
AN EFFICIENT ALGORITHM FOR PROJECTIVE

DEPENDENCY PARSING

Joakim Nivre

Växjö University
School of Mathematics and Systems Engineering

SE-35195 VÄXJÖ
Joakim.Nivre@msi.vxu.se

Abstract

This paper presents a deterministic parsing algorithm for projective dependency grammar. The

running time of the algorithm is linear in the length of the input string, and the dependency graph

produced is guaranteed to be projective and acyclic. The algorithm has been experimentally

evaluated in parsing unrestricted Swedish text, achieving an accuracy above 85% with a very

simple grammar.

1 Introduction

Despite a long and venerable tradition in linguistics, dependency grammar has until quite re-

cently played a fairly marginal role in natural language parsing. However, dependency-based

representations have turned out to be useful in statistical approaches to parsing and disambig-

uation (see, e.g., Collins [4, 5, 6], Eisner [15, 16, 17], Samuelsson [25]) and they also appear well

suited for languages with less rigid word order constraints (Covington [9, 10], Collins et al. [7]).

Several di�erent parsing techniques have been used with dependency grammar. The most

common approach is probably to use some version of the dynamic programming algorithms

familiar from context-free parsing, with or without statistical disambiguation (Eisner [15, 16,

17], Barbero et al. [2], Courtin and Genthial [8], Samuelsson [25]). Another school proposes

that dependency parsing should be cast as a constraint satisfaction problem and solved using

constraint programming (Maruyama [22], Menzel and Schröder [24], Duchier [12, 13, 14]).

Here I will instead pursue a deterministic approach to dependency parsing, similar to shift-

reduce parsing for context-free grammar. In the past, deterministic parsing of natural language

has mostly been motivated by psycholinguistic concerns, as in the well-known Parsifal system

of Marcus [21]. However, deterministic parsing also has the more direct practical advantage

of providing very e�cient disambiguation. If the disambiguation can be performed with high

accuracy and robustness, deterministic parsing becomes an interesting alternative to more tra-

ditional algorithms for natural language parsing. There are potential applications of natural

language parsing, for example in information retrieval, where it may not always be necessary to

construct a complete dependency structure for a sentence, as long as dependency relations can

be identi�ed with good enough accuracy, but where e�ciency can be vital because of the large

amount of data to be processed. It may also be possible to improve parse accuracy by adding

customized post-processing in order to correct typical errors introduced by the parser. In this

way, deterministic dependency parsing can be seen as a compromise between so-called deep

PP

På

(In

� �

?

NN

60-talet

the-60's

� �

?

VB

målade

painted

PN

han

he

� �

?

JJ

djärva

bold

� �

?

NN

tavlor

pictures

� �

?

HP

som

which

� �

?

VB

retade

annoyed

� �

?

PM

Nikita

Nikita

� �

?

PM

Chrusjtjov.

Chrustjev.)

� �

?

Figure 1: Dependency graph for Swedish sentence

and shallow processing. It is a kind of deep processing in that the goal is to build a complete

syntactic analysis for the input string, not just identify basic constituents as in partial parsing.

But it resembles shallow processing in being robust, e�cient and deterministic.

In this paper, I present an algorithm that produces projective dependency graphs deter-

ministically in linear time. Preliminary experiments indicate that parsing accuracy above 85%

for unrestricted text is attainable with a very simple grammar. In section 2, I introduce the

necessary concepts from dependency grammar and the speci�c form of grammar rules required

by the parser. In section 3, I de�ne the algorithm and prove that its worst case running time

is linear in the size of the input; I also prove that the dependency graphs produced by the

algorithm are projective and acyclic. In section 4, I present preliminary results concerning

the parsing accuracy when applied to unrestricted Swedish text, using a simple hand-crafted

grammar. In section 5, I conclude with some suggestions for further research.

2 Projective Dependency Grammar

The linguistic tradition of dependency grammar comprises a large and fairly diverse family

of grammatical theories and formalisms that share certain basic assumptions about syntactic

structure, in particular the assumption that syntactic structure consists of lexical nodes linked

by binary relations called dependencies (see, e.g., Tesnière [30], Sgall et al. [26], Mel'£uk [23],

Hudson [20]). Thus, the common formal property of dependency structures, as compared to

the representations based on constituency (or phrase structure), is the lack of phrasal nodes.

