
Accelerating Corporate Research in the Development, Application
and Deployment of Human Language Technologies

David Ferrucci
IBM T.J. Watson Research Center

Yorktown Heights, NY 10598

ferrucci@us.ibm.com

Adam Lally
IBM T.J. Watson Research Center

Yorktown Heights, NY 10598

alally@us.ibm.com

Abstract

IBM Research has over 200 people working
on Unstructured Information Management
(UIM) technologies with a strong focus on
HLT. Spread out over the globe they are en-
gaged in activities ranging from natural lan-
guage dialog to machine translation to
bioinformatics to open-domain question an-
swering. An analysis of these activities
strongly suggested that improving the organi-
zation’s ability to quickly discover each
other's results and rapidly combine different
technologies and approaches would accelerate
scientific advance. Furthermore, the ability to
reuse and combine results through a common
architecture and a robust software framework
would accelerate the transfer of research re-
sults in HLT into IBM’s product platforms.
Market analyses indicating a growing need to
process unstructured information, specifically
multi-lingual, natural language text, coupled
with IBM Research’s investment in HLT, led
to the development of middleware architecture
for processing unstructured information
dubbed UIMA. At the heart of UIMA are
powerful search capabilities and a data-driven
framework for the development, composition
and distributed deployment of analysis en-
gines. In this paper we give a general intro-
duction to UIMA focusing on the design
points of its analysis engine architecture and
we discuss how UIMA is helping to accelerate
research and technology transfer.

1 Architecture Goals

In six major labs spread out over the globe, IBM Re-
search has over 200 people working on Unstructured
Information Management (UIM) technologies with a
significant focus on Human Language Technologies
(HLT). These researchers are engaged in activities rang-
ing from natural language dialog to machine translation
to bioinformatics to open-domain question answering.
Each group is developing different technical and engi-
neering approaches to process unstructured information
(e.g., natural language text, voice, audio and video) in
pursuit of specific research objectives and their applica-
tions.

The high-level objectives of IBM’s Unstructured In-
formation Management Architecture (UIMA) are two
fold:

1) Accelerate scientific advances by enabling the
rapid combination UIM technologies (e.g., natu-
ral language processing, video analysis, infor-
mation retrieval, etc.).

2) Accelerate transfer of UIM technologies to

product by providing a robust software frame-
work that promotes reuse and supports flexible
deployment options.

UIMA is a software architecture for developing ap-

plications which integrate search and analytics over a
combination of structured and unstructured information.
We define structured information as information whose
intended meaning is unambiguous and explicitly repre-
sented in the structure or format of the data. The ca-
nonical example is a database table. We define
unstructured information as information whose intended
meaning is only implied by its form. The canonical ex-
ample is a natural language document.

The UIMA high-level architecture, illustrated in
Figure 1, defines the roles, interfaces and communica-
tions of large-grained components essential for UIM
applications. These include components capable of ana-
lyzing unstructured artifacts, integrating and accessing
structured sources and storing, indexing and searching
for artifacts based on discovered semantic content.

As part of the UIMA project, IBM is developing dif-
ferent implementations of the architecture suitable for
different classes of deployment. These range from light-
weight and embeddable implementations to highly
scaleable implementations that are meant to exploit
clusters of machines and provide high throughput and
high availability.

While the architecture extends to a variety of un-
structured artifacts including voice, audio and video, a
primary analytic focus of current UIMA implementa-
tions is squarely on human language technologies.

In this paper we will refer to elements of unstruc-
tured information processing as documents admitting,
however, that an element may represent for the applica-
tion, a whole text document, a text document fragment
or even multiple documents.

2 Generalized Application Scenario and
the High-Level Architecture

In this section we provide a high-level overview of the
UIMA architecture by describing its component roles in
a generalized application scenario.

The generalized scenario includes both analysis and
access functions. Analysis functions are divided into
two classes, namely document-level and collection-level
analysis. Access functions are divided into semantic
search and structured knowledge access.

We refer to the software program that employs
UIMA components to implement some end-user capa-
bility as the application or application program.

