most empirically successful has been the work
using Simple Synchrony Networks (Henderson,
2003). Like other recurrent network architec-
tures, SSNs compute a representation of an un-
bounded sequence by incrementally computing

a representation of each prefix of the sequence.
At each position i, representations from earlier
in the sequence are combined with features of
the new position i to produce a vector of real
valued features which represent the prefix end-
ing at i. This representation is called a hidden
representation. It is analogous to the hidden
state of a Hidden Markov Model. As long as
the hidden representation for position i−1 is al-
ways used to compute the hidden representation
for position i, any information about the entire
sequence could be passed from hidden represen-
tation to hidden representation and be included
in the hidden representation of that sequence.
When these representations are then used to es-
timate probabilities, this property means that
we are not making any a priori hard indepen-
dence assumptions.

The difference between SSNs and most other
recurrent neural network architectures is that
SSNs are specifically designed for process-
ing structures. When computing the his-
tory representation h(d1,..., di−1), the SSN uses
not only the previous history representation
h(d1,..., di−2), but also uses history representa-
tions for earlier positions which are particularly
relevant to choosing the next parser decision di.
This relevance is determined by first assigning
each position to a node in the parse tree, namely
the node which is on the top of the parser’s
stack when that decision is made. Then the
relevant earlier positions are chosen based on
the structural locality of the current decision’s
node to the earlier decisions’ nodes. In this way,
the number of representations which informa-
tion needs to pass through in order to flow from
history representation i to history representa-
tion j is determined by the structural distance
between i’s node and j’s node, and not just the
distance between i and j in the parse sequence.
This provides the neural network with a lin-
guistically appropriate inductive bias when it
learns the history representations, as explained
in more detail in (Henderson, 2003). The fact
that this bias is both structurally defined and
linguistically appropriate is the reason that this
parser performs so much better than previous
attempts at using neural networks for parsing,
such as (Costa et al., 2001).

Once it has computed h(d1,..., di−1), the SSN
uses standard methods (Bishop, 1995) to esti-
mate a probability distribution over the set of
possible next decisions di given these represen-
tations. This involves further decomposing the

distribution over all possible next parser actions
into a small hierarchy of conditional probabili-
ties, and then using log-linear models to esti-
mate each of these conditional probability dis-
tributions. The input features for these log-
linear models are the real-valued vectors com-
puted by h(d1,..., di−1), as explained in more de-
tail in (Henderson, 2003).

As with many other machine learning meth-
ods, training a Simple Synchrony Network in-
volves first defining an appropriate learning cri-
teria and then performing some form of gra-
dient descent learning to search for the opti-
mum values of the network’s parameters accord-
ing to this criteria. We use the on-line ver-
sion of Backpropagation to perform the gradi-
ent descent. This learning simultaneously tries
to optimize the parameters of the output com-
putation and the parameters of the mapping
h(d1,..., di−1). With multi-layered networks such
as SSNs, this training is not guaranteed to con-
verge to a global optimum, but in practice a
network whose criteria value is close to the op-
timum can be found.

5 Searching for the most probable
parse

As discussed in section 2, we investigate de-
terministic parsing by translating the princi-
ples of deterministic parsing into properties of
the pruning strategy used to search the space
of possible parses. The complete parsing sys-
tem alternates between using the search strat-
egy to decide what partial parse d1,..., di−1 to
pursue further and using the SSN to estimate
a probability distribution P (di|d1,..., di−1) over
possible next decisions di. The probabilities
P (d1,..., di) for the new partial parses are then
just P (d1,..., di−1) × P (di|d1,..., di−1). When no
pruning applies, the partial parse with the high-
est probability is chosen as the next one to be
extended.

Even in the non-deterministic version of the
parser, we need to prune the search space. This
is because the number of possible parses is ex-
ponential in the length of the sentence, and
we cannot use dynamic programming to com-
pute the best parse efficiently because we do not
make any independence assumptions. However,
we have found that the search can be drasti-
cally pruned without loss in accuracy, using a
similar approach to that used here to model de-
terministic parsing. After the prediction of each
word, we prune all partial parses except a fixed

beam of the most probable partial parses. Due
to the use of the above left-corner parsing order,
we have found that the beam can be as little as
100 parses without having any measurable effect
on accuracy. Below we will refer to this beam
width as the post-word search beam width.

In addition to pruning after the prediction of
each word, we also prune the search space in be-
tween two words by limiting its branching fac-
tor to at most 5. This, in effect, just limits the
number of labels considered for each new non-
terminal. We found that increasing the branch-
ing factor had no effect on accuracy and little
effect on speed.

For the simulations of deterministic parsers,
we always applied both the above pruning
strategies, in addition to the deterministic prun-
ing. This non-deterministic pruning reduces
the number of partial parses a1,..., at+1,..., at+k

whose probabilities are included in the sum used
to choose at+1 for the deterministic pruning.
This approximation is not likely to have any
significant effect on the choice of at+1, because
the probabilities of the partial parses which are
pruned by the non-deterministic pruning tend
to be very small compared to the most prob-
able alternatives. The non-deterministic prun-
ing also reduces the set of partial parses which
are chosen between during the subsequent de-
terministic pruning. But this undoubtedly has
no significant effect, since experimental results
have shown that the level of non-deterministic
pruning discussed above does not effect perfor-
mance even without deterministic pruning.

