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Abstract 

IBM Research has over 200 people working 
on Unstructured Information Management 
(UIM) technologies with a strong focus on 
HLT. Spread out over the globe they are en-
gaged in activities ranging from natural lan-
guage dialog to machine translation to 
bioinformatics to open-domain question an-
swering. An analysis of these activities 
strongly suggested that improving the organi-
zation’s ability to quickly discover each 
other's results and rapidly combine different 
technologies and approaches would accelerate 
scientific advance. Furthermore, the ability to 
reuse and combine results through a common 
architecture and a robust software framework 
would accelerate the transfer of research re-
sults in HLT into IBM’s product platforms.  
Market analyses indicating a growing need to 
process unstructured information, specifically 
multi-lingual, natural language text, coupled 
with IBM Research’s investment in HLT, led 
to the development of middleware architecture 
for processing unstructured information 
dubbed UIMA. At the heart of UIMA are 
powerful search capabilities and a data-driven 
framework for the development, composition 
and distributed deployment of analysis en-
gines. In this paper we give a general intro-
duction to UIMA focusing on the design 
points of its analysis engine architecture and 
we discuss how UIMA is helping to accelerate 
research and technology transfer. 

1 Architecture Goals 

In six major labs spread out over the globe, IBM Re-
search has over 200 people working on Unstructured 
Information Management (UIM) technologies with a 
significant focus on Human Language Technologies 
(HLT). These researchers are engaged in activities rang-
ing from natural language dialog to machine translation 
to bioinformatics to open-domain question answering.  
Each group is developing different technical and engi-
neering approaches to process unstructured information 
(e.g., natural language text, voice, audio and video) in 
pursuit of specific research objectives and their applica-
tions. 

The high-level objectives of IBM’s Unstructured In-
formation Management Architecture (UIMA) are two 
fold: 

1) Accelerate scientific advances by enabling the 
rapid combination UIM technologies (e.g., natu-
ral language processing, video analysis, infor-
mation retrieval, etc.). 

 
2) Accelerate transfer of UIM technologies to 

product by providing a robust software frame-
work that promotes reuse and supports flexible 
deployment options. 

 
UIMA is a software architecture for developing ap-

plications which integrate search and analytics over a 
combination of structured and unstructured information. 
We define structured information as information whose 
intended meaning is unambiguous and explicitly repre-
sented in the structure or format of the data. The ca-
nonical example is a database table. We define 
unstructured information as information whose intended 
meaning is only implied by its form. The canonical ex-
ample is a natural language document.  



The UIMA high-level architecture, illustrated in 
Figure 1, defines the roles, interfaces and communica-
tions of large-grained components essential for UIM 
applications. These include components capable of ana-
lyzing unstructured artifacts, integrating and accessing 
structured sources and storing, indexing and searching 
for artifacts based on discovered semantic content. 

As part of the UIMA project, IBM is developing dif-
ferent implementations of the architecture suitable for 
different classes of deployment. These range from light-
weight and embeddable implementations to highly 
scaleable implementations that are meant to exploit 
clusters of machines and provide high throughput and 
high availability. 

While the architecture extends to a variety of un-
structured artifacts including voice, audio and video, a 
primary analytic focus of current UIMA implementa-
tions is squarely on human language technologies.  

In this paper we will refer to elements of unstruc-
tured information processing as documents admitting, 
however, that an element may represent for the applica-
tion, a whole text document, a text document fragment 
or even multiple documents. 

2 Generalized Application Scenario and 
the High-Level Architecture 

In this section we provide a high-level overview of the 
UIMA architecture by describing its component roles in 
a generalized application scenario.  

The generalized scenario includes both analysis and 
access functions. Analysis functions are divided into 
two classes, namely document-level and collection-level 
analysis.  Access functions are divided into semantic 
search and structured knowledge access. 

We refer to the software program that employs 
UIMA components to implement some end-user capa-
bility as the application or application program. 

