
Antecedent Recovery: Experiments with a Trace Tagger

Péter Dienes and Amit Dubey
Department of Computational Linguistics

Saarland University
PO Box 15 11 50

66041 Saarbrücken, Germany
{dienes,adubey}@coli.uni-sb.de

Abstract

This paper explores the problem of find-
ing non-local dependencies. First, we
isolate a set of features useful for this
task. Second, we develop both a two-step
approach which combines a trace tagger
with a state-of-the-art lexicalized parser
and a one-step approach which finds non-
local dependencies while parsing. We find
that the former outperforms the latter be-
cause it makes better use of the features
we isolate.

1 Introduction

Many broad-coverage statistical parsers (Charniak,
2000; Collins, 1999; Bod, 2001) are not able to give
a full interpretation for sentences such as:

(1) It is difficult to guess what she wants to buy.

Building the semantic interpretation of this sentence
requires recovering three non-local relations: (i) the
object of buy is what ;1 (ii) the subject of buy is she;
and (iii) guess does not have a subject in the sen-
tence.

Three approaches have been proposed to de-
tect such relations: (i) post-processing the output
of a parser not designed to detect extraction sites
(Johnson, 2002); (ii) integrating antecedent recov-
ery into the parser (henceforth in-processing) by ei-
ther enriching a syntactically simple model (Collins,
1999) or using a more powerful syntactic framework

1Collins (1999) can handle this case (Model 3).

(Clark et al., 2002; Riezler et al., 2002); and (iii) de-
tecting non-local dependencies as a pre-processing
step before parsing (Dienes and Dubey, 2003).

While the pre-processing approach is reported
to give state-of-the-art performance using unlexi-
calized parsers, it has not been tested using lexi-
calized models. Our main claim is that that the
pre-processing approach, coupled with a lexical-
ized parser outperforms both state-of-the-art post-
processing and in-processing. However, we show
that Model 3 of Collins (1999) can be generalized
to handle all types of long-distance dependencies
with performance close to the pre-processing archi-
tecture.

A general contribution of this paper is that it gives
important insights about the nature of the problem.
Recovering non-local semantic relations is regarded
to be a difficult problem. The successes (and fail-
ures) of the simple architecture outlined here help
determine what features are to be incorporated into
a parser in order to improve recovery of non-local
dependencies.

The overall organization of the paper is as fol-
lows. First, Section 2 sketches the material we use
for the experiments in the paper. In Section 3, we
discuss a finite-state system, a trace tagger, that de-
tects extraction sites without knowledge of phrase-
structure and we isolate important cues for the task.
Section 4 combines the trace tagger with a parser in
order to recover antecedents. Finally, in Section 5,
we investigate whether and how detection of extrac-
tion sites and antecedent recovery can be integrated
into a lexicalized stochastic parser.

Type Freq. Explanation Example
NP–NP 987 controlled NP-traces Sam was seen *

WH–NP 438 NP-traces of A
�
-movement the woman who you saw *T*

PRO–NP 426 uncontrolled PROs * to sleep is nice

COMP–SBAR 338 empty complementizer (that) Sam said 0 Sasha snores

UNIT 332 empty units $ 25 *U*

WH–S 228 trace of topicalized sentence Sam had to go, Sasha said *T*

WH–ADVP 120 traces of WH adverbs Sam told us how he did it *T*

CLAUSE 118 trace of a moved SBAR Sam had to go, Sasha said 0

COMP–WHNP 98 empty WH-complementizer the woman 0 we saw *T*

ALL 3310

Table 1: Most frequent types of EEs in Section 0.

2 Data

In the experiments we use the same train-
ing, test, and development data as in
Dienes and Dubey (2003), where non-local de-
pendencies are annotated with the help of empty
elements (EEs) co-indexed with their controlling
constituents (if any). The most frequent types of
EEs are summarized in Table 1. Thus, the example
sentence (1) will get the annotation:

(2) It is difficult PRO-NP to guess what she wants
NP-NP to buy WH-NP.