6 The Experiments

To investigate the effects of lookahead on our
family of deterministic parsers, we ran empirical
experiments on the standard the Penn Treebank
(Marcus et al., 1993) datasets. The input to
the network is a sequence of tag-word pairs.1

We report results for a vocabulary size of 508
tag-word pairs (a frequency threshold of 200).

We first trained a network to estimate the pa-
rameters of the basic probability model. We de-
termined appropriate training parameters and
network size based on intermediate validation

1We used a publicly available tagger (Ratnaparkhi,
1996) to provide the tags. This tagger is run before the
parser, so there may be some information about future
words which is available in the disambiguated tag which
is not available in the word itself. We don’t think this has
had a significant impact on the results reported here, but
currently we are working on doing the tagging internally
to the parser to avoid this problem.

80

82

84

86

88

90

0 2 4 6 8 10 12 14 16

deterministic recall
deterministic precision

non-deterministic recall
non-deterministic precision

Figure 1: Labeled constituent recall and pre-
cision as a function of the number of words
of lookahead used by a deterministic parser.
Curves reach their non-deterministic perfor-
mance with large lookahead.

results and our previous experience.2 We
trained several networks and chose the best ones
based on their validation performance. The
best post-word search beam width for the non-
deterministic parser was determined on the val-
idation set, which was 100.

To avoid repeated testing on the standard
testing set, we measured the performance of
the different models on section 0 of the Penn
Treebank (which is not included in either the
training or validation sets). Standard measures
of accuracy for different lookahead lengths are
plotted in figure 1.3 First we should note that
the non-deterministic parser has state-of-the-
art accuracy (89.0% F-measure), considering its
vocabulary size. A moderately larger vocabu-
lary version (4215 tag-word pairs) of this parser
achieves 89.8% F-measure on section 0, where
the best current result on the testing set is
90.7% (Bod, 2003).

As expected, the deterministic parsers do
worse than the non-deterministic one, and this
difference becomes less as the lookahead is
lengthened. What is surprising about the curves
in figure 1 is that there is a very large increase
in performance from zero words of lookahead

2The best network had 80 hidden units for the history
representation. Weight decay regularization was applied
at the beginning of training but reduced to near 0 by the
end of training. Training was stopped when maximum
performance was reached on the validation set, using a
post-word beam width of 5.

3All our results are computed with the evalb program
following the standard criteria in (Collins, 1999). We
used the standard training (sections 2–22, 39,832 sen-
tences, 910,196 words) and validation (section 24, 1346
sentence, 31507 words) sets (Collins, 1999). Results of
the nondeterministic parser average 0.2% worse on the
standard testing set, and average 0.8% better when a
larger vocabulary (4215 tag-word pairs) is used.

(i.e. pruning the search to 1 alternative directly
after every word) to one word of lookahead. Af-
ter one word of lookahead the curves show rel-
atively moderate improvements with each addi-
tional word of lookahead, converging to the non-
deterministic level, as would be expected.4 But
between zero words of lookahead and one word
of lookahead there is a 5.6% absolute improve-
ment in F-measure (versus a 0.9% absolute im-
provement between one and two words of looka-
head). In other words, adding the first word
of lookahead results in a 2/3 reduction in the
difference between the deterministic and non-
deterministic parser’s F-measure, while adding
subsequent words results in at most a 1/3 re-
duction per word.

7 Discussion

The large improvement in performance which
results from adding the first word of lookahead,
as compared to adding the subsequent words,
indicates that the first word of lookahead has
a qualitatively different effect on deterministic
parsing. We believe that one word of lookahead
is both necessary and sufficient for a model of
deterministic parsing.

The large gain provided by the first word of
lookahead indicates that this lookahead is nec-
essary for deterministic parsing. Given the fact
the with one word of lookahead the F-measure
of the deterministic parser is only 2.7% below
the maximum possible, it is unlikely that the
family of deterministic parsers assumed here is
so sub-optimal that the entire 5.6% improve-
ment gained with one word lookahead is simply
the result of compensating for limitations in the
choice of this family.

The performance curves in figure 1 also sug-
gest that one word of lookahead is sufficient. We
believe the gain provided by more than one word
of lookahead is the result of compensating for
limitations in the family of deterministic parsers
assumed here. Any limitations in this family
will result in the deterministic search making
choices before the necessary disambiguating in-
formation is available, thereby leading to addi-
tional errors. As the lookahead increases, some
previously mistaken choices will become disam-
biguated by the additional lookahead informa-
tion, thereby improving performance. In the
limit as lookahead increases, the performance of

4Note that when the lookahead length is longer
than the longest sentence, the deterministic and non-
deterministic parsers become equivalent.

the deterministic and non-deterministic parsers
will become the same, no matter what family
of deterministic parsers has been specified. The
smooth curve of increasing performance as the
lookahead is increased above one word is the
type of results we would expect if the lookahead
were simply correcting mistakes in this way.

