
Sub-event based multi-document summarization

Naomi Daniel,1 Dragomir Radev,1,2 Timothy Allison3
1School of Information

2Department of Electrical Engineering and Computer Science
3Department of Classical Studies

University of Michigan
{ndaniel, radev, tballiso}@umich.edu

Abstract

The production of accurate and complete
multiple-document summaries is challenged by
the complexity of judging the usefulness of
information to the user. Our aim is to determine
whether identifying sub-events in a news topic
could help us capture essential information to
produce better summaries. In our first experiment,
we asked human judges to determine the relative
utility of sentences as they related to the sub-
events of a larger topic. We used this data to
create summaries by three different methods, and
we then compared these summaries with three
automatically created summaries. In our second
experiment, we show how the results of our first
experiment can be applied to a cluster-based
automatic summarization system. Through both
experiments, we examine the use of inter-judge
agreement and a relative utility metric that
accounts for the complexity of determining
sentence quality in relation to a topic.

1. Introduction
Multiple articles on a particular topic tend to contain
redundant information as well as information that is unique
to each article. For instance, different news sources
covering the same topic may take different angles, or new
information may become available in a later report. So,
while all the articles are related to the larger topic, each
article may be associated with any of several sub-events.
We wanted to find a way to capture the unique sub-event
information that is characteristic in multiple-document
coverage of a single topic. We predicted that breaking
documents down to their sub-events and capturing those
sentences in each sub-event with the highest utility would
produce an accurate, thorough, and diverse multi-
document summary.

In our first experiment, we compared six
methods of summarization to see which produces the best
summaries. The methods included three automatic and
three manual methods of producing summaries. We used
relative utility to capture and measure subtleties in
determining sentence relevance. We created multiple
document summaries using both a sub-event based
approach and a topic-based approach. Generally, we
expected to find that the manual summaries performed
better than the automatic summaries. In our second
experiment, we designed a multi-document summarizer
which relied on a clustering method, and we tested the
three policies we devised for creating summaries from the
manual summarization technique developed in our first
experiment.

2. Related Work
Much work has preceded and informed this paper. Allan
et al.’s (1998) work on summarizing novelty recognizes
that news topics consist of a series of events – what we call
“sub-events,” to distinguish the difference between a news
topic and its sub-events. However, their method differs in
its approach, which uses an algorithm to identify “novel”
sentences, rather than the use of human judges. In other
related work, sentences are either judged “on-topic” or
“off-topic” (Allan et al., 2001a) (Allan et al., 2001b).
Carbonell and Goldstein use Maximal Marginal Relevance
(MMR) to identify “novel” information to improve query
answering results, and they also apply this method to
multiple-document summarization (Carbonell and
Goldstein, 1997 and Goldstein, 1999). Success in the use
of inter-judge agreement has led us to pursue the use of the
current evaluation methods. However, this experiment
differs from prior work in that we use judges to determine
the relevance of sentences to sub-events rather than to
evaluate summaries (Radev et al., 2000). Finally,
McKeown et al. (1999), Hatzivassiloglou et al. (2001) and
Boros et al. (2001) have shown the challenges and
potential payoffs of using sentence clustering in extractive
summarization.

3. Article Corpus
Our study involves two experiments carried out on one
corpus of news articles. The article corpus was selected
from a cluster of eleven articles describing the 2000 crash
of Gulf Air flight 072. From these articles we chose a
corpus of five articles, containing a total of 159 sentences.
All the articles cover a single news event, the plane crash
and its aftermath. The articles were gathered on the web
from sources reporting on the event as it unfolded, and
come from various news agencies, such as ABC News,
Fox News, and the BBC. All of the articles give some
discussion of the events leading up to and following the
crash, with particular articles focusing on areas of special
interest, such as the toll on Egypt, from where many of the
passengers had come. The article titles in Table 1, below,
illustrate the range of sub-events that are covered under the
crash topic.

Article ID Source Date Headline

30 BBC Aug. 25 Bodies recovered from
Gulf Air crash

41 Fox News Aug. 25 Egyptians Suffer Second
Air Tragedy in a Year

81 USA Today Aug. 25 One American among 143
dead in crash

87 ABC News Aug. 26 Prayers for victims of
Bahrain crash

97 Fox News Aug. 26 Did Pilot Error Cause Air
Crash

Table 1. Corpus article characteristics.

