
Dialogue complexity with portability?
Research directions for the Information State approach

Carl Burke, Christy Doran, Abigail Gertner,
Andy Gregorowicz, Lisa Harper, Joel Korb, Dan Loehr

The MITRE Corporation
202 Burlington Road, Bedford, MA 01730

{cburke,doran,gertner,andrewg,lisah,jkorb,loehr}@mitre.org

Abstract

We review existing types of dialogue manag-
ers (DMs), and propose that the Information
State (IS) approach may allow both complex-
ity of dialogue and ease of portability. We
discuss implementational drawbacks of the
only existing IS DM, and describe our work
underway to develop a new DM resolving
those drawbacks.

1 Introduction

Spoken dialogue systems have shown steady improve-
ments in recent years. To continue advancing the state
of the field, we must direct research towards reducing a
tradeoff between complexity and portability. Otherwise,
we will continue to have systems which can handle
complex interactions, or systems which can be easily
modified for new domains, but not both.

The simplest existing dialogue managers (DMs), fi-
nite-state systems, are suitable for simple, well-
structured system-initiated dialogue tasks. They also
make it easy for novice developers to create new dia-
logue systems. Yet this type of DM does not scale well
to mixed-initiative dialogues or complicated tasks with
a wide variety of possible input. The most well-known
such DM is VoiceXML. Similar systems include Ore-
gon Graduate Institute’s Rapid Application Developer
(CSLU 2002), Unisys' Dialog Design Assistant (Unisys
1998), Nuance’s Speech Objects, the Swedish GULAN
(yellow pages) system (Gustafson et al 1998), and sev-
eral commercial systems by SpeechWorks.

More sophisticated, mixed-initiative, frame-based
DMs often make use of semantic “frames” containing
multiple “slots” or “keys”, each of which can hold a
value. Either conversational partner can volunteer or
request information about any slots in the frame, at any

time, in any order. When enough slots are filled to the
satisfaction of both parties, the task and conversation
are complete. This type of DM supports a more flexible,
arbitrary flow-of-control, often controlled by scripts of
rules firing upon certain conditions. Examples of these
types of DMs include Philips’ SpeechMania (Aust and
Schroer 1998), the Dialogue Design Language Tool in
the Danish Generic Dialogue System (Bernsen et al
1998), and several of the DMs developed (by e.g. MIT
and the University of Colorado) for the DARPA Com-
municator infrastructure.

Even more complex plan-based DMs reason about
“plans” and communicative “goals”, and try to move the
conversation along towards achieving these goals. By
representing the relationships between goals, subgoals,
and primitive actions in a domain, these systems can
support dialogues with a broader scope than the frame-
based DMs can. Notably, they are intended to detect
topic shifts as well as support dynamic re-planning
when misunderstandings occur. These systems typically
model communicative goals in terms of speech acts
where speech acts affect goals, beliefs, intent and/or
obligations of the participants. These DMs can also be
complex to develop, and correspondingly difficult to
port to new applications. Examples of this type are
COLLAGEN (COLLaborative AGENts), by Mitsubishi
Electric Research Lab (Rich et. al. 2001), and the Uni-
versity of Rochester’s TRAINS and TRIPS systems
(CISD 2000).

The approach we find most promising, however, is
the Information State (IS) approach, which simplifies
development by providing a rule-based language for
specifying dialogue systems while allowing the flexible,
complex interactions characteristic of plan-based dia-
logues. An IS theory of dialogue proposed by Cooper
and Larson (1998) models dialogue states (i.e. struc-
tured semantic objects) as dependent record types. Dia-
logue moves (roughly equivalent to speaker turns) are
characterized as transitions between information states
in a manner that is neutral with regard to semantic the-

ory. This approach to dialogue modeling enables devel-
opers to model the system information state in such a
way that arbitrary linguistic theories of dialogue may be
formalized, implemented, and compared. ISs may be
used to model relations between various kinds of infor-
mation such as utterances, background knowledge, non-
verbal events and visual scenes. This is crucial to mul-
timodal dialogue processing. Another important feature
of the IS approach is that developers have the flexibility
to define levels of dialogue as well as model goals, in-
tent, beliefs and obligations. Thus the IS approach may
also be used to model more complex dialogues using
concepts derived from plan-based theories of dialogue -
perhaps, inheriting some of the same challenges. How-
ever, the same framework may be used to also model
simpler finite-state dialogues.