For the parsing and antecedent recovery exper-
iments, in the case of WH-traces (WH– �����) and
controlled NP-traces (NP–NP), we follow the stan-
dard technique of marking nodes dominating the
empty element up to but not including the par-
ent of the antecedent as defective (missing an ar-
gument) with a gap feature (Gazdar et al., 1985;
Collins, 1999). Furthermore, to make antecedent
co-indexation possible with many types of EEs, we
generalize Collins’ approach by enriching the an-
notation of non-terminals with the type of the EE

in question (eg. WH–NP), using different gap+ fea-
tures (gap+WH-NP; c.f. Figure 1). The original non-
terminals augmented with gap+ features serve as
new non-terminal labels. Note, however, that not
all EEs have antecedents. In these cases, the gap+
feature does not show up in the dominating non-
terminal (Figure 2).

3 Detecting empty elements

Previous work (Dienes and Dubey, 2003) shows that
detecting empty elements can be performed fairly
reliably before parsing using a trace tagger, which
tags words with information on EEs immediately
preceding them. For example, the first occurrence
of the word to in our example sentence (2) gets the
tag EE=TT-NP , whereas the word wants is tagged as
having no EE. The trace tagger uses three main types
of features: (i) combination of POS tags in a win-
dow of five words around the EEs; (ii) lexical fea-
tures of the words in a window of three lexical items;
and (iii) long-distance cues (Table 2). An EE is cor-
rectly detected if and only if (i) the label matches
that of the gold standard and (ii) it occurs between
the same words. Dienes and Dubey (2003) report
79 � 1% labeled F-score on this evaluation metric, the

SBAR

WHNPi

what

S �����
	��

NP j

she

VP �����
	����	����
	��

V

wants

S �����
	����	����
	��

NP 	����
	��

NP–NP j

VP �����
	��

TO

to

VP �����
	��

V

buy

NP �����
	��

WH-NPi

Figure 1: Threading gap+WH-NP and gap+NP-NP.

S

NP

It

VP

V

is

ADJP

ADJ

difficult

S

NP

PRO-NP

VP

TO

to

VP

V

guess

SBAR

Figure 2: Representing EEs without antecedents.

best published result on the EE detection task.

While Dienes and Dubey (2003) report overall
scores, they do not evaluate the relative importance
of the features used by the tagger. This can be
achieved by testing how the model fares if only a
subset of the features are switched on (performance
analysis). Another way to investigate the problem
is to analyze the average weight and the activation
frequency of each feature type.

According to the performance analysis, the most
important features are the ones encoding POS-
information. Indeed, by turning only these features
on, the accuracy of the system is already fairly high:
the labeled F-score is 71 � 2%. A closer look at
the feature weights shows that the right context is
slightly more informative than the left one. Lex-
icalization of the model contributes further 6% to
the overall score (the following word being slightly
more important than the preceding one), whereas
the features capturing long-distance cues only im-
prove the overall score by around 2%. Interestingly,
long-distance features get higher weights in general,
but their contribution to the overall performance is
small since they are rarely activated. Finally, the
model with only lexical features performs surpris-
ingly well: the labeled F-score is 68 � 9%, showing
that a very small window already contains valuable
information for the task.

In summary, the most important result here is that
a relatively small window of up to five words con-
tains important cues for detecting EEs.

4 Antecedent recovery

Antecedent recovery requires knowledge of phrase
structure, and hence calls for a parsing component.
In this section, we show how to recover the an-
tecedents given a parse tree, and how to incorporate
information about EE-sites into the parser.

4.1 Antecedent recovery algorithm

The main motivation for the introduction of gap+
variables is that they indicate a path from the EE to
the antecedent. In case of a non-binary-branching
grammar, however, this path only determines the
node immediately dominating the antecedent, but
does not indicate the child the EE should be co-
indexed with. Moreover, a node might contain sev-
eral gap+ variables, which further complicates an-
tecedent recovery, even in the case of perfect trees.
This calls for a sophisticated algorithm to recover
antecedents.