2.1 Document-Level Analysis 
Document-level analysis is performed by component 
processing elements named Text Analysis Engines 
(TAEs). These are extensions of the generic analysis 
engine, specialized for text. They are analogous, for 
example, to Processing Resources in the GATE archi-
tecture (Cunningham et al., 2000). In UIMA, a TAE is a 
recursive structure which may be composed of sub or 
component engines each performing a different stage of 
the application’s analysis. 
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Figure 1: UIMA High-Level Architecture 



Examples of Text Analysis Engines include lan-
guage translators, document summarizers, document 
classifiers, and named-entity detectors. Each TAE spe-
cializes in discovering specific concepts (or "semantic 
entities") otherwise unidentified or implicit in the 
document text. 

A TAE takes in a document and produces an analy-
sis. The original document and its analysis are repre-
sented in a common structure called the Common 
Analysis System or CAS. The CAS is conceptually 
analogous to the annotations in other architectures, be-
ginning with TIPSTER (Grishman, 1996). 

In general, annotations associate some meta-data 
with a region in the original artifact. Where the artifact 
is a text document, for example, the annotation associ-
ates meta-data (e.g., a label) with a span of text in the 
document by giving the span’s start and end positions.  
Annotations in the CAS are stand-off, meaning that the 
annotations are maintained separately from the docu-
ment itself; this is more flexible than inline markup 
(Mardis and Burger, 2002). In UIMA, annotations are 
not the only type of information stored in the CAS.  The 
CAS may be used to represent any class of meta-data 
element associated with analysis of a document regard-
less of whether it is explicitly linked to some sub com-
ponent of the original document.  The CAS also allows 
for multiple definitions of this linkage, as is necessary 
for the analysis of images, video or other modalities. 

The analysis represented in the CAS may be thought 
of as a collection of meta-data that is enriched as it 
passes through successive stages of analysis. At a spe-
cific stage of analysis, for example, the CAS may in-
clude a deep parse. A named-entity detector receiving 
this CAS may consider the deep parse to identify named 
entities.  The named entities may be input to an analysis 
engine that produces summaries or classifications of the 
document. 

The UIMA CAS object provides general object-
based representation with a hierarchical type system 
supporting single inheritance. It includes data creation, 
access and serialization methods designed for the effi-
cient representation, access and transport of analysis 
results among TAEs and between TAEs and other 
UIMA components or applications. Elements in the 
CAS may be indexed for fast access (Goetz et al., 
2001).  The CAS has been implemented in C++ and 
Java with serialization methods for binary as well as 
XML formats for managing the tradeoff between effi-
ciency and interoperability. 

2.2 Collection-Level Analysis 
Documents are gathered by the application and organ-
ized into collections. The architecture defines a Collec-
tion Reader interface. Implementations of the Collection 
Reader provide access to collection elements, collection 

meta-data and element meta-data. UIMA implementa-
tions include a document, collection and meta-data store 
that implements the Collection Reader interface and 
manages multiple collections and their elements. How-
ever, applications that need to manage their own collec-
tions can provide an implementation of a Collection 
Reader to UIMA components that require access to col-
lection data. 

Collections are analyzed to produce collection level 
analysis results. These results represent aggregate infer-
ences computed over all or some subset of the docu-
ments in a collection. The component of an application 
that analyzes an entire collection is considered a Collec-
tion Analysis Engine. These engines typically apply 
element-level, or more specifically document-level 
analysis, to elements of a collection and then consider-
ing the element analyses in performing aggregate com-
putations. 

Examples of collection level analysis results include 
sub collections where elements contain certain features, 
glossaries of terms with their variants and frequencies, 
taxonomies, feature vectors for statistical categorizers, 
databases of extracted relations, and master indices of 
tokens and other detected entities. 

In support of Collection Analysis Engines, UIMA 
defines the Collection Processing Manager (CPM) 
component. The CPM’s primary responsibility is to 
manage the application of a designated TAE to each 
document accessible through a Collection Reader. A 
Collection Analysis Engine may provide, as input to the 
CPM, a TAE and a Collection Reader. The CPM applies 
the TAE and returns the analysis, represented by a CAS, 
for each element in the collection. To control the proc-
ess, the CPM provides administrative functions that 
include failure reporting, pausing and restarting.  

At the request of the application’s collection analy-
sis engine, the CPM may be optionally configured to 
perform functions typical of UIM application scenarios. 
Examples of these include:  

1) Filtering - ensures that only certain elements 
are processed based on meta-data constraints.  