In a dependency structure, every lexical node is dependent on at most one other lexical

node, usually called its head or regent, which means that the structure can be represented as

a directed graph, with nodes representing lexical elements and arcs representing dependency

relations. Figure 1 shows a dependency graph for a simple Swedish sentence, where each word

of the sentence is labeled with its part of speech.

Over and above these minimal assumptions, di�erent varieties of dependency grammar im-

pose di�erent conditions on dependency graphs. (In fact, not even the constraint that each

lexical node has at most one head is adopted universally; cf. Hudson [20].) The following three

constraints are common in the literature and will all be adopted in the sequel:

1. Dependency graphs should be acyclic.

2. Dependency graphs should be connected.

3. Dependency graphs should be projective.

Adopting the �rst and second of these conditions is tantamount to the assumption that the

dependency graph forms a rooted tree, with a single lexical node being the transitive head of

all others. For example, the dependency graph in Figure 1 is a tree with the �nite verb målade

(painted) as the root node.

While the conditions of acyclicity and connectedness are adopted in most versions of depend-

ency grammar, the projectivity constraint is more controversial and can in fact be seen as a

major branch point within this tradition. However, most researchers seem to agree that, even

if the assumption of projectivity is questionable from a theoretical point of view, it is never-

theless a reasonable approximation in practical parsing systems. First of all, it must be noted

that projectivity is not a property of the dependency graph in itself but only in relation to the

linear ordering of tokens in the surface string. Several di�erent de�nitions of projectivity can

be found in the literature, but they are all roughly equivalent (see, e.g., Mel£uk [23], Hudson

[20], Sleator and Temperley [27, 28]). I will follow Hudson [20] and de�ne projectivity in terms

of an extended notion of adjacency:

1. A dependency graph is projective i� every dependent node is graph adjacent to its head.

2. Two nodes n and n0 are graph adjacent i� every node n00 occurring between n and n0 in the

surface string is dominated by n or n0 in the graph.

Note that projectivity does not imply that the graph is connected; nor does it imply that the

graph is acyclic (although it does exclude cycles of length greater than 2).

We are now in a position to de�ne what we mean by a well-formed dependency graph:

� A string of words W is represented as a list of tokens, where each token n = (i; w) is a pair

consisting of a position i and a word form w; the functional expressions pos(n) = i and

lex(n) = w can be used to extract the position and word form of a token. We let < denote

the complete and strict ordering of tokens in W , i.e. n < n0 i� pos(n) < pos(n0).

� A dependency graph for W is a directed graph D = (NW ; A), where the set of nodes NW

is the set of tokens in W , and the arc relation A is a binary, irre�exive relation on NW .

We write n ! n0 to say that there is an arc from n to n0, i.e. (n; n0) 2 A; we use !� to

denote the re�exive and transitive closure of the arc relation A; and we use $ and $� for

the corresponding undirected relations, i.e. n$ n0 i� n! n0 or n0 ! n.

� A dependency graph D = (NW ; A) is well-formed i� the following conditions are satis�ed:

Single head (8nn0 n00) (n!n0 ^ n00!n0)) n = n00

Acyclic (8nn0):(n!n0 ^ n0!�n)

Connected (8nn0) n$�n0

Projective (8nn0 n00) (n$n0 ^ n<n00<n0)) (n!�n00 _ n0!�n00)

Finally, let us note that all dependency graphs considered in this paper are unlabeled, in the

sense that they have no labels on the edges representing di�erent kinds of dependency relations

(such as subject, object, adverbial, etc.).

Most formalizations of dependency grammar use rules that specify whole con�gurations of

dependents for a given head, using some notion of valence frames (Hays [19], Gaifman [18],

Carroll and Charniak [3], Sleator and Temperley [27, 28], Barbero et al. [2], Eisner [17], De-

busmann [11]). Here I will instead use a much simpler formalism, where only binary relations

between heads and dependents can be speci�ed. More precisely, a grammar G is a pair (T;R),

where T is a (terminal) vocabulary (set of word forms) and R is a set of rules of the following

form (where w;w0 2 T):

w w0

w ! w0

Given a string of words with nodes n and n0 such that lex(n) = w, lex(n0) = w0 and n < n0,

the �rst rule says that n0 can be the head of n, while the second rule says that n can be the

head of n0. Rules of the �rst kind are referred to as right-headed, rules of the second kind as

left-headed. The grammar rules used here are very similar to Covington's [9] notion of D-rules,

except that the latter are undirected, and I will therefore call them directed D-rules. Directed

D-rules are also similar to � but simpler than � the �dependency relations� of Courtin and

Genthial [8].