1 foreach gap
2 do find antecedent

�
“gap” � gap � ;

3

4 proc find antecedent
�
“gap” � node ���

5 var par � node.parent ;
6 p � # of gap+ features of type “gap” on par;
7 ch � sum of the gap+ features of type “gap” on
8 par.children ;
9 node.remove one gap

�
“gap” � ;

10 if p � ch
11 then Drop the gap here
12 ante � leftmost non-adjunct of par.children
13 allowed by “gap”

���� node � ;
14 return ante if ante;
15 ante � leftmost child of par.children
16 allowed by “gap”

���� node � ;
17 return ante if ante;
18 return nil;
19 else Pass up the tree recursively
20 find antecedent

�
“gap” � par � .

Figure 3: The antecedent recovery algorithm.

The algorithm, presented in Figure 3, runs af-
ter the best parse has been selected. It works in
a bottom-up fashion, and for each empty node the
main recursive function find antecedent is called
separately (lines 1 and 2). At every call, the number
of gap+ variables of type “gap” are calculated for
the parent par of the current node node (p; line 6)
and for all the children (ch; line 7). If the parent
has at least as many unresolved gap+ variables as
its children, we conclude that the current EE is re-

Target Matching regexp Explanation

NP–NP BE RB* VBN passive�
NP–NP

PRO-NP � RB* to RB* VB to-infinitive

N [,:] RB* VBG gerund
COMP–SBAR (V|,) !that* (MD|V) lookahead for that

WH–NP !IN �� � WP
WDT

COMP–WHNP

� �� !WH–NP* V lookback for pending WHNPs

WH–ADVP WRB !WH–ADVP* V !WH–ADVP* [.,:] lookback for pending WHADVP before a verb
UNIT $ CD* $ sign before numbers

Table 2: Non-local binary feature templates; the EE-site is indicated by

solved further up in the tree and call the same al-
gorithm for the parent (line 20). If, however, the
parent has fewer unresolved gaps (p � ch), the an-
tecedent of the EE is among the children. Thus the
algorithm attempts to find this antecedent (lines 11–
18). For an antecedent to be selected, the syntactic
category must match, i.e. an NP–NP must resolve to
a NP. The algorithm searches from left to right for a
possible candidate, preferring non-adjuncts over ad-
juncts. The node found (if any) is returned as the
antecedent for the EE. Finally, note that in line 9, we
have to remove the threaded gap+ feature in order to
avoid confusion if the same parent is visited again
while resolving another EE.

Although the algorithm is simple and works in a
greedy manner, it does perform well. Tested on the
gold standard trees containing the empty nodes with-
out antecedent co-reference information, it is able to
recover the antecedents with an F-score of 95% (c.f.
Section 4.3).

4.2 Method

Antecedent recovery is tested using two parsers: an
unlexicalized PCFG (Dienes and Dubey, 2003) and
a lexicalized parser with near state-of-the-art perfor-
mance (Collins, 1999). Both parsers treat EEs as
words. In order to recover antecedents, both were
modified to thread gap+ variables in the nontermi-
nals as described in Section 2.

Each parser is evaluated in two cases: (i) an upper
bound case which uses the perfect EEs of the tree-
bank (henceforth PERFECT) and (ii) a case that uses
EEs suggested by the finite-state mechanism (hence-
forth TAGGER). In the TAGGER case, the parser sim-
ply takes the hypotheses of the finite-state mecha-
nism as true.

Condition Bracketing Antecedent
recovery

PERFECT UNLEX 78.5% 91.4%
LEX 88.6% 93.3%

TAGGER UNLEX 76.3% 72.6%
LEX 86.4% 74.6%

Johnson 89.1% 68.0%

Table 3: F-Scores for parsing and antecedent recov-
ery on Section 23.

4.3 Evaluation

We evaluate on all sentences in the test section of
the treebank. As with trace detection, we use the
measure introduced by Johnson (2002). This metric
works by treating EEs and their antecedents as four-
tuples, consisting of the type of the EE, its location,
the type of its antecedent and the location(s) (begin-
ning and end) of the antecedent. An antecedent is
correctly recovered if all four values match the gold
standard. We calculate the precision, recall, and F-
score; however for brevity’s sake we only report the
F-score for most experiments in this section.