4. Experiment 1: Sub-Event Analysis
Our first experiment involved having human judges
analyze the sentences in our corpus for degree of saliency
to a series of sub-events comprising the topic.

4.1 Description of Sub-Event User Study
The goal of this experiment was to study the effectiveness
of breaking a news topic down into sub-events, in order to
capture not simply salience, but also diversity (Goldstein,
1998).

The sub-events were chosen to cover all of the
material in the reports and to represent the most significant
aspects of the news topic. For the Gulf Air crash, we
determined that the sub-events were:

1. The plane takes off
2. Something goes wrong
3. The plane crashes
4. Rescue and recovery effort
5. Gulf Air releases information
6. Government agencies react

7. Friends, relatives and nations mourn
8. Black box(es) are searched for
9. Black box(es) are recovered
10. Black box(es) are sent for analysis

We instructed judges to rank the degree of

sentence relevance to each sub-event. Judges were
instructed to use a scale, such that a score of ten indicated
that the sentence was critical to the sub-event, and a score
of 0 indicated that the sentence was irrelevant. Thus, the
judges processed the 159 sentences from 5 documents ten
times, once pertaining to each sub-event. This experiment
produced for each judge 1590 data points which were
analyzed according to the methods described in the next
section.

We used the data on the relevance of the
sentences to the sub-events to calculate inter-judge
agreement. In this manner, we determined which
sentences had the overall highest relevance to each sub-
event. We used this ranking to produce summaries at
different levels of compression.

5. Methods for Producing Summaries
To gather data about the effectiveness of dividing

news topics into their sub-events for creating summaries,
we utilized data from human judges, upon which we
manually performed three algorithms. These algorithms
and their application are described in detail below. We
were interested to determine if the Round Robin method
(described below,) which has been used by McKeown et
al. (1999), Boros et al. (2001) and by Hatzivassiloglou et
al. (2001), was the most effective.

5.1 Sub-Event-Based Algorithms
After collecting judges’ scores of relevance for each
sentence for each subtopic, we then ranked the sentences
according to three different algorithms to create multiple-
document summaries. From this data, we created
summary extracts using three algorithms, as follows:

• Algorithm 1) Highest Score Anywhere - pick the
sentence which is most relevant to any subevent, no matter
the subevent; pick the next sentence which is most relevant
to any subevent, etc.

• Algorithm 2) Sum of All Scores - for each
sentence, sum its relevance score for each cluster, pick
the sentence with the highest sum; then pick the
sentence with the second highest sum, etc.

 • Algorithm 3) Round Robin - pick the sentence
which has the most relevance for subevent 1, pick the
sentence with the most relevance for subevent 2, etc. After
picking 1 sentence from each subevent, pick the sentence
with the 2nd best relevance to subevent 1, etc.

Judge 1 Judge 2 Judge 3 Judge 1 Judge 2 Judge 3 Judge 1 Judge 2 Judge 3
Article 30,
Sentence 1 1 0 0 5 0 5 8 8 10

2 1 0 0 7 4 7 10 10 10
3 4 0 0 10 10 10 10 5 7
4 1 0 3 5 0 2 8 0 2
5 0 0 0 3 0 0 5 0 2
6 0 0 0 3 0 0 6 0 2
7 0 0 0 3 0 0 6 0 2
8 0 0 0 3 4 2 10 10 10
9 0 0 2 0 0 0 8 0 0

10 0 0 0 3 0 0 6 0 2

Sub-Event 1 Sub-Event 2 Sub-Event 3

Table 2. First ten sentences of article 30, shown with scores given by three judges for three sub-events. Judges often disagree
on the degree of sentence relevancy. Some sentences are used in more than one sub-event.

Algorithm 1 - Highest Score
Anywhere (HSA): This algorithm was produced
by summing the data across all judges to produce a total
inter-judge score and keeping sub-events distinct, to see
the inter-judge utility scores given to sub-events. We
ordered the sentences by ranking these scores in
descending order and omitting duplicates, to produce the
ten and twenty percent extracts. For example, with data
from seven judges on ten sub-events, the highest possible
score for each sentence was seventy. Thus seventy was
the highest score.