Finally, it is worth pointing out that, even though the parsing algorithm de�ned in the

next section presupposes directed D-rules, this does not exclude its use with more traditional

dependency grammars, since it is usually straightforward to extract directed D-rules from these

grammars. For example, given a grammar in the formalism of Hays [19], we can construct a

set of directed D-rules in the following way:

� For every rule X(X�m � � �X�1 �X1 � � �Xn) in the original grammar, introduce rules wl w

and w ! wr for every w 2 X;wl 2 X�m [� � � [X�1; wr 2 X1 [� � � [Xn.

However, using the parsing algorithm de�ned in the next section with the directed D-rules

extracted in this way will not result in a parser for the original grammar, since the extracted

rules normally impose much weaker constraints on the dependency structure than the original

rules.

3 Parsing Algorithm

The parsing algorithm presented in this section is in many ways similar to the basic shift-reduce

algorithm for context-free grammars (Aho et al. [1]), although the parse actions are di�erent

given that we are using directed D-rules instead of context-free grammar rules. For example,

since there are no nonterminal symbols in the grammar, the stack will never contain anything

but input tokens (graph nodes), and a reduce action simply amounts to popping the topmost

element from the stack.

Parser con�gurations are represented by triples hS; I; Ai, where S is the stack (represented

as a list), I is the list of (remaining) input tokens, and A is the (current) arc relation for

the dependency graph. (The set of of nodes NW in the dependency graph is given by the

input string, as de�ned in the preceding section, and need not be represented explicitly in the

con�guration.) Given an input string W , the parser is initialized to hnil;W; ;i and terminates

when it reaches a con�guration hS;nil; Ai (for any list S and set of arcs A). The input stringW

is accepted if the dependency graph D = (NW ; A) given at termination is well-formed; otherwise

W is rejected. The behavior of the parser is de�ned by the transitions de�ned in Figure 2 (where

n and n0 are arbitrary graph nodes):

Initialization hnil;W; ;i

Termination hS;nil; Ai

Left-Arc hnjS; n0jI; Ai ! hS; n0jI; A [f(n0; n)gi lex(n) lex(n0) 2 R
:9n00(n00; n) 2 A

Right-Arc hnjS; n0jI; Ai ! hn0jnjS; I; A [f(n; n0)gi lex(n)! lex(n0) 2 R
:9n00(n00; n0) 2 A

Reduce hnjS; I; Ai ! hS; I; Ai 9n0(n0; n) 2 A

Shift hS; njI; Ai ! hnjS; I; Ai

Figure 2: Parser transitions

� The transition Left-Arc adds an arc n0 ! n from the next input token n0 to the node n on

top of the stack and reduces (pops) n from the stack, provided that the grammar contains

the rule lex(n) lex(n0) and provided that the graph does not contain an arc n00 ! n.

The reason that the dependent node is immediately reduced is to eliminate the possibility

of adding an arc n ! n0 (should the grammar contain the rule lex(n) ! lex(n0)), which

would create a cycle in the graph.

� The transition Right-Arc adds an arc n ! n0 from the node n on top of the stack to the

next input token n0, licensed by an appropriate grammar rule, and shifts (pushes) n0 onto

the stack. The reason that the dependent node is immediately shifted is the same as in the

preceding case, i.e. to prevent the creation of cycles. (Since n0 must be reduced before n can

become topmost again, no further arc linking these nodes can ever be added.)

� The transition Reduce simply reduces (pops) the node n on top of the stack, provided that

this node has a head. This transition is needed for cases where a single head has multiple

dependents on the right, in which case the closer dependent nodes must be reduced before

arcs can be added to the more distant ones. The condition that the reduced node has a head

is necessary to ensure that the dependency graph is projective, since otherwise there could

be ungoverned nodes between a head and its dependent.

� The transition Shift, �nally, simply shifts (pushes) the next input token n onto the stack.

This transition is needed for cases where a right dependent has its own left dependents, in

which case these dependents have to be reduced (by Left-Arc transitions) before the arc can

be added from the head to the right dependent. Moreover, the Shift transition, which has no

condition associated with it except that the input list is non-empty, is needed to guarantee

termination.