TRINDIKit (TRINDI 2002) is an IS-based open
source Prolog toolkit. TRINDIKit itself provides the
basic infrastructure of a dialogue manager. It provides
structured data types and the means to define an Infor-
mation State from those types, a language for defining
the modules of a Dialogue Move Engine (DME), and a
language for controlling the application of individual
modules to dialogue management.

We have built two dialogue systems using TRIN-
DIKit (Burke et al 2002). We first developed a multi-
modal information kiosk by adapting GoDiS
(Gothenburg Dialogue System) (Larsson et al 2000),
which implements the Questions Under Discussion
model in TRINDIKit. Adapting this existing TRIN-
DIKit DM to a new question-answer domain required
very little effort (less than two staff-weeks from initial
downloading of TRINDIKit to an operational system
open to the public). We then modified the DM to sup-
port control of a search-and-rescue robot using a
speech-and-sketch interface on a PDA, again with rela-
tively little effort. Based on our experience, we feel that
the IS approach to dialogue management as espoused by
TRINDI is a strong candidate for supporting both com-
plexity and portability. In the remainder of this paper,
we discuss some implementational drawbacks of
TRINDIKit, and our work underway to develop a new
toolkit, inspired by TRINDIKit but re-engineered to
eliminate its drawbacks.

2

3

Implementational Drawbacks

Data consistency. TRINDIKit does not exercise good
controls over asynchronous modifications to the IS. At
one point we had to build artificial delays into our sys-
tem to work around these limitations. The DM we built
was based on GoDiS, which requires very structured
turn-taking. In several cases, however, the interactions
with the user flowed better if these responses were
automatic. Processing was sufficiently slow that our
GUI’s automatic acknowledgement often arrived and

was processed before TRINDIKit was finished cleaning
up from the previous utterance. As a result, it was pos-
sible to change the IS twice before the DME could re-
spond to one change, and the system lost track of the
dialogue state. Consistency of data needs to be assured
throughout the design of the system.

Inconsistent semantics. We encountered situations
where constructs of the GoDiS plan language were in-
terpreted differently depending on the depth of the plan.
With the proliferation of small languages implemented
by different sets of macros, it was difficult to track
down bugs in the rules and conversation scripts. This
was made more difficult by the nature of Prolog.
Clauses that fail do not normally generate any error
messages, because failure is a normal aspect of program
execution. Unfortunately, database bugs and misspelled
names often caused unexpected failures, causing the
system to generate either no response or a response that
looked reasonable but was in fact incorrect. We feel it’s
necessary to provide explicit notification of certain
kinds of failure, such as failure to find a named variable,
failure to find a matching value in a table, and so on.

Multimodal processing. Neither TRINDIKit nor
GoDiS provides any direct support for multimodal
processing. The primary interface driving the develop-
ment of these systems was language; there is no separa-
tion of events by source, no temporal tagging of input
events, and no provision for assessing temporal relation-
ships between different inputs.

Proposed Solutions

From our experience with TRINDIKit, we are con-
vinced of the advantages of a kit-based approach. We
feel that TRINDIKit was a good first cut at it, and hope
that our efforts will lead to a second, somewhat better
iteration. We are therefore moving ahead with a new
DM kit, tentatively called MIDIKI (MITRE DIalogue
KIt), with the following features.

Distributed information state. We have chosen to
model all of our module interactions as if they were
asynchronous. This provides the cleanest separation of
modules, and the cleanest conceptual integration with
the asynchronous requirements of robot control. Our
approach to solving this problem is to define an explicit
interface definition language, which will be used to de-
fine every module’s interface with the outside world.
We explicitly include the information state structure in
this interface definition, perhaps as a module in itself.
Since TRINDIKit does not include a separate language
for specifying module interfaces, we are designing our
own. This language is analogous to CORBA Interface
Definition Language, but with less concern for the
physical implementation.