2) Persistence - stores element-level analysis re-
sults in a provided Collection Writer. 

3) Indexing - indexes documents using a desig-
nated search engine indexing interface based 
on meta-data extracted from the analysis. 

4) Parallelization - manages the creation and exe-
cution of multiple instances of a TAE for proc-
essing multiple documents simultaneously 
utilizing available computing resources. 

2.3 Semantic Search 
To support the concept of “semantic search” – the capa-
bility to find documents based on semantic content dis-
covered by document or collection level analysis and 



represented as annotations – UIMA specifies search 
engine indexing and query interfaces.  

A key feature of the indexing interface is that it sup-
ports the indexing of tokens as well as annotations and 
particularly cross-over annotations. Two or more anno-
tations cross-over one another if they are linked to inter-
secting regions of the document.  

The key feature of the query interface is that it sup-
ports queries that may be predicated on nested structures 
of annotations and tokens in addition to Boolean combi-
nations of tokens and annotations. 

2.4 Structured Knowledge Access 
As analysis engines do their job they may consult a 
wide variety of structured knowledge sources. To in-
crease reusability and facilitate integration, UIMA 
specifies the Knowledge Source Adapter (KSA) inter-
face. 

KSA objects provide a layer of uniform access to 
disparate knowledge sources. They manage the techni-
cal communication, representation language and ontol-
ogy mapping necessary to deliver knowledge encoded 
in databases, dictionaries, knowledge bases and other 
structured sources in a uniform way. The primary inter-
face to a KSA presents structured knowledge as instan-
tiated predicates using the Knowledge Interchange 
Format (KIF) encoded in XML. 

A key aspect of the KSA architecture is the KSA 
meta-data and related services supporting KSA registra-
tion and search. These services include the description 
and registration of named ontologies. Ontologies are 
described by the concepts and predicates they include. 
The KSA is self-descriptive and among other meta-data 
includes the predicate signatures belonging to registered 
ontologies that the KSA can instantiate and the knowl-
edge sources it consults. 

Application or analysis engine developers can con-
sult human browseable KSA directory services to search 
for and find KSAs that instantiate predicates of a regis-
tered ontology. The service will deliver a handle to a 
web service or an embeddable KSA component.  

3 Analysis Engine Framework 

This section takes a closer look at the analysis engine 
framework. 

UIMA specifies an interface for an analysis engine; 
roughly speaking it is “CAS in” and “CAS out”. There 
are other operations used for filtering, administrative 

and self-descriptive functions, but the main interface 
takes a CAS as input and delivers a CAS as output.  

Any program that implements this interface may be 
plugged in as an analysis engine component in an im-
plementation of UIMA.  However, as part of UIMA 
tooling we have developed an analysis engine frame-
work to support the creation, composition and flexible 
deployment of primitive and aggregate analysis engines 
on a variety of different system middleware platforms. 

The underlying design philosophy for the Analysis 
Engine framework was driven by three primary princi-
ples: 

1) Encourage and enable component reuse. 

2) Support distinct development roles insulating 
the algorithm developer from system and 
deployment details. 

3) Support a flexible variety of deployment op-
tions by insulating lower-level system middle-
ware APIs. 

3.1 Encourage and Enable Component Reuse 
With many HLT components being developed through-
out IBM Research by independent groups, encouraging 
and enabling reuse is a critical design objective to 
achieve expected efficiencies and cross-group collabo-
rations. Three characteristics of the analysis engine 
framework address this objective: 

1) Recursive Structure 

2) Data-Driven 

3) Self-Descriptive 
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Figure 2: Primitive Analysis Engine 



Recursive Structure. A primitive analysis engine, illus-
trated in Figure 2, is composed of an Annotator and a 
CAS. The annotator is the object that implements the 
analysis logic (e.g. tokenization, grammatical parsing, 
entity detection). It reads the original document content 
and meta-data from the CAS. It then computes and 
writes new meta-data to the CAS.  An aggregate analy-
sis engine, illustrated in Figure 3, is composed of two or 
more component analysis engines, but implements ex-
actly the same external interface as the primitive engine. 
At run-time an aggregate analysis engine is given a se-
quence in which to execute its component engines. A 
component called the Analysis Structure Broker ensures 
that each component engine has access to the CAS ac-
cording to the specified sequence. Like any nested pro-
gramming model, this recursive structure ensures that 
components may be easily reused in combination with 
one another while insulating their internal structure. 