In the case that there was a tie between
sentences, we ordered them by sub-event number (first
sub-event first and tenth sub-event last).

Algorithm 2 - Sum of All Scores
(SAS): This algorithm was produced by summing the
data across all judges to produce a total inter-judge score,
and combining events so that we could see the utility
scores given across sub-events. We ordered the
sentences by ranking these cross-event inter-judge utility
scores in descending order and omitting duplicates, to
produce the ten and twenty percent extracts.

Algorithm 3 - Round Robin (RR): This
algorithm was produced by summing the data across all
judges to produce a total inter-judge score and keeping
sub-events distinct, to see the inter-judge utility scores
given to sub-events. We ordered the sentences by
ranking the inter-judge utility scores in descending order
within each sub-event. We then chose the top sentence
from each sub-event (one through ten), the second
highest sentence from each sub-event, and so on,
omitting duplicates, until we had produced the ten and
twenty percent extracts.

In this manner, we created thirty-six sub-event-
based summary extracts – six clusters, three algorithms,
two compression rates – which we then analyzed.

The Sum of All Scores algorithm most closely
replicates a centroid-based summary by combining the
ten sub-event scores into one pan-topic score for each
sentence. Further, the Sum of All Scores algorithm is the
sub-event algorithm most likely to pick sentences with a
high “general relevance,” which is what the baseline
relative utility scores are meant to capture. In contrast,
the Highest Score Anywhere algorithm maintains the
structure of the sub-event breakdown, preferring the
highest score in any sub-event. Likewise, the Round
Robin algorithm maintains the sub-event breakdown, but
rather than preferring the highest score in any event, it
selects the highest score from each sub-event, serially;
this algorithm most closely resembles the Lead-based
automatic summarizer, and is at the heart of
Hatzivassiloglou et al.’s (2001) SimFinder.

5.2 Automatic Multi-Document
Summaries
The three automatic summarization methods that we
used in our comparison have already been established.
We compared our manual summaries to these established
automatic multiple-document summarization methods:
Centroid-based (MEAD), Lead-based and Random.

MEAD: First, we produced summaries
using the MEAD system. MEAD produces a centroid
(vector) for all of the sentences and then selects those
sentences which are closest to the centroid. MEAD
measures similarity with the cosine measurement and
TF*IDF weighting. Mead also adjusts a sentence’s score
based on its length, its position in the original document
and its similarity to sentences already selected for the
extract. (Radev et al, 2000).

Lead-Based: We also produced summaries
by the Lead-based method. This method involves
assigning the highest score to the first sentence in each
article, then the second sentence in each article, and so
on.

Random: We created summaries with every
possible combination of sentences for each summary
length. This allowed us to compute the average random
relative utility score.

6. Relative Utility
Following (Radev et al., 2000), we used relative utility as
our metric. Relative utility was chosen for advantages in
a couple of areas.

Relative utility is a metric which measures
sentence relevance. It allows us to distinguish the degree
of importance between sentences, providing a more
flexible model for evaluating sentence utility (Radev et
al., 2000). Studies involving sentence extraction have
often been predicated upon determining the usefulness of
sentences as either useful or non-useful (Allan et al.
2001b). However, determining the usefulness of
sentences is more complex than a simple a binary choice
can account for. We employ a relative utility metric to
account for subtleties in determining the saliency of
sentences.

Another advantage of the relative utility metric
is that, although human judges have often agree very
little on which sentences belong in a summary, they tend
to agree on how important sentences are to a topic or
event; thus, relative utility makes it possible to leverage
this agreement.

To calculate relative utility, we had human
subjects assign a score to each sentence in a corpus of
articles. The score reflects the subject’s perception of a
sentence’s relevance to the overall topic of the corpus.
The scale our judges were instructed to use ranged from
zero to ten. A score of zero indicated that the sentence
was irrelevant; whereas a score of ten indicated that the
sentence was crucial to the understanding of the topic.
So that judges’ scores can be fairly compared, each
judge’s scores are normalized by the highest score and
lowest score which that judge gives any sentence.