2.1 Document-Level Analysis
Document-level analysis is performed by component
processing elements named Text Analysis Engines
(TAEs). These are extensions of the generic analysis
engine, specialized for text. They are analogous, for
example, to Processing Resources in the GATE archi-
tecture (Cunningham et al., 2000). In UIMA, a TAE is a
recursive structure which may be composed of sub or
component engines each performing a different stage of
the application’s analysis.

Application
Logic

Semantic Search Engine

Document, Collection
& Meta-data Store

(Text) Analysis Engines (TAEs)

Structured Knowledge Access

Query key words and concepts

Token and concept Indexing

Knowledge Source Adapters (KSAs)
integrate and deliver content from
many structured knowledge sources
according to central ontologies

Collection
Processing
Manager
(CPM)

Structured
Information

Unstructured
Information

Analysis engines employing a variety
of analytical techniques and
strategies for detecting semantic
contentRelevant

Knowledge

Collection
Analysis

Engine(s)
Application

Logic

Semantic Search Engine

Document, Collection
& Meta-data Store

(Text) Analysis Engines (TAEs)

Structured Knowledge Access

Query key words and concepts

Token and concept Indexing

Knowledge Source Adapters (KSAs)
integrate and deliver content from
many structured knowledge sources
according to central ontologies

Collection
Processing
Manager
(CPM)

Structured
Information

Unstructured
Information

Analysis engines employing a variety
of analytical techniques and
strategies for detecting semantic
contentRelevant

Knowledge

Collection
Analysis

Engine(s)

Figure 1: UIMA High-Level Architecture

Examples of Text Analysis Engines include lan-
guage translators, document summarizers, document
classifiers, and named-entity detectors. Each TAE spe-
cializes in discovering specific concepts (or "semantic
entities") otherwise unidentified or implicit in the
document text.

A TAE takes in a document and produces an analy-
sis. The original document and its analysis are repre-
sented in a common structure called the Common
Analysis System or CAS. The CAS is conceptually
analogous to the annotations in other architectures, be-
ginning with TIPSTER (Grishman, 1996).

In general, annotations associate some meta-data
with a region in the original artifact. Where the artifact
is a text document, for example, the annotation associ-
ates meta-data (e.g., a label) with a span of text in the
document by giving the span’s start and end positions.
Annotations in the CAS are stand-off, meaning that the
annotations are maintained separately from the docu-
ment itself; this is more flexible than inline markup
(Mardis and Burger, 2002). In UIMA, annotations are
not the only type of information stored in the CAS. The
CAS may be used to represent any class of meta-data
element associated with analysis of a document regard-
less of whether it is explicitly linked to some sub com-
ponent of the original document. The CAS also allows
for multiple definitions of this linkage, as is necessary
for the analysis of images, video or other modalities.

The analysis represented in the CAS may be thought
of as a collection of meta-data that is enriched as it
passes through successive stages of analysis. At a spe-
cific stage of analysis, for example, the CAS may in-
clude a deep parse. A named-entity detector receiving
this CAS may consider the deep parse to identify named
entities. The named entities may be input to an analysis
engine that produces summaries or classifications of the
document.

The UIMA CAS object provides general object-
based representation with a hierarchical type system
supporting single inheritance. It includes data creation,
access and serialization methods designed for the effi-
cient representation, access and transport of analysis
results among TAEs and between TAEs and other
UIMA components or applications. Elements in the
CAS may be indexed for fast access (Goetz et al.,
2001). The CAS has been implemented in C++ and
Java with serialization methods for binary as well as
XML formats for managing the tradeoff between effi-
ciency and interoperability.

2.2 Collection-Level Analysis
Documents are gathered by the application and organ-
ized into collections. The architecture defines a Collec-
tion Reader interface. Implementations of the Collection
Reader provide access to collection elements, collection

meta-data and element meta-data. UIMA implementa-
tions include a document, collection and meta-data store
that implements the Collection Reader interface and
manages multiple collections and their elements. How-
ever, applications that need to manage their own collec-
tions can provide an implementation of a Collection
Reader to UIMA components that require access to col-
lection data.

Collections are analyzed to produce collection level
analysis results. These results represent aggregate infer-
ences computed over all or some subset of the docu-
ments in a collection. The component of an application
that analyzes an entire collection is considered a Collec-
tion Analysis Engine. These engines typically apply
element-level, or more specifically document-level
analysis, to elements of a collection and then consider-
ing the element analyses in performing aggregate com-
putations.