In addition to antecedent recovery, we also re-
port parsing accuracy, using the bracketing F-Score,
the combined measure of PARSEVAL-style labeled
bracketing precision and recall (Magerman, 1995).

4.4 Results

The results of the experiments are summarized in
Table 3. UNLEX and LEX refer to the unlexicalized
and lexicalized models, respectively. In the upper-
bound case, PERFECT, the F-score for antecedent
recovery is quite high in both the unlexicalized and
lexicalized cases: 91.4% and 93.3%.

Type Prec. Rec. F-score
Here Here Here Johnson

OVERALL 81.5% 68.7% 74.6% 68.0%

NP–NP 74.3% 67.4% 70.7% 60.0%

WH–NP 91.0% 74.5% 82.0% 80.0%

PRO–NP 68.7% 70.4% 69.5% 50.0%

COMP–SBAR 93.8% 78.6% 85.5% 88.0%

UNIT 99.1% 92.5% 95.7% 92.0%

WH–S 86.3% 82.8% 84.5% 87.0%

WH–ADVP 74.5% 42.0% 53.6% 56.0%

CLAUSE 80.4% 68.3% 73.8% 70.0%

COMP–WHNP 67.2% 38.3% 48.8% 47.0%

Table 4: Comparison of our antecedent recov-
ery results with the lexicalized parser and John-
son’s (2002).

Johnson (2002)’s metric includes EE without an-
tecedents. To test how well the antecedent-detection
algorithm works, it is useful, however, to count the
results of only those EEs which have antecedents
in the tree (NP–NP, PSEUDO attachments, and all
WH traces). In these cases, the unlexicalized parser
has an F-score of 70.4%, and the lexicalized parser
83.9%, both in the PERFECT case.

In the TAGGER case, which is our main con-
cern, the unlexicalized parser achieves an F-score
of 72.6%, better than the 68.0% reported by
Johnson (2002). The lexicalized parser outperforms
both, yielding results of F-score of 74.6%.

Table 4 gives a closer look at the antecedent
recovery score for some common EE types using
the lexicalized parser, also showing the results of
Johnson (2002) for comparison.

4.5 Discussion

The pre-processing system does quite well, manag-
ing an F-score 6.6% higher than the post-processing
system of Johnson (2002). However, while the lexi-
calized parser performs better than the unlexicalized
one, the difference is quite small: only 2%. This
suggests that many of the remaining errors are actu-
ally in the pre-processor rather than in the parser.
Two particular cases of interest are NP–NPs and
PRO–NPs. In both cases, a NP is missing, often in a
to-infinitival clause. The two are only distinguished
by their antecedent: NP–NP has an antecedent in the

tree, while PRO–NP has none. The lexicalized parser
has, for most types of EEs, quite high antecedent de-
tection results, but the difficulty in telling the differ-
ence between these two cases results in low F-scores
for antecedent recovery of NP–NP and PRO–NP, de-
spite the fact that they are among the most common
EE types. Even though this is a problem, our system
still does quite well: 70.4% for NP–NP, and 69.5%
for PRO–NP compared to the 60.0% and 50.0% re-
ported by Johnson (2002).

Since it appears the pre-processor is the cause
of most of the errors, in-processing with a state-of-
the-art lexicalized parser might outperform the pre-
processing approach. In the next section, we explore
this possibility.

5 Detecting empty elements in the parser

Having compared pre-processing to post-processing
in the previous section, in this section, we consider
the relative advantages of pre-processing as com-
pared to detecting EEs while parsing, with both an
unlexicalized and a lexicalized model.

In making the comparison between detecting EEs
during pre-processing versus parsing, we are not
only concerned with the accuracy of parsing, EE

detection and antecedent recovery, but also with
the running time of the parsers. In particular,
Dienes and Dubey (2003) found that detecting EEs
is infeasible with an unlexicalized parser: the parser
was slow and inaccurate at EE detection.