The transitions Left-Arc and Reduce have in common that they reduce the stack size by

1 without a�ecting the length of the input list. I will therefore call these transitions pop-

transitions in the following. In a similar fashion, Right-Arc and Shift have in common that

W = på 60-talet målade han tavlor R � f på ! 60-talet,
(in) (the-60's) (painted) (he) (pictures) på målade,

målade ! han,
målade ! tavlor g

hnil; på 60-talet målade han tavlor; ;i
S
�! hpå; 60-talet målade han tavlor; ;i
RA
�! h60-talet på;målade han tavlor; f(på; 60-talet)gi
R
�! hpå;målade han tavlor; f(på; 60-talet)gi
LA
�! hnil;målade han tavlor; f(på; 60-talet); (målade; på)gi
S
�! hmålade; han tavlor; f(på; 60-talet); (målade; på)gi
RA
�! hhan målade; tavlor; f(på; 60-talet); (målade; på); (målade; han)gi
R
�! hmålade; tavlor; f(på; 60-talet); (målade; på); (målade; han)gi
RA
�! htavlor målade;nil; f(på; 60-talet); (målade; på); (målade; han); (målade; tavlor)gi

Figure 3: Parse of Swedish sentence

they reduce the length of the input list by 1 and increases the size of the stack by 1 and will

therefore be called push-transitions.

As it stands, this transition system is nondeterministic, since several transitions often apply

to the same con�guration, and in order to get a deterministic parser we need to impose some

scheduling policy on top of the system. The simplest way to do this is to use a constant priority

ordering of transitions Left-Arc > Right-Arc > Reduce > Shift (where a > b means that

a has higher priority than b). Figure 3 shows how a reduced variant of the Swedish sentence in

Figure 1 can be parsed using this priority ordering (with the obvious transition labels LA =

Left-Arc, RA = Right-Arc, R = Reduce, S = Shift).

Deciding how to resolve these con�icts is crucial from the point of view of parsing accuracy,

as we will see in the next section, but it does not a�ect the basic properties of the parser

with respect to running time and well-formedness of the dependency graph produced. For the

remainder of this section, I will therefore simply assume that there exists some unspeci�ed

determinization of the parser (perhaps randomized) such that exactly one of the permissible

transitions is chosen for every non-terminal con�guration.

� Proposition 1: Given an input string W of length n, the parser terminates after at most

2n transitions.

� Proof of Proposition 1: We �rst show that a transition sequence starting from an initial

con�guration hnil;W; ;i can contain at most n push-transitions and that such a sequence

must be terminating:

1. push-transitions have as a precondition that the current input list is non-empty and de-

creases its length by 1. Since there are no transitions that increase the length of the input

list, the maximum number of push-transitions is n. For the same reason, a transition

sequence containing n push-transitions must end in a con�guration hS;nil; Ai, which is

terminal.

We then show that a transition sequence containing n push-transitions can contain at most

n pop-transitions:

2. pop-transitions have as a precondition that the stack S is non-empty and have as an e�ect

that the size of S is decreased by 1. Since the initial con�guration has an empty S, and

since the only transitions that increase the size of S are push-transitions of which there

can be no more than n instances, it follows that the maximum number of pop-transitions

is also n.

Given that the number of pop-transitions is bounded by the number of push-transitions,

and given that at least one push-transition (Shift) is applicable to every non-terminal con-

�guration, we conclude that, for every initial con�guration hnil;W; ;i with an input list W

of length n, there exists a transition sequence containing exactly n push-transitions and at

most n pop-transitions leading to a terminal con�guration hS;nil; Ai. 2

The practical signi�cance of Proposition 1 is that the parser is guaranteed to be both e�cient

and robust. As long as each transition can be performed in constant time, which only requires a

reasonable choice of data structures for lookup of grammar rules and graph arcs, the worst case

running time of the algorithm will be linear in the length of the input. Moreover, even if the

parser does not succeed in building a well-formed dependency graph, it is always guaranteed to

terminate.

� Proposition 2: The dependency graph G = (NW ; A) given at parser termination is project-

ive and acyclic.