Examples of collection level analysis results include
sub collections where elements contain certain features,
glossaries of terms with their variants and frequencies,
taxonomies, feature vectors for statistical categorizers,
databases of extracted relations, and master indices of
tokens and other detected entities.

In support of Collection Analysis Engines, UIMA
defines the Collection Processing Manager (CPM)
component. The CPM’s primary responsibility is to
manage the application of a designated TAE to each
document accessible through a Collection Reader. A
Collection Analysis Engine may provide, as input to the
CPM, a TAE and a Collection Reader. The CPM applies
the TAE and returns the analysis, represented by a CAS,
for each element in the collection. To control the proc-
ess, the CPM provides administrative functions that
include failure reporting, pausing and restarting.

At the request of the application’s collection analy-
sis engine, the CPM may be optionally configured to
perform functions typical of UIM application scenarios.
Examples of these include:

1) Filtering - ensures that only certain elements
are processed based on meta-data constraints.

2) Persistence - stores element-level analysis re-
sults in a provided Collection Writer.

3) Indexing - indexes documents using a desig-
nated search engine indexing interface based
on meta-data extracted from the analysis.

4) Parallelization - manages the creation and exe-
cution of multiple instances of a TAE for proc-
essing multiple documents simultaneously
utilizing available computing resources.

2.3 Semantic Search
To support the concept of “semantic search” – the capa-
bility to find documents based on semantic content dis-
covered by document or collection level analysis and

represented as annotations – UIMA specifies search
engine indexing and query interfaces.

A key feature of the indexing interface is that it sup-
ports the indexing of tokens as well as annotations and
particularly cross-over annotations. Two or more anno-
tations cross-over one another if they are linked to inter-
secting regions of the document.

The key feature of the query interface is that it sup-
ports queries that may be predicated on nested structures
of annotations and tokens in addition to Boolean combi-
nations of tokens and annotations.

2.4 Structured Knowledge Access
As analysis engines do their job they may consult a
wide variety of structured knowledge sources. To in-
crease reusability and facilitate integration, UIMA
specifies the Knowledge Source Adapter (KSA) inter-
face.

KSA objects provide a layer of uniform access to
disparate knowledge sources. They manage the techni-
cal communication, representation language and ontol-
ogy mapping necessary to deliver knowledge encoded
in databases, dictionaries, knowledge bases and other
structured sources in a uniform way. The primary inter-
face to a KSA presents structured knowledge as instan-
tiated predicates using the Knowledge Interchange
Format (KIF) encoded in XML.

A key aspect of the KSA architecture is the KSA
meta-data and related services supporting KSA registra-
tion and search. These services include the description
and registration of named ontologies. Ontologies are
described by the concepts and predicates they include.
The KSA is self-descriptive and among other meta-data
includes the predicate signatures belonging to registered
ontologies that the KSA can instantiate and the knowl-
edge sources it consults.

Application or analysis engine developers can con-
sult human browseable KSA directory services to search
for and find KSAs that instantiate predicates of a regis-
tered ontology. The service will deliver a handle to a
web service or an embeddable KSA component.

3 Analysis Engine Framework

This section takes a closer look at the analysis engine
framework.

UIMA specifies an interface for an analysis engine;
roughly speaking it is “CAS in” and “CAS out”. There
are other operations used for filtering, administrative

and self-descriptive functions, but the main interface
takes a CAS as input and delivers a CAS as output.

Any program that implements this interface may be
plugged in as an analysis engine component in an im-
plementation of UIMA. However, as part of UIMA
tooling we have developed an analysis engine frame-
work to support the creation, composition and flexible
deployment of primitive and aggregate analysis engines
on a variety of different system middleware platforms.

The underlying design philosophy for the Analysis
Engine framework was driven by three primary princi-
ples:

1) Encourage and enable component reuse.

2) Support distinct development roles insulating
the algorithm developer from system and
deployment details.

3) Support a flexible variety of deployment op-
tions by insulating lower-level system middle-
ware APIs.