Data-Driven. An analysis engine’s processing 
model is strictly data-driven.  This means that an anno-
tator’s analysis logic may be predicated only on the con-
tent of its input and not on the specific analysis engines 
it may be combined with or the control sequence in 
which it may be embedded. This restriction ensures that 
an analysis engine may be successfully reused in differ-
ent aggregate structures and different control environ-
ments as long as its input requirements are met.  

The Analysis Sequencer is a component in the 
framework responsible for dynamically determining the 
next analysis engine to receive access to the CAS.  The 
Analysis Sequencer is distinct from the Analysis Struc-
ture Broker, whose responsibility is to deliver the CAS 
to the next analysis engine whichever it is wherever it 
may be located.  The Analysis Sequencer’s control logic 
is separate from the analysis logic embedded in an An-
notator and separate from the Analysis Structure Bro-
ker’s concerns related to ensuring and/or optimizing the 
CAS transport. This separation of concerns allows for 
the plug-n-play of different Analysis Sequencers. The 

Analysis Sequencer is a pluggable range from provide 
simple iteration over a declaratively specified static 
flow to complex planning algorithms. Current imple-
mentations have been limited to simple linear flows 
between analysis engines; however more advanced ap-
plications are generating requirements for dynamic and 
adaptive sequencing. How much of the control specifi-
cation ends up in a declarative representation and how 
much is implemented in the sequencer for these ad-
vanced requirements is currently being explored. 

Self-Descriptive. Ensuring that analysis engines 
may be easily composed to form aggregates and may be 
reused in different control sequences is necessary for 
technical reusability but not sufficient for enabling and 
validating reuse within a broad community of develop-
ers.   To promote reuse, analysis engine developers must 
be able to discover which analysis engines are available 
in terms of what they do – their capabilities. 

Each analysis engine's data model is declared in 
XML and then dynamically realized in the CAS at run-
time, an approach similar to MAIA (Laprun et al., 
2002).  In UIMA, however, analysis engines publish 
their input requirements and output specifications rela-
tive to this declared data model, and this information is 
used to register the analysis engine in an analysis engine 
directory service. This service includes a human-
oriented interface that allows application developers to 
browse and/or search for analysis engines that meet 
their needs. 

While self-description and related directory services 
will promote reuse, their value is still dependent on es-
tablishing common data models (or fragments thereof) 
to which analysis engine capability descriptions sub-
scribe.  

3.2 Support Distinct Development Roles 
Language technology researchers that specialize in, for 
example, multi-lingual machine translation, may not be 
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highly trained software engineers nor be skilled in the 
system technologies required for flexible and scaleable 
deployments. Yet one of the primary objectives of the 
UIMA project is to ensure that their work can be effi-
ciently deployed in robust and scaleable system archi-
tecture.   

Along the same lines, researchers with ideas about 
how to combine and orchestrate different components 
may not themselves be algorithm developers or systems 
engineers, yet we need to enable them to rapidly create  
and validate ideas through combining existing compo-
nents.  

Finally, deploying analysis engines as distributed, 
highly available services or as collocated objects in an 
aggregate system requires yet another skill.  

As a result we have identified the following devel-
opment roles and have designed the architecture with 
independent sets of interfaces in support of each of 
these different skill sets.  Our separation of development 
roles is analogous to the separation of roles in Sun's 
J2EE platform (Sun Microsystems, 2001).  

Annotator Developer. The annotator developer role 
is focused on developing core algorithms ranging from 
statistical language recognizers to rule-based named-
entity detectors to document classifiers.  

The framework design ensures that the annotator 
developer need NOT develop code to address aggregate 
system behavior or systems issues like interoperability, 
recovery, remote communications, distributed deploy-
ment, etc., but instead allow them to focus squarely on 
the algorithmic logic and the logical representation of 
their results. 