Examples of possible limitations to the fam-
ily of deterministic parsers assumed here include
the choice of the left-corner ordering of parser
decisions. The left-corner ordering completely
determines when each decision about the phrase
structure tree must be made. If the family of de-
terministic parsers had more flexibility in this
ordering, then the optimal deterministic parser
could use an ordering which was tailored to the
statistics of the data, thereby avoiding being
forced to make decisions before sufficient infor-
mation is available.

8 Conclusions

In this paper we have investigated issues in de-
terministic parsing by characterizing these is-
sues in terms of the search procedure used by
a statistical parser. We use a neural network
to estimate the probabilities for an incremental
history-based probability model based on left-
corner parsing. Using an unconstrained search
procedure to try to find the most probable parse
according to this probability model (i.e. non-
deterministic parsing) results in state-of-the-art
accuracy. Deterministic parsing is simulated
by allowing the sequence of decisions between
two words to be combined into a single parser
action, and choosing the best single combined
action based on the probability calculated us-
ing the basic left-corner probability model. All
parses which do not use this chosen action are
then pruned from the search. When this prun-
ing is applied directly after each word, there is
a large reduction in accuracy (8.3% F-measure)
as compared to the non-deterministic search.

Given the pervasive ambiguity in natural lan-
guage, it is not surprising that this drastic prun-
ing strategy results in a large reduction in ac-
curacy. For this reason, deterministic parsers
usually use some form of lookahead. Looka-
head gives the parser more information about
the sentence at the point when the choice of
the next parser action takes place. We sim-
ulate the optimal use of k-word lookahead by
summing over all partial parses which continue
the given partial parse to the point where all
k words in the lookahead have been generated.

When expressed in terms of search, this means
that the deterministic pruning is done k words
behind a non-deterministic search for the best
parse, based on a sum over the partial parses
found by the non-deterministic search. When
accuracy is plotted as a function of k (figure 1),
we found that there is a large increase in accu-
racy when the first word of lookahead is added
(only 2.7% F-measure below non-deterministic
search). Further increases in the lookahead
length have much less of an impact.

We conclude that the first word of lookahead
is necessary for the success of any deterministic
parser, but that additional lookahead is proba-
bly not necessary. The remaining error created
by this model of deterministic parsing is proba-
bly best dealt with by investigating other aspect
of the model of deterministic parsing assumed
here, in particular the strict adherence to the
left-corner parsing order.

Despite the need to consider alternatives to
the left-corner parsing order, these results do
demonstrate that the left-corner parsing strat-
egy proposed is surprisingly good at supporting
deterministic parsing. This fact is important
in making the non-deterministic search strat-
egy used with this parser tractable. The obser-
vations made in this paper could lead to more
sophisticated search strategies which further in-
crease the speed of this or similar parsers with-
out significant reductions in accuracy.

References

Christopher M. Bishop. 1995. Neural Networks
for Pattern Recognition. Oxford University
Press, Oxford, UK.

Rens Bod. 2003. An efficient implementation of
a new DOP model. In Proc. 10th Conf. of Eu-
ropean Chapter of the Association for Com-
putational Linguistics, Budapest, Hungary.

Thorsten Brants and Matthew Crocker. 2000.
Probabilistic parsing and psychological plau-
sibility. In Proceedings of the Eighteenth
Conference on Computational Linguistics
(COLING-2000), Saarbrücken / Luxemburg
/ Nancy.

Eugene Charniak. 2000. A maximum-entropy-
inspired parser. In Proc. 1st Meeting of North
American Chapter of Association for Compu-
tational Linguistics, pages 132–139, Seattle,
Washington.

Michael Collins. 1999. Head-Driven Statistical
Models for Natural Language Parsing. Ph.D.

thesis, University of Pennsylvania, Philadel-
phia, PA.

F. Costa, V. Lombardo, P. Frasconi, and
G. Soda. 2001. Wide coverage incremental
parsing by learning attachment preferences.
In Proc. of the Conf. of the Italian Associa-
tion for Artificial Intelligence.

James Henderson. 2003. Inducing history rep-
resentations for broad coverage statistical
parsing. In Proc. joint meeting of North
American Chapter of the Association for
Computational Linguistics and the Human
Language Technology Conf., pages 103–110,
Edmonton, Canada.

Christopher D. Manning and Bob Carpenter.
1997. Probabilistic parsing using left corner
language models. In Proc. Int. Workshop on
Parsing Technologies, pages 147–158.

Mitchell P. Marcus, Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1993. Building
a large annotated corpus of English: The
Penn Treebank. Computational Linguistics,
19(2):313–330.

Mitchell Marcus. 1980. A Theory of Syntac-
tic Recognition for Natural Language. MIT
Press, Cambridge, MA.

Adwait Ratnaparkhi. 1996. A maximum en-
tropy model for part-of-speech tagging. In
Proc. Conf. on Empirical Methods in Natural
Language Processing, pages 133–142, Univ. of
Pennsylvania, PA.

D.J. Rosenkrantz and P.M. Lewis. 1970. De-
terministic left corner parsing. In Proc. 11th
Symposium on Switching and Automata The-
ory, pages 139–152.