3.1 Encourage and Enable Component Reuse
With many HLT components being developed through-
out IBM Research by independent groups, encouraging
and enabling reuse is a critical design objective to
achieve expected efficiencies and cross-group collabo-
rations. Three characteristics of the analysis engine
framework address this objective:

1) Recursive Structure

2) Data-Driven

3) Self-Descriptive

Annotator
(Annotator Developer

Implements)

CAS
(part of framework)

Controller
(part of framework)

process(Result Spec.)

Primitive Analysis Engine

process(Result Spec.)

process(Result Spec.)

getCAS()

getCAS()

reads/writes
analysis data

Annotator
(Annotator Developer

Implements)

CAS
(part of framework)

Controller
(part of framework)

process(Result Spec.)

Primitive Analysis Engine

process(Result Spec.)

process(Result Spec.)

getCAS()

getCAS()

reads/writes
analysis data

Figure 2: Primitive Analysis Engine

Recursive Structure. A primitive analysis engine, illus-
trated in Figure 2, is composed of an Annotator and a
CAS. The annotator is the object that implements the
analysis logic (e.g. tokenization, grammatical parsing,
entity detection). It reads the original document content
and meta-data from the CAS. It then computes and
writes new meta-data to the CAS. An aggregate analy-
sis engine, illustrated in Figure 3, is composed of two or
more component analysis engines, but implements ex-
actly the same external interface as the primitive engine.
At run-time an aggregate analysis engine is given a se-
quence in which to execute its component engines. A
component called the Analysis Structure Broker ensures
that each component engine has access to the CAS ac-
cording to the specified sequence. Like any nested pro-
gramming model, this recursive structure ensures that
components may be easily reused in combination with
one another while insulating their internal structure.

Data-Driven. An analysis engine’s processing
model is strictly data-driven. This means that an anno-
tator’s analysis logic may be predicated only on the con-
tent of its input and not on the specific analysis engines
it may be combined with or the control sequence in
which it may be embedded. This restriction ensures that
an analysis engine may be successfully reused in differ-
ent aggregate structures and different control environ-
ments as long as its input requirements are met.

The Analysis Sequencer is a component in the
framework responsible for dynamically determining the
next analysis engine to receive access to the CAS. The
Analysis Sequencer is distinct from the Analysis Struc-
ture Broker, whose responsibility is to deliver the CAS
to the next analysis engine whichever it is wherever it
may be located. The Analysis Sequencer’s control logic
is separate from the analysis logic embedded in an An-
notator and separate from the Analysis Structure Bro-
ker’s concerns related to ensuring and/or optimizing the
CAS transport. This separation of concerns allows for
the plug-n-play of different Analysis Sequencers. The

Analysis Sequencer is a pluggable range from provide
simple iteration over a declaratively specified static
flow to complex planning algorithms. Current imple-
mentations have been limited to simple linear flows
between analysis engines; however more advanced ap-
plications are generating requirements for dynamic and
adaptive sequencing. How much of the control specifi-
cation ends up in a declarative representation and how
much is implemented in the sequencer for these ad-
vanced requirements is currently being explored.

Self-Descriptive. Ensuring that analysis engines
may be easily composed to form aggregates and may be
reused in different control sequences is necessary for
technical reusability but not sufficient for enabling and
validating reuse within a broad community of develop-
ers. To promote reuse, analysis engine developers must
be able to discover which analysis engines are available
in terms of what they do – their capabilities.

Each analysis engine's data model is declared in
XML and then dynamically realized in the CAS at run-
time, an approach similar to MAIA (Laprun et al.,
2002). In UIMA, however, analysis engines publish
their input requirements and output specifications rela-
tive to this declared data model, and this information is
used to register the analysis engine in an analysis engine
directory service. This service includes a human-
oriented interface that allows application developers to
browse and/or search for analysis engines that meet
their needs.

While self-description and related directory services
will promote reuse, their value is still dependent on es-
tablishing common data models (or fragments thereof)
to which analysis engine capability descriptions sub-
scribe.

3.2 Support Distinct Development Roles
Language technology researchers that specialize in, for
example, multi-lingual machine translation, may not be

Analysis
Engine 1

CAS

Analysis Structure Broker

Aggregate Analysis Engine

process(RS)

Analysis
Engine 2

process(RS) process(RS)

Analysis Sequencer

Process(Result Spec.)

init (Result Spec.)

read/write analysis data

Controller

process(Result Spec.)