Recall that the runtime of many parsing algo-
rithms depends on the size of the grammar or the
number of nonterminals. The unlexicalized CYK
parser we use has a worst-case asymptotic runtime
of O � n3N3 � where n is the number of words and N
is the number of nonterminals. Collins (1999) re-
ports a worst-case asymptotic runtime of O � n5N3 �
for a lexicalized parser.

The O � N3 � bound becomes important when the
parser is to insert traces because there are more non-
terminals. Three factors contribute to this larger
nonterminal set: (i) nonterminals are augmented
with EE types that contain the parent node of the
EE (i.e. S may become S ��������	 , S �����
	�	 , etc.) (ii) we
must include combinations of EEs as nonterminals
may dominate more than one unbound EE (i.e.
S ��	�����	�����������	 � and (iii) a single nonterminal may

be repeated in the presence of co-ordination (i.e.
S ��	�����	 � ��	�����). These three factors greatly increase
the number of nonterminals, potentially reducing the
efficiency of a parser that detects EEs. On the other
hand, when EE-sites are pre-determined, the effect
of the number of nonterminals on parsing speed is
moot: the parser can ignore large parts of the gram-
mar.

In this section, we empirically explore the relative
advantages of pre-processing over in-processing,
with respect to runtime efficiency and the accuracy
of parsing and antecedent recovery.

5.1 Method

As in Section 4, we use the unlexicalized parser
from Dienes and Dubey (2003), and as a lexicalized
parser, an extension of Model 3 of Collins (1999).
While Model 3 inserts WH–NP traces, it makes some
assumptions that preclude it from being used here
directly:

(i) it cannot handle multiple types of EEs;

(ii) it does not allow multiple instances of EEs at a
node;

(iii) it expects all EEs to be complements, though
some are not (e.g. WH–ADVP);

(iv) it expects all EEs to have antecedents, though
some do not (e.g. PRO–NP);

(v) it cannot model EEs with dependents, for ex-
ample COMP–. . . .

Hence, Model 3 must be generalized to other
types of discontinuities. In order to handle the
first four problems, we propose generating ‘gap-
categorization’ frames in the same way as subcat-
egorization frames are used in the original model.
We do not offer a solution to the final problem, as
the syntactic structure (usually the unary production
SBAR

�
S) will identify these cases.

After calculating the probability of the head
(with its gaps), the left and right gapcat frame are
generated independently of each other (and of the
subcat frames). For example, the probability for the
rule:

VP (to) (+gap=
�
WH-NP �) �

TO (to) (+gap=
� �) VP (buy) (+gap=

�
WH-NP �)

Relative # of Relative Missed

Condition Nonterminals Parsing Time Parses

NOTRACE 1.00 1.00 0.2%
WH–NP 1.63 2.17 10.3%
PRO&WH 7.15 3.58 35.1%
TAGGER 7.15 1.49 1.3%

Table 5: INSERT model unlexicalized parsing results
on Section 23.

is generated as:

Ph(TO|VP,to) �
PRGC(

�
WH-NP � |VP ,TO,to) � PLGC(

� � |VP,TO,to) �
PRC(

�
VP-C � |VP,TO,to) � PLC(

� � |VP,TO,to) �
Pr(VP-CWH-NP(buy)|VP,TO,to,

�
VP-C � ,

�
WH-NP �) �

Pr(STOP|VP,TO,to,
� � ,

� �) �
Pl(STOP|VP,TO,to,

� � ,
� �)

Generating the actual EE is done in a similar fash-
ion: the EE cancels the corresponding ‘gapcat’ re-
quirement. If it is a complement (e.g. WH–NP), it
also removes the corresponding element from the
subcat frame. The original parsing algorithm was
modified to accommodate ‘gapcat’ requirements and
generate multiple types of EEs.

We compare the parsing performance of the two
parsers in four cases: the NOTRACE model which re-
moves all traces from the test and training data, the
TAGGER model of Section 4, and two cases where
the parser inserts EEs (we will collectively refer to
these cases as the INSERT models). In order to
show the effects of increasing the size of nontermi-
nal vocabulary, the first INSERT model only consid-
ers one EE type, WH–NP while the second (hence-
forth PRO&WH) considers all WH traces as well as
NP–NP and PRO–NP discontinuities.