Relative utility is determined by first adding
together the utility scores given to each sentence by each
judge. Each sentence in a summary is then awarded the
total of the judges’ scores for that sentence. Finally, the
summary’s total score is divided by the best possible
score, given the size of the summary.

For example, let us assume that a cluster has
three sentences (A, B and C) which have been judged by
two judges in the following way: A 10, 9, B 8, 6 and C 6,
5. That is, judge 1 gives sentence A a 10, while judge 2
gives sentence A a 9, and so on. In the first step, we sum
the judges’ scores for each sentence, yielding (A 19, B
14, C 11). If a summarizer has to pick a 2 sentence
summary, and it picks A and C, its utility score is 30.
We then divide this score by the best possible 2 sentence
summary, in this case A and B, whose utility is 33,
yielding a final relative utility of .91.

7. Extract Creation
Summaries can be created by abstracting or extracting
[Mani, 2001]. For purposes of comparison with MEAD,
an extractive summarizer, we used an extractive method
to create all six summary types: sum of all scores, highest
score anywhere, round robin, MEAD, lead-based, and
random.

7.1 Clusters
Each of the summarization methods was

employed at both ten and twenty percent compression
rates. We used the summaries thus produced to consider
how compression rates could influence the effectiveness
of the six summarization methods. In our first
experiment, we additionally looked at varying
combinations of the five articles, such that we examined
the corpus in six clusters, as shown in the figure below.
We selected these article combinations to maximize the
diversity of sources in each cluster, and to achieve a
variable number of articles in a cluster.

Combination 1) articles 30 + 41 + 81 + 87 + 97

Combination 2) articles 30 + 41 + 81

Combination 3) articles 41 + 81 + 87

Combination 4) articles 81 + 87 + 97

Combination 5) articles 87 + 97 + 30

Combination 6) articles 97+ 30 + 41

Figure 1. Article clusters.

 10% 20%

 HSA SAS RR MEAD Lead Rand HAS SAS RR MEAD Lead Rand

Cluster 1 0.641 0.686 0.717 0.617 0.795 0.480 0.542 0.745 0.683 0.621 0.722 0.521

Cluster 2 0.629 0.739 0.716 0.629 0.800 0.459 0.637 0.786 0.659 0.623 0.741 0.490

Cluster 3 0.568 0.698 0.544 0.672 0.701 0.435 0.572 0.735 0.631 0.647 0.629 0.470

Cluster 4 0.406 0.669 0.651 0.662 0.714 0.489 0.539 0.722 0.596 0.653 0.738 0.521

Cluster 5 0.646 0.675 0.698 0.604 0.797 0.549 0.598 0.739 0.733 0.631 0.749 0.575

Cluster 6 0.622 0.698 0.693 0.595 0.880 0.508 0.623 0.762 0.717 0.552 0.817 0.536

Average = 0.585 0.694 0.670 0.630 0.781 0.487 0.585 0.748 0.670 0.621 0.733 0.519

Table 3. Results: Best performing algorithm at each cluster/compression rate shown in bold.

8. Results from the first experiment
Some of our results met our expectations, while others
surprised us (see Table 3). The Sum of All Scores manual
algorithm produces the best summaries at the twenty
percent compression rate. At the ten percent compression
rate, data shows Lead-based summaries performing best,
with the Sum of All Scores algorithm coming in right
behind. Mead scores in the mid-range as expected, for
both compression rates, just behind the Round Robin
Algorithm. In contrast, the random method leads in low
scores, with the Highest Score Anywhere algorithm
coming in only slightly higher. Random sets the lower
bound. Here, we discuss the details of our findings and
their significance in more detail.

8.1 Manual Algorithms
Both the Sum of All Scores, and Round Robin algorithms
performed better than MEAD, with the highest score
anywhere algorithm performing less well. This result is
reasonable, based upon the characteristics of the
algorithms. Algorithm 2 (SAS), the best performer among
the manual summaries, used the sum of all scores across
events and judges; thus, it tapped into which sentences
were most popular overall. Algorithm 3 (RR), also better
than MEAD, used a round robin technique, which,
similarly to the Lead-based results, tapped into the
pyramid quality of news journalism. Algorithm 1 (HSA),
poorest performer second to Random, used the highest
score in any event by inter-judge score; its weakness was
in negating both the benefits of the pyramid structure of
the judges’ sentence rankings, as well as the popularity of
sentences across events.