� Proof of Proposition 2: For projectivity we need to show that, for every input string

W , if hnil;W; ;i !� hS;nil; Ai then the graph (NW ; A) is projective, which means that, for

every pair (n; n0) 2 A, n and n0 are graph adjacent in G. Assume hnil;W; ;i !� hS;nil; Ai

and assume (n; n0) 2 A. Since graph adjacency is a symmetric relation, we can without loss

of generality assume that n < n0. Then we have hnil;W; ;i !� hS0; njn1j � � � jnkjn
0jI; A0i !

hnjS0; n1j � � � jnkjn
0jI; A00i !� hnjS0; n0jI; A000i !� hS;nil; Ai. What we need to show is that

all of n1; : : : ; nk are dominated by n or n0 in A, but since no arcs involving n1; : : : ; nk can

be in A00 or A � A000, it is su�cient to show that this holds in A00 � A000. We �rst observe

that the reduction of k nodes requires exactly 2k transitions, since every reduction requires

a Shift followed by a Left-Arc, or a Right-Arc followed by a Reduce (although the two

transitions in each pair need not be adjacent in the sequence). Let �(k) be the claim that

if hnjS0; n1j � � � jnkjn0jI; A00i !2k hnjS0; n0jI; A000i then all of n1; : : : ; nk are dominated by n

or n0 in A000, parameterized on the number k of nodes between n and n0. We now use an

inductive proof to show that �(k) holds for all k � 0:

1. Basis: If k = 0 then n and n0 are string adjacent and �(k) holds vacuously.

2. Induction: Assume �(k) (k � 0) and assume that hnjS0; n1j � � � jnkjn
0jI; A00i !2(k+1)

hnjS0; n0jI; A000i. We begin by noting that the �rst transition in this sequence must be a

push-transition, because otherwise n would be reduced and would not be on the stack in

the �nal con�guration. Hence, we need to consider two cases:

(a) If the �rst transition is Right-Arc, then n1 must be reduced with a Reduce transition

and there exists some m � 0 such that:

hnjS0; n1j � � � jnkjn0jI; A00i !

hn1jnjS0; n2j � � � jnkjn0jI; A00 [f(n; n1)gi !2m

hn1jnjS0; n2+mj � � � jnkjn0jI; A0000i !

hnjS0; n2+mj � � � jnkjn0jI; A0000i !2(k+1)�(2m+2)

hnjS0; n0jI; A000i

Since 2(k + 1)� (2m+ 2) � 2k, we can use the inductive hypothesis to infer that n and

n0 are adjacent.

(b) If the �rst transition is Shift, then n1 must be reduced with a Left-Arc transition and

there exists some m � 0 such that:

hnjS0; n1j � � � jnkjn
0jI; A00i !

hn1jnjS
0; n2j � � � jnkjn

0jI; A00i !2m

hn1jnjS
0; n2+mj � � � jnkjn

0jI; A000i !

hnjS0; n2+mj � � � jnkjn
0jI; A000 [f(n2+m; n1)gi !2(k+1)�(2m+2)

hnjS0; n0jI; A000i

Again, it follows from the inductive hypothesis that n and n0 are adjacent.

The proof that (NW ; A) is free of cycles is analogous to the proof of projectivity, except that

we consider the claim 	(k) that if hnjS0; n1j � � � jnkjn0jI; A00i !2k hnjS0; n0jI; A000i then there

is no path from n to n0 or from n0 to n, again parameterized on the number k of nodes between

n and n0. Here the base case follows from the de�nition of Left-Arc and Right-Arc, which

prevents cycles of length 2. 2

In virtue of Proposition 2, we know that even if a stringW is rejected by the parser, the resulting

dependency graph (NW ; A) is projective and acyclic, although not necessarily connected. In

fact, the graph will consist of a number of connected components, each of which forms a well-

formed dependency graph for a substring of W . This is important from the point of view of

robustness, since each of these components represent a partial analysis of the input string.

4 Empirical Evaluation

In order to estimate the parsing accuracy that can be expected with the algorithm described

in the preceding section and a grammar consisting of directed D-rules, a small experiment was

performed using data from the Stockholm-Umeå Corpus of written Swedish (SUC [29]), which

is a balanced corpus consisting of �ctional and non-�ctional texts, organized in the same way as

the Brown corpus of American English. The experiment is based on a random sample consisting

of about 4000 words, made up of 16 connected segments, and containing 257 sentences in total,

which have been manually annotated with dependency graphs by the author.

The Stockholm-Umeå Corpus is annotated for parts of speech (and manually corrected), and

the tagged sentences were used as input to the parser. This means that the vocabulary of the

grammar consists of word-tag pairs, although most of the grammar rules used only take parts

of speech into account. The grammar used in the experiment is hand-crafted and contains a

total of 126 rules, divided into 90 left-headed rules (of the form w ! w0) and 36 right-headed

rules (of the form w w0).