5.2 Results

The results of the unlexicalized and lexicalized ex-
periments are summarized in Tables 5 and Table 6,
respectively. The tables compare relative pars-
ing time (slowdown with respect to the NOTRACE

model), and in the lexicalized case, PARSEVAL-
style bracketing scores. However, in the case of
the unlexicalized model, the increasing number of

Relative # of Relative Bracketing

Condition Nonterminals Parsing Time

NOTRACE 1.00 1.00 88.0%
WH–NP 1.63 1.07 87.4%
PRO&WH 7.15 1.33 86.6%
TAGGER 7.15 0.95 86.4%

Table 6: INSERT model lexicalized parsing results
on Section 23.

Type EE detection Antecedent rec.
parser tagger parser tagger

NP–NP 80.4% 83.5% 70.3% 70.7%
WH–NP 81.5% 83.2% 80.2% 82.0%
PRO–NP 64.5% 69.5% 64.5% 69.5%
WH–S 92.0% 92.8% 82.2% 84.5%
WH–ADVP 57.9% 59.5% 53.0% 53.6%

Table 7: Comparison of pre-processing with lexical-
ized in-processing (F-scores).

missed parses precludes straightforward comparison
of bracketing scores, therefore we report the per-
centage of sentences where the parser fails. In the
case of the lexicalized parser, less than 1% of the
parses are missed, hence the comparisons are re-
liable. Finally, we compare EE detection and an-
tecedent recovery F-scores of the TAGGER and the
PRO&WH models for the overlapping EE types (Ta-
ble 7).

5.3 Discussion

As noted by Dienes and Dubey (2003), unlexical-
ized parsing with EEs does not seem to be viable
without pre-processing. However, the lexicalized
parser is competitive with the pre-processing ap-
proach.

As for the bracketing scores, there are two inter-
esting results. First, lexicalized models which han-
dle EEs have lower bracketing scores than the NO-
TRACE model. Indeed, as the number of EEs in-
creases, so does the number of nonterminals, which
results in increasingly severe sparse data problem.
Consequently, there is a trade-off between finding
local phrase structure and long-distance dependen-
cies.

Second, comparing the TAGGER and the
PRO&WH models, we find that the bracketing

results are nearly identical. Nonetheless, the
PRO&WH model inserting EEs can match neither
the accuracy for antecedent recovery nor the time
efficiency of the pre-processing approach. Thus,
the results show that treating EE-detection as a pre-
processing step is beneficial to both to antecedent
recovery accuracy and to parsing efficiency.

Nevertheless, pre-processing is not necessarily
the only useful strategy for trace detection. Indeed,
by taking advantage of the insights that make the
finite-state and lexicalized parsing models success-
ful, it may be possible to generalize the results to
other strategies as well. There are two key observa-
tions of importance here.

The first observation is that lexicalization is very
important for detecting traces, not just for the lex-
icalized parser, but, as discussed in Section 3, for
the trace-tagger as well. The two models may con-
tain overlapping information: in many cases, the lex-
ical cue corresponds to the immediate head-word
the EE depends on. However, other surrounding
words (which frequently correspond to the head-
word of grandparent of the empty node) often carry
important information, especially for distinguishing
NP–NP and PRO–NP nodes.

Second, local information (i.e. a window of five
words) proves to be informative for the task. This
explains why the finite-state tagger is more accurate
than the parser: this window always crosses a phrase
boundary, and the parser cannot consider the whole
window.

These two observations give a set of features that
seem to be useful for EE detection. We conjecture
that a parser that takes advantage of these features
might be more accurate in detecting EEs while pars-
ing than the parsers presented here. Apart from the
pre-processing approach presented here, there are a
number of ways these features could be used:

1. in a pre-processing system that only detects
EEs, as we have done here;

2. as part of a larger syntactic pre-processing sys-
tem, such as supertagging (Joshi and Banga-
lore, 1994);

3. with a more informative beam search (Charniak
et al., 1998);

4. or directly integrated into the parsing mecha-
nism, for example by combining the finite-state
and the parsing probability models.