8.2 Compression Rate

For extracts at the ten percent compression rate, Lead-
based sets the upper, and random the lower, bound.
However, the Sum of All Scores algorithm performed
better at the twenty percent compression rate, beating

Lead-based for best summaries. Each method produced
better summaries overall at ten percent compression rate,
except for Algorithm 2, which performed better at the
twenty percent compression rate.

We believe that SAS performed better at the
twenty percent compression rate as a result of two
characteristics: as the sum of scores across sub-events, this
algorithm preferred both sentences that received higher
scores, as well as sentences which were highly ranked
most frequently. Therefore, it is weighted toward those
sentences that carry information essential to several sub-
events. Because of these sentences’ relevancy to more
than one sub-event, they are most likely to be important to
the majority of readers, regardless of the user’s particular
information task. This can also be seen as popularity
weighting, with those sentences getting the most and best
scores from judges producing the most useful summaries.
The patterns uncovered by this result should be leveraged
for future improvements to automatic summarizers.

8.3 Lead-Based Summaries
We were not extremely surprised to find that Lead-based
summaries produced better summaries at the 10%
summary rate. This result may be explained by the
pyramid structure of news journalism, which, in a sense,
pre-ranks document sentences in order of importance, in
order to convey the most critical information first. As our
corpus was comprised entirely of news articles, this effect
could be exaggerated in our results. As expected, though,
the Random summarizer set the lower bound.

8.4 Manual Summaries and MEAD
Most significantly, among the mid-range performers, the
data demonstrates what we expected to find: Two of the
three new sub-event-based algorithms perform better than
MEAD. Identifying sub-events in news topic coverage is
one method that we have shown can be utilized to help
create better summaries.

9. Automatic Clustering and Extraction
In our second experiment, we were interested to see how
the different strategies would work with a simple
clustering-based multi-document summarizer. We did not
expect our clustering algorithm to neatly partition the data
according to the subevents we identified in our first
experiment, but we did want to see if our findings about
SAS would hold true for automatically partitioned data.
And so we turned to sentence clustering. While Boros et
al. (2001) report poor performance but some promise to
this method, Hatzivassiloglou et al. (2001) have exploited
clustering with very good results in SimFinder. Both rely
on the RR method, although SimFinder considers several
other important factors in sentence selection.

9.1 Automatic Clustering
Because of the vast number of variables associated with
designing a cluster-based summarization algorithm, we
chose to limit our system so that we could focus on RR,
HSA and SAS. To give a sense of our performance, we
also ran a purely centroid-based summarization algorithm.

We used K-means clustering, and obtained
results for K = 2-20, at both the 10% and 20% summary
levels. By this process, we created K clusters, seeded them
as discussed below, and then for each sentence, we found
that cluster to which the sentence was closest. After filling
the clusters, we checked again to see if each sentence was
in its best cluster. We kept doing this until equilibrium
was reached (usually no more than 6 cycles).

For our similarity metric we used the cosine
measure with inverse document frequency (IDF), inverse
sentence frequency (ISF) (following Neto et al. (2000) and
no term-weighting. We ran all of these permutations
twice, once ignoring sentences with 9 words or fewer (as is
MEAD’s default) and once ignoring sentences with 2
words or just 1. We did not use stop words, stemming, or
syntactic parsing. Further, we did not factor in the location
of the sentences in their original documents, although both
MEAD and SimFinder do this.

Initially, we used a method of randomly seeding
the clusters, but we found this method extremely unstable.
We then devised the following method: 1) for the first
cluster, find the sentence which is closest to the centroid of
the document cluster, 2) for each sentence after that, find
the sentence which is maximally different from those
sentences already picked as seeds.

9.2 Automatic Extraction
After creating the clusters by this method, we extracted
sentences with the same three methods of interest, HSA,
SAS, and RR. For this experiment, we also added a
simple Centroid policy. Under this policy, a centroid
vector was created for all of the sentences, and then for
each sentence the cosine measure was computed against
the centroid. The sentences were then sorted by their
cosine scores with the centroid. The top 10% or 20% were
selected for the summary.