This was achieved through the analysis engine 
framework by requiring the annotator developer to un-
derstand only three interfaces, namely the Annotator, 
AnnotatorContext, and CAS interfaces.  The annotator 
developer performs the following steps: 

1) Implement Annotator interface 

2) Encode analysis algorithm using the CAS inter-
face to read input and write results and the An-
notatorContext interface to access resources 

3) Write Analysis Engine Descriptor 

4) Call Analysis Engine Factory 

To embed an analysis algorithm in the framework, 
the annotator developer implements the Annotator inter-
face. This interface is simple and requires the imple-
mentation of only two methods: one for initialization 
and one to analyze a document.  

It is only through the CAS that the annotator devel-
oper accesses input data and registers analysis results. 
The CAS contains the original document (the subject of 
analysis) plus the meta-data contributed by any analysis 
engines that have run previously. This meta-data may 
include annotations over elements of the original docu-

ment. The CAS input to an analysis engine may reside 
in memory, be managed remotely, or shared by other 
components. These issues are of concern to the analysis 
engine deployer role, but the annotator developer is in-
sulated from these issues.  

All external resources, such as dictionaries, that an 
annotator needs to consult are accessed through the An-
notator Context interface.  The exact physical manifes-
tation of the data can therefore be determined by the 
deployer, as can decisions about whether and how to 
cache the resource data. 

The annotator developer completes an XML descrip-
tor that identifies the input requirements, output specifi-
cations, and external resource dependencies. Given the 
annotator object and the descriptor, the framework’s 
Analysis Engine Factory returns a complete analysis 
engine. 

Analysis Engine Assembler. The analysis engine 
assembler creates aggregate analysis engines through 
the declarative coordination of component engines. The 
design objective is to allow the assembler to build an 
aggregate engine without writing any code. 

The analysis engine assembler considers available 
engines in terms of their capabilities and declaratively 
describes flow constraints. These constraints are cap-
tured in the aggregate engine’s XML descriptor along 
with the identities of selected component engines.   The 
assembler inputs this descriptor in the framework’s 
analysis engine factory object and an aggregate analysis 
engine is created and returned. 

Analysis Engine Deployer. The analysis engine de-
ployer decides how analysis engines and the resources 
they require are deployed on particular hardware and 
system middleware.  UIMA does not provide its own 
specification for how components are deployed, nor 
does it mandate the use of a particular type of middle-
ware or middleware product.  Instead, UIMA aims to 
give deployers the flexibility to choose the middleware 
that meets their needs. 

3.3 Insulate Lower-Level System Middleware 
HLT applications can share many requirements with 
other types of applications – for example, they may 
need scalability, security, and transactions.   Existing 
middleware such as application servers can meet many 
of these needs.  On the other hand, HLT applications 
may need to have a small footprint so they can be de-
ployed on a desktop computer or PDA or they may need 
to be embeddable within other applications that use their 
own middleware.   

One design goal of UIMA is to support deployment 
of analysis engines on any type of middleware, and to 
insulate the annotator developer and analysis engine 
assembler from these concerns.  This is done through 
the use of Service Wrappers and the Analysis Structure 



Broker.  The analysis engine interface specifies that 
input and output are done via a CAS, but it does not 
specify how that CAS is transported between compo-
nent analysis engines.  A service wrapper implements 
the CAS serialization and deserialization necessary for a 
particular deployment.  Within an aggregate Analysis 
Engine, components may be deployed using different 
service wrappers. The Analysis Structure Broker is the 
component that transports the CAS between these com-
ponents regardless of how they are deployed.   

To support a new type of middleware, a new service 
wrapper and an extension to the Analysis Structure Bro-
ker must be developed and plugged into the framework.  
The Analysis Engine itself does not need to be modified 
in any way.  

For example, we have implemented Service Wrap-
pers and Analysis Structure Broker on top of both a 
web-services and a message queuing infrastructure.  
Each implementation has different pros and cons for 
deployment scenarios. 

4 Measuring Success 

We have considered four ways to evaluate UIMA in 
meeting its intended objectives:  

1) Combination Experiments 

2) Compliant Components and their Reuse 

3) System Performance Improvements 

4) Product Integration 

4.1 Combination Experiments 
Our UIMA implementations and associated tooling have 
led to the design of several combination experiments 
that were previously unimagined or considered too 
cumbersome to implement. This work has only just be-
gun but includes collaborative efforts combining rule-
based parsers with statistical machine translation en-
gines, statistical named-entity detectors in rule-based 
question answering systems (Chu-Carroll et al., 2003), 
and a host of independently developed analysis capabili-
ties in bioinformatics applications.  