Parser Mean Std
Baseline 80.0 13.2
S/R 87.8 11.0
S/RA 89.0 10.6

Table 1: Attachment scores (mean and standard deviation)

Parsing accuracy was measured by the attachment score used by Eisner [15] and Collins et

al. [7], which is computed as the proportion of words in a sentence that is assigned the correct

head (or no head if the word is a root). The overall attachment score was then calculated as

the mean attachment score over all sentences in the sample.

As mentioned in the previous section, di�erent scheduling policies for the parser transitions

yield di�erent deterministic parsers. In this experiment, three di�erent versions of the parser

were compared:

� The baseline parser uses the constant priority ordering of transitions de�ned in section 3

Left-Arc > Right-Arc > Reduce > Shift (cf. also Figure 3).

� The second parser, called S/R, retains the ordering Left-Arc > Right-Arc > Reduce,

Shift but uses the following simple rule to resolve Shift/Reduce con�icts:

If the node on top of the stack can be a transitive head of the next input token (according

to the grammar) then Shift; otherwise Reduce.

� The third parser, called S/RA, in addition uses a simple lookahead for resolving Shift/Right-

Arc con�icts, preferring a Shift-transition over a Right-Arc-transition in con�gurations

where the token on top of the stack is a verb and the next token could be a post-modi�er of

this verb but could also be a pre-modi�er of a following token, as in the following example

(cf. Figure 1):

PN VB AB JJ NN

han målar extremt djärva tavlor

(he) (paints) (extremely) (bold) (pictures)

Making a Shift-transition in these cases is equivalent to a general preference for the pre-

modi�er interpretation.

Table 1 shows the mean attachment score and standard deviation obtained for the three di�erent

parsers. We can see that the parsing accuracy improves with the more complex scheduling

policies, all di�erences being statistically signi�cant despite the relatively small sample (paired

t-test, � = :05). There are no directly comparable results for Swedish text, but Eisner [15]

reports an accuracy of 90% for probabilistic dependency parsing of English text, sampled from

the Wall Street Journal section of the Penn Treebank. Moreover, if the correct part of speech

tags are given with the input, accuracy increases to almost 93%. Collins et al. [7] report an

accuracy of 91% for English text (the same corpus as in Eisner [15]) and 80% accuracy for Czech

text. Given that Swedish is intermediate between English and Czech with regard to in�ectional

richness and freedom of word order, the results seem rather promising, even with the 3% drop

in accuracy that can be expected when a part of speech tagger is used to preprocess the input

(Eisner [15]). However, it should also be remembered that the empirical basis for evaluation

is still very small. With a 95% con�dence interval, the accuracy of the best parser can be

estimated to lie in the range 85�93%, so a conservative conclusion is that a parsing accuracy

above 85% is achievable.

5 Conclusion

The parsing algorithm presented in this paper has two attractive properties. It is robust, in

the sense that it produces a projective and acyclic dependency graph for any input string, and

it is e�cient, producing these graphs in linear time. The crucial question for further research

is whether the algorithm can achieve good enough accuracy to be useful in practical parsing

systems. So far, it has been used with deterministic scheduling policies and simple directed

D-rules to achieve reasonable accuracy when parsing unrestricted Swedish text. Topics to

be investigated in the future include both alternative scheduling policies, possibly involving

stochastic models, and alternative grammar formalisms, encoding stronger constraints on well-

formed dependency structures.

References

[1] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles Techniques, and

Tools. Addison Wesley, 1986.

[2] Cristina Barbero, Leonardo Lesmo, Vincenzo Lombardo, and Paola Merlo. Integration of

syntactic and lexical information in a hierarchical dependency grammar. In Sylvain Kahane

and Alain Polguère, editors, Proceedings of the Workshop on Processing of Dependency-

Based Grammars, pages 58�67, Université de Montréal, Quebec, Canada, August 1998.

[3] Glenn Carroll and Eugene Charniak. Two experiments on learning probabilistic depend-

ency grammars from corpora. Technical Report TR-92, Department of Computer Science,

Brown University, 1992.

[4] Michael Collins. A new statistical parser based on bigram lexical dependencies. In Pro-

ceedings of the 34th Annatual Meeting of the Association for Computational Linguistics,

pages 184�191, Santa Cruz, CA, 1996.

[5] Michael Collins. Three generative, lexicalised models for statistical parsing. In Proceedings

of the 35th Annatual Meeting of the Association for Computational Linguistics, pages 16�

23, Madrid, Spain, 1997.