 For all policies, the extraction algorithm would
not select a sentence which had a cosine of 0.99 or higher
with any sentence already in the summary. For
comparison, MEAD’s default is 0.7. In the future, we
would like to study the effect of this parameter on
information diversity.

10. Results for Automatic Clustering
In Table 4, we report our findings from the second
experiment. This table presents the average of the
performances across all of the clustering options (2
clusters to 20 clusters) for the specified parameters. In
general for a 10% summary, the SAS method outperforms
the other methods, leading Centroid by only a small
amount. At the 20% level, the Centroid policy beats all
other algorithms, although SAS with ISF and a 2-word
sentence minimum comes close.

 Some other interesting findings emerge from this
table as well, namely term-weighting seems beneficial for
all methods except for HSA, and ISF seems generally
more beneficial for SAS and Centroid than for RR or
HSA.

SAS RR HSA Centroid SAS RR HSA Centroid
min. 2 word IDF 0.602 0.560 0.481 0.546 0.639 0.570 0.533 0.617
min. 2 word ISF 0.672 0.485 0.453 0.669 0.650 0.520 0.522 0.656
min. 2 word none 0.531 0.550 0.528 0.515 0.581 0.557 0.576 0.588

min. 9 word IDF 0.608 0.488 0.472 0.546 0.634 0.535 0.523 0.616
min. 9 word ISF 0.609 0.501 0.460 0.670 0.630 0.529 0.525 0.656
min. 9 word none 0.528 0.511 0.498 0.517 0.588 0.558 0.562 0.582

10% 20%

Table 4: Results from our automatic, cluster-based summarizer

 Table 4 is unable to capture, however, the
marked variation in results depending on how many
clusters were initially selected. In Table 5, we present our
findings for the overall best parameters. As can be seen,

SAS is the most common policy. In fact, SAS appears in
the top 22 out 25 combinations at the 10% level and 20 out
of 25 at the 20% compression level.

Top 10 performers, 10% summary Top 10 performers, 20% summary

clusters ISF/IDF min. sent. length policy rel. util. # clusters ISF/IDF min. sent. length policy rel. util.

15 ISF 2 SAS 0.718 4 ISF 2 SAS 0.686

16 ISF 2 SAS 0.711 3 ISF 2 SAS 0.682

14 ISF 2 SAS 0.710 2 ISF 2 SAS 0.681

20 ISF 2 SAS 0.705 2 ISF 9 RR 0.669

13 ISF 2 SAS 0.704 3 ISF 9 HSA 0.665

17 ISF 2 SAS 0.704 5 ISF 2 SAS 0.665

11 IDF 9 SAS 0.684 2 ISF 9 HSA 0.664

8 IDF 9 SAS 0.681 7 ISF 2 SAS 0.661

7 ISF 2 SAS 0.679 9 IDF 9 SAS 0.660

19 ISF 2 SAS 0.678 Na ISF 9 CENTROID 0.656
Table 5: Top 10 parameters for the both rates of summarization

Tables 4 and Tables 5, taken together, suggest
that SAS should be leveraged to improve performance
over the pure centroid method. More work needs to be
done to determine the appropriate number of clusters to
begin with, but it is interesting that there appears to be an
inverse relationship, namely, the smaller summary seems
to benefit from small, tightly packed clusters, while the
larger summary benefits from a few noisy clusters.

11. Conclusions
While the Lead-based policy from our first experiment still
outperforms all of our automatic cluster-based summaries
at the 10% and 20% levels, our findings about SAS are
important for future efforts to summarize by partitioning.
As discussed, the pyramid structure of news articles may
have boosted the scores of the lead-based policy. In
applications of summarizers, where the information is not
presorted, we believe that clustering and then extraction
with SAS could offer the best results.

We conclude that multi-document summarization
is improved by two specific elements. Firstly, taking into
account varying degrees of relevancy, as opposed to a
polarized relevant/non-relevant metric. Secondly,
recognizing the sub-events that comprise a single news
event is essential.