6 Conclusions

One of the main contributions of this paper is that
a two-step pre-processing approach to finding EEs
outperforms both post-processing and in-processing.
We found the pre-processing technique was success-
ful because it used features not explicitly incorpo-
rated into the other models.

Furthermore, we found that the result presented
in Dienes and Dubey (2003), i.e. pre-processing is
better for antecedent recovery than unlexicalized
in-processing, also holds when comparing lexical-
ized models. However, comparing the lexicalized
pre-processing system to the unlexicalized one, we
find that although lexicalization results in much bet-
ter trees, there is only a slight improvement in an-
tecedent recovery.

Third, we present a generalization of Model 3
of Collins (1999) to handle a broader range of EEs.
While this particular model was not able to outper-
form the pre-processing method, it can be further de-
veloped into a parsing model which can handle non-
local dependencies by incorporating the local cues
we found relevant.

In particular, a local window of five words, ac-
companied by the gap+ threads proved to be crucial.
Thus we claim that, in order to detect long-distance
dependencies, a robust stochastic parser should in-
tegrate lexical information as well as local cues cut-
ting across phrase boundaries by either incorporat-
ing them into the probability model or using them in
the beam-search.

Acknowledgements

The authors would like to thank Jason Baldridge,
Matthew Crocker, Geert-Jan Kruijff, Shravan Va-
sishth and the anonymous reviewers for their invalu-
able suggestions and comments.

References

Rens Bod. 2001. What is the minimal set of fragments
that achieves maximal parse accuracy? In Proceed-
ings of the 39th Annual Meeting of the Association for
Computational Linguistics and the 10th Conference of

the European Chapter of the Association for Compu-
tational Linguistics, Toulouse, France.

Eugene Charniak, Sharon Goldwater, and Mark Johnson.
1998. Edge-based best-first chart parsing. In Proceed-
ings of the 14th National Conference on Artificial In-
telligence, Madison, WI.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. In Proceedings of the 1st Conference of North
American Chapter of the Association for Computa-
tional Linguistics, Seattle, WA.

Stephen Clark, Julia Hockenmaier, and Mark Steedman.
2002. Building deep dependency structures with a
wide-coverage CCG parser. In Proceedings of the 40th
Annual Meeting of the Association for Computational
Linguistics, Philadelphia, PA.

Michael Collins. 1999. Head-Driven Statistical Models
for Natural Language Parsing. Ph.D. thesis, Univer-
sity of Pennsylvania.

Péter Dienes and Amit Dubey. 2003. Deep syntactic pro-
cessing by combining shallow methods. In Proceed-
ings of the 41st Annual Meeting of the Association for
Computational Linguistics, Sapporo, Japan.

Gerald Gazdar, Ewan Klein, Geoffrey Pullum, and Ivan
Sag. 1985. Generalized Phase Structure Grammar.
Basil Blackwell, Oxford, England.

Mark Johnson. 2002. A simple pattern-matching al-
gorithm for recovering empty nodes and their an-
tecedents. In Proceedings of the 40th Annual Meet-
ing of the Association for Computational Linguistics,
Philadelphia, PA.

Aravind K. Joshi and Srinivas Bangalore. 1994. Com-
plexity of descriptives–supertag disambiguation or al-
most parsing. In Proceedings of the 1994 Interna-
tional Conference on Computational Linguistics, Ky-
oto, Japan.

David Magerman. 1995. Statistical decision-tree models
for parsing. In Proceedings of the 33rd Annual Meet-
ing of the Association for Computational Linguistics,
Cambridge, MA.

Stefan Riezler, Tracy H. King, Ronald M. Kaplan,
Richard Crouch, John T. Maxwell, and Mark John-
son. 2002. Parsing the Wall Street Journal using a
Lexical-Functional Grammar and discriminative esti-
mation techniques. In Proceedings of the 40th Annual
Meeting of the Association for Computational Linguis-
tics, Philadelphia, PA.