[6] Michael Collins. Head-Driven Statistical Models for Natural Language Parsing. PhD thesis,

University of Pennsylvania, 1999.

[7] Michael Collins, Jan Haji£, Eric Brill, Lance Ramshaw, and Christoph Tillmann. A Stat-

istical Parser of Czech. In Proceedings of 37th ACL Conference, pages 505�512, University

of Maryland, College Park, USA, 1999.

[8] Jacques Courtin and Damien Genthial. Parsing with dependency relations and robust

parsing. In Sylvain Kahane and Alain Polguère, editors, Proceedings of the Workshop

on Processing of Dependency-Based Grammars, pages 95�101, Université de Montréal,

Quebec, Canada, August 1998.

[9] Michael A. Covington. A dependency parser for variable-word-order languages. Technical

Report AI-1990-01, University of Georgia, Athens, GA, 1990.

[10] Michael A. Covington. Discontinuous dependency parsing of free and �xed word order:

Work in progress. Technical Report AI-1994-02, University of Georgia, Athens, GA, 1994.

[11] Ralph Debusmann. A declarative grammar formalism for dependency grammar. Master's

thesis, Computational Linguistics, Universität des Saarlandes, November 2001.

[12] Denys Duchier. Axiomatizing dependency parsing using set constraints. In Sixth Meeting

on Mathematics of Language, pages 115�126, Orlando, Florida, July 1999.

[13] Denys Duchier. Lexicalized syntax and topology for non-projective dependency grammar.

In Joint Conference on Formal Grammars and Mathematics of Language FGMOL'01, Hel-

sinki, August 2001.

[14] Denys Duchier. Con�guration of labeled trees under lexicalized constraints and principles.

Journal of Language and Computation, 1, 2002.

[15] Jason M. Eisner. An empirical comparison of probability models for dependency grammar.

Technical Report IRCS-96-11, Institute for Research in Cognitive Science, University of

Pennsylvania, 1996.

[16] Jason M. Eisner. Three new probabilistic models for dependency parsing: An exploration.

In Proceedings of COLING-96, Copenhagen, 1996.

[17] Jason M. Eisner. Bilexical grammars and their cubic-time parsing algorithms. In Harry

Bunt and Anton Nijholt, editors, Advances in Probabilistic and Other Parsing Technologies.

Kluwer, 2000.

[18] Haim Gaifman. Dependency systems and phrase-structure systems. Information and Con-

trol, 8:304�337, 1965.

[19] David G. Hays. Dependency theory: A formalism and some observations. Language,

40:511�525, 1964.

[20] Richard A. Hudson. English Word Grammar. Blackwell, 1990.

[21] Mitchell P. Marcus. A Theory of Syntactic Recognition for Natural Language. MIT Press,

1980.

[22] Hiroshi Maruyama. Structural disambiguation with constraint propagation. In Proceedings

of the 28th ACL, pages 31�38, Pittsburgh, PA, 1990.

[23] Igor Mel'cuk. Dependency Syntax: Theory and Practice. State University of New York

Press, 1988.

[24] Wolfgang Menzel and Ingo Schröder. Decision procedures for dependency parsing us-

ing graded constraints. In Sylvain Kahane and Alain Polguère, editors, Proceedings of

the Workshop on Processing of Dependency-Based Grammars, pages 78�87, Université de

Montréal, Quebec, Canada, August 1998.

[25] Christer Samuelsson. A statistical theory of dependency syntax. In Proceedings COLING-

2000. Morgan Kaufmann, 2000.

[26] Petr Sgall, Eva Hajicova, and Jarmila Panevova. The Meaning of the Sentence in Its

Pragmatic Aspects. Reidel, 1986.

[27] Daniel Sleator and Davy Temperley. Parsing English with a link grammar. Technical

Report CMU-CS-91-196, Carnegie Mellon University, Computer Science, 1991.

[28] Daniel Sleator and Davy Temperley. Parsing English with a link grammar. In Third

International Workshop on Parsing Technologies, 1993.

[29] Stockholm Umeå Corpus. Version 1.0. Produced by Department of Linguistics, Umeå

University and Department of Linguistics, Stockholm University. ISBN 91-7191-348-3.,

August 1997.

[30] Lucien Tesnière. Éléments de syntaxe structurale. Editions Klincksieck, 1959.