12. Future Work
In future work, we see four areas for improvement. We
would like to improve our simple cluster-based algorithm.
Hatzivassiloglou et al. (2001) have shown several ways of
doing this. Second, we would like to have human judges
evaluate the final summaries and give scores based on how
well the summary captures the most relevant parts of the
document cluster and how well the summary avoids
repetition. This would allow us to see how effective the
RU method is as well as how well our summarizer is
functioning. Third, we would like to run a machine
learning algorithm on a number of different and varied

clusters to find which parameter settings work best for
each type of cluster. We suspect that the optimal number
of original clusters, and the choice of ISF or IDF, could be
determined by the amount of redundancy in the cluster and
the desired size of the extract, but more work remains to be
done on this. Finally, we need to test the best clustering
method against other methods -- centroid-based, MMR,
lexical-chain, key-word to name a few.

12. Acknowledgements
This work was partially supported by the National Science
Foundation's Information Technology Research program
(ITR) under grant IIS-0082884. Our thanks go to the
anonymous reviewers for their very helpful comments.

The version of MEAD that we used was
developed at the Johns Hopkins summer workshop in
2001 under the direction of Dragomir Radev and later
upgraded at the University of Michigan. We want to thank
the following individuals for their work on MEAD: Sasha
Blair-Goldensohn, Simone Teufel, Arda Celebi, Wai Lam,
Hong Qi, John Blitzer, Horacio Saggion, Elliott Drabek,
Danyu Liu, Michael Topper, and Adam Winkel.

13. References

[1] Allan, J. et al., 1998. “On-line New Event Detection
and Tracking.” In Proceedings of the 21st annual
international ACM SIGIR conference on Research and
development in information retrieval. Melbourne,
Australia.

[2] Allan, J. et al., 2001a. “Temporal summaries of news
topics.” In Proceedings of the 24th annual international
ACM SIGIR conference on Research and development in
information retrieval.

[3] Allan, J. et al., 2001b. “Topic models for summarizing
novelty.” ARDA Workshop on Language Modeling and
Information Retrieval. Pittsburgh, Pennsylvania.

[4] Boros, E. et al. 2001. “A Clustering Based Approach
to Creating Multi-Document Summaries.” In Proceedings of
the 24th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, New
Orleans, LA, 2001.

[5] Carbonell, J. and J.G. Goldstein, 1998. “The use of
MMR, diversity-based reranking for reordering documents
and producing summaries.” In Proceedings of the 21st
annual international ACM SIGIR conference on Research
and development in information retrieval. Melbourne,
Australia.

[6] Goldstein, J.G., 1999. “Automatic text summarization
of multiple documents.” Carnegie Mellon University.

[7] Hatzivassiloglou et al., 2001. “SimFinder: A Flexible
Clustering Tool for Summarization.” NAACL, Workshop
on Automatic Summarization. Pittsburgh, PA.

[8] Mani, I., 2001. “Automatic summarization.” Natural
Language Processing, ed. Ruslan Mitkov. Philadelphia,
PA: John Benjamins Publishing.

[9] Marcu, D., 2000. The theory and practice of discourse
parsing and summarization. Cambridge, MA: MIT Press.

[10] McKeown, K. and J. Klavans, V. Hatzivassiloglou, R.
Barzilay, E. Eskin, 1999. “Towards multidocument
summarization by reformulation: Progress and prospects.”
In Proceedings of AAAI-99, Orlando, Fl., pp. 453-60.

[11] Neto, Joel et al., 2000. “Document Clustering and
Text Summarization.” In N. Mackin, editor, Proc. 4th
International Conference Practical Applications of
Knowledge Discovery and Data Mining (PADD-2000),
pages 41-55, London, January. The Practical Application
Company.

[12] Radev D., H. Jing and M. Budzikowska, 2000.
“Centroid-based summarization of multiple documents:
sentence extraction, utility-based evaluation, and user
studies.” ANLP/NAACL Workshop on Summarization.
Seattle, WA.

[13] Radev, D., S. Blair-Goldensohn and Z. Zhang, 2001.
“Experiments in single and multi-document summarization
using MEAD.” First Document Understanding
Conference. New Orleans, LA.