4.2 Compliant Components and their Reuse 
Another way to measure the impact of UIMA is to look 
at its adoption by the target community. This may be 
measured by the number of compliant components and 
the frequency of their reuse by different projects/groups. 

We have developed a registry and an integration test 
bed where contributed components are tested, certified, 
registered and made available to the community for 
demonstration and download.  

The integration test bed includes a web-based facil-
ity where users can select from a collection of corpora, a 

collection of certified analysis engines and run the 
analysis engine on the corpus. Performance statistics 
breaking down the time spent in analysis, communica-
tions between components, and framework overhead are 
computed and presented. The system generates analysis 
results and stores them. Analysis results may be viewed 
using any of a variety of CAS viewers. The results may 
also be indexed by a search engine, which may then be 
used to process queries. 

While we are still instrumenting this site and gather-
ing reuse data, within six months of an internal distribu-
tion we will have over 15 UIMA-compliant analysis 
engines, many of which are based on code developed as 
part of multi-year HLT research efforts. Engines were 
contributed from six independent and geographically 
dispersed groups. They include several named-entity 
detectors of both rule-based and statistical varieties, 
several classifiers, a summarizer, deep and shallow 
parsers, a semantic class detector, an Arabic to English 
translator, an Arabic person detector, and several bio-
logical entity and relationship detectors. Several of these 
engines have been assembled using component engines 
that were previously inaccessible for reuse due to engi-
neering incompatibilities.   

4.3 System Performance Improvements 
We expect the architecture’s support for modularization 
and for the insulation of system deployment issues from 
algorithm development to result in opportunities to 
quickly deploy more robust and scaleable solutions. 

For example, IBM's Question Answering system, 
now under development for over three years, includes a 
home-grown answer type detector to analyze large cor-
pora of millions of documents (Prager et al., 2002). 
With a half day of training, an algorithm developer cast 
the answer type detector as a UIMA Annotator and em-
bedded it in the UIMA Analysis Engine framework. The 
framework provided the infrastructure necessary for 
configuring an aggregate analysis engine with the an-
swer type detector down-stream of a tokenizer and 
named-entity detector without additional programming. 
Within a day, the framework was used to build the ag-
gregate analysis engine and to deploy multiple instances 
of it on a host of machines. The result was a dramatic 
improvement in overall throughput.  

4.4 Product Integration 
IBM develops a variety of information management, 
information integration, data mining, knowledge man-
agement and search-related products and services. Un-
structured information processing and language 
technologies in particular represent an increasingly im-
portant capability that can enhance all of these products. 

UIMA will be a business success for IBM if it plays 
an important role in technology transfers. IBM Research 



has engaged a number of product groups which are real-
izing the benefits of adopting a standard architectural 
approach for integrating HLT that does not constrain 
algorithm invention and that allows for easy extension 
and integration and support for a wide variety of system 
deployment options. 

5 Conclusion 

The UIMA project at IBM has encouraged many groups 
in six of the Research division’s labs to understand and 
adopt the UIMA architecture as a common conceptual 
foundation for classifying, describing, developing and 
combining HLT components in aggregate applications 
that integrate search and analytical functions. 

While our measurements are only just beginning, the 
adoption of UIMA has clearly improved knowledge 
transfer throughout the organization. Implementations 
of the architecture are advancing and are beginning to 
demonstrate that HLT components developed within 
Research can be quickly combined to explore hybrid 
approaches as well as to rapidly transfer results into 
IBM product and service offerings.  

IBM product groups are encouraged by Research’s 
effort and are committed to leverage UIMA as a vehicle 
to embed HLT components. They are realizing the 
benefits of having Research adopt a standard architec-
tural approach that does not constrain algorithm inven-
tion while allowing for a wide variety of system 
deployment options. Product and service groups are 
seeing an easier path to combine, integrate and deliver 
these technologies into information integration, data 
mining, knowledge management and search-related 
products and services. 
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