Controlled extensibility. Our interface specifications
will need to be translated into specific computer lan-

guages before they can be executed. The translation will
vary depending on the underlying protocol used to
communicate between modules. While we want to sup-
port the widest possible audience, we don’t want to get
bogged down in the construction of translators for every
possible set of implementation language and protocol.
Our approach is to exploit an existing standard set of
translation software, namely XML and XSLT proces-
sors such as Xalan. We are specifying a dialect of XML
for modules interface definitions, and a small set of
templates for realizing interfaces with specific combina-
tions of programming language and protocol. Additional
templates can be written to extend the kit to other lan-
guages and protocols without requiring modification of
the kit itself.

Rule engine. The DME rules in TRINDIKit have
strong similarities to rules in expert systems. We plan to
implement these rules in both a sequential form, equiva-
lent to the current TRINDIKit, and in an expert system
form which may be more efficient. We expect that there
will be differences in operating characteristics between
those two styles, and we want to identify and quantify
those differences.

Control and synchronization. Our primary focus is
multimodal communication, potentially multiparty as
well. We are extending TRINDIKit’s triggers to include
support for consideration of temporal relationships be-
tween events, both within and across modes.

Integrated environment. An ideal toolkit would
have an integrated set of tools for designing, testing, and
debugging dialogues. We would like to support static
and dynamic analysis of dialogues, recording and play-
back of dialogues, graphical dialogue design tools, a
“validation suite” of tests to support extension of the
toolkit to new programming languages and agent proto-
cols, and above all, the ability to plug-in as-yet-
undefined capabilities.

4 Future Work

Significant effort has been devoted to defining our mu-
table language capability. This capability provides both
a transition path from TRINDIKit scripts and a means
for specifying module interfaces and information state
structure using a common XML representation.

Our intent is to provide support for several different
transport mechanisms to explore the limitations of our
approach. To date, we have completed an initial inter-
face definition specification and have developed tem-
plates to realize those interfaces with the OAA.
DARPA's Galaxy Communicator is the second transport
mechanism we will be considering.

We have devoted considerable time to up-front con-
sideration of scripting languages, portable code genera-
tion, and module communications, and are now
beginning the task of implementing our versions of the

TRINDIKit scripting languages. Our target realization
for these scripts is a combination of Java code and ex-
pert systems that can be executed within a Java pro-
gram.

We plan to port and formally evaluate our dialogue
toolkit within three domains (question-answering,
automated tutoring, and multimodal robot control). Our
dialogue toolkit will be openly available, as well as
sample implementations for each of these domains.

References
Aust, H. and Schroer, O. (1998) An overview of the

Philips dialog system. DARPA Broadcast News
Transcription and Understanding Workshop, Lans-
downe, VA.

Bernsen, N. O., Dybkjær, H. and Dybkjær, L. (1998)
Designing interactive speech systems. From first
ideas to user testing. Springer Verlag.

Burke, C., Harper, L., and Loehr, D. (2002) A Flexible
Architecture for a Multimodal Robot Control Inter-
face. Intelligent Situation-Aware Media and Presen-
tations Workshop, AAAI '02.

CISD (Conversational Interaction and Spoken Dialogue
Research Group) (2000) ‘TRIPS: The Rochester In-
teractive Planning System’, URL (Mar 2003):
http://www.cs.rochester.edu/research/trips.

Cooper, R., and Larsson S. (1998) Dialogue Moves and
Information States, Third International Workshop on
Computational Semantics.

CSLU (Center for Spoken Language Understanding)
(2002) ‘CSLU Toolkit’, URL (Mar 2003):
http://cslu.cse.ogi.edu/toolkit.

Gustafson, J., Elmberg, P., Carlson,R., and Jönsson, A.
(1998) An educational dialogue system with a user
controllable dialogue manager. ICSLP’ 98.

Larsson, Staffan, Robin Cooper, Stina Ericsson (2000)
System Description of GoDis. Third Workshop in
Human-Computer Conversation, Bellagio, Italy.

Rich, C., Lesh, N. and Sidner, C. (2001) COLLAGEN:
Applying Collaborative Discourse Theory. AI
Magazine, Special Issue on Intelligent User Inter-
faces.

TRINDI (2002) ‘TRINDIKit’, URL (Mar 2003):
http://www.ling.gu.se/projekt/trindi/trindikit.

Unisys (1998) ‘Unisys Corporation: Natural language
speech assistant (NLSA): capabilities overview’.
Malvern, PA.

http://cslu.cse.ogi.edu/toolkit

	Introduction
	Implementational Drawbacks
	Proposed Solutions
	Future Work