Analysis
Engine 3

getCAS()

next()

Analysis
Engine 1

CAS

Analysis Structure Broker

Aggregate Analysis Engine

process(RS)

Analysis
Engine 2

process(RS) process(RS)

Analysis Sequencer

Process(Result Spec.)

init (Result Spec.)

read/write analysis data

Controller

process(Result Spec.)

Analysis
Engine 3

getCAS()

next()

Figure 3: Aggregate Analysis Engine

highly trained software engineers nor be skilled in the
system technologies required for flexible and scaleable
deployments. Yet one of the primary objectives of the
UIMA project is to ensure that their work can be effi-
ciently deployed in robust and scaleable system archi-
tecture.

Along the same lines, researchers with ideas about
how to combine and orchestrate different components
may not themselves be algorithm developers or systems
engineers, yet we need to enable them to rapidly create
and validate ideas through combining existing compo-
nents.

Finally, deploying analysis engines as distributed,
highly available services or as collocated objects in an
aggregate system requires yet another skill.

As a result we have identified the following devel-
opment roles and have designed the architecture with
independent sets of interfaces in support of each of
these different skill sets. Our separation of development
roles is analogous to the separation of roles in Sun's
J2EE platform (Sun Microsystems, 2001).

Annotator Developer. The annotator developer role
is focused on developing core algorithms ranging from
statistical language recognizers to rule-based named-
entity detectors to document classifiers.

The framework design ensures that the annotator
developer need NOT develop code to address aggregate
system behavior or systems issues like interoperability,
recovery, remote communications, distributed deploy-
ment, etc., but instead allow them to focus squarely on
the algorithmic logic and the logical representation of
their results.

This was achieved through the analysis engine
framework by requiring the annotator developer to un-
derstand only three interfaces, namely the Annotator,
AnnotatorContext, and CAS interfaces. The annotator
developer performs the following steps:

1) Implement Annotator interface

2) Encode analysis algorithm using the CAS inter-
face to read input and write results and the An-
notatorContext interface to access resources

3) Write Analysis Engine Descriptor

4) Call Analysis Engine Factory

To embed an analysis algorithm in the framework,
the annotator developer implements the Annotator inter-
face. This interface is simple and requires the imple-
mentation of only two methods: one for initialization
and one to analyze a document.

It is only through the CAS that the annotator devel-
oper accesses input data and registers analysis results.
The CAS contains the original document (the subject of
analysis) plus the meta-data contributed by any analysis
engines that have run previously. This meta-data may
include annotations over elements of the original docu-

ment. The CAS input to an analysis engine may reside
in memory, be managed remotely, or shared by other
components. These issues are of concern to the analysis
engine deployer role, but the annotator developer is in-
sulated from these issues.

All external resources, such as dictionaries, that an
annotator needs to consult are accessed through the An-
notator Context interface. The exact physical manifes-
tation of the data can therefore be determined by the
deployer, as can decisions about whether and how to
cache the resource data.

The annotator developer completes an XML descrip-
tor that identifies the input requirements, output specifi-
cations, and external resource dependencies. Given the
annotator object and the descriptor, the framework’s
Analysis Engine Factory returns a complete analysis
engine.

Analysis Engine Assembler. The analysis engine
assembler creates aggregate analysis engines through
the declarative coordination of component engines. The
design objective is to allow the assembler to build an
aggregate engine without writing any code.

The analysis engine assembler considers available
engines in terms of their capabilities and declaratively
describes flow constraints. These constraints are cap-
tured in the aggregate engine’s XML descriptor along
with the identities of selected component engines. The
assembler inputs this descriptor in the framework’s
analysis engine factory object and an aggregate analysis
engine is created and returned.

Analysis Engine Deployer. The analysis engine de-
ployer decides how analysis engines and the resources
they require are deployed on particular hardware and
system middleware. UIMA does not provide its own
specification for how components are deployed, nor
does it mandate the use of a particular type of middle-
ware or middleware product. Instead, UIMA aims to
give deployers the flexibility to choose the middleware
that meets their needs.

3.3 Insulate Lower-Level System Middleware
HLT applications can share many requirements with
other types of applications – for example, they may
need scalability, security, and transactions. Existing
middleware such as application servers can meet many
of these needs. On the other hand, HLT applications
may need to have a small footprint so they can be de-
ployed on a desktop computer or PDA or they may need
to be embeddable within other applications that use their
own middleware.

One design goal of UIMA is to support deployment
of analysis engines on any type of middleware, and to
insulate the annotator developer and analysis engine
assembler from these concerns. This is done through
the use of Service Wrappers and the Analysis Structure

Broker. The analysis engine interface specifies that
input and output are done via a CAS, but it does not
specify how that CAS is transported between compo-
nent analysis engines. A service wrapper implements
the CAS serialization and deserialization necessary for a
particular deployment. Within an aggregate Analysis
Engine, components may be deployed using different
service wrappers. The Analysis Structure Broker is the
component that transports the CAS between these com-
ponents regardless of how they are deployed.

To support a new type of middleware, a new service
wrapper and an extension to the Analysis Structure Bro-
ker must be developed and plugged into the framework.
The Analysis Engine itself does not need to be modified
in any way.

For example, we have implemented Service Wrap-
pers and Analysis Structure Broker on top of both a
web-services and a message queuing infrastructure.
Each implementation has different pros and cons for
deployment scenarios.

4 Measuring Success

We have considered four ways to evaluate UIMA in
meeting its intended objectives:

1) Combination Experiments

2) Compliant Components and their Reuse

3) System Performance Improvements

4) Product Integration

4.1 Combination Experiments
Our UIMA implementations and associated tooling have
led to the design of several combination experiments
that were previously unimagined or considered too
cumbersome to implement. This work has only just be-
gun but includes collaborative efforts combining rule-
based parsers with statistical machine translation en-
gines, statistical named-entity detectors in rule-based
question answering systems (Chu-Carroll et al., 2003),
and a host of independently developed analysis capabili-
ties in bioinformatics applications.

4.2 Compliant Components and their Reuse
Another way to measure the impact of UIMA is to look
at its adoption by the target community. This may be
measured by the number of compliant components and
the frequency of their reuse by different projects/groups.

We have developed a registry and an integration test
bed where contributed components are tested, certified,
registered and made available to the community for
demonstration and download.

The integration test bed includes a web-based facil-
ity where users can select from a collection of corpora, a

collection of certified analysis engines and run the
analysis engine on the corpus. Performance statistics
breaking down the time spent in analysis, communica-
tions between components, and framework overhead are
computed and presented. The system generates analysis
results and stores them. Analysis results may be viewed
using any of a variety of CAS viewers. The results may
also be indexed by a search engine, which may then be
used to process queries.

While we are still instrumenting this site and gather-
ing reuse data, within six months of an internal distribu-
tion we will have over 15 UIMA-compliant analysis
engines, many of which are based on code developed as
part of multi-year HLT research efforts. Engines were
contributed from six independent and geographically
dispersed groups. They include several named-entity
detectors of both rule-based and statistical varieties,
several classifiers, a summarizer, deep and shallow
parsers, a semantic class detector, an Arabic to English
translator, an Arabic person detector, and several bio-
logical entity and relationship detectors. Several of these
engines have been assembled using component engines
that were previously inaccessible for reuse due to engi-
neering incompatibilities.

4.3 System Performance Improvements
We expect the architecture’s support for modularization
and for the insulation of system deployment issues from
algorithm development to result in opportunities to
quickly deploy more robust and scaleable solutions.

For example, IBM's Question Answering system,
now under development for over three years, includes a
home-grown answer type detector to analyze large cor-
pora of millions of documents (Prager et al., 2002).
With a half day of training, an algorithm developer cast
the answer type detector as a UIMA Annotator and em-
bedded it in the UIMA Analysis Engine framework. The
framework provided the infrastructure necessary for
configuring an aggregate analysis engine with the an-
swer type detector down-stream of a tokenizer and
named-entity detector without additional programming.
Within a day, the framework was used to build the ag-
gregate analysis engine and to deploy multiple instances
of it on a host of machines. The result was a dramatic
improvement in overall throughput.

4.4 Product Integration
IBM develops a variety of information management,
information integration, data mining, knowledge man-
agement and search-related products and services. Un-
structured information processing and language
technologies in particular represent an increasingly im-
portant capability that can enhance all of these products.

UIMA will be a business success for IBM if it plays
an important role in technology transfers. IBM Research

has engaged a number of product groups which are real-
izing the benefits of adopting a standard architectural
approach for integrating HLT that does not constrain
algorithm invention and that allows for easy extension
and integration and support for a wide variety of system
deployment options.

5 Conclusion

The UIMA project at IBM has encouraged many groups
in six of the Research division’s labs to understand and
adopt the UIMA architecture as a common conceptual
foundation for classifying, describing, developing and
combining HLT components in aggregate applications
that integrate search and analytical functions.

While our measurements are only just beginning, the
adoption of UIMA has clearly improved knowledge
transfer throughout the organization. Implementations
of the architecture are advancing and are beginning to
demonstrate that HLT components developed within
Research can be quickly combined to explore hybrid
approaches as well as to rapidly transfer results into
IBM product and service offerings.

IBM product groups are encouraged by Research’s
effort and are committed to leverage UIMA as a vehicle
to embed HLT components. They are realizing the
benefits of having Research adopt a standard architec-
tural approach that does not constrain algorithm inven-
tion while allowing for a wide variety of system
deployment options. Product and service groups are
seeing an easier path to combine, integrate and deliver
these technologies into information integration, data
mining, knowledge management and search-related
products and services.

Acknowledgements
We acknowledge the contributions of Dan Gruhl and the
WF project to the development of UIMA. In addition
we acknowledge David Johnson, Thomas Hampp, Thilo
Goetz and Oliver Suhre in the development of IBM’s
Text Analysis Framework and the work of Roy Byrd
and Mary Neff in the design of the Talent system. Their
work continues to influence the UIMA CAS and analy-
sis engine framework.

This work was supported in part by the Advanced
Research and Development Activity (ARDA)’s Ad-
vanced Question Answering for Intelligence
(AQUAINT) Program under contract number MDA904-
01-C-0988.

References
Kaling Bontcheva, Hamish Cunningham, Valentin Tab-

lan, Diana Maynard, Horacio Saggion. 2002. “De-
veloping Reusable and Robust Language Processing
Components for Information Systems using GATE.”
3rd International Workshop on Natural Language and
Information Systems (NLIS'2002), IEEE Computer
Society Press.

Jennifer Chu-Carroll, David Ferrucci, John Prager, and
Christopher Welty. 2003. "Hybridization in Question
Answering Systems." Working Notes of the AAAI
Spring Symposium on New Directions in Question
Answering, to appear.

Hamish Cunningham, Kaling Bontcheva, Valentin Tab-
lan and Yorick Wilks. 2000. “Software Infrastructure
for Language Resources: a Taxonomy of Previous
Work and a Requirements Analysis.” Proceedings of
the Second Conference on Language Resources
Evaluation.

Ralph Grishman. 1996. “Tipster architecture design
document version 2.2.” Technical report, DARPA
TIPSTER.

Thilo Goetz, Robin Lougee-Heimer and Nicolas
Nicolov. 2001. “Efficient Indexing for Typed Fea-
ture Structures.” Proceedings of Recent Advances in
Natural Language Processing, Tzigov Chark, Bul-
garia.

Christophe Laprun, Johnathan Fiscus, John Garofolo,
and Sylvain Pajot. 2002. “A Practical Introduction to
ATLAS.” Proceedings of the Third International
Conference on Language Resources and Evaluation
(LREC).

John Prager, Jennifer Chu-Carroll, Eric Brown, and
Krzysztof Czuba. 2003. "Question Answering Using
Predictive Annotation." Advances in Open-Domain
Question Answering, T. Strzalkowski & S. Hara-
bagiu (eds.), Kluwer Academic Publishers, to appear.

John Prager, Eric Brown, Anni Coden and Dragomir
Radev. 2000. “Question-answering by Predictive
Annotation.” Proceedings of ACMSIGIR.

Scott Mardis and John Burger. 2002. “Qanda and the
Catalyst Architecture.” AAAI Spring Symposium on
Mining Answers from Text and Knowledge Bases.

Sun Microsystems, Inc. 2001. “Java™ 2 Platform
Enterprise Edition Specification, v1.3.”
http://java.sun.com/j2ee/1.3/docs/.